WO2019065782A1 - Conductive film, touch panel sensor, touch panel, and method for producing conductive film - Google Patents

Conductive film, touch panel sensor, touch panel, and method for producing conductive film Download PDF

Info

Publication number
WO2019065782A1
WO2019065782A1 PCT/JP2018/035799 JP2018035799W WO2019065782A1 WO 2019065782 A1 WO2019065782 A1 WO 2019065782A1 JP 2018035799 W JP2018035799 W JP 2018035799W WO 2019065782 A1 WO2019065782 A1 WO 2019065782A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film
layer
conductive
substrate
Prior art date
Application number
PCT/JP2018/035799
Other languages
French (fr)
Japanese (ja)
Inventor
孝彦 一木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2019065782A1 publication Critical patent/WO2019065782A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a conductive film, a touch panel sensor, a touch panel, and a method of manufacturing a conductive film.
  • substrate is used for various uses. For example, in recent years, with the increase in the loading rate of touch panels on mobile phones, portable game devices, etc., the demand for conductive films for capacitive touch panel sensors capable of multipoint detection is rapidly expanding.
  • the user looks at the display from a distance of several tens of centimeters from the display.
  • it is required to further narrow the line width of the thin metal wire.
  • thin metal wires having a narrow line width have poor adhesion to the substrate.
  • a conductive film provided with a layer having a function of further improving the adhesion between the substrate and the fine metal wire has been proposed.
  • a transparent substrate which is an alkali-free glass, and a first conductive metal oxide layer disposed between a plurality of pixels on a transparent substrate and a first conductive metal oxide layer are disclosed.
  • a black wire including a metal layer disposed thereon, a second conductive metal oxide layer disposed on the metal layer, and a black layer disposed on the second conductive metal oxide layer
  • the black wires extend in a first direction, and a plurality of black wires are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wires are in a display area including a plurality of pixels.
  • the metal layer is formed of copper or copper alloy
  • the black layer is mainly made of carbon.
  • the first and second conductive metal oxide layers are indium oxide and zinc oxide and oxidized And the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black layer have the same line width. It is disclosed.
  • the first conductive metal oxide layer contributes to the improvement in the adhesion between the substrate and the metal layer.
  • the black layer is disposed only on the surface on the viewing side (top surface portion) of the wiring.
  • the inventors of the present invention made and examined the display device substrate described in Patent Document 1 and found that the wires (thin metal wires) might be visible. That is, it was found that there is room to further improve the invisibility of the thin metal wire. Further, in recent years, further thinning of thin metal wires is required. Specifically, a conductive film provided with fine metal wires having a line width of 2.0 ⁇ m or less is required.
  • Another object of the present invention is to provide a conductive film including metal fine wires having a line width of 2.0 ⁇ m or less, excellent adhesion to a substrate, and excellent in non-visibility, and a method for producing the same. Do. Another object of the present invention is to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
  • the inventors of the present invention conducted intensive studies to achieve the above problems, and as a result, conductivity including metal thin lines obtained by blackening the side portions of the metal film disposed on the underlayer having a predetermined composition by the substitution blackening method According to the film, it was found that the above problems could be solved, and the present invention was completed. That is, it discovered that the above-mentioned object could be achieved by the following composition.
  • a conductive film comprising: a substrate; and a conductive portion composed of fine metal wires disposed on at least one of the main surfaces of the substrate,
  • the metal fine wire includes an underlayer and a conductive layer disposed in this order from the substrate side, and a blackening layer covering the surface of the conductive layer, and the line width is 2.0 ⁇ m or less.
  • the underlayer contains a metal oxide or metal nitride as a main component
  • the blackened layer contains palladium and
  • the said conductive layer is a conductive film which contains copper as a main component.
  • [3] The conductive film according to [1] or [2], wherein the metal oxide is a metal oxide containing a nickel atom, and the metal nitride is a metal nitride containing a nickel atom.
  • [4] The conductive film according to any one of [1] to [3], wherein the line width of the fine metal wire is 1.2 ⁇ m or less.
  • [5] The conductive film according to any one of [1] to [4], wherein the conductive layer contains copper in an amount of 90% by mass or more based on the total mass of the layer.
  • a touch panel sensor comprising the conductive film according to any one of [1] to [5].
  • [7] A touch panel including the touch panel sensor according to [6].
  • [8] A method for producing a conductive film according to any one of [1] to [5], Forming a base film containing metal oxide or metal nitride as a main component on at least one of the main surfaces of the substrate; Forming a second metal film containing copper as a main component on the underlayer; Forming a resist film having an opening with a line width of 2.0 ⁇ m or less in a region where a metal fine wire is formed on the second metal film; Forming a first metal film containing copper as a main component on the second metal film in the opening by a plating method; Removing the resist film; Removing a portion of the second metal film using the first metal film as a mask; Blackening the surfaces of the first metal film and the second metal film disposed on the substrate by substitution blackening treatment with palladium; And d) removing a part of the base film using the first metal film and the second metal film whose surfaces have been subjected to the blackening treatment as a mask.
  • a conductive film including fine metal wires having a line width of 2.0 ⁇ m or less, excellent adhesion to a substrate, and excellent in non-visibility and a method for producing the same.
  • the line width is 2.0 ⁇ m or less
  • the adhesion to the substrate is excellent
  • the fine metal wire excellent in non-visibility is included, and the decrease of the transmittance due to the contamination at the time of production. It is possible to provide a method for producing a conductive film in which Further, according to the present invention, it is possible to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
  • FIG. 2 is a cross-sectional view taken along the line AA of the conductive film shown in FIG. 1A. It is a partially expanded view of the electroconductive part in FIG. 1A.
  • It is a fragmentary sectional view of an embodiment of a conductive film of the present invention (a sectional view in a BB section in FIG. 1C). It is a fragmentary sectional view of a substrate with a foundation film obtained by performing a foundation film formation process. It is a fragmentary sectional view of a substrate with a 2nd metal film obtained by implementing a 2nd metal film formation process. It is a fragmentary sectional view of a substrate with a resist film obtained by performing a resist film formation process.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • active light or “radiation” in the present specification means, for example, a bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet (EUV: extreme ultraviolet lithography) light, X-rays, and Means electron beam etc.
  • light means actinic rays and radiation.
  • the "exposure” in the present specification means not only exposure by far ultraviolet rays represented by a mercury lamp and an excimer laser, X-rays and EUV light but also particle beams such as electron beams and ion beams unless otherwise specified. Also includes drawing by.
  • the metal fine wire includes an underlayer containing a metal oxide or metal nitride as a main component between the substrate and the conductive layer containing copper as a main component.
  • the surface of the conductive layer is covered with a blackened layer containing palladium.
  • the inventors of the present invention have found that, as a reason why the metal wiring is visually recognized in the display device substrate described in Patent Document 1, light reflection at the side portion where the black layer is not disposed is the cause.
  • the above problem is solved by covering the region including the side surface portion of the conductive layer with the blackened layer containing palladium.
  • the substitution blackening treatment is effective because the blackening layer can be formed without thickening the thin metal wire.
  • the substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals.
  • the side portion of the metal film containing copper as a main component can be replaced with palladium which is more electrochemically noble than copper. That is, as a result of this, the blackened layer can be formed without thickening the thin metal wire. Furthermore, as for the adhesion of the metal fine wire to the substrate, it has been found that, when using the above-mentioned blackened layer, an excellent effect can be obtained by combining a predetermined underlayer. Specifically, the blackening layer has lower adhesion to the substrate as compared to a conductive layer containing copper as a main component.
  • the contact surface between the conductive layer and the substrate may be relatively reduced by forming the blackening layer, and the adhesion of the metal fine wire to the substrate may be lowered.
  • the decrease in the adhesion of the metal fine wire to the substrate is more likely to occur (note that, for example, 5 ⁇ m), it has been found that there is no effect on adhesion).
  • the adhesion of the metal fine wire to the substrate is improved by combining a predetermined underlayer. That is, if it is the said combination, a conductive film will have a predetermined effect.
  • the combination of the blackening layer containing palladium and the underlayer containing a predetermined component as described above is also advantageous in the method of producing a conductive film.
  • a substitution blackening treatment method As described later, as one of methods for forming a blackening layer containing palladium, there is a substitution blackening treatment method.
  • the substitutional blackening treatment method is a reaction that utilizes the difference in ionization tendency among metals. According to the substitution blackening treatment method, it is possible to form a blackened layer containing palladium, which is more electrochemically noble than copper, on the surface of a metal film containing copper as a main component.
  • the base layer provided between the substrate and the conductive layer containing copper as a main component during the substitution blackening treatment is a metal oxide or metal nitride that is the constituent material thereof. Since the valence of is not zero, it is difficult for the redox reaction to occur. That is, it is difficult to form a blackening layer on the surface of the underlayer. Even if it occurs, the amount is small. For example, as described later, even if the substitution blackening treatment is performed before the base film removing step (etching of the base film), the base film is less likely to deteriorate, and the subsequent etching is inhibited. do not do.
  • substitution blackening treatment is carried out after the fine wiring pattern is completely formed, but in this case, the blackening liquid may adhere to the opening, which may deteriorate the transmittance and chromaticity of the fine wiring pattern. .
  • substitution blackening treatment before the etching of the base film as in the method for producing a conductive film of the present invention, there is no concern that the opening will be contaminated. That is, according to the method for producing a conductive film of the present invention, a predetermined conductive film can be easily produced.
  • the method for producing a conductive film of the present invention in the conductive film obtained, in addition to the non-visibility of the fine metal wires, the reduction in transmittance and the occurrence of coloring caused by the contamination during production are suppressed .
  • FIG. 1A is a top view of an embodiment of the conductive film of the present invention
  • FIG. 1B is a cross-sectional view of the conductive film shown in FIG. 1A, taken along the line AA.
  • FIG. 1C is a partially enlarged view of the conductive portion in FIG. 1A.
  • the conductive film 20 of the present invention includes a substrate 10 and a conductive portion 13 disposed on at least one of the main surfaces of the substrate 10, as shown in FIGS. 1A and 1B.
  • the type of the substrate 10 is not particularly limited as long as the substrate 10 has a main surface and supports the conductive portion 13.
  • a flexible substrate preferably an insulating substrate
  • a resin substrate is more preferable.
  • the substrate 10 preferably transmits 60% or more of visible light (wavelength 400 to 800 nm) light, more preferably transmits 80% or more, still more preferably 90% or more, and transmits 95% or more. Is particularly preferred.
  • the material constituting the resin substrate examples include polyether sulfone resins, polyacrylic resins, polyurethane resins, polyester resins (polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resins, polysulfone resins, polyamide resins Examples thereof include resins, polyarylate resins, polyolefin resins, cellulose resins, polyvinyl chloride resins, and cycloolefin resins. Among them, cycloolefin resins are preferable in that they have more excellent optical properties.
  • the thickness of the substrate 10 is not particularly limited, but is preferably 0.01 to 0.5 mm, more preferably 0.03 to 0.2 mm, from the viewpoint of balance between handleability and thinning.
  • the substrate 10 may have a multilayer structure, and may include, for example, a functional film as one of its layers. The substrate itself may be a functional film.
  • the conductive film may have a three-dimensional shape (three-dimensional shape).
  • the three-dimensional shape include a three-dimensional shape including a curved surface, and more specifically, a hemispherical shape, a semicylindrical shape, a corrugated shape, a convex-concave shape, and a cylindrical shape.
  • the electroconductive part 13 is arrange
  • the conductive portions 13 may be disposed on both main surfaces of the substrate 10.
  • the electroconductive part 13 is arrange
  • positioning pattern may be sufficient.
  • FIG. 1C is a partially enlarged top view of the conductive portion 13.
  • the conductive portion 13 is formed of a plurality of thin metal wires 12 and includes a mesh-like pattern including a plurality of openings T formed by the crossing thin metal wires 12.
  • the line width of the thin metal wire 12 is 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and still more preferably 1.2 ⁇ m or less.
  • the lower limit of the line width of the thin metal wire 12 is not particularly limited, but generally 0.2 ⁇ m or more is preferable. For example, when the conductive film is applied to a touch panel sensor, if the line width of the metal thin wire 12 is 2.0 ⁇ m or less, it is more difficult for the user of the touch panel to visually recognize the metal thin wire.
  • the thickness of the thin metal wire 12 is not particularly limited, but generally 0.2 to 5.0 ⁇ m is preferable, and 0.2 to 2.0 ⁇ m is more preferable from the viewpoint of conductivity.
  • the length X of one side of the opening T is preferably 20 to 250 ⁇ m.
  • the opening T has a substantially rhombus shape.
  • polygonal shapes for example, triangles, quadrangles, hexagons, and random polygons.
  • the shape of one side may be a curved shape or an arc shape other than a linear shape.
  • the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inward convex arc shape.
  • the shape of each side may be a wavy line shape in which an outward convex arc and an inward convex arc are continuous.
  • the shape of each side may be a sine curve.
  • the shape of each side may be a random shape.
  • the electroconductive part 13 has a mesh-like pattern, it is not restrict
  • FIG. 2 is a partial cross-sectional view of the conductive film 20 (corresponding to a cross-sectional view taken along a line BB in FIG. 1C).
  • the metal fine wires 12 include an underlayer 14 and a conductive layer 16 disposed in this order from the substrate 10 side, and a blackening layer 18 disposed so as to cover the surface of the conductive layer 16. Including.
  • the conductive layer 16 is covered with the blackening layer 18 in the region (corresponding to the top surface portion 16 a and the side surface portions 16 b and 16 c in FIG. 2) other than the interface portion 16 d with the base layer 14.
  • the blackening layer 18 is disposed on the surface other than the surface in contact with the base layer 14 of the conductive layer 16.
  • the blackening layer 18 is not disposed on the side surface portion 14 a of the underlayer 14.
  • the line width L1 of the thin metal wire 12 is 2.0 ⁇ m or less.
  • the line width of the thin metal wire 12 can be obtained by embedding the thin metal wire 12 together with the substrate 10 in a resin and cutting it with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the thin metal wire 12). After depositing carbon on the cross section, a line width measured by observing with a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation) is intended. When the line width differs in the height direction, the largest measurement width is defined as the line width.
  • the underlayer 14 contains metal oxide or metal nitride as a main component.
  • the main component is intended to mean the component having the largest content (mass) among the components contained in the underlayer 14.
  • the content of the metal oxide or metal nitride in the underlayer 14 is not particularly limited, but generally, 60 mass% or more is preferable and 70 mass% or more is more preferable with respect to the total mass of the underlayer.
  • the upper limit is not particularly limited, but is 100% by mass.
  • the underlayer 14 has a function of improving the adhesion between the substrate 10 and the conductive layer 16.
  • the metal oxide is not particularly limited, but is preferably a metal oxide containing a metal atom selected from the group consisting of nickel, copper, chromium, titanium, and zinc, in that the adhesion of the metal fine wire to the substrate is more excellent, Among them, metal oxides containing a nickel atom are more preferable from the viewpoint of production shown below.
  • the inventors have found that when forming a fine wiring pattern by etching, it is important for the wiring pattern to be thin by etching the base layer and the conductive layer in two separate etching solutions. Therefore, the base layer is required to have an etching property different from that of the conductive layer. By using nickel as an oxide, the etchability can be greatly changed with other metals.
  • NiO, Ni 2 O 3 and the like can be mentioned.
  • the nickel atom content is high, it takes time to etch the underlayer, and therefore the content of Ni may be reduced in consideration of the tact time to form an alloy oxide.
  • the nickel atom content is not particularly limited, and it is not necessary to be the main component (so-called main metal).
  • the said main component intends the metal with largest content (mass) among metals contained in a metal oxide.
  • the metal nitride is not particularly limited, but is preferably a metal nitride containing a metal atom selected from the group consisting of nickel, copper, chromium, titanium, and zinc in that the adhesion of the metal fine wire to the substrate is more excellent, Among them, metal nitrides containing a nickel atom are more preferable from the viewpoint of production shown below.
  • the inventors have found that, in the case of forming a fine wiring pattern by etching, it is important for the ground pattern and the conductive layer to be etched twice by different etching solutions in order to thin the wiring pattern. Therefore, the base layer is required to have an etching property different from that of the conductive layer.
  • Ni 3 N 2 or the like is preferable from the viewpoint of the adhesion to a substrate and the etching property.
  • a well-known formation method can be used.
  • the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
  • the thickness of the underlayer 14 is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, preferably 100 nm or less, and more preferably 50 nm or less. When the thickness of the base layer 14 is in the above numerical range, the metal thin wire 12 is more excellent in adhesion to the substrate 10.
  • the conductive layer 16 contains copper as a main component.
  • the conductive layer 16 functions as a conductive portion of the thin metal wire 12.
  • the conductive layer 16 contains copper or an alloy thereof, the main component of which is copper, and the copper content is 90% by mass or more based on the total mass of the conductive layer in that the conductivity is more excellent. preferable.
  • the main component is intended to mean the metal having the largest content (mass) of the metals contained in the conductive layer 16.
  • the upper limit of the content of copper in the conductive layer 16 is not particularly limited, and is, for example, 100% by mass with respect to the total mass of the conductive layer.
  • the thickness of the conductive layer 16 is preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, and still more preferably 1.0 ⁇ m or less.
  • the lower limit of the thickness of the conductive layer 16 is not particularly limited, but in general, 0.1 ⁇ m or more is preferable.
  • the conductive layer 16 may be a single layer or multiple layers. When the conductive layer 16 is a single layer, it can be formed, for example, by sputtering or vapor deposition. Still, when the conductive layer 16 is a multilayer, the conductive layer 16 is, for example, a seed layer formed by a sputtering method, a vapor deposition method, or an electroless plating method in that the conductivity of the metal fine wire 12 is more excellent; It is preferable to have the plating layer arrange
  • the thickness of the seed layer is not particularly limited, but in general, 300 nm or less is preferable.
  • the lower limit of the thickness of the seed layer is not particularly limited, but generally 10 nm or more is preferable.
  • the thickness of the plating layer is not particularly limited, but generally 3.0 ⁇ m or less is preferable, 2.0 ⁇ m or less is more preferable, and 1.0 ⁇ m or less is still more preferable.
  • the lower limit of the thickness of the plating layer is not particularly limited, but in general, 0.1 ⁇ m or more is preferable.
  • the seed layer may include, for example, metals such as copper, nickel, chromium, lead, gold, silver, tin, and zinc, and alloys of these metals.
  • the main component (so-called, main metal) contained in the seed layer is preferably a metal other than nickel, and examples thereof include copper, chromium, lead, gold, silver, tin and zinc.
  • the said main component intends metal whose content (mass) is the largest among metals contained in the said seed layer.
  • the seed layer preferably contains copper or an alloy thereof, in that the seed layer is superior in affinity to the plating layer and / or in that the function as a seed layer is more excellent.
  • the main component of the seed layer is preferably copper.
  • the content of the metal constituting the main component in the seed layer is not particularly limited, but in general, the content of the metal is preferably 80% by mass or more, more preferably 85% by mass or more based on the total mass of the seed layer. And 90% by mass or more are more preferable.
  • the said plating layer As a metal contained in the said plating layer, copper or its alloy is preferable. As a main component (so-called, main metal) contained in the said plating layer, copper is preferable. In addition, the said main component intends the metal with largest content (mass) among the metals contained in the said plating layer.
  • the content of copper constituting the main component in the plating layer is not particularly limited, but generally, the content of the metal is preferably 80% by mass or more, more preferably 90% by mass or more based on the total mass of the plating layer. Preferably, 100% by mass is more preferable.
  • the blackening layer 18 contains palladium. As described later, the blackening layer 18 is disposed on the surface of the conductive layer 16 by a substitution blackening method. That is, the blackening layer 18 substitutes the metal (for example, copper) of the surface of the first metal film and the second metal film with palladium having a smaller ionization tendency than the metal in the method of manufacturing a conductive film described later. It corresponds to the layer formed by In addition, by making the blackening layer 18 into the above-mentioned configuration, the metal fine wire 12 has much higher conductivity than the metal fine wire including the blackening layer containing carbon as a main coloring material as in Patent Document 1 Have an advantage.
  • palladium is preferably contained as a main component.
  • the main component is intended to be the component having the largest content (mass).
  • the content of palladium in the blackening layer 18 is preferably 55% by mass or more, more preferably 70% by mass or more, and still more preferably 100% by mass, with respect to the total mass of the blackening layer 18 described above.
  • the thickness L2 of the blackening layer 18 is preferably less than 100 nm in terms of not reducing the conductivity of the metal thin wire 12.
  • the blackening layer 18 is inferior in conductivity as compared to the conductive layer 16.
  • the thickness L2 of the blackening layer 18 is preferably 70 nm or less, and more preferably 50 nm or less.
  • the lower limit of the thickness L2 of the blackening layer 18 is, for example, 10 nm or more.
  • the thickness of the blackening layer can be appropriately adjusted by the processing time of the substitution blackening method and the like.
  • the thickness L2 of the blackening layer 18 is intended to be a thickness obtained by element mapping using an EDS (Energy dispersive X-ray spectrometry) detector. Specifically, the thickness L2 of the blackening layer 18 is measured by the following method.
  • C (carbon) deposition and Pt (platinum) coating are performed on the conductive portion of the conductive film for conductivity imparting and surface protection.
  • the metal thin wire is cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
  • FIB-SEM FIB: Focused Ion Beam
  • SEM Scanning Electron Microscope
  • EDS analysis is performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation).
  • the thickness of the distribution region of palladium is measured at two points for each of the blackened layers disposed at both ends of the section, and the average value is taken as the thickness of the blackened layer.
  • the blackening layer 18 is formed by the substitution blackening method.
  • the substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals.
  • a blackening layer containing palladium can be disposed on the surface of the conductive layer 16.
  • the manufacturing method in particular of the electroconductive film mentioned above is not restrict
  • the manufacturing method of the conductive film 20 shown in FIG. 2 is mentioned as an example, and the manufacturing method of the conductive film of this invention is demonstrated.
  • the first metal film and the second metal film each contain copper as a main component will be described.
  • the second metal film corresponds to the above-described seed layer
  • the component of the seed layer is not limited to the following embodiment, and may be an embodiment including a metal other than copper.
  • the method of manufacturing the conductive film 20 includes the following steps in this order.
  • base film forming step (2) A step of forming a second metal film containing copper as a main component on the above-mentioned base film (second metal film forming step) (3) A step of forming a resist film having an opening with a line width of 2.0 ⁇ m or less in a region where fine metal wires are formed on the second metal film (resist film forming step) (4) A step of forming a first metal film containing copper as a main component on the second metal film in the opening by plating (first metal film forming step) (5) Step of removing resist film (resist film removing step) (6) A step of removing a part of the second metal film by using the first metal film as a mask (second metal film and removing step) (7) A step of blackening the surfaces of the first metal film and the second metal film disposed on the substrate by substitution blackening treatment (place
  • the base film forming step is a step of forming a base film on at least one main surface of the substrate. Specifically, as shown in FIG. 3A, the base film 44 is formed on the substrate 10 by performing this process. As described later, the base film 44 becomes the base layer 14 shown in FIG. 2 after predetermined processing.
  • the base film 44 is a film containing metal oxide or metal nitride as a main component.
  • the definition of the main component is as described for the base layer 14.
  • the method for forming the underlayer 44 is not particularly limited, and any known method can be used. Among them, the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
  • the substrate 10 is as described above.
  • the second metal film forming step is a step of forming a second metal film on the base film. Specifically, as shown in FIG. 3B, the second metal film 46a is formed on the base film 44 by performing this process. As described later, the second metal film 46a also functions as a seed layer in the plating method. The second metal film 46a contains a copper atom as a main component. The definition of the main component is as described in the seed layer.
  • the method of forming the second metal film 46a is not particularly limited, and any known method may be used, among which sputtering, vapor deposition, or electroless plating is preferable in that it is easy to form a layer having a more dense structure. The method is preferred.
  • the resist film forming step is a step of forming a resist film having an opening in a region where a metal thin wire is to be formed. Specifically, as shown in FIG. 3C, by performing this process, a resist film 47 is formed on the second metal film 46a.
  • the resist film 47 has an opening 49 in the region where the metal thin wire is to be formed.
  • the region of the opening 49 in the resist film 47 can be appropriately adjusted in accordance with the region in which the thin metal wire is to be disposed.
  • a resist film having openings in a mesh is formed in the case of forming metal thin wires arranged in a mesh.
  • the opening is formed in a thin wire shape in accordance with the thin metal wire.
  • the line width W of the opening is 2.0 ⁇ m or less.
  • the line width W is preferably 1.5 ⁇ m or less, and more preferably 1.2 ⁇ m or less. By setting the line width W of the opening to 2.0 ⁇ m or less, thin metal wires having a line width can be obtained.
  • the line width W of the opening when the line width W of the opening is 1.2 ⁇ m or less, the line width of the obtained metal thin line becomes narrower, and when the conductive film is applied to a touch panel sensor, for example, the metal thin line It is hard to see.
  • the lower limit of the line width W of the opening is not particularly limited, but is often 0.2 ⁇ m or more.
  • the width of the opening means the size of the thin line portion in the direction orthogonal to the extending direction of the thin line portion of the opening. Through each process described later, fine metal wires having a line width corresponding to the line width of the opening are formed.
  • the method of forming the resist film 47 on the second metal film 46a is not particularly limited, and a known resist film forming method can be used. For example, there is a method including the following steps.
  • C developing the resist film-forming composition after exposure to obtain a resist film.
  • the composition layer for resist film formation and / or a resist film are heated. The process may be further included.
  • Step (a) It does not restrict
  • a well-known composition for resist film formation can be used.
  • a composition for resist film formation a positive or negative radiation sensitive composition is mentioned, for example.
  • the composition layer for forming a resist film may be heated. By heating, the unnecessary solvent remaining in the composition layer for forming a resist film is removed, and the composition layer for forming a resist film can be made uniform in the plane.
  • limit especially as a method to heat the composition layer for resist film formation, For example, the method to heat a board
  • the temperature of the heating is not particularly limited, but generally 40 to 160 ° C. is preferable.
  • the thickness of the composition layer for forming a resist film is not particularly limited, but in general, the thickness after drying is preferably 0.5 to 2.5 ⁇ m.
  • Step (b) It does not restrict
  • a method of exposing the composition layer for forming a resist film for example, a method of irradiating the composition layer for forming a resist film with an actinic ray or radiation through a photomask provided with a pattern-like opening can be mentioned.
  • the exposure dose is not particularly limited, but in general, irradiation at 1 to 100 mW / cm 2 for 0.1 to 10 seconds is preferable.
  • the line width W of the pattern opening provided in the photomask used in the step (b) is generally preferably 2.0 ⁇ m or less, and 1.5 ⁇ m or less Is more preferable, and 1.2 ⁇ m or less is more preferable.
  • the composition layer for forming a resist film after exposure may be heated.
  • the heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
  • Step (c) It does not restrict
  • known development methods include methods using a developer containing an organic solvent or an alkali developer.
  • the development method include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
  • the resist film after development may be washed using a rinse solution.
  • the rinse solution is not particularly limited, and known rinse solutions can be used. Examples of the rinse solution include organic solvents and water.
  • the first metal forming step is a step of forming the first metal film on the second metal film by the plating method in the opening of the resist film. Specifically, as shown in FIG. 3D, by performing this process, the first metal film 46b is formed on the second metal film 46a so as to fill the opening 49 in FIG. 3C.
  • the first metal film 46 b contains a copper atom as a main component. The definition of the main component is as described for the plating layer.
  • the first metal film 46 b is formed by plating.
  • a well-known plating method can be used as a plating method. Specifically, electrolytic plating and electroless plating may be mentioned, and electrolytic plating is preferred from the viewpoint of productivity.
  • the resist film removing step is a step of removing the resist film 47. Specifically, as shown in FIG. 3E, by carrying out the present step, a stack including the substrate 10 and the base film 44, the second metal film 46a, and the first metal film 46b on the substrate 10 is provided. Get the body.
  • the method for removing the resist film 47 is not particularly limited, and a known method for removing the resist film 47 using a resist film removing solution may be mentioned.
  • Examples of the resist film removing solution include organic solvents and alkaline solutions.
  • the method for contacting the resist film removing solution with the resist film is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
  • the second metal film removing step is a step of removing a part of the second metal film using the first metal film as a mask. Specifically, as shown in FIG. 3F, by performing this process, the second metal film 46a corresponding to the region where the first metal film 46b is not formed is removed.
  • the method of removing a part of the second metal film 46a is not particularly limited, but a known etching solution can be used.
  • known etching solutions include ferric chloride solution, cupric chloride solution, alkaline ammonia solution, sulfuric acid-hydrogen peroxide mixed solution, and phosphoric acid-hydrogen peroxide mixed solution.
  • an etching solution which does not easily dissolve the first metal film 46 b and easily dissolves the second metal film 46 a may be appropriately selected.
  • the substitution blackening step is a step of forming a conductive layer and a blackening layer covering the surface of the conductive layer by substitution blackening treatment. Specifically, by performing this step, the surfaces of the second metal film 46a and the first metal film 46b are subjected to substitution blackening treatment, and the surfaces are covered with the blackening layer 18 as shown in FIG. 3G. Also, the conductive layer 16 composed of the second metal film 46a and the first metal film 46b is formed. The conductive layer 16 and the blackening layer 18 in FIG. 3G correspond to the conductive layer 16 and the blackening layer 18 in FIG. 2, respectively.
  • the undercoat film 44 contains a metal oxide and a metal nitride, but since the metal oxide and the metal nitride do not have zero valence, substitution blackening treatment occurs on the surface of the undercoat film 44. Absent. In the substitution blackening treatment, copper present in the surface regions of the second metal film 46a and the first metal film 46b is substituted by palladium.
  • the above-mentioned laminate obtained through the second metal film removing step is immersed in an aqueous solution containing palladium ions.
  • the copper constituting the layer is dissolved into copper ions to emit electrons.
  • the electrons reduce palladium ions in the aqueous solution, and palladium is deposited on the surfaces of the second metal film 46a and the first metal film 46b.
  • the conductive layer 16 composed of the second metal film 46a and the first metal film 46b and the blackening layer 18 disposed on the surface can be formed.
  • the liquid temperature of the solution at the time of immersion is not particularly limited, but usually 10 to 90 ° C., preferably 20 to 60 ° C.
  • the pH of the solution at the time of immersion is not particularly limited, but it is preferably 0 to 13, and more preferably 0 to 8.
  • the immersion time is not particularly limited, but is usually 1 to 8 minutes.
  • substitution blackening treatment method is not restrict
  • the composition for blackening treatment described in patent publication 586 2916 can be used.
  • the base film removing step is a step of removing a part of the base film using the second metal film whose surface has been subjected to the blackening process and the first metal film as a mask. Specifically, as shown in FIG. 3H, by performing the present step, an underlayer film corresponding to a region where the second metal film 46a and the first metal film 46b whose surfaces have been subjected to the blackening process is not formed. 44 is removed. As a result, as shown in FIG. 2, metal fine wires 12 including substrate 10 and blackening layer 18 covering base layer 14, conductive layer 16, and the surface of conductive layer 16 on substrate 10 are obtained. Be
  • the method for removing a part of the undercoat film 44 is not particularly limited, but a known etching solution can be used.
  • known etching solutions include ferric chloride solution, cupric chloride solution, alkaline ammonia solution, sulfuric acid-hydrogen peroxide mixed solution, and phosphoric acid-hydrogen peroxide mixed solution. From among these, it is possible to appropriately select an etching solution which does not easily dissolve the second metal film 46 a and the first metal film 46 b and easily dissolves the base film 44.
  • the conductive film 20 can be formed through the above steps. According to the above process, when the substitution blackening treatment step is carried out, the undercoating film is disposed in the area to be the opening after the formation of the conductive film 20 (in other words, the substitution blackening treatment step was carried out Later, in order to carry out the base film removing step), the blackening solution does not adhere to the area to be the opening.
  • the conductive film of the present invention can be used in various applications.
  • various electrode films, heat generating sheets, and printed wiring boards can be mentioned.
  • the conductive film is preferably used for a touch panel sensor, and more preferably used for a capacitive touch panel sensor.
  • the touch panel including the conductive film as a touch panel sensor it is difficult for a thin metal wire to be visible.
  • Examples of the configuration of the touch panel include the touch panel module described in paragraphs 0020 to 0027 of JP-A-2015-195004, and the above contents are incorporated in the present specification.
  • Example 1 ⁇ Production of conductive film> On a COP (cycloolefin polymer) film, a Zn-Cu-Ni oxide film with a thickness of 20 nm was formed as a base film based on the conditions described in Example 59 of Japanese Patent No. 6010260 using a sputtering apparatus. Next, using a sputtering apparatus, a Cu film (second metal film) having a thickness of 50 nm was formed on the base film as a seed film. Next, on the second metal film, a positive resist (MCP R 124 MG manufactured by Rohm and Haas Electronic Materials Co., Ltd.) was applied by a spin coater so as to have a thickness of 1 ⁇ m, and dried at 90 ° C.
  • MCP R 124 MG manufactured by Rohm and Haas Electronic Materials Co., Ltd.
  • the resist film is developed by developing with a 0.10 M sodium hydroxide aqueous solution. Obtained (line width of the opening of the resist film: 1.5 ⁇ m ⁇ 0.1 ⁇ m). Next, the entire surface of the resist was exposed (3 seconds at an exposure amount of 16 mW / cm 2 ) for later peeling.
  • electroplating is performed at a current density of 3 A / dm 2 using a copper sulfate high-throw bath (including Top Lucina HT-A and Top Lucina HT-B as additives, each of which is manufactured by Okuno Pharmaceutical Industry Co., Ltd.)
  • the Cu plating film (1st metal film) formed so that a part was filled was obtained.
  • the resist was peeled off with a 0.15 M aqueous solution of sodium hydroxide, and then the second metal film in the opening was removed with a Cu etching solution (Cu etchant manufactured by Wako Pure Chemical Industries, Ltd.).
  • the resulting laminate is immersed for 3 minutes in a Pd blackening solution (prepared as described in Example 1 of Japanese Patent No. 586 2916, Blackening solution No. 2 as a reference) at room temperature.
  • a Pd blackening solution prepared as described in Example 1 of Japanese Patent No. 586 2916, Blackening solution No. 2 as a reference
  • substitution blackening processing After the substitution blackening treatment, the Ni-Cu-Zn oxide film (base film) is etched with an etching solution (NC-A and NC-B manufactured by Nippon Kagaku Sangyo Co., Ltd.), and conductivity with a mesh-like metal wiring pattern is obtained.
  • a film (see FIG. 1C) was obtained.
  • the obtained thin metal wire had a line width of 1 ⁇ m ⁇ 0.1 ⁇ m, and the thickness of the blackened layer was 40 nm.
  • the openings of the mesh-like metal wiring pattern were diamond-shaped, and the length of one side of the openings was 132 ⁇ m
  • the metal fine wire formed on the substrate is a black layer covering the surface of the conductive layer and the underlying layer and the conductive layer disposed in this order from the substrate side. And the formation layer. That is, the blackening layer was disposed on the side surface and the top surface of the conductive layer (in other words, on the surface other than the surface in contact with the underlying layer of the conductive layer).
  • the conductive layer is composed of the first metal film and the second metal film.
  • the conductive layer contains copper as a main component (in the conductive layer, the content of copper is 90% by mass or more with respect to the entire conductive layer).
  • the underlayer is made of a nickel-based oxide, specifically, a Zn-Cu-Ni oxide. Also, the blackening layer contains palladium.
  • the line width of the thin metal wire in the produced conductive film was measured by the following method. First, the above conductive film is embedded in a resin together with the substrate, cut with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the metal fine wire), and carbon is deposited on the obtained cross section , And was observed using a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation). When the line width differs in the height direction, the largest measurement width is defined as the line width.
  • the thickness of the blackening layer of the metal fine wire in the produced conductive film was measured by the following method. First, C (carbon) vapor deposition and Pt (platinum) coating were performed on the conductive portion of the conductive film for conductivity imparting and surface protection. Subsequently, the metal thin wire was cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
  • C carbon
  • Pt platinum
  • EDS analysis was performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation).
  • EDS detector HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation.
  • the thickness of the distribution region of palladium atoms was measured at two points for each of the blackened layers disposed at both ends of the above-mentioned section, and the average value was taken as the thickness of the blackened layer. .
  • the transmittance of the conductive film was measured by the method described below, it fell within the value depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film (in other words, the transmittance of the conductive film It is confirmed that the value is close to the value calculated by the transmittance of the substrate film itself ⁇ ⁇ 100 (%)-(the exclusive area (%) of the mesh-like metal wiring pattern to the area of the substrate film) ⁇ ). From this result, it is clear that a pattern with a predetermined line width can be formed and that contamination is low. Further, when the chromaticity b * of the conductive film was measured by the method described below, the value fell within the range depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film.
  • the chromaticity b * of the conductive film is a value close to the chromaticity of the substrate film itself, and no blackening liquid adheres to the openings of the mesh-like metal wiring pattern (in other words, mesh-like) It is clear that the openings of the metal wiring pattern of (1) are not colored).
  • the total light transmittance of the conductive film was measured by Spectral Haze Mater SH7000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) based on JIS K7361.
  • the chromaticity b * is intended to be the chromaticity represented by the coordinates in the international standard CIE 1976 (L * a * b * ) color space.
  • the conductive film was calculated based on JIS Z8781-4 from the spectrum measured with a Spectral Haze Mater SH7000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • Example 2 The process was performed in the same manner as Example 1 except that the Cu film (second metal film) was 10 nm.
  • the obtained conductive film was subjected to the tape adhesion test in the same manner as in Example 1.
  • the transmittance and the chromaticity b * were measured in the same manner as in Example 1, the values were within the values depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film.
  • reflection was suppressed and the reflected light of the metal fine wire was not able to be visually recognized also from any angle.
  • Example 3 A conductive film was obtained according to the same procedure as in Example 1, except that the immersion time for the substitutional blackening treatment was 8 minutes. The obtained conductive film was subjected to the tape adhesion test in the same manner as in Example 1. As a result, no peeling of the mesh-like metal wiring pattern was observed. Further, when the transmittance and the chromaticity b * were measured in the same manner as in Example 1, the values were within the values depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film. Moreover, when it evaluated about the non-visibility of the metal fine wire similarly to Example 1, reflection was suppressed and the reflected light of the metal fine wire was not able to be visually recognized also from any angle. The thickness of the blackening layer was 110 nm. When the sheet resistance was measured, the value was increased more than twice that of Example 1.
  • Comparative Example 1 A conductive film was obtained according to the same procedure as Example 2, except that the substitution blackening treatment with the Pd blackening treatment solution was performed before the resist peeling, not after removing the Cu film (second metal film). That is, the conductive film of Comparative Example 1 has a configuration in which the blackening layer is disposed only on the top surface portion on the viewing side of the conductive layer. The obtained conductive film was subjected to the tape adhesion test in the same manner as in Example 1. As a result, no peeling of the mesh-like metal wiring pattern was observed. Further, when the transmittance and the chromaticity b * were measured in the same manner as in Example 1, the values were within the values depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film. Moreover, when it evaluated about the non-visibility of a metal fine wire like Example 1, the visibility from the angle which is not a perpendicular direction was unsatisfactory.
  • Comparative Example 2 A conductive film was obtained according to the same procedure as in Example 1, except that the seed layer was directly formed on the substrate without forming the undercoat film. About the obtained electroconductive film, when the tape adhesion test was done similarly to Example 1, peeling of the metal wiring pattern of mesh shape was recognized.

Abstract

The present invention addresses the problem of providing: a conductive film having a metal thin wire which has a wire width of 2.0 μm or less, while exhibiting excellent adhesion to a substrate and excellent invisibility; and a method for producing this conductive film. The present invention also addresses the problem of providing a touch panel sensor and a touch panel, each of which comprises this conductive film. A conductive film according to the present invention comprises: a substrate; and a conductive part which is arranged on at least one main surface of the substrate, and which is configured of a metal thin wire. The metal thin wire comprises a base layer and a conductive layer, which are sequentially arranged in this order from the substrate side, and a blackening layer which covers the surface of the conductive layer; and the metal thin wire has a wire width of 2.0 μm or less. The base layer contains a metal oxide or a metal nitride as a main component; the blackening layer contains palladium; and the conductive layer contains copper as a main component.

Description

導電性フィルム、タッチパネルセンサー、タッチパネル、導電性フィルムの製造方法Conductive film, touch panel sensor, touch panel, method of manufacturing conductive film
 本発明は、導電性フィルム、タッチパネルセンサー、タッチパネル、及び導電性フィルムの製造方法に関する。 The present invention relates to a conductive film, a touch panel sensor, a touch panel, and a method of manufacturing a conductive film.
 基板上に金属細線からなる導電部が配置された導電性フィルムは、種々の用途に使用されている。例えば、近年、携帯電話又は携帯ゲーム機器等へのタッチパネルの搭載率の上昇に伴い、多点検出が可能な静電容量方式のタッチパネルセンサー用として導電性フィルムの需要が急速に拡大している。 DESCRIPTION OF RELATED ART The electroconductive film by which the electroconductive part which consists of a metal fine wire is arrange | positioned on a board | substrate is used for various uses. For example, in recent years, with the increase in the loading rate of touch panels on mobile phones, portable game devices, etc., the demand for conductive films for capacitive touch panel sensors capable of multipoint detection is rapidly expanding.
 例えば、タッチパネルを備えるディスプレイを使用する場合、使用者は、ディスプレイから数十cmの距離からディスプレイを見ることになる。このとき、金属細線が使用者から視認されないようにするため、金属細線の線幅をより細くすることが求められている。
 一般に、線幅の細い金属細線は、基板との密着性が劣る。このため、昨今においては、これを改善するために、基板と金属細線との間に、更に両者の密着性を向上する作用を有する層を設けた導電性フィルムが提案されている。
 また、金属細線が使用者から視認されないようにする他の方法として、金属細線を黒色とする方法が提案されている。
For example, when using a display with a touch panel, the user looks at the display from a distance of several tens of centimeters from the display. At this time, in order to prevent the thin metal wire from being visually recognized by the user, it is required to further narrow the line width of the thin metal wire.
In general, thin metal wires having a narrow line width have poor adhesion to the substrate. For this reason, in recent years, in order to improve this, there has been proposed a conductive film provided with a layer having a function of further improving the adhesion between the substrate and the fine metal wire.
In addition, as another method of preventing the metal thin wire from being visually recognized by the user, a method of making the metal thin wire black has been proposed.
 例えば、特許文献1には「無アルカリガラスである透明基板と、透明基板上において、複数の画素間に配置され、第1の導電性金属酸化物層と、第1の導電性金属酸化物層上に配置された金属層と、金属層上に配置された第2の導電性金属酸化物層と、第2の導電性金属酸化物層上に配置された黒色層と、を含む黒色配線と、を備え、黒色配線は第1方向に延び、第1方向と略直交する第2方向に所定の間隔を置いて複数の黒色配線が配置され、黒色配線は、複数の画素を含む表示領域の外まで延びた端部において第2の導電性金属酸化物層が露出した端子部を備えた引回し配線を含み、金属層は銅あるいは銅合金で形成され、黒色層はカーボンを主たる色材とし、第1及び第2の導電性金属酸化物層は、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物で形成され、第1の導電性金属酸化物層、金属層、第2の導電性金属酸化物層、及び、黒色層は、等しい線幅である、表示装置基板。」が開示されている。上記表示装置基板では、第1の導電性金属酸化物層が基板と金属層との密着性向上に寄与する。また、上記表示装置基板において、黒色層は、配線の視認側表面(頂面部)のみに配置されている。 For example, in Patent Document 1, “a transparent substrate which is an alkali-free glass, and a first conductive metal oxide layer disposed between a plurality of pixels on a transparent substrate and a first conductive metal oxide layer are disclosed. A black wire including a metal layer disposed thereon, a second conductive metal oxide layer disposed on the metal layer, and a black layer disposed on the second conductive metal oxide layer The black wires extend in a first direction, and a plurality of black wires are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wires are in a display area including a plurality of pixels. At the end extending to the outside, it includes a lead wiring provided with a terminal portion in which the second conductive metal oxide layer is exposed, the metal layer is formed of copper or copper alloy, and the black layer is mainly made of carbon. The first and second conductive metal oxide layers are indium oxide and zinc oxide and oxidized And the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black layer have the same line width. It is disclosed. In the display device substrate, the first conductive metal oxide layer contributes to the improvement in the adhesion between the substrate and the metal layer. Further, in the display device substrate, the black layer is disposed only on the surface on the viewing side (top surface portion) of the wiring.
国際公開第2016/088488号明細書WO 2016/088488 specification
 本発明者は、特許文献1に記載された表示装置基板を作製して検討したところ、配線(金属細線)が視認できる場合があることを明らかとした。つまり、金属細線の非視認性を更に改善する余地があることを知見した。
 また、昨今においては、金属細線の細幅のより一層の細線化が求められている。具体的には、線幅が2.0μm以下の金属細線を備えた導電性フィルムが求められている。
The inventors of the present invention made and examined the display device substrate described in Patent Document 1 and found that the wires (thin metal wires) might be visible. That is, it was found that there is room to further improve the invisibility of the thin metal wire.
Further, in recent years, further thinning of thin metal wires is required. Specifically, a conductive film provided with fine metal wires having a line width of 2.0 μm or less is required.
 そこで、本発明は、線幅が2.0μm以下であり、基板への密着性に優れ、且つ、非視認性に優れた金属細線を含む導電性フィルム及びその製造方法を提供することを課題とする。
 また、本発明は、上記導電性フィルムを含む、タッチパネルセンサー、及びタッチパネルを提供することも課題とする。
Therefore, it is an object of the present invention to provide a conductive film including metal fine wires having a line width of 2.0 μm or less, excellent adhesion to a substrate, and excellent in non-visibility, and a method for producing the same. Do.
Another object of the present invention is to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、所定組成からなる下地層上に配置された金属膜の側面部を置換黒化法により黒化して得られる金属細線を含む導電性フィルムによれば上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成するできることを見出した。
The inventors of the present invention conducted intensive studies to achieve the above problems, and as a result, conductivity including metal thin lines obtained by blackening the side portions of the metal film disposed on the underlayer having a predetermined composition by the substitution blackening method According to the film, it was found that the above problems could be solved, and the present invention was completed.
That is, it discovered that the above-mentioned object could be achieved by the following composition.
 〔1〕 基板と、上記基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を含む導電性フィルムであって、
 上記金属細線は、上記基板側からこの順に配置された下地層及び導電層と、上記導電層の表面を被覆する黒化層と、を含み、且つ、線幅が2.0μm以下であり、
 上記下地層は、金属酸化物又は金属窒化物を主成分として含み、
 上記黒化層は、パラジウムを含み、
 上記導電層は、銅を主成分として含む、導電性フィルム。
 〔2〕 上記黒化層の厚みは、100nm未満である、〔1〕に記載の導電性フィルム。
 〔3〕 上記金属酸化物がニッケル原子を含む金属酸化物であり、上記金属窒化物がニッケル原子を含む金属窒化物である、〔1〕又は〔2〕に記載の導電性フィルム。
 〔4〕 上記金属細線の線幅が1.2μm以下である、〔1〕~〔3〕のいずれかに記載の導電性フィルム。
 〔5〕 上記導電層は、銅を層全質量に対して90質量%以上含む、〔1〕~〔4〕のいずれか1項に記載の導電性フィルム。
 〔6〕 〔1〕~〔5〕のいずれかに記載の導電性フィルムを含む、タッチパネルセンサー。
 〔7〕 〔6〕に記載のタッチパネルセンサーを含む、タッチパネル。
 〔8〕 〔1〕~〔5〕のいずれかに記載の導電性フィルムの製造方法であり、
 基板の少なくとも一方の主面上に、金属酸化物又は金属窒化物を主成分として含む下地膜を形成する工程と、
 上記下地膜上に、銅を主成分として含む第二金属膜を形成する工程と、
 上記第二金属膜上に、金属細線が形成される領域に線幅が2.0μm以下の開口部を備えるレジスト膜を形成する工程と、
 めっき法により、開口部内であって、上記第二金属膜上に、銅を主成分として含む第一金属膜を形成する工程と、
 上記レジスト膜を除去する工程と、
 上記第一金属膜をマスクとして、上記第二金属膜の一部を除去する工程と、
 置換黒化処理により、上記基板上に配置された上記第一金属膜及び上記第二金属膜の表面をパラジウムによって黒化する工程と、
 表面を置換黒化処理された上記第一金属膜及び上記第二金属膜をマスクとして、上記下地膜の一部を除去する工程と、を含む、導電性フィルムの製造方法。
[1] A conductive film comprising: a substrate; and a conductive portion composed of fine metal wires disposed on at least one of the main surfaces of the substrate,
The metal fine wire includes an underlayer and a conductive layer disposed in this order from the substrate side, and a blackening layer covering the surface of the conductive layer, and the line width is 2.0 μm or less.
The underlayer contains a metal oxide or metal nitride as a main component,
The blackened layer contains palladium and
The said conductive layer is a conductive film which contains copper as a main component.
[2] The conductive film according to [1], wherein the thickness of the blackening layer is less than 100 nm.
[3] The conductive film according to [1] or [2], wherein the metal oxide is a metal oxide containing a nickel atom, and the metal nitride is a metal nitride containing a nickel atom.
[4] The conductive film according to any one of [1] to [3], wherein the line width of the fine metal wire is 1.2 μm or less.
[5] The conductive film according to any one of [1] to [4], wherein the conductive layer contains copper in an amount of 90% by mass or more based on the total mass of the layer.
[6] A touch panel sensor comprising the conductive film according to any one of [1] to [5].
[7] A touch panel including the touch panel sensor according to [6].
[8] A method for producing a conductive film according to any one of [1] to [5],
Forming a base film containing metal oxide or metal nitride as a main component on at least one of the main surfaces of the substrate;
Forming a second metal film containing copper as a main component on the underlayer;
Forming a resist film having an opening with a line width of 2.0 μm or less in a region where a metal fine wire is formed on the second metal film;
Forming a first metal film containing copper as a main component on the second metal film in the opening by a plating method;
Removing the resist film;
Removing a portion of the second metal film using the first metal film as a mask;
Blackening the surfaces of the first metal film and the second metal film disposed on the substrate by substitution blackening treatment with palladium;
And d) removing a part of the base film using the first metal film and the second metal film whose surfaces have been subjected to the blackening treatment as a mask.
 本発明によれば、線幅が2.0μm以下であり、基板への密着性に優れ、且つ、非視認性に優れた金属細線を含む導電性フィルム及びその製造方法を提供できる。
 また、本発明によれば、線幅が2.0μm以下であり、基板への密着性に優れ、非視認性に優れた金属細線を含み、且つ、製造時の汚染による透過率の低下及び着色が抑制された導電性フィルムの製造方法を提供できる。
 また、本発明によれば、上記導電性フィルムを含む、タッチパネルセンサー、及びタッチパネルを提供できる。
According to the present invention, it is possible to provide a conductive film including fine metal wires having a line width of 2.0 μm or less, excellent adhesion to a substrate, and excellent in non-visibility, and a method for producing the same.
Further, according to the present invention, the line width is 2.0 μm or less, the adhesion to the substrate is excellent, the fine metal wire excellent in non-visibility is included, and the decrease of the transmittance due to the contamination at the time of production It is possible to provide a method for producing a conductive film in which
Further, according to the present invention, it is possible to provide a touch panel sensor and a touch panel including the above-mentioned conductive film.
本発明の導電性フィルムの実施形態の上面図である。It is a top view of embodiment of the conductive film of this invention. 図1Aに示す導電性フィルムのA-A断面における断面図である。FIG. 2 is a cross-sectional view taken along the line AA of the conductive film shown in FIG. 1A. 図1A中の導電部の一部拡大図である。It is a partially expanded view of the electroconductive part in FIG. 1A. 本発明の導電性フィルムの実施形態の部分断面図である(図1C中のB-B断面における断面図である)。It is a fragmentary sectional view of an embodiment of a conductive film of the present invention (a sectional view in a BB section in FIG. 1C). 下地膜形成工程を実施して得られる下地膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a foundation film obtained by performing a foundation film formation process. 第二金属膜形成工程を実施して得られる第二金属膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a 2nd metal film obtained by implementing a 2nd metal film formation process. レジスト膜形成工程を実施して得られるレジスト膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a resist film obtained by performing a resist film formation process. 第一金属膜形成工程を実施して得られる第一金属膜付き基板の部分断面図である。It is a fragmentary sectional view of a substrate with a first metal film obtained by performing a first metal film formation process. レジスト膜除去工程を実施して得られる積層体の部分断面図である。It is a fragmentary sectional view of the laminated body obtained by implementing a resist film removal process. 第二金属膜除去工程を実施して得られる積層体の部分断面図である。It is a fragmentary sectional view of a layered product obtained by performing a 2nd metal film removal process. 置換黒化処理工程を実施して得られる積層体の部分断面図である。It is a fragmentary sectional view of the laminated body obtained by implementing a substitution blackening treatment process. 下地膜除去工程を実施して得られる導電性フィルムの部分断面図である。It is a fragmentary sectional view of the conductive film obtained by implementing a base film removal process.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、及びエキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme ultraviolet lithography光)、X線、並びに電子線等を意味する。また本明細書において光とは、活性光線及び放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、及びエキシマレーザーに代表される遠紫外線、X線、並びにEUV光等による露光のみならず、電子線及びイオンビーム等の粒子線による描画も包含する。
Hereinafter, the present invention will be described in detail.
The description of the configuration requirements described below may be made based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.
In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
In addition, “active light” or “radiation” in the present specification means, for example, a bright line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet (EUV: extreme ultraviolet lithography) light, X-rays, and Means electron beam etc. In the present specification, light means actinic rays and radiation. Unless otherwise specified, the "exposure" in the present specification means not only exposure by far ultraviolet rays represented by a mercury lamp and an excimer laser, X-rays and EUV light but also particle beams such as electron beams and ion beams unless otherwise specified. Also includes drawing by.
[導電性フィルム]
 本発明の導電性フィルムの特徴点としては、第一に、金属細線が、基板と銅を主成分とする導電層との間に金属酸化物又は金属窒化物を主成分として含む下地層を含んでいる点が挙げられる。また、第二に、上記導電層の表面が、パラジウムを含む黒化層で被覆されている点が挙げられる。
[Conductive film]
As a feature of the conductive film of the present invention, firstly, the metal fine wire includes an underlayer containing a metal oxide or metal nitride as a main component between the substrate and the conductive layer containing copper as a main component. There is a point that Secondly, the surface of the conductive layer is covered with a blackened layer containing palladium.
 本発明者は、特許文献1に記載の表示装置基板において金属配線が視認される理由として、黒色層が配置されていない側面部での光反射が原因であることを知見している。この知見に基づいて検討を行ったところ、パラジウムを含む黒化層で導電層の側面部を含む領域を被覆することにより、上記問題が解決するに至っている。特に、黒化層の形成方法として、置換黒化処理法が、金属細線を太らせることなく黒化層を形成できるため、有効であると知見している。置換黒化処理法とは、金属間のイオン化傾向の差を利用した反応である。置換黒化処理法によれば、銅を主成分として含む金属膜の側面部を、銅よりも電気化学的に貴であるパラジウムで置換することができる。つまりこの結果として、金属細線を太らせることなく黒化層を形成できる。
 さらに、金属細線の基板に対する密着性に関しても、上記黒化層を用いる際には、所定の下地層を組み合わせると、優れた効果が得られることを知見している。具体的には、上記黒化層は、銅を主成分とする導電層と比べると基板に対する密着性が低い。このため、所定の下地層を配置しない場合、黒化層が形成されることによって相対的に導電層と基板との接触面が減り、金属細線の基板に対する密着性が低下する場合がある。特に、金属細線の線幅が2.0μm以下である極細線においては、金属細線の基板に対する密着性の低下がより顕在化し易い(なお、金属細線の線幅が比較的大きい場合(例えば3~5μm)、密着性への影響はないことを知見している)。これに対して、本発明の導電性フィルムは、所定の下地層を組み合わせることにより、金属細線の基板に対する密着性を良好なものとしている。
 つまり、上記組み合わせであれば、導電性フィルムが所定の効果を奏する。
The inventors of the present invention have found that, as a reason why the metal wiring is visually recognized in the display device substrate described in Patent Document 1, light reflection at the side portion where the black layer is not disposed is the cause. When examined based on this finding, the above problem is solved by covering the region including the side surface portion of the conductive layer with the blackened layer containing palladium. In particular, as a method of forming the blackening layer, it has been found that the substitution blackening treatment is effective because the blackening layer can be formed without thickening the thin metal wire. The substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals. According to the substitution blackening treatment method, the side portion of the metal film containing copper as a main component can be replaced with palladium which is more electrochemically noble than copper. That is, as a result of this, the blackened layer can be formed without thickening the thin metal wire.
Furthermore, as for the adhesion of the metal fine wire to the substrate, it has been found that, when using the above-mentioned blackened layer, an excellent effect can be obtained by combining a predetermined underlayer. Specifically, the blackening layer has lower adhesion to the substrate as compared to a conductive layer containing copper as a main component. For this reason, when a predetermined base layer is not disposed, the contact surface between the conductive layer and the substrate may be relatively reduced by forming the blackening layer, and the adhesion of the metal fine wire to the substrate may be lowered. In particular, in the case of an ultrafine wire in which the line width of the metal fine wire is 2.0 μm or less, the decrease in the adhesion of the metal fine wire to the substrate is more likely to occur (note that, for example, 5 μm), it has been found that there is no effect on adhesion). On the other hand, in the conductive film of the present invention, the adhesion of the metal fine wire to the substrate is improved by combining a predetermined underlayer.
That is, if it is the said combination, a conductive film will have a predetermined effect.
 なお、上記のような、パラジウムを含む黒化層と所定の成分を含む下地層との組み合わせにおいては、導電性フィルムの製造方法においても利点がある。
 具体的には、後述するように、パラジウムを含む黒化層を形成する方法の一つとして、置換黒化処理法が挙げられる。置換黒化処理法とは、上述したように、金属間のイオン化傾向の差を利用した反応である。置換黒化処理法によれば、銅を主成分として含む金属膜の表面に、銅よりも電気化学的に貴であるパラジウムを含む黒化層を形成できる。また、下地層が所定の成分を含む場合、置換黒化処理に際して、基板と銅を主成分として含む導電層との間に設けられる下地層は、その構成材料である金属酸化物又は金属窒化物の価数が0価ではないため、酸化還元反応が生じにくい。つまり、下地層の表面においては黒化層が形成されにくい。生じたとしても微量であるため、例えば、後述するように、下地膜除去工程(下地膜のエッチング)前に置換黒化処理を行ったとしても、下地膜が変質しにくく、その後のエッチングを阻害しない。通常、置換黒化処理は微細配線パターンが完全に形成された後に実施されるが、この場合、黒化液が開口部に付着し、微細配線パターンの透過率及び色度を悪化させる恐れがある。しかしながら、本発明の導電性フィルムの製造方法のように下地膜のエッチング前に置換黒化処理を行うことが可能であれば、開口部が汚染される心配は無い。
 つまり、本発明の導電性フィルムの製造方法によれば容易に所定の導電性フィルムを製造できる。また、本発明の導電性フィルムの製造方法によれば、得られる導電性フィルムは、金属細線の非視認性に加えて、製造時の汚染により生じる透過率の低下及び着色の発生が抑制される。
The combination of the blackening layer containing palladium and the underlayer containing a predetermined component as described above is also advantageous in the method of producing a conductive film.
Specifically, as described later, as one of methods for forming a blackening layer containing palladium, there is a substitution blackening treatment method. As described above, the substitutional blackening treatment method is a reaction that utilizes the difference in ionization tendency among metals. According to the substitution blackening treatment method, it is possible to form a blackened layer containing palladium, which is more electrochemically noble than copper, on the surface of a metal film containing copper as a main component. In addition, when the base layer contains a predetermined component, the base layer provided between the substrate and the conductive layer containing copper as a main component during the substitution blackening treatment is a metal oxide or metal nitride that is the constituent material thereof. Since the valence of is not zero, it is difficult for the redox reaction to occur. That is, it is difficult to form a blackening layer on the surface of the underlayer. Even if it occurs, the amount is small. For example, as described later, even if the substitution blackening treatment is performed before the base film removing step (etching of the base film), the base film is less likely to deteriorate, and the subsequent etching is inhibited. do not do. Usually, substitution blackening treatment is carried out after the fine wiring pattern is completely formed, but in this case, the blackening liquid may adhere to the opening, which may deteriorate the transmittance and chromaticity of the fine wiring pattern. . However, if it is possible to carry out the substitution blackening treatment before the etching of the base film as in the method for producing a conductive film of the present invention, there is no concern that the opening will be contaminated.
That is, according to the method for producing a conductive film of the present invention, a predetermined conductive film can be easily produced. Moreover, according to the method for producing a conductive film of the present invention, in the conductive film obtained, in addition to the non-visibility of the fine metal wires, the reduction in transmittance and the occurrence of coloring caused by the contamination during production are suppressed .
<<実施形態>>
 以下に、本発明の導電性フィルムの実施形態について説明する。図1Aは、本発明の導電性フィルムの実施形態の上面図であり、図1Bは、図1Aに示す導電性フィルムのA-A断面における断面図である。図1Cは、図1A中の導電部の一部拡大図である。
<< Embodiment >>
Below, embodiment of the electroconductive film of this invention is described. FIG. 1A is a top view of an embodiment of the conductive film of the present invention, and FIG. 1B is a cross-sectional view of the conductive film shown in FIG. 1A, taken along the line AA. FIG. 1C is a partially enlarged view of the conductive portion in FIG. 1A.
 本発明の導電性フィルム20は、図1A及び図1Bに示すように、基板10と、基板10の少なくとも一方の主面上に配置された導電部13と、を含む。 The conductive film 20 of the present invention includes a substrate 10 and a conductive portion 13 disposed on at least one of the main surfaces of the substrate 10, as shown in FIGS. 1A and 1B.
〔基板10〕
 基板10は、主面を有し、導電部13を支持するものであれば、その種類は特に制限されない。基板10としては、可撓性を有する基板(好ましくは絶縁基板)が好ましく、樹脂基板がより好ましい。
[Substrate 10]
The type of the substrate 10 is not particularly limited as long as the substrate 10 has a main surface and supports the conductive portion 13. As the substrate 10, a flexible substrate (preferably an insulating substrate) is preferable, and a resin substrate is more preferable.
 基板10は、可視光(波長400~800nm)の光を60%以上透過することが好ましく、80%以上透過することがより好ましく、90%以上透過することが更に好ましく、95%以上透過することが特に好ましい。 The substrate 10 preferably transmits 60% or more of visible light (wavelength 400 to 800 nm) light, more preferably transmits 80% or more, still more preferably 90% or more, and transmits 95% or more. Is particularly preferred.
 樹脂基板を構成する材料としては、例えば、ポリエーテルスルホン系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、及びポリエチレンナフタレート等)、ポリカーボネート系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリオレフィン系樹脂、セルロース系樹脂、ポリ塩化ビニル系樹脂、及びシクロオレフィン系樹脂等が挙げられる。なかでも、より優れた光学特性を有する点で、シクロオレフィン系樹脂が好ましい。
 基板10の厚みとしては、特に制限されないが、取り扱い性及び薄型化のバランスの点から、0.01~0.5mmが好ましく、0.03~0.2mmがより好ましい。
 また、基板10は複層構造であってもよく、例えば、その一つの層として機能性フィルムを含んでいてもよい。なお、基板自体が機能性フィルムであってもよい。
Examples of the material constituting the resin substrate include polyether sulfone resins, polyacrylic resins, polyurethane resins, polyester resins (polyethylene terephthalate, polyethylene naphthalate, etc.), polycarbonate resins, polysulfone resins, polyamide resins Examples thereof include resins, polyarylate resins, polyolefin resins, cellulose resins, polyvinyl chloride resins, and cycloolefin resins. Among them, cycloolefin resins are preferable in that they have more excellent optical properties.
The thickness of the substrate 10 is not particularly limited, but is preferably 0.01 to 0.5 mm, more preferably 0.03 to 0.2 mm, from the viewpoint of balance between handleability and thinning.
Also, the substrate 10 may have a multilayer structure, and may include, for example, a functional film as one of its layers. The substrate itself may be a functional film.
〔導電部13〕
 図1A及び図1Bにおいては、平面状の形状を有する導電性フィルムの形態を示したが、導電性フィルムとしては上記に制限されない。導電性フィルムは3次元形状(立体形状)を有していてもよい。3次元形状としては、例えば、曲面を含む3次元形状が挙げられ、より具体的には、半球状、かまぼこ形状、波形形状、凸凹形状、及び円柱状等が挙げられる。
 また、図1A及び図1Bにおいては、導電部13は基板10の一方の主面上に配置されているが、この形態には制限されない。例えば、基板10の両方の主面上に導電部13が配置されていてもよい。
 また、図1A及び図1Bにおいては、導電部13は、6本ストライプ状に配置されているが、この形態には制限されず、どのような配置パターンであってもよい。
[Conductive part 13]
Although the form of the conductive film which has planar shape is shown in FIG. 1A and 1B, as a conductive film, it is not restrict | limited above. The conductive film may have a three-dimensional shape (three-dimensional shape). Examples of the three-dimensional shape include a three-dimensional shape including a curved surface, and more specifically, a hemispherical shape, a semicylindrical shape, a corrugated shape, a convex-concave shape, and a cylindrical shape.
Moreover, in FIG. 1A and 1B, although the electroconductive part 13 is arrange | positioned on one main surface of the board | substrate 10, it is not restrict | limited to this form. For example, the conductive portions 13 may be disposed on both main surfaces of the substrate 10.
Moreover, in FIG. 1A and 1B, although the electroconductive part 13 is arrange | positioned at six stripe form, it is not restrict | limited to this form, What kind of arrangement | positioning pattern may be sufficient.
 図1Cは、導電部13の一部拡大上面図である。導電部13は、複数の金属細線12により構成され、交差する金属細線12による複数の開口部Tを含むメッシュ状のパターンを含む。
 金属細線12の線幅は、2.0μm以下であり、1.5μm以下がより好ましく、1.2μm以下が更に好ましい。
 金属細線12の線幅の下限値としては特に制限されないが、一般に0.2μm以上が好ましい。
 金属細線12の線幅が2.0μm以下であると、例えば、導電性フィルムをタッチパネルセンサーに適用した際、タッチパネルの使用者が、金属細線をより視認しにくい。
FIG. 1C is a partially enlarged top view of the conductive portion 13. The conductive portion 13 is formed of a plurality of thin metal wires 12 and includes a mesh-like pattern including a plurality of openings T formed by the crossing thin metal wires 12.
The line width of the thin metal wire 12 is 2.0 μm or less, more preferably 1.5 μm or less, and still more preferably 1.2 μm or less.
The lower limit of the line width of the thin metal wire 12 is not particularly limited, but generally 0.2 μm or more is preferable.
For example, when the conductive film is applied to a touch panel sensor, if the line width of the metal thin wire 12 is 2.0 μm or less, it is more difficult for the user of the touch panel to visually recognize the metal thin wire.
 金属細線12の厚みとしては、特に制限されないが、一般に0.2~5.0μmが好ましく、導電性の観点から、0.2~2.0μmがより好ましい。
 開口部Tの一辺の長さXは、20~250μmが好ましい。
The thickness of the thin metal wire 12 is not particularly limited, but generally 0.2 to 5.0 μm is preferable, and 0.2 to 2.0 μm is more preferable from the viewpoint of conductivity.
The length X of one side of the opening T is preferably 20 to 250 μm.
 なお、図1Cにおいては、開口部Tは、略ひし形の形状を有している。但し、その他、多角形状(例えば、三角形、四角形、六角形、及びランダムな多角形)としてもよい。また、一辺の形状を直線状の他、湾曲形状にしてもよいし、円弧状にしてもよい。円弧状とする場合は、例えば、対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。また、各辺の形状を、ランダムな形状にしてもよい。
 なお、図1Cにおいては、導電部13はメッシュ状のパターンを有するが、この形態には制限されない。
In FIG. 1C, the opening T has a substantially rhombus shape. However, it is also possible to use polygonal shapes (for example, triangles, quadrangles, hexagons, and random polygons). Further, the shape of one side may be a curved shape or an arc shape other than a linear shape. In the case of the arc shape, for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inward convex arc shape. Further, the shape of each side may be a wavy line shape in which an outward convex arc and an inward convex arc are continuous. Of course, the shape of each side may be a sine curve. Further, the shape of each side may be a random shape.
In addition, in FIG. 1C, although the electroconductive part 13 has a mesh-like pattern, it is not restrict | limited to this form.
<金属細線12>
 図2は、導電性フィルム20の部分断面図である(図1C中のB-B断面における断面図に該当する)。
 図2に示すように、金属細線12は、基板10側からこの順に配置された下地層14及び導電層16と、導電層16の表面を被覆するように配置された黒化層18と、を含む。なお、導電層16は、下地層14との界面部16d以外の領域(図2の頂面部16a、側面部16b、16cに該当)が黒化層18で被覆されている。つまり、黒化層18は、導電層16の下地層14と接触している表面以外の表面上に配置されている。なお、黒化層18は、下地層14の側面部14aには配置されない。また、金属細線12の線幅L1は、上述したように2.0μm以下である。
<Metal fine wire 12>
FIG. 2 is a partial cross-sectional view of the conductive film 20 (corresponding to a cross-sectional view taken along a line BB in FIG. 1C).
As shown in FIG. 2, the metal fine wires 12 include an underlayer 14 and a conductive layer 16 disposed in this order from the substrate 10 side, and a blackening layer 18 disposed so as to cover the surface of the conductive layer 16. Including. The conductive layer 16 is covered with the blackening layer 18 in the region (corresponding to the top surface portion 16 a and the side surface portions 16 b and 16 c in FIG. 2) other than the interface portion 16 d with the base layer 14. That is, the blackening layer 18 is disposed on the surface other than the surface in contact with the base layer 14 of the conductive layer 16. The blackening layer 18 is not disposed on the side surface portion 14 a of the underlayer 14. Further, as described above, the line width L1 of the thin metal wire 12 is 2.0 μm or less.
 なお、金属細線12の線幅は、金属細線12を基板10ごと樹脂に包埋し、幅方向(金属細線12の延在方向と直交する方向)で、ウルトラミクロトームを用いて切断し、得られた断面に炭素を蒸着した後、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-5500型)を用いて観察して、測定される線幅を意図する。なお、線幅が高さ方向で異なる場合、最も大きな測定幅を線幅と定義する。 The line width of the thin metal wire 12 can be obtained by embedding the thin metal wire 12 together with the substrate 10 in a resin and cutting it with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the thin metal wire 12). After depositing carbon on the cross section, a line width measured by observing with a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation) is intended. When the line width differs in the height direction, the largest measurement width is defined as the line width.
 (下地層14)
 下地層14は、金属酸化物又は金属窒化物を主成分として含む。なお、主成分とは、下地層14中に含まれる成分のうち、最も含有量(質量)が大きい成分を意図する。下地層14中の金属酸化物又は金属窒化物の含有量としては特に制限されないが、一般に、下地層全質量に対して、60質量%以上が好ましく、70質量%以上がより好ましい。なお、その上限は特に制限されないが、100質量%である。下地層14は、基板10と導電層16との密着性を向上させる機能を有する。
(Base layer 14)
The underlayer 14 contains metal oxide or metal nitride as a main component. The main component is intended to mean the component having the largest content (mass) among the components contained in the underlayer 14. The content of the metal oxide or metal nitride in the underlayer 14 is not particularly limited, but generally, 60 mass% or more is preferable and 70 mass% or more is more preferable with respect to the total mass of the underlayer. The upper limit is not particularly limited, but is 100% by mass. The underlayer 14 has a function of improving the adhesion between the substrate 10 and the conductive layer 16.
 上記金属酸化物としては特に制限されないが、金属細線の基板に対する密着性がより優れる点で、ニッケル、銅、クロム、チタン、及び亜鉛からなる群より選ばれる金属原子を含む金属酸化物が好ましく、なかでも、以下に示す製造の観点からは、ニッケル原子を含む金属酸化物がより好ましい。
 本発明者は、微細配線パターンをエッチングにて形成する場合、下地層と導電層を異なるエッチング液で二回に分けてエッチングすることが、配線パターンの細線化のために重要であることを知見しており、そのため下地層は導電層と異なるエッチング性を有することが求められる。ニッケルは酸化物とすることでその他金属とエッチング性を大きく変えることができ、故にニッケルを下地層に含有することで導電層とエッチング性に差をつけることができる。これがニッケル原子を含む金属酸化物がより好ましい理由である。よりエッチング性に差をつけ、二回に分けてエッチングすることを容易とする観点では、ニッケル原子を含む金属酸化物におけるニッケル原子含有率は高いほどよく、主成分(いわゆる、主金属)であることが好ましく、具体的にはNiO、及びNi等が挙げられる。一方でニッケル原子含有率が高いと下地層のエッチングに時間がかかるため、タクトタイムを考えてNiの含有率を減らし、合金酸化物としてもよい。具体的には、Cu-Ni合金酸化物、Zn-Cu-Ni合金酸化物、及びTi-Cu-Ni合金酸化物等が挙げられる。この場合、ニッケル原子含有率は特に制限されず、主成分(いわゆる、主金属)である必要はない。
 なお、上記主成分とは、金属酸化物に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。
The metal oxide is not particularly limited, but is preferably a metal oxide containing a metal atom selected from the group consisting of nickel, copper, chromium, titanium, and zinc, in that the adhesion of the metal fine wire to the substrate is more excellent, Among them, metal oxides containing a nickel atom are more preferable from the viewpoint of production shown below.
The inventors have found that when forming a fine wiring pattern by etching, it is important for the wiring pattern to be thin by etching the base layer and the conductive layer in two separate etching solutions. Therefore, the base layer is required to have an etching property different from that of the conductive layer. By using nickel as an oxide, the etchability can be greatly changed with other metals. Therefore, by containing nickel in the underlayer, it is possible to make the conductive layer different from the etchability. This is the reason why metal oxides containing nickel atoms are more preferable. From the viewpoint of making etching properties more different and making etching easier in two steps, the higher the nickel atom content in the metal oxide containing nickel atoms, the better, which is the main component (so-called main metal) Specifically, NiO, Ni 2 O 3 and the like can be mentioned. On the other hand, if the nickel atom content is high, it takes time to etch the underlayer, and therefore the content of Ni may be reduced in consideration of the tact time to form an alloy oxide. Specifically, Cu-Ni alloy oxide, Zn-Cu-Ni alloy oxide, Ti-Cu-Ni alloy oxide and the like can be mentioned. In this case, the nickel atom content is not particularly limited, and it is not necessary to be the main component (so-called main metal).
In addition, the said main component intends the metal with largest content (mass) among metals contained in a metal oxide.
 上記金属窒化物としては特に制限されないが、金属細線の基板に対する密着性がより優れる点で、ニッケル、銅、クロム、チタン、及び亜鉛からなる群より選ばれる金属原子を含む金属窒化物が好ましく、なかでも、以下に示す製造の観点からは、ニッケル原子を含む金属窒化物がより好ましい。
 本発明者は、微細配線パターンをエッチングにて形成する場合、下地層と導電層は異なるエッチング液で二回に分けてエッチングすることが、配線パターンの細線化のために重要であることを知見しており、そのため下地層は導電層と異なるエッチング性を有することが求められる。ニッケルは窒化物とすることでその他金属とエッチング性を大きく変えることができ、故にニッケルを下地層に含有することで導電層とエッチング性に差をつけることができる。これがニッケル原子を含む金属窒化物がより好ましい理由である。よりエッチング性に差をつけ、二回に分けてエッチングすることを容易とする観点では、ニッケル原子を含む金属窒化物におけるニッケル原子含有率は高いほどよく、具体的にはNiO、及びNi等が挙げられる。
 ニッケル原子を含む金属窒化物としては、基板密着性、及びエッチング性の観点から、Ni等が好ましい。
The metal nitride is not particularly limited, but is preferably a metal nitride containing a metal atom selected from the group consisting of nickel, copper, chromium, titanium, and zinc in that the adhesion of the metal fine wire to the substrate is more excellent, Among them, metal nitrides containing a nickel atom are more preferable from the viewpoint of production shown below.
The inventors have found that, in the case of forming a fine wiring pattern by etching, it is important for the ground pattern and the conductive layer to be etched twice by different etching solutions in order to thin the wiring pattern. Therefore, the base layer is required to have an etching property different from that of the conductive layer. By making nickel into nitride, it is possible to largely change the etching property with other metals, and therefore, by containing nickel in the underlayer, it is possible to make the conductive layer different from the etching property. This is the reason why metal nitrides containing nickel atoms are more preferable. From the viewpoint of making etching properties more different and making etching easier in two steps, the higher the nickel atom content in the metal nitride containing nickel atoms, the better, specifically NiO, and Ni 2 O 3 mag is mentioned.
As the metal nitride containing a nickel atom, Ni 3 N 2 or the like is preferable from the viewpoint of the adhesion to a substrate and the etching property.
 下地層14の形成方法としては特に制限されず、公知の形成方法を使用できる。なかでも、より緻密な構造を有する層を形成し易い点で、スパッタリング法、又は蒸着法が好ましい。 It does not restrict | limit especially as a formation method of the base layer 14, A well-known formation method can be used. Among them, the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
 下地層14の厚みとしては特に制限されないが、5nm以上が好ましく、10nm以上がより好ましく、100nm以下が好ましく、50nm以下がより好ましい。下地層14の厚みを上記数値範囲とした場合、金属細線12は、基板10に対する密着性がより優れる。 The thickness of the underlayer 14 is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more, preferably 100 nm or less, and more preferably 50 nm or less. When the thickness of the base layer 14 is in the above numerical range, the metal thin wire 12 is more excellent in adhesion to the substrate 10.
 (導電層16)
 導電層16は、銅を主成分として含む。導電層16は、金属細線12の導通部として機能する。
 導電層16は、銅又はその合金を含むが、その主成分は銅であり、導電性がより優れる点で、銅の含有量が導電層全質量に対して、90質量%以上であることが好ましい。なお、上記主成分とは、上記導電層16中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。また、導電層16中の銅の含有量の上限は特に制限されないが、例えば、導電層全質量に対して100質量%である。
(Conductive layer 16)
The conductive layer 16 contains copper as a main component. The conductive layer 16 functions as a conductive portion of the thin metal wire 12.
The conductive layer 16 contains copper or an alloy thereof, the main component of which is copper, and the copper content is 90% by mass or more based on the total mass of the conductive layer in that the conductivity is more excellent. preferable. The main component is intended to mean the metal having the largest content (mass) of the metals contained in the conductive layer 16. Further, the upper limit of the content of copper in the conductive layer 16 is not particularly limited, and is, for example, 100% by mass with respect to the total mass of the conductive layer.
 導電層16の厚みは、一般に、3.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下が更に好ましい。導電層16の厚みの下限値としては特に制限されないが、一般に0.1μm以上が好ましい。 In general, the thickness of the conductive layer 16 is preferably 3.0 μm or less, more preferably 2.0 μm or less, and still more preferably 1.0 μm or less. The lower limit of the thickness of the conductive layer 16 is not particularly limited, but in general, 0.1 μm or more is preferable.
 また、導電層16は、単層であっても複層であってもよい。
 導電層16が単層である場合、例えば、スパッタリング法、又は蒸着法により形成できる。
 まだ、導電層16が複層である場合、金属細線12の導電性がより優れる点で、導電層16は、例えば、スパッタリング法、蒸着法、又は無電解めっき法により形成されたシード層と、上記シード層上に、めっき法により配置されためっき層とを有することが好ましい。
 なお、めっき法としては、電解めっき法及び無電解めっき法が挙げられ、生産性の点から、電解めっき法が好ましい。
The conductive layer 16 may be a single layer or multiple layers.
When the conductive layer 16 is a single layer, it can be formed, for example, by sputtering or vapor deposition.
Still, when the conductive layer 16 is a multilayer, the conductive layer 16 is, for example, a seed layer formed by a sputtering method, a vapor deposition method, or an electroless plating method in that the conductivity of the metal fine wire 12 is more excellent; It is preferable to have the plating layer arrange | positioned by the plating method on the said seed layer.
In addition, an electroplating method and an electroless plating method are mentioned as a plating method, The electrolytic plating method is preferable from the point of productivity.
 上記シード層の厚みとしては特に制限されないが、一般に、300nm以下が好ましい。上記シード層の厚みの下限値としては特に制限されないが、一般に10nm以上が好ましい。
 また、上記めっき層の厚みとしては特に制限されないが、一般に、3.0μm以下が好ましく、2.0μm以下がより好ましく、1.0μm以下が更に好ましい。上記めっき層の厚みの下限値としては特に制限されないが、一般に0.1μm以上が好ましい。
The thickness of the seed layer is not particularly limited, but in general, 300 nm or less is preferable. The lower limit of the thickness of the seed layer is not particularly limited, but generally 10 nm or more is preferable.
The thickness of the plating layer is not particularly limited, but generally 3.0 μm or less is preferable, 2.0 μm or less is more preferable, and 1.0 μm or less is still more preferable. The lower limit of the thickness of the plating layer is not particularly limited, but in general, 0.1 μm or more is preferable.
 上記シード層に含まれる金属としては特に制限されず、公知の金属を用いることができる。
 上記シード層としては、例えば、銅、ニッケル、クロム、鉛、金、銀、錫、及び亜鉛等の金属、並びに、これらの金属の合金を含んでいてもよい。
 上記シード層に含まれる主成分(いわゆる、主金属)としては、ニッケル以外の金属が好ましく、例えば、銅、クロム、鉛、金、銀、錫、及び亜鉛が挙げられる。なお、上記主成分とは、上記シード層中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。
 なかでも、上記めっき層との親和性により優れる点、及び/又はシード層としての機能がより優れる点で、上記シード層は、銅又はその合金を含むことが好ましい。また、上記シード層の主成分は、銅であることが好ましい。
It does not restrict | limit especially as a metal contained in the said seed layer, A well-known metal can be used.
The seed layer may include, for example, metals such as copper, nickel, chromium, lead, gold, silver, tin, and zinc, and alloys of these metals.
The main component (so-called, main metal) contained in the seed layer is preferably a metal other than nickel, and examples thereof include copper, chromium, lead, gold, silver, tin and zinc. In addition, the said main component intends metal whose content (mass) is the largest among metals contained in the said seed layer.
Among them, the seed layer preferably contains copper or an alloy thereof, in that the seed layer is superior in affinity to the plating layer and / or in that the function as a seed layer is more excellent. The main component of the seed layer is preferably copper.
 上記シード層中の主成分を構成する金属の含有量としては特に制限されないが、一般に、上記金属の含有量がシード層全質量に対して80質量%以上が好ましく、85質量%以上がより好ましく、90質量%以上が更に好ましい。 The content of the metal constituting the main component in the seed layer is not particularly limited, but in general, the content of the metal is preferably 80% by mass or more, more preferably 85% by mass or more based on the total mass of the seed layer. And 90% by mass or more are more preferable.
 上記めっき層に含まれる金属としては、銅又はその合金が好ましい。
 上記めっき層に含まれる主成分(いわゆる、主金属)としては、銅が好ましい。なお、上記主成分とは、上記めっき層中に含まれる金属のうち、最も含有量(質量)が大きい金属を意図する。
As a metal contained in the said plating layer, copper or its alloy is preferable.
As a main component (so-called, main metal) contained in the said plating layer, copper is preferable. In addition, the said main component intends the metal with largest content (mass) among the metals contained in the said plating layer.
 上記めっき層中の主成分を構成する銅の含有量としては特に制限されないが、一般に、上記金属の含有量が上記めっき層全質量に対して80質量%以上が好ましく、90質量%以上がより好ましく、100質量%が更に好ましい。 The content of copper constituting the main component in the plating layer is not particularly limited, but generally, the content of the metal is preferably 80% by mass or more, more preferably 90% by mass or more based on the total mass of the plating layer. Preferably, 100% by mass is more preferable.
 (黒化層18)
 黒化層18は、パラジウムを含む。後述するように黒化層18は、置換黒化処理法により、導電層16の表面に配置される。つまり、黒化層18は、後述する導電性フィルムの製造方法において、第一金属膜及び第二金属膜の表面の金属(例えば、銅)を、上記金属よりもイオン化傾向が小さいパラジウムで置換することにより形成される層に該当する。
 なお、黒化層18を上記構成とすることで、金属細線12は、特許文献1の如くカーボンを主たる色材として含む黒化層を備えた金属細線と比べても、導電性が格段に高い利点を有する。
(Blackening layer 18)
The blackening layer 18 contains palladium. As described later, the blackening layer 18 is disposed on the surface of the conductive layer 16 by a substitution blackening method. That is, the blackening layer 18 substitutes the metal (for example, copper) of the surface of the first metal film and the second metal film with palladium having a smaller ionization tendency than the metal in the method of manufacturing a conductive film described later. It corresponds to the layer formed by
In addition, by making the blackening layer 18 into the above-mentioned configuration, the metal fine wire 12 has much higher conductivity than the metal fine wire including the blackening layer containing carbon as a main coloring material as in Patent Document 1 Have an advantage.
 なお、黒化層18中、パラジウムは、主成分として含まれることが好ましい。上記主成分とは、黒化層18中に含まれる成分のうち、最も含有量(質量)が大きい成分を意図する。黒化層18中、パラジウムの含有量は、上記黒化層18全質量に対して55質量%以上が好ましく、70質量%以上がより好ましく、100質量%が更に好ましい。 In the blackening layer 18, palladium is preferably contained as a main component. Among the components contained in the blackened layer 18, the main component is intended to be the component having the largest content (mass). The content of palladium in the blackening layer 18 is preferably 55% by mass or more, more preferably 70% by mass or more, and still more preferably 100% by mass, with respect to the total mass of the blackening layer 18 described above.
 黒化層18の厚みL2としては、金属細線12の導電性を低下させない点で、100nm未満であることが好ましい。黒化層18は、導電層16と比べると、導電性が劣る。線幅L1が2.0μm以下の金属細線12では、黒化層18の厚みL2が大きいほど相対的に導電層16の線幅が小さくなり、金属細線12の導電性が低下する懸念がある。黒化層18の厚みL2を100nm未満とすることで、金属細線12の導電性への影響も抑制できる。
 黒化層18の厚みL2は、なかでも、70nm以下が好ましく、50nm以下がより好ましい。なお、黒化層18の厚みL2の下限値は、例えば、10nm以上である。なお、黒化層の厚みは、置換黒化処理法の処理時間等により適宜調整できる。
The thickness L2 of the blackening layer 18 is preferably less than 100 nm in terms of not reducing the conductivity of the metal thin wire 12. The blackening layer 18 is inferior in conductivity as compared to the conductive layer 16. In the metal fine wire 12 having a line width L1 of 2.0 μm or less, the larger the thickness L2 of the blackening layer 18, the smaller the line width of the conductive layer 16 may be, and the conductivity of the metal fine wire 12 may be lowered. By setting the thickness L2 of the blackening layer 18 to less than 100 nm, the influence on the conductivity of the fine metal wire 12 can also be suppressed.
Among them, the thickness L2 of the blackening layer 18 is preferably 70 nm or less, and more preferably 50 nm or less. The lower limit of the thickness L2 of the blackening layer 18 is, for example, 10 nm or more. The thickness of the blackening layer can be appropriately adjusted by the processing time of the substitution blackening method and the like.
 なお、黒化層18の厚みL2は、EDS(Energy dispersive X-ray spectrometry)検出器を用いた元素マッピングにより得られる厚みを意図する。黒化層18の厚みL2は、具体的には、下記の方法により測定される。 The thickness L2 of the blackening layer 18 is intended to be a thickness obtained by element mapping using an EDS (Energy dispersive X-ray spectrometry) detector. Specifically, the thickness L2 of the blackening layer 18 is measured by the following method.
 まず、導電性付与及び表面保護のため、導電性フィルムの導電部に対して、C(炭素)蒸着及びPt(白金)コートを実施する。次いで、FEI製Helios400型FIB-SEM(FIB:Focused Ion Beam、SEM:Scanning Electron Microscope)複合機により、金属細線を、幅方向(金属細線の延在方向と直交する方向)で切断する。
 次いで、得られる切片を用い、EDS検出器(日立ハイテクノロジーズ社製 HD2300型FE-STEM)により、加速電圧200kVでEDS分析を行う。EDS分析により得られる元素マッピングにおいて、パラジウムの分布領域の厚みを、上記切片の両端部に配置された黒化層のそれぞれについて2箇所ずつ測定し、その平均値を黒化層の厚みとする。
First, C (carbon) deposition and Pt (platinum) coating are performed on the conductive portion of the conductive film for conductivity imparting and surface protection. Next, the metal thin wire is cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
Then, using the obtained section, EDS analysis is performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation). In element mapping obtained by EDS analysis, the thickness of the distribution region of palladium is measured at two points for each of the blackened layers disposed at both ends of the section, and the average value is taken as the thickness of the blackened layer.
 上述したとおり、黒化層18は置換黒化処理法により形成する。
 置換黒化処理法は、金属間のイオン化傾向の差を利用した反応である。置換黒化処理法によれば、導電層16の表面にパラジウムを含む黒化層を配置できる。
As described above, the blackening layer 18 is formed by the substitution blackening method.
The substitutional blackening treatment is a reaction utilizing the difference in ionization tendency among metals. According to the substitution blackening treatment method, a blackening layer containing palladium can be disposed on the surface of the conductive layer 16.
[導電性フィルムの製造方法]
 上述した導電性フィルムの製造方法は特に制限されず、公知の方法を採用できる。
 以下に、図2に示す導電性フィルム20の製造方法を一例に挙げて、本発明の導電性フィルムの製造方法について説明する。なお、以下の説明は、第一金属膜及び第二金属膜がそれぞれ銅を主成分として含む態様について説明する。ただし、第二金属膜は上述したシード層に該当するが、シード層の成分は以下の態様に限定されず、銅以外の金属を含む態様であってもよい。
 導電性フィルム20の製造方法は、以下の工程をこの順に含む。
(1)基板の少なくとも一方の主面上に、金属酸化物又は金属窒化物を主成分として含む下地膜を形成する工程(下地膜形成工程)、
(2)上記下地膜上に、銅を主成分として含む第二金属膜を形成する工程(第二金属膜形成工程)
(3)第二金属膜上に、金属細線が形成される領域に線幅が2.0μm以下の開口部を備えるレジスト膜を形成する工程(レジスト膜形成工程)
(4)めっき法により、開口部内であって、第二金属膜上に、銅を主成分として含む第一金属膜を形成する工程(第一金属膜形成工程)
(5)レジスト膜を除去する工程(レジスト膜除去工程)
(6)上記第一金属膜をマスクとして、上記第二金属膜の一部を除去する工程(第二金属膜及除去工程)
(7)置換黒化処理により、上記基板上に配置された上記第一金属膜及び上記第二金属膜の表面をパラジウムによって黒化する工程(置換黒化処理工程)
(8)表面を置換黒化処理された上記第一金属膜及び上記第二金属膜をマスクとして、上記下地膜の一部を除去する工程(下地膜除去工程)
 以下、上記各工程の手順について、図3A~図3Hを参照しながら詳述する。
[Method of producing conductive film]
The manufacturing method in particular of the electroconductive film mentioned above is not restrict | limited, A well-known method is employable.
Below, the manufacturing method of the conductive film 20 shown in FIG. 2 is mentioned as an example, and the manufacturing method of the conductive film of this invention is demonstrated. In the following description, an embodiment in which the first metal film and the second metal film each contain copper as a main component will be described. However, although the second metal film corresponds to the above-described seed layer, the component of the seed layer is not limited to the following embodiment, and may be an embodiment including a metal other than copper.
The method of manufacturing the conductive film 20 includes the following steps in this order.
(1) a step of forming a base film containing a metal oxide or metal nitride as a main component on at least one main surface of the substrate (base film forming step);
(2) A step of forming a second metal film containing copper as a main component on the above-mentioned base film (second metal film forming step)
(3) A step of forming a resist film having an opening with a line width of 2.0 μm or less in a region where fine metal wires are formed on the second metal film (resist film forming step)
(4) A step of forming a first metal film containing copper as a main component on the second metal film in the opening by plating (first metal film forming step)
(5) Step of removing resist film (resist film removing step)
(6) A step of removing a part of the second metal film by using the first metal film as a mask (second metal film and removing step)
(7) A step of blackening the surfaces of the first metal film and the second metal film disposed on the substrate by substitution blackening treatment (placement blackening treatment step)
(8) A step of removing a part of the base film using the first metal film and the second metal film whose surface has been subjected to substitutional blackening as a mask (base film removing step)
Hereinafter, the procedure of each of the above steps will be described in detail with reference to FIGS. 3A to 3H.
<<下地膜形成工程>>
 下地膜形成工程は、基板の少なくとも一方の主面上に、下地膜を形成する工程である。具体的には、図3Aに示すように、本工程を実施することにより、基板10上に下地膜44が形成される。
 後述するように、下地膜44は、所定の処理後、図2に示す下地層14となる。また、下地膜44は、金属酸化物又は金属窒化物を主成分として含む膜である。主成分の定義は、下地層14で説明した通りである。
 下地膜44の形成方法としては特に制限されず、公知の形成方法を使用できる。なかでも、より緻密な構造を有する層を形成し易い点で、スパッタリング法、又は蒸着法が好ましい。
 基板10は、上述した通りである。
<< Base film formation process >>
The base film forming step is a step of forming a base film on at least one main surface of the substrate. Specifically, as shown in FIG. 3A, the base film 44 is formed on the substrate 10 by performing this process.
As described later, the base film 44 becomes the base layer 14 shown in FIG. 2 after predetermined processing. The base film 44 is a film containing metal oxide or metal nitride as a main component. The definition of the main component is as described for the base layer 14.
The method for forming the underlayer 44 is not particularly limited, and any known method can be used. Among them, the sputtering method or the vapor deposition method is preferable in that a layer having a more dense structure can be easily formed.
The substrate 10 is as described above.
<<第二金属膜形成工程>>
 第二金属膜形成工程は、下地膜上に、第二金属膜を形成する工程である。
 具体的には、図3Bに示すように、本工程を実施することにより、下地膜44上に第二金属膜46aが形成される。
 後述するように、第二金属膜46aは、めっき法の際のシード層としても機能する。第二金属膜46aは、銅原子を主成分として含む。主成分の定義は、シード層で説明した通りである。
<< Second metal film formation process >>
The second metal film forming step is a step of forming a second metal film on the base film.
Specifically, as shown in FIG. 3B, the second metal film 46a is formed on the base film 44 by performing this process.
As described later, the second metal film 46a also functions as a seed layer in the plating method. The second metal film 46a contains a copper atom as a main component. The definition of the main component is as described in the seed layer.
 第二金属膜46aの形成方法としては特に制限されず、公知の形成方法を使用できるが、なかでもより緻密な構造を有する層を形成し易い点で、スパッタリング法、蒸着法、又は無電解めっき法が好ましい。 The method of forming the second metal film 46a is not particularly limited, and any known method may be used, among which sputtering, vapor deposition, or electroless plating is preferable in that it is easy to form a layer having a more dense structure. The method is preferred.
<<レジスト膜形成工程>>
 レジスト膜形成工程は、金属細線が形成される領域に開口部を備えるレジスト膜を形成する工程である。具体的には、図3Cに示すように、本工程を実施することにより、第二金属膜46a上にレジスト膜47が形成される。
<< Resist film formation process >>
The resist film forming step is a step of forming a resist film having an opening in a region where a metal thin wire is to be formed. Specifically, as shown in FIG. 3C, by performing this process, a resist film 47 is formed on the second metal film 46a.
 レジスト膜47は、金属細線が形成される領域に開口部49を備える。
 レジスト膜47中における開口部49の領域は、金属細線を配置したい領域に合わせて適宜調整できる。例えば、メッシュ状に配置された金属細線を形成しようとする場合、メッシュ状の開口部を有するレジスト膜が形成される。なお、通常、開口部は、金属細線に合わせて細線状に形成される。
 上記開口部の線幅Wは、2.0μm以下である。上記線幅Wは、1.5μm以下が好ましく、1.2μm以下がより好ましい。開口部の線幅Wを2.0μm以下とすることにより、線幅の細い金属細線が得られる。特に、開口部の線幅Wが1.2μm以下の場合、得られる金属細線の線幅がより細くなり、導電性フィルムを、例えば、タッチパネルセンサー等に適用した際、使用者から金属細線がより視認されにくい。なお、上記開口部の線幅Wの下限は特に制限されないが、0.2μm以上の場合が多い。
 なお、本明細書において開口部の幅とは、開口部の細線部分の延在方向に直交する方向での細線部の大きさを意図する。後述する各工程を経て、開口部の線幅に対応した線幅を有する金属細線が形成される。
The resist film 47 has an opening 49 in the region where the metal thin wire is to be formed.
The region of the opening 49 in the resist film 47 can be appropriately adjusted in accordance with the region in which the thin metal wire is to be disposed. For example, in the case of forming metal thin wires arranged in a mesh, a resist film having openings in a mesh is formed. In addition, normally, the opening is formed in a thin wire shape in accordance with the thin metal wire.
The line width W of the opening is 2.0 μm or less. The line width W is preferably 1.5 μm or less, and more preferably 1.2 μm or less. By setting the line width W of the opening to 2.0 μm or less, thin metal wires having a line width can be obtained. In particular, when the line width W of the opening is 1.2 μm or less, the line width of the obtained metal thin line becomes narrower, and when the conductive film is applied to a touch panel sensor, for example, the metal thin line It is hard to see. The lower limit of the line width W of the opening is not particularly limited, but is often 0.2 μm or more.
In the present specification, the width of the opening means the size of the thin line portion in the direction orthogonal to the extending direction of the thin line portion of the opening. Through each process described later, fine metal wires having a line width corresponding to the line width of the opening are formed.
 第二金属膜46a上にレジスト膜47を形成する方法としては特に制限されず、公知のレジスト膜形成方法を使用できる。例えば、以下の工程を含む方法が挙げられる。
(a)第二金属膜46a上にレジスト膜形成用組成物を塗布し、レジスト膜形成用組成物層を形成する工程。
(b)パターン状の開口部を備えるフォトマスクを介して、レジスト膜形成用組成物を露光する工程。
(c)露光後のレジスト膜形成用組成物を現像し、レジスト膜を得る工程。
 なお、上記工程(a)と(b)の間、(b)と(c)の間、及び/又は(c)の後には、レジスト膜形成用組成物層、及び/又はレジスト膜を加熱する工程を更に含んでいてもよい。
The method of forming the resist film 47 on the second metal film 46a is not particularly limited, and a known resist film forming method can be used. For example, there is a method including the following steps.
(A) A step of applying a composition for forming a resist film on the second metal film 46 a to form a composition layer for forming a resist film.
(B) exposing the resist film-forming composition through a photomask provided with a pattern-like opening;
(C) developing the resist film-forming composition after exposure to obtain a resist film.
In addition, between the said process (a) and (b), between (b) and (c), and / or after (c), the composition layer for resist film formation and / or a resist film are heated. The process may be further included.
・工程(a)
 上記工程(a)において使用できるレジスト膜形成用組成物としては特に制限されず、公知のレジスト膜形成用組成物を使用できる。
 レジスト膜形成用組成物の具体例としては、例えば、ポジ型、又はネガ型の感放射線性組成物が挙げられる。
Step (a)
It does not restrict | limit especially as a composition for resist film formation which can be used in the said process (a), A well-known composition for resist film formation can be used.
As a specific example of a composition for resist film formation, a positive or negative radiation sensitive composition is mentioned, for example.
 第二金属膜46a上にレジスト膜形成用組成物を塗布する方法としては特に制限されず、公知の塗布方法を使用できる。
 レジスト膜形成用組成物の塗布方法としては、例えば、スピンコート法、スプレー法、ローラーコート法、及び浸漬法等が挙げられる。
It does not restrict | limit especially as a method to apply | coat the composition for resist film formation on the 2nd metal film 46a, A well-known application method can be used.
As a coating method of the composition for resist film formation, a spin coat method, a spray method, a roller coat method, an immersion method etc. are mentioned, for example.
 第二金属膜46a上にレジスト膜形成用組成物層を形成後、レジスト膜形成用組成物層を加熱してもよい。加熱により、レジスト膜形成用組成物層に残留する不要な溶剤が除去され、レジスト膜形成用組成物層を面内において均一な状態にできる。
 レジスト膜形成用組成物層を加熱する方法としては特に制限されないが、例えば、基板を加熱する方法が挙げられる。
 上記加熱の温度としては特に制限されないが、一般に40~160℃が好ましい。
After forming the composition layer for forming a resist film on the second metal film 46a, the composition layer for forming a resist film may be heated. By heating, the unnecessary solvent remaining in the composition layer for forming a resist film is removed, and the composition layer for forming a resist film can be made uniform in the plane.
Although it does not restrict | limit especially as a method to heat the composition layer for resist film formation, For example, the method to heat a board | substrate is mentioned.
The temperature of the heating is not particularly limited, but generally 40 to 160 ° C. is preferable.
 レジスト膜形成用組成物層の厚みとしては特に制限されないが、乾燥後の厚みとして、一般に0.5~2.5μmが好ましい。 The thickness of the composition layer for forming a resist film is not particularly limited, but in general, the thickness after drying is preferably 0.5 to 2.5 μm.
・工程(b)
 レジスト膜形成用組成物層を露光する方法としては特に制限されず、公知の露光方法を使用できる。
 レジスト膜形成用組成物層を露光する方法としては、例えば、パターン状の開口部を備えるフォトマスクを介して、レジスト膜形成用組成物層に、活性光線、又は放射線を照射する方法が挙げられる。露光量としては特に制限されないが、一般に1~100mW/cmで、0.1~10秒間照射することが好ましい。
・ Step (b)
It does not restrict | limit especially as a method to expose the composition layer for resist film formation, A well-known exposure method can be used.
As a method of exposing the composition layer for forming a resist film, for example, a method of irradiating the composition layer for forming a resist film with an actinic ray or radiation through a photomask provided with a pattern-like opening can be mentioned. . The exposure dose is not particularly limited, but in general, irradiation at 1 to 100 mW / cm 2 for 0.1 to 10 seconds is preferable.
 例えば、レジスト膜形成用組成物がポジ型である場合、工程(b)中で用いられるフォトマスクが備えるパターン状の開口部の線幅Wは、一般に2.0μm以下が好ましく、1.5μm以下がより好ましく、1.2μm以下が更に好ましい。 For example, when the composition for forming a resist film is a positive type, the line width W of the pattern opening provided in the photomask used in the step (b) is generally preferably 2.0 μm or less, and 1.5 μm or less Is more preferable, and 1.2 μm or less is more preferable.
 露光後のレジスト膜形成用組成物層を加熱してもよい。加熱の温度としては特に制限されないが、一般に40~160℃が好ましい。 The composition layer for forming a resist film after exposure may be heated. The heating temperature is not particularly limited, but generally 40 to 160 ° C. is preferable.
・工程(c)
 露光後のレジスト膜形成用組成物層を現像する方法としては特に制限されず、公知の現像方法を使用できる。
 公知の現像方法としては、例えば、有機溶剤を含む現像液、又はアルカリ現像液を用いる方法が挙げられる。
 現像方法としては、例えば、ディップ法、パドル法、スプレー法、及びダイナミックディスペンス法等が挙げられる。
・ Step (c)
It does not restrict | limit especially as a method to develop the composition layer for resist film formation after exposure, A well-known developing method can be used.
Examples of known development methods include methods using a developer containing an organic solvent or an alkali developer.
Examples of the development method include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
 また、現像後のレジスト膜を、リンス液を用いて洗浄してもよい。リンス液としては特に制限されず、公知のリンス液を使用できる。リンス液としては、有機溶剤、及び水等が挙げられる。 In addition, the resist film after development may be washed using a rinse solution. The rinse solution is not particularly limited, and known rinse solutions can be used. Examples of the rinse solution include organic solvents and water.
<<第一金属膜形成工程>>
 第一金属形成工程は、上記レジスト膜の開口部内であって、第二金属膜上に、めっき法により、第一金属膜を形成する工程である。具体的には、図3Dに示すように、本工程を実施することにより、図3C中の開口部49を埋めるように、第二金属膜46a上に第一金属膜46bが形成される。
 第一金属膜46bは、銅原子を主成分として含む。主成分の定義は、めっき層で説明した通りである。
<< First metal film formation process >>
The first metal forming step is a step of forming the first metal film on the second metal film by the plating method in the opening of the resist film. Specifically, as shown in FIG. 3D, by performing this process, the first metal film 46b is formed on the second metal film 46a so as to fill the opening 49 in FIG. 3C.
The first metal film 46 b contains a copper atom as a main component. The definition of the main component is as described for the plating layer.
 第一金属膜46bは、めっき法により形成される。
 めっき法としては、公知のめっき法を使用できる。具体的には、電解めっき法及び無電解めっき法が挙げられ、生産性の点から、電解めっき法が好ましい。
The first metal film 46 b is formed by plating.
A well-known plating method can be used as a plating method. Specifically, electrolytic plating and electroless plating may be mentioned, and electrolytic plating is preferred from the viewpoint of productivity.
<<レジスト膜除去工程>>
 レジスト膜除去工程は、レジスト膜47を除去する工程である。具体的には、図3Eに示すように、本工程を実施することにより、基板10と、基板10上に、下地膜44、第二金属膜46a、及び第一金属膜46bと、を含む積層体が得られる。
<< Resist film removal process >>
The resist film removing step is a step of removing the resist film 47. Specifically, as shown in FIG. 3E, by carrying out the present step, a stack including the substrate 10 and the base film 44, the second metal film 46a, and the first metal film 46b on the substrate 10 is provided. Get the body.
 レジスト膜47を除去する方法としては特に制限されず、公知のレジスト膜除去液を用いてレジスト膜47を除去する方法が挙げられる。
 レジスト膜除去液としては例えば、有機溶剤、及びアルカリ溶液等が挙げられる。
 レジスト膜除去液をレジスト膜に接触させる方法としては特に制限されないが、例えば、ディップ法、パドル法、スプレー法、及びダイナミックディスペンス法等が挙げられる。
The method for removing the resist film 47 is not particularly limited, and a known method for removing the resist film 47 using a resist film removing solution may be mentioned.
Examples of the resist film removing solution include organic solvents and alkaline solutions.
The method for contacting the resist film removing solution with the resist film is not particularly limited, and examples thereof include a dip method, a paddle method, a spray method, and a dynamic dispensing method.
<<第二金属膜除去工程>>
 第二金属膜除去工程は、第一金属膜をマスクとして、上記第二金属膜の一部を除去する工程である。具体的には、図3Fに示すように、本工程を実施することにより、第一金属膜46bが形成されていない領域に該当する第二金属膜46aが除去される。
<< Second metal film removal process >>
The second metal film removing step is a step of removing a part of the second metal film using the first metal film as a mask. Specifically, as shown in FIG. 3F, by performing this process, the second metal film 46a corresponding to the region where the first metal film 46b is not formed is removed.
 第二金属膜46aの一部を除去する方法としては、特に限定されないが、公知のエッチング液を使用できる。
 公知のエッチング液としては、例えば、塩化第二鉄溶液、塩化第二銅溶液、アンモニアアルカリ溶液、硫酸-過酸化水素混合液、及びリン酸-過酸化水素混合液等が挙げられる。これらの中から、第一金属膜46bを溶解しにくく、第二金属膜46aを溶解しやすいエッチング液を適宜選択すればよい。
The method of removing a part of the second metal film 46a is not particularly limited, but a known etching solution can be used.
Examples of known etching solutions include ferric chloride solution, cupric chloride solution, alkaline ammonia solution, sulfuric acid-hydrogen peroxide mixed solution, and phosphoric acid-hydrogen peroxide mixed solution. Among these, an etching solution which does not easily dissolve the first metal film 46 b and easily dissolves the second metal film 46 a may be appropriately selected.
<<置換黒化処理工程>>
 置換黒化工程は、置換黒化処理によって、導電層と、導電層の表面を被覆する黒化層とを形成する工程である。具体的には、本工程を実施することにより、第二金属膜46a及び第一金属膜46bはその表面が置換黒化処理され、図3Gに示すように、表面が黒化層18で被覆された、第二金属膜46aと第一金属膜46bとから構成される導電層16が形成される。なお、図3G中の導電層16及び黒化層18は、図2中の導電層16及び黒化層18にそれぞれ該当する。
 また、上述したとおり、下地膜44は金属酸化物及び金属窒化物を含むが、金属酸化物及び金属窒化物は価数が0価ではないため、下地膜44の表面では置換黒化処理は生じない。
 上記置換黒化処理では、第二金属膜46a及び第一金属膜46bの表面領域に存在する銅が、パラジウムに置換される。
<< Displacement blackening treatment process >>
The substitution blackening step is a step of forming a conductive layer and a blackening layer covering the surface of the conductive layer by substitution blackening treatment. Specifically, by performing this step, the surfaces of the second metal film 46a and the first metal film 46b are subjected to substitution blackening treatment, and the surfaces are covered with the blackening layer 18 as shown in FIG. 3G. Also, the conductive layer 16 composed of the second metal film 46a and the first metal film 46b is formed. The conductive layer 16 and the blackening layer 18 in FIG. 3G correspond to the conductive layer 16 and the blackening layer 18 in FIG. 2, respectively.
Further, as described above, the undercoat film 44 contains a metal oxide and a metal nitride, but since the metal oxide and the metal nitride do not have zero valence, substitution blackening treatment occurs on the surface of the undercoat film 44. Absent.
In the substitution blackening treatment, copper present in the surface regions of the second metal film 46a and the first metal film 46b is substituted by palladium.
 置換黒化処理法の具体的な方法としては、パラジウムイオンを含む水溶液に、第二金属膜除去工程を経て得られた上記積層体を浸漬する。この結果、第二金属膜46a及び第一金属膜46bの上記水溶液に接触した表面領域では、層を構成していた銅が溶解して銅イオンとなり、電子を放出する。この電子が、水溶液中のパラジウムイオンを還元し、パラジウムが第二金属膜46a及び第一金属膜46bの表面に析出する。この結果として、図3Gに示すように、第二金属膜46aと第一金属膜46bとから構成される導電層16と、その表面に配置される黒化層18とを形成できる。
 浸漬の際の溶液の液温は特に制限されないが、通常、10~90℃であり、20~60℃が好ましい。
 浸漬の際の溶液のpHは特に制限されないが、0~13が好ましく、0~8がより好ましい。
 浸漬時間は特に制限されないが、通常、1~8分である。
As a specific method of the substitutional blackening treatment method, the above-mentioned laminate obtained through the second metal film removing step is immersed in an aqueous solution containing palladium ions. As a result, in the surface area of the second metal film 46a and the first metal film 46b in contact with the aqueous solution, the copper constituting the layer is dissolved into copper ions to emit electrons. The electrons reduce palladium ions in the aqueous solution, and palladium is deposited on the surfaces of the second metal film 46a and the first metal film 46b. As a result, as shown in FIG. 3G, the conductive layer 16 composed of the second metal film 46a and the first metal film 46b and the blackening layer 18 disposed on the surface can be formed.
The liquid temperature of the solution at the time of immersion is not particularly limited, but usually 10 to 90 ° C., preferably 20 to 60 ° C.
The pH of the solution at the time of immersion is not particularly limited, but it is preferably 0 to 13, and more preferably 0 to 8.
The immersion time is not particularly limited, but is usually 1 to 8 minutes.
 なお、置換黒化処理法の具体的な方法は特に制限されず、公知の方法、及び処理液を使用できる。例えば、特許公開5862916号明細書に記載の黒化処理用組成物等を使用できる。 In addition, the specific method in particular of a substitution blackening treatment method is not restrict | limited, A well-known method and a process liquid can be used. For example, the composition for blackening treatment described in patent publication 586 2916 can be used.
<<下地膜除去工程>>
 下地膜除去工程は、表面を置換黒化処理された上記第二金属膜及び上記第一金属膜をマスクとして、上記下地膜の一部を除去する工程である。具体的には、図3Hに示すように、本工程を実施することにより、表面を置換黒化処理された第二金属膜46a及び第一金属膜46bが形成されていない領域に該当する下地膜44が除去される。この結果として、図2に示すような、基板10と、基板10上に、下地層14、導電層16、及び導電層16の表面を被覆する黒化層18と、を含む金属細線12が得られる。
<< Base film removal process >>
The base film removing step is a step of removing a part of the base film using the second metal film whose surface has been subjected to the blackening process and the first metal film as a mask. Specifically, as shown in FIG. 3H, by performing the present step, an underlayer film corresponding to a region where the second metal film 46a and the first metal film 46b whose surfaces have been subjected to the blackening process is not formed. 44 is removed. As a result, as shown in FIG. 2, metal fine wires 12 including substrate 10 and blackening layer 18 covering base layer 14, conductive layer 16, and the surface of conductive layer 16 on substrate 10 are obtained. Be
 下地膜44の一部を除去する方法としては、特に限定されないが、公知のエッチング液を使用できる。
 公知のエッチング液としては、例えば、塩化第二鉄溶液、塩化第二銅溶液、アンモニアアルカリ溶液、硫酸-過酸化水素混合液、及びリン酸-過酸化水素混合液等が挙げられる。これらの中から、第二金属膜46a及び第一金属膜46bを溶解しにくく、下地膜44を溶解しやすいエッチング液を適宜選択すればよい。
The method for removing a part of the undercoat film 44 is not particularly limited, but a known etching solution can be used.
Examples of known etching solutions include ferric chloride solution, cupric chloride solution, alkaline ammonia solution, sulfuric acid-hydrogen peroxide mixed solution, and phosphoric acid-hydrogen peroxide mixed solution. From among these, it is possible to appropriately select an etching solution which does not easily dissolve the second metal film 46 a and the first metal film 46 b and easily dissolves the base film 44.
 上記工程を経ることにより、導電性フィルム20を形成できる。
 上記工程によれば、置換黒化処理工程を実施する際に、導電性フィルム20を形成後に開口部となる領域に下地膜が配置されているため(言い換えると、置換黒化処理工程を実施した後に、下地膜除去工程を実施するため)、上記開口部となる領域に黒化液が付着することがない。
The conductive film 20 can be formed through the above steps.
According to the above process, when the substitution blackening treatment step is carried out, the undercoating film is disposed in the area to be the opening after the formation of the conductive film 20 (in other words, the substitution blackening treatment step was carried out Later, in order to carry out the base film removing step), the blackening solution does not adhere to the area to be the opening.
[用途]
 本発明の導電性フィルムは、種々の用途に使用できる。例えば、各種電極フィルム、発熱シート、及びプリント配線基板が挙げられる。なかでも、導電性フィルムは、タッチパネルセンサーに用いられることが好ましく、静電容量方式のタッチパネルセンサーに用いられることがより好ましい。上記導電性フィルムをタッチパネルセンサーとして含むタッチパネルでは、金属細線が視認しづらい。
 なお、タッチパネルの構成としては、例えば、特開2015-195004号公報の0020~0027段落に記載のタッチパネルモジュール等が挙げられ、上記内容は本明細書に組み込まれる。
[Use]
The conductive film of the present invention can be used in various applications. For example, various electrode films, heat generating sheets, and printed wiring boards can be mentioned. Among them, the conductive film is preferably used for a touch panel sensor, and more preferably used for a capacitive touch panel sensor. In the touch panel including the conductive film as a touch panel sensor, it is difficult for a thin metal wire to be visible.
Examples of the configuration of the touch panel include the touch panel module described in paragraphs 0020 to 0027 of JP-A-2015-195004, and the above contents are incorporated in the present specification.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. Materials, amounts used, proportions, treatment contents, treatment procedures and the like shown in the following Examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the following examples.
〔実施例1〕
<導電性フィルムの作製>
 COP(シクロオレフィンポリマー)フィルム上に、スパッタ装置を用いて、特許6010260号の実施例59に記載の条件に基づき、下地膜として厚み20nmのZn-Cu-Ni酸化膜を形成した。次いで、スパッタ装置を用いて、下地膜上に、シード膜として、厚み50nmのCu膜(第二金属膜)を形成した。
 次に、第二金属膜上に、ポジレジスト(ローム・アンド・ハース電子材料株式会社製 MCPR124MG)を1μmの厚みとなるようにスピンコーターにて塗布し、90℃にて10分間乾燥させた。フォトマスクを介して平行露光機を用いて365nmの波長の光(露光量 16mW/cm)を2秒間照射したのち、0.10M水酸化ナトリウム水溶液で現像処理を行ってパターン状のレジスト膜を得た(レジスト膜の開口部の線幅1.5μm±0.1μm)。次に、後の剥離のためにレジスト全面を露光した(露光量16mW/cmで3秒間)。
 次に硫酸銅ハイスロー浴(添加剤としてトップルチナHT-AとトップルチナHT-Bを含む。いずれも奥野製薬工業株式会社製)を用いて電気めっきを電流密度3A/dmで行い、レジスト膜の開口部を充填するように形成されたCuめっき膜(第一金属膜)を得た。0.15M水酸化ナトリウム水溶液にてレジストを剥離し、その後Cuエッチング液(和光純薬工業株式会社製 Cuエッチャント)にて開口部の第二金属膜を除去した。続けて、室温としたPd黒化処理液(特許第5862916号の実施例1、黒化処理液No.2を参考に調液)中に、得られた積層体を3分間浸漬することにより、置換黒化処理を行った。置換黒化処理後、エッチング液(日本化学産業株式会社製 NC-A及びNC-B)にてNi-Cu-Zn酸化膜(下地膜)をエッチングし、メッシュ状の金属配線パターンを有する導電性フィルム(図1C参照)を得た。
 得られた金属細線は、線幅が1μm±0.1μmであり、黒化層の厚みは、40nmであった。また、メッシュ状の金属配線パターンの開口部はひし形であり、開口部の一辺の長さは132μmであった。
Example 1
<Production of conductive film>
On a COP (cycloolefin polymer) film, a Zn-Cu-Ni oxide film with a thickness of 20 nm was formed as a base film based on the conditions described in Example 59 of Japanese Patent No. 6010260 using a sputtering apparatus. Next, using a sputtering apparatus, a Cu film (second metal film) having a thickness of 50 nm was formed on the base film as a seed film.
Next, on the second metal film, a positive resist (MCP R 124 MG manufactured by Rohm and Haas Electronic Materials Co., Ltd.) was applied by a spin coater so as to have a thickness of 1 μm, and dried at 90 ° C. for 10 minutes. After irradiating a light of 365 nm wavelength (exposure amount: 16 mW / cm 2 ) for 2 seconds using a parallel exposure machine through a photomask, the resist film is developed by developing with a 0.10 M sodium hydroxide aqueous solution. Obtained (line width of the opening of the resist film: 1.5 μm ± 0.1 μm). Next, the entire surface of the resist was exposed (3 seconds at an exposure amount of 16 mW / cm 2 ) for later peeling.
Next, electroplating is performed at a current density of 3 A / dm 2 using a copper sulfate high-throw bath (including Top Lucina HT-A and Top Lucina HT-B as additives, each of which is manufactured by Okuno Pharmaceutical Industry Co., Ltd.) The Cu plating film (1st metal film) formed so that a part was filled was obtained. The resist was peeled off with a 0.15 M aqueous solution of sodium hydroxide, and then the second metal film in the opening was removed with a Cu etching solution (Cu etchant manufactured by Wako Pure Chemical Industries, Ltd.). Subsequently, the resulting laminate is immersed for 3 minutes in a Pd blackening solution (prepared as described in Example 1 of Japanese Patent No. 586 2916, Blackening solution No. 2 as a reference) at room temperature. We performed substitution blackening processing. After the substitution blackening treatment, the Ni-Cu-Zn oxide film (base film) is etched with an etching solution (NC-A and NC-B manufactured by Nippon Kagaku Sangyo Co., Ltd.), and conductivity with a mesh-like metal wiring pattern is obtained. A film (see FIG. 1C) was obtained.
The obtained thin metal wire had a line width of 1 μm ± 0.1 μm, and the thickness of the blackened layer was 40 nm. The openings of the mesh-like metal wiring pattern were diamond-shaped, and the length of one side of the openings was 132 μm.
 つまり、上記工程により得られた実施例1の導電性フィルムにおいて、基板上に形成された金属細線は、基板側からこの順に配置された下地層及び導電層と、導電層の表面を被覆する黒化層と、を含む。つまり、黒化層は、導電層の側面部及び頂面部上(言い換えれば、導電層の下地層と接触している表面以外の表面上)に配置されていた。
 なお、導電層は、上記第一金属膜と上記第二金属膜とから構成される。上記導電層は、銅を主成分として含む(導電層中、銅の含有量は、導電層全体に対して90質量%以上である)。
 また、下地層は、ニッケル系酸化物からなり、具体的にはZn-Cu-Ni酸化物である。
 また、黒化層は、パラジウムを含む。
That is, in the conductive film of Example 1 obtained by the above steps, the metal fine wire formed on the substrate is a black layer covering the surface of the conductive layer and the underlying layer and the conductive layer disposed in this order from the substrate side. And the formation layer. That is, the blackening layer was disposed on the side surface and the top surface of the conductive layer (in other words, on the surface other than the surface in contact with the underlying layer of the conductive layer).
The conductive layer is composed of the first metal film and the second metal film. The conductive layer contains copper as a main component (in the conductive layer, the content of copper is 90% by mass or more with respect to the entire conductive layer).
The underlayer is made of a nickel-based oxide, specifically, a Zn-Cu-Ni oxide.
Also, the blackening layer contains palladium.
<測定>
 なお、金属細線の線幅及び黒化層の厚みについては、下記の測定方法により測定した。
(金属細線の線幅)
 作製した導電性フィルム中の金属細線の線幅は下記の方法により測定した。
 まず、上記導電性フィルムを、基板ごと樹脂に包埋し、幅方向(金属細線の延在方向と直交する方向)で、ウルトラミクロトームを用いて切断し、得られた断面に炭素を蒸着した後、走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-5500型)を用いて観察した。なお、線幅が高さ方向で異なる場合、最も大きな測定幅を線幅と定義する。
<Measurement>
In addition, about the line | wire width of a metal fine wire, and the thickness of the blackening layer, it measured by the following measuring method.
(Line width of thin metal wire)
The line width of the thin metal wire in the produced conductive film was measured by the following method.
First, the above conductive film is embedded in a resin together with the substrate, cut with an ultramicrotome in the width direction (direction orthogonal to the extending direction of the metal fine wire), and carbon is deposited on the obtained cross section , And was observed using a scanning electron microscope (S-5500 manufactured by Hitachi High-Technologies Corporation). When the line width differs in the height direction, the largest measurement width is defined as the line width.
(黒化層の厚み)
 作製した導電性フィルム中の金属細線の黒化層の厚みは下記の方法により測定した。
 まず、導電性付与及び表面保護のため、導電性フィルムの導電部に対して、C(炭素)蒸着及びPt(白金)コートを実施した。次いで、FEI製Helios400型FIB-SEM(FIB:Focused Ion Beam、SEM:Scanning Electron Microscope)複合機により、金属細線を、幅方向(金属細線の延在方向と直交する方向)で切断した。
 次いで、得られた切片を用い、EDS検出器(日立ハイテクノロジーズ社製 HD2300型FE-STEM)により、加速電圧200kVでEDS分析を行った。EDS分析により得られる元素マッピングにおいて、パラジウム原子の分布領域の厚みを、上記切片の両端部に配置された黒化層のそれぞれについて2箇所ずつ測定し、その平均値を黒化層の厚みとした。
(Thickness of blackened layer)
The thickness of the blackening layer of the metal fine wire in the produced conductive film was measured by the following method.
First, C (carbon) vapor deposition and Pt (platinum) coating were performed on the conductive portion of the conductive film for conductivity imparting and surface protection. Subsequently, the metal thin wire was cut in the width direction (direction orthogonal to the extending direction of the metal thin wire) using a Helios 400 type FIB-SEM (FIB: Focused Ion Beam, SEM: Scanning Electron Microscope) composite machine manufactured by FEI.
Then, using the obtained section, EDS analysis was performed at an acceleration voltage of 200 kV with an EDS detector (HD2300 type FE-STEM manufactured by Hitachi High-Technologies Corporation). In the element mapping obtained by EDS analysis, the thickness of the distribution region of palladium atoms was measured at two points for each of the blackened layers disposed at both ends of the above-mentioned section, and the average value was taken as the thickness of the blackened layer. .
<評価>
 導電性フィルムについて、下記に示すテープ密着試験を実施ところ、メッシュ状の金属配線パターンの剥がれは見られなかった。
(テープ密着試験(基板への密着性評価))
 金属細線の基板への密着性は、テープ密着試験により評価した。
 上記の方法で作製した導電性フィルムを用い、金属細線を備える側の基板主面に対し、セロハンテープフィルム(「CT24」ニチバン社製)を指の腹で押圧して密着させた後、セロハンテープを剥離した。その後、基板上の金属細線の剥離面積(%)(剥離した金属細線の面積/試験片における金属細線の面積×100)を目視で確認した。
<Evaluation>
When the tape adhesion test shown below was implemented about the electroconductive film, peeling of the mesh-like metal wiring pattern was not seen.
(Tape adhesion test (adhesion evaluation to substrate))
The adhesion of the metal thin line to the substrate was evaluated by a tape adhesion test.
A cellophane tape film ("CT24" manufactured by Nichiban Co., Ltd.) is pressed against the main surface of the substrate provided with metal fine wires using a conductive film produced by the above method and then adhered with a finger pad, and then cellophane tape Peeled off. Thereafter, the peeled area (%) of the metal thin wire on the substrate (area of peeled metal thin wire / area of metal thin wire in test piece × 100) was visually confirmed.
 また、下記に示す方法により金属細線の非視認性評価を実施したところ、反射が抑制され、いずれの角度からも、金属細線の反射光を視認できなかった。
(金属細線の非視認性評価)
 白色灯下、基板裏面に黒紙を敷き、基板表面に対し垂直に20cm離れた位置を基準として、垂線に対し0度、30度及び45度の傾きから目視で金属細線を観察した。金属の反射を視認できるかどうかを判定した。
Moreover, when the non-visibility evaluation of the metal fine wire was implemented by the method shown below, reflection was suppressed and the reflected light of the metal fine wire could not be visually recognized also from any angle.
(Evaluation of non-visibility of thin metal wires)
Under a white light, black paper was laid on the back surface of the substrate, and the thin metal wire was visually observed from the inclination of 0 degree, 30 degrees and 45 degrees with respect to the perpendicular line on the basis of a position 20 cm away perpendicular to the substrate surface. It was determined whether the metal reflection was visible.
 また、下記に示す方法により導電性フィルムの透過率の測定を実施したところ、メッシュ状の金属配線パターンの開口率と基板フィルムに依存する値に収まった(言い換えると、導電性フィルムの透過率の値が、基板フィルム自体の透過率×{100(%)-(基板フィルムの面積に対するメッシュ状の金属配線パターンの専有面積(%))}で計算される値に近しい値となることが確認された)。この結果から、所定の線幅のパターンが形成できたこと、且つ、汚染が少ないことが明らかである。
 また、下記に示す方法により導電性フィルムの色度bの測定を実施したところ、メッシュ状の金属配線パターンの開口率と基板フィルムに依存する値に収まった。この結果から、導電性フィルムの色度bが、基板フィルム自体の持つ色度に近しい値であり、メッシュ状の金属配線パターンの開口部に黒化液が付着していない(言い換えるとメッシュ状の金属配線パターンの開口部が着色していない)ことが明らかである。
In addition, when the transmittance of the conductive film was measured by the method described below, it fell within the value depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film (in other words, the transmittance of the conductive film It is confirmed that the value is close to the value calculated by the transmittance of the substrate film itself × {100 (%)-(the exclusive area (%) of the mesh-like metal wiring pattern to the area of the substrate film)} ). From this result, it is clear that a pattern with a predetermined line width can be formed and that contamination is low.
Further, when the chromaticity b * of the conductive film was measured by the method described below, the value fell within the range depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film. From this result, the chromaticity b * of the conductive film is a value close to the chromaticity of the substrate film itself, and no blackening liquid adheres to the openings of the mesh-like metal wiring pattern (in other words, mesh-like) It is clear that the openings of the metal wiring pattern of (1) are not colored).
(透過率測定)
 導電性フィルムに対して、Spectral Haze Mater SH7000(日本電色工業株式会社製)により、JIS K7361に基づいて全光線透過率を測定した。
(Transmittance measurement)
The total light transmittance of the conductive film was measured by Spectral Haze Mater SH7000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) based on JIS K7361.
(色度bの測定)
 色度bは、国際規格であるCIE1976(L)色空間における座標によっって表される色度を意図する。
 導電性フィルムに対して、Spectral Haze Mater SH7000(日本電色工業株式会社製)により測定した分光スペクトルより、JIS Z8781-4に基づいて算出した。
(Measurement of chromaticity b * )
The chromaticity b * is intended to be the chromaticity represented by the coordinates in the international standard CIE 1976 (L * a * b * ) color space.
The conductive film was calculated based on JIS Z8781-4 from the spectrum measured with a Spectral Haze Mater SH7000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.).
〔実施例2〕
 Cu膜(第二金属膜)を10nmとした以外はすべて実施例1と同様にして行った。
 得られた導電性フィルムについて、実施例1と同様にテープ密着試験を行ったところ、メッシュ状の金属配線パターンの剥がれは見られなかった。また、実施例1と同様に透過率及び色度b*について測定したところ、メッシュ状の金属配線パターンの開口率と基板フィルムに依存する値に収まった。また、実施例1と同様に金属細線の非視認性について評価したところ、反射が抑制され、いずれの角度からも、金属細線の反射光を視認できなかった。
Example 2
The process was performed in the same manner as Example 1 except that the Cu film (second metal film) was 10 nm.
The obtained conductive film was subjected to the tape adhesion test in the same manner as in Example 1. As a result, no peeling of the mesh-like metal wiring pattern was observed. Further, when the transmittance and the chromaticity b * were measured in the same manner as in Example 1, the values were within the values depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film. Moreover, when it evaluated about the non-visibility of the metal fine wire similarly to Example 1, reflection was suppressed and the reflected light of the metal fine wire was not able to be visually recognized also from any angle.
〔実施例3〕
 置換黒化処理の浸漬時間を8分とした以外は、実施例1と同様の手順に従って、導電性フィルムを得た。
 得られた導電性フィルムについて、実施例1と同様にテープ密着試験を行ったところ、メッシュ状の金属配線パターンの剥がれは見られなかった。また、実施例1と同様に透過率及び色度b*について測定したところ、メッシュ状の金属配線パターンの開口率と基板フィルムに依存する値に収まった。また、実施例1と同様に金属細線の非視認性について評価したところ、反射が抑制され、いずれの角度からも、金属細線の反射光を視認できなかった。黒化層の厚みは110nmであった。シート抵抗を測定したところ、実施例1に対し2倍以上値が上昇していた。
[Example 3]
A conductive film was obtained according to the same procedure as in Example 1, except that the immersion time for the substitutional blackening treatment was 8 minutes.
The obtained conductive film was subjected to the tape adhesion test in the same manner as in Example 1. As a result, no peeling of the mesh-like metal wiring pattern was observed. Further, when the transmittance and the chromaticity b * were measured in the same manner as in Example 1, the values were within the values depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film. Moreover, when it evaluated about the non-visibility of the metal fine wire similarly to Example 1, reflection was suppressed and the reflected light of the metal fine wire was not able to be visually recognized also from any angle. The thickness of the blackening layer was 110 nm. When the sheet resistance was measured, the value was increased more than twice that of Example 1.
〔比較例1〕
 Pd黒化処理液による置換黒化処理を、Cu膜(第二金属膜)除去後ではなく、レジスト剥離前に行った以外は、実施例2と同様の手順に従って、導電性フィルムを得た。つまり、比較例1の導電性フィルムは、黒化層を導電層の視認側の頂面部のみに配置した構成である。
 得られた導電性フィルムについて、実施例1と同様にテープ密着試験を行ったところ、メッシュ状の金属配線パターンの剥がれは見られなかった。また、実施例1と同様に透過率及び色度b*について測定したところ、メッシュ状の金属配線パターンの開口率と基板フィルムに依存する値に収まった。また、実施例1と同様に金属細線の非視認性について評価したところ、垂直方向ではない角度からの視認性が不良であった。
Comparative Example 1
A conductive film was obtained according to the same procedure as Example 2, except that the substitution blackening treatment with the Pd blackening treatment solution was performed before the resist peeling, not after removing the Cu film (second metal film). That is, the conductive film of Comparative Example 1 has a configuration in which the blackening layer is disposed only on the top surface portion on the viewing side of the conductive layer.
The obtained conductive film was subjected to the tape adhesion test in the same manner as in Example 1. As a result, no peeling of the mesh-like metal wiring pattern was observed. Further, when the transmittance and the chromaticity b * were measured in the same manner as in Example 1, the values were within the values depending on the aperture ratio of the mesh-like metal wiring pattern and the substrate film. Moreover, when it evaluated about the non-visibility of a metal fine wire like Example 1, the visibility from the angle which is not a perpendicular direction was unsatisfactory.
〔比較例2〕
 下地膜を形成せず基板上に直接シード層を形成した以外は、実施例1と同様の手順に従って、導電性フィルムを得た。得られた導電性フィルムについて、実施例1と同様にテープ密着試験を行ったところ、メッシュ状の金属配線パターンの剥がれが認められた。
Comparative Example 2
A conductive film was obtained according to the same procedure as in Example 1, except that the seed layer was directly formed on the substrate without forming the undercoat film. About the obtained electroconductive film, when the tape adhesion test was done similarly to Example 1, peeling of the metal wiring pattern of mesh shape was recognized.
 10 基板
 12 金属細線
 13 導電部
 14 下地層
 14a 下地層14の側面部
 16 導電層
 16a 導電層16の頂面部
 16b、16c 導電層16の側面部
 16d 導電層16と下地層14との界面部
 18 黒化層
 20 導電性フィルム
 L1 金属細線12の線幅
 L2 黒化層18の厚み
 T 開口部
 X 開口部Tの一辺の長さ
 44 下地膜
 46a 第二金属膜
 46b 第一金属膜
 47 レジスト膜
 49 開口部
 W 開口部の線幅
Reference Signs List 10 substrate 12 metal fine wire 13 conductive portion 14 base layer 14 a side surface portion of base layer 14 conductive layer 16 a top surface portion 16 b of conductive layer 16 side surface portion 16 d of conductive layer 16 interface portion between conductive layer 16 and base layer 14 18 Blackening layer 20 Conductive film L1 Line width of metal fine wire 12 Thickness of blackening layer 18 T opening X length of one side of opening T 44 Base film 46a Second metal film 46b First metal film 47 Resist film 49 Opening W Line width of opening

Claims (8)

  1.  基板と、前記基板の少なくとも一方の主面上に配置された、金属細線から構成された導電部と、を含む導電性フィルムであって、
     前記金属細線は、前記基板側からこの順に配置された下地層及び導電層と、前記導電層の表面を被覆する黒化層と、を含み、且つ、線幅が2.0μm以下であり、
     前記下地層は、金属酸化物又は金属窒化物を主成分として含み、
     前記黒化層は、パラジウムを含み、
     前記導電層は、銅を主成分として含む、導電性フィルム。
    A conductive film comprising: a substrate; and a conductive portion disposed on at least one of the main surfaces of the substrate, the conductive portion being composed of fine metal wires,
    The metal fine wire includes an underlayer and a conductive layer disposed in this order from the substrate side, and a blackening layer covering the surface of the conductive layer, and the line width is 2.0 μm or less.
    The underlayer contains a metal oxide or metal nitride as a main component,
    The blackened layer contains palladium and
    The conductive film, wherein the conductive layer contains copper as a main component.
  2.  前記黒化層の厚みは、100nm未満である、請求項1に記載の導電性フィルム。 The conductive film according to claim 1, wherein the thickness of the blackening layer is less than 100 nm.
  3.  前記金属酸化物がニッケル原子を含む金属酸化物であり、前記金属窒化物がニッケル原子を含む金属窒化物である、請求項1又は2に記載の導電性フィルム。 The conductive film according to claim 1, wherein the metal oxide is a metal oxide containing a nickel atom, and the metal nitride is a metal nitride containing a nickel atom.
  4.  前記金属細線の線幅が1.2μm以下である、請求項1~3のいずれか1項に記載の導電性フィルム。 The conductive film according to any one of claims 1 to 3, wherein the line width of the fine metal wire is 1.2 μm or less.
  5.  前記導電層は、銅を層全質量に対して90質量%以上含む、請求項1~4のいずれか1項に記載の導電性フィルム。 The conductive film according to any one of claims 1 to 4, wherein the conductive layer contains 90% by mass or more of copper based on the total mass of the layer.
  6.  請求項1~5のいずれか1項に記載の導電性フィルムを含む、タッチパネルセンサー。 A touch panel sensor comprising the conductive film according to any one of claims 1 to 5.
  7.  請求項6に記載のタッチパネルセンサーを含む、タッチパネル。 A touch panel comprising the touch panel sensor according to claim 6.
  8.  請求項1~5のいずれか1項に記載の導電性フィルムの製造方法であり、
     基板の少なくとも一方の主面上に、金属酸化物又は金属窒化物を主成分として含む下地膜を形成する工程と、
     前記下地膜上に、銅を主成分として含む第二金属膜を形成する工程と、
     前記第二金属膜上に、金属細線が形成される領域に線幅が2.0μm以下の開口部を備えるレジスト膜を形成する工程と、
     めっき法により、開口部内であって、前記第二金属膜上に、銅を主成分として含む第一金属膜を形成する工程と、
     前記レジスト膜を除去する工程と、
     前記第一金属膜をマスクとして、前記第二金属膜の一部を除去する工程と、
     置換黒化処理により、前記基板上に配置された前記第一金属膜及び前記第二金属膜の表面をパラジウムによって黒化する工程と、
     表面を置換黒化処理された前記第一金属膜及び前記第二金属膜をマスクとして、前記下地膜の一部を除去する工程と、を含む、導電性フィルムの製造方法。
    A method for producing a conductive film according to any one of claims 1 to 5,
    Forming a base film containing metal oxide or metal nitride as a main component on at least one of the main surfaces of the substrate;
    Forming a second metal film containing copper as a main component on the underlayer;
    Forming a resist film having an opening with a line width of 2.0 μm or less in a region where fine metal wires are formed on the second metal film;
    Forming a first metal film containing copper as a main component on the second metal film in the opening by a plating method;
    Removing the resist film;
    Removing a portion of the second metal film using the first metal film as a mask;
    Blackening the surfaces of the first metal film and the second metal film disposed on the substrate by substitution blackening treatment with palladium;
    And d) removing a part of the base film using the first metal film and the second metal film whose surfaces have been subjected to the blackening treatment as a mask.
PCT/JP2018/035799 2017-09-29 2018-09-26 Conductive film, touch panel sensor, touch panel, and method for producing conductive film WO2019065782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190458 2017-09-29
JP2017190458 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065782A1 true WO2019065782A1 (en) 2019-04-04

Family

ID=65901516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035799 WO2019065782A1 (en) 2017-09-29 2018-09-26 Conductive film, touch panel sensor, touch panel, and method for producing conductive film

Country Status (1)

Country Link
WO (1) WO2019065782A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206177A1 (en) * 2020-04-09 2021-10-14 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate
JP2015099578A (en) * 2013-11-18 2015-05-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Touch panel and method of manufacturing the same
JP2015125605A (en) * 2013-12-26 2015-07-06 大日本印刷株式会社 Electrode sheet, touch panel using the electrode sheet, and picture display unit with the touch panel arranged therein
JP2015225650A (en) * 2014-05-28 2015-12-14 介面光電股▲ふん▼有限公司JTOUCH Corporation Method for manufacturing fine structure of metal wiring line
WO2015199087A1 (en) * 2014-06-24 2015-12-30 凸版印刷株式会社 Touch sensor substrate, touch panel, display device, and method for manufacturing touch sensor substrate
WO2016140073A1 (en) * 2015-03-04 2016-09-09 株式会社カネカ Substrate with conductive layers, substrate with touch-panel transparent electrodes, and method for fabricating same
JP2016191965A (en) * 2015-03-30 2016-11-10 大日本印刷株式会社 See-through electrode, touch panel, and display device with touch position detecting function
WO2017017973A1 (en) * 2015-07-24 2017-02-02 富士フイルム株式会社 Conductive film for touch panel, touch panel, and display device equipped with touch panel
JP2017027446A (en) * 2015-07-24 2017-02-02 住友金属鉱山株式会社 Conductive substrate, and method for producing conductive substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129183A (en) * 2011-11-22 2013-07-04 Toray Ind Inc Laminate
JP2015099578A (en) * 2013-11-18 2015-05-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Touch panel and method of manufacturing the same
JP2015125605A (en) * 2013-12-26 2015-07-06 大日本印刷株式会社 Electrode sheet, touch panel using the electrode sheet, and picture display unit with the touch panel arranged therein
JP2015225650A (en) * 2014-05-28 2015-12-14 介面光電股▲ふん▼有限公司JTOUCH Corporation Method for manufacturing fine structure of metal wiring line
WO2015199087A1 (en) * 2014-06-24 2015-12-30 凸版印刷株式会社 Touch sensor substrate, touch panel, display device, and method for manufacturing touch sensor substrate
WO2016140073A1 (en) * 2015-03-04 2016-09-09 株式会社カネカ Substrate with conductive layers, substrate with touch-panel transparent electrodes, and method for fabricating same
JP2016191965A (en) * 2015-03-30 2016-11-10 大日本印刷株式会社 See-through electrode, touch panel, and display device with touch position detecting function
WO2017017973A1 (en) * 2015-07-24 2017-02-02 富士フイルム株式会社 Conductive film for touch panel, touch panel, and display device equipped with touch panel
JP2017027446A (en) * 2015-07-24 2017-02-02 住友金属鉱山株式会社 Conductive substrate, and method for producing conductive substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206177A1 (en) * 2020-04-09 2021-10-14 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Similar Documents

Publication Publication Date Title
KR20090051007A (en) Light transparent electromagnetic wave shield member and method for manufacturing the same
WO1999034658A1 (en) Transparent member for shielding electromagnetic waves and method of producing the same
WO2018221183A1 (en) Method for manufacturing transparent electroconductive substrate, and transparent electroconductive substrate
TWI711950B (en) Touch panel sensor
JP6445365B2 (en) Translucent electrode, position detection electrode for touch panel using the translucent electrode, touch panel, and image display device
US20210149509A1 (en) Conductive film, touch panel sensor, and touch panel
US20190333656A1 (en) Method of manufacturing conductive film and conductive film
WO2019065782A1 (en) Conductive film, touch panel sensor, touch panel, and method for producing conductive film
WO2019049617A1 (en) Conductive film, touch panel sensor and touch panel
JPWO2017130865A1 (en) Blackening plating solution, manufacturing method of conductive substrate
JP6722291B2 (en) Conductive film, touch panel, photomask, imprint template, conductive film forming laminate, conductive film manufacturing method, and electronic device manufacturing method
JP7031663B2 (en) Conductive substrate
WO2018047608A1 (en) Conductive film production method, conductive film, touch panel sensor, antenna, fingerprint authentication, and touch panel
JP7003665B2 (en) Blackening plating solution, manufacturing method of conductive substrate
WO2018042979A1 (en) Method for producing conductive film, conductive film, touch panel sensor and touch panel
JP6791172B2 (en) Conductive substrate
JP6432684B2 (en) Conductive substrate, method for manufacturing conductive substrate
JP6428942B2 (en) Conductive substrate, method for manufacturing conductive substrate
CN117334373A (en) conductive film
JP2009054670A (en) Light-transmissive electromagnetic wave shield member and manufacturing method thereof, filter using same, and display
JPWO2017130866A1 (en) Blackening plating solution, manufacturing method of conductive substrate
JP2017182271A (en) Conductive film, manufacturing method therefor, touch panel, electronic device, transparent antenna, and window glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP