WO2018041169A1 - 一种自动光学检测装置及其检测方法 - Google Patents

一种自动光学检测装置及其检测方法 Download PDF

Info

Publication number
WO2018041169A1
WO2018041169A1 PCT/CN2017/099791 CN2017099791W WO2018041169A1 WO 2018041169 A1 WO2018041169 A1 WO 2018041169A1 CN 2017099791 W CN2017099791 W CN 2017099791W WO 2018041169 A1 WO2018041169 A1 WO 2018041169A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
bright field
switching device
automatic optical
image
Prior art date
Application number
PCT/CN2017/099791
Other languages
English (en)
French (fr)
Inventor
胡宇华
张鹏黎
王帆
徐文
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2018041169A1 publication Critical patent/WO2018041169A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change

Definitions

  • the present invention relates to the field of semiconductor manufacturing technologies, and in particular, to an automatic optical detecting device and a detecting method thereof.
  • the Automated Optical Inspection (AOI) system is a fast, automatic vision inspection system widely used in optical inspection of PCBs, LCDs, TFTs, etc.
  • the system automatically scans the device to be inspected with one or more cameras to detect various defects in the device under test (for example, irregularities in shape, indicating raised particles, etc.). Because the AOI inspection process does not require direct contact with the item to be tested, the AOI is able to quickly and efficiently detect the item to be tested.
  • the detection system is widely used in various production fields.
  • FIG. 7 is a schematic diagram of illumination of a bright field and a dark field source.
  • the bright field illumination is characterized in that the light reflected on the object to be tested, that is, the bright field beam 2 is all imaged into the objective lens 3, so that the scanned image is a bright piece, and the surface image of the object to be tested can be obtained.
  • the dark field illumination is characterized in that the illumination beam, that is, the dark field beam 4 is projected on the object to be tested 5 at a great inclination angle, so that the light reflected from the object to be tested cannot be imaged into the objective lens 3, and the scanned image is also It is dark.
  • a diffuse reflection is formed, and the diffuse reflection light enters the objective lens 3 to scan the image.
  • the optical detection system on the market utilizes the imaging characteristics of bright field and dark field to detect different product defects. Defects such as scratches, scratches, etc. on the surface of the object to be tested can be detected by bright field illumination. The tiny particles on the surface of the object to be tested, bumps, etc. can be inspected in the case of dark field illumination. Measurement.
  • Cipheral Patent Application Publication No. CN105043982 discloses an automatic optical inspection system that uses a bright field and a dark field to illuminate a silicon wafer. It uses a set of synchronous control systems to control a plurality of different scintillation light sources and detectors, respectively, to obtain scan detection images under bright and dark fields, respectively.
  • the detection system does not need to separately scan the bright field and the dark field, thereby greatly improving the detection efficiency.
  • FIG. 8 is a schematic diagram of the bright field and dark field switching in an ideal state.
  • the synchronization system emits the second pulse signal 6, the bright field source is illuminated; when the synchronization system issues the fourth pulse signal 7, the dark field source is illuminated.
  • FIG. 9 is a schematic diagram showing the actual switching effect of the bright field and the dark field.
  • the flashing of the light source is not a step process, but a continuous process.
  • the xenon lamp source used in the system.
  • the synchronous control system controls the voltage on the xenon lamp source.
  • the bright field source 8 does not extinguish immediately, but is gradually extinguished for a period of time ⁇ t.
  • the switching time of the bright field light source 8 and the dark field light source 9 is short, the bright field light source 8 is bound to cause crosstalk to the dark field light source, which affects the accuracy of the acquired image.
  • the ⁇ t duration is the persistence duration.
  • the xenon lamp has a wavelength of ⁇ and a speed of light of c, so the energy between the xenon lamp illumination peak and the illumination threshold is:
  • C f is a coefficient, 1.0 is taken above 1KV, 1.5 is taken below 1KV; E n is typical accident energy (J/cm 2 ); x is distance index; D is arc discharge distance.
  • the invention is directed to the prior art, and the conventional automatic optical detecting device provides an automatic optical detecting device in the process of switching between the bright field light source and the dark field light source, which is easy to generate afterglow effect, thereby causing inaccuracy of the detection result.
  • the second object of the present invention is to provide an automatic automatic optical detecting device in the prior art, which is easy to generate afterglow effect in the process of switching between bright field light source and dark field light source, thereby causing an inaccurate detection result and the like to provide an automatic A method of detecting an optical detecting device.
  • the present invention provides an automatic optical detecting device comprising: a workpiece table for setting a device to be optically detected, and the workpiece table is pressed by an external driving device a preset trajectory operation; an industrial computer as a control center of the automatic optical detecting device; a first light source for the bright field light source; a second light source for the dark field light source; and a first image collector for the first Bright field image acquisition of the device to be optically detected under illumination of the light source; second image capture device for dark field image acquisition of the device to be optically detected under illumination of the second light source; and setting in the bright field a switching device in the light path of the light source, wherein the industrial computer is configured to control the switching device to turn off the bright field light source before the second light source for the dark field light source is illuminated.
  • the industrial computer controls the switching device by a synchronous control system, where the synchronous control system includes a PCI synchronization pulse signal generation board, and the PCI synchronization pulse signal generation board is used at a preset time point.
  • a pulse signal is emitted to trigger the first light source, the second light source, the first image collector, the second image collector, and the switching device, respectively.
  • the first light source for the bright field light source and the second light source for the dark field light source are LED illumination sources.
  • the switching device is mechanically controlled or controlled by a liquid crystal switch.
  • the minimum duration of the switching device from the start of opening to the complete closing is on the order of milliseconds.
  • the minimum duration of the switching device from the start to the complete shutdown is Seconds and less.
  • the first light source for the bright field light source and the second light source for the dark field light source are all xenon illumination sources.
  • the industrial computer is configured to synchronously control the switching device and the first light source for a bright field light source optical path.
  • the time from the start of the opening to the complete closing of the switching device is set to be less than or equal to the lighting duration of the first light source for the bright field light source.
  • the present invention provides a method for detecting an automatic optical detecting device, comprising: performing bright field image acquisition of a device to be optically detected while the switching device is turned on; The bright field light source is turned off by turning off the switching means before the second light source for the dark field light path is illuminated; and the dark field image acquisition of the means to be optically detected is performed in the off state of the switching means.
  • the switching device before the bright field image acquisition step, further comprising: opening the switching device; and opening a first image collector for bright field image acquisition, wherein the switching device is in the first image acquisition It is turned on before, at the same time or after it is turned on.
  • the method before the bright field image acquisition step, further includes: opening a first light source for the bright field light source, wherein the first light source has an opening time no earlier than the first image collector Opening time.
  • the switching device and the first light source are simultaneously turned on after the first image collector is turned on.
  • the automatic optical detecting device of the present invention sets a switching device in the bright field light source optical path, and the switching device turns off the bright field before the second light source for the dark field light source light path is illuminated.
  • the light source optical path not only effectively eliminates the afterglow effect, but also further improves the accuracy of the dark field acquisition picture.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of the automatic optical detecting device of the present invention
  • FIG. 2 is a timing chart of detection control of the first embodiment of the automatic optical detecting device of the present invention
  • Figure 3 is a flow chart showing a first embodiment of the automatic optical detecting device of the present invention.
  • FIG. 4 is a schematic structural view of a frame of a second embodiment of the automatic optical detecting device of the present invention.
  • Figure 5 is a timing chart showing the detection control of the second embodiment of the automatic optical detecting device of the present invention.
  • Figure 6 is a flow chart showing a second embodiment of the automatic optical detecting device of the present invention.
  • Figure 7 is a schematic view showing the illumination of the existing bright field and dark field light sources
  • Figure 8 is a schematic diagram of the bright field and dark field switching in an ideal state
  • Figure 9 shows the actual switching effect of the bright field and the dark field.
  • FIG. 1 is a schematic structural view of a first embodiment of an automatic optical detecting device according to the present invention.
  • the automatic optical detecting device 1 comprises: a workpiece table 11 for setting a device to be optically detected, the workpiece table 11 being operated according to a preset trajectory by an external driving device (not shown); as an automatic optical detecting
  • the industrial computer 12 of the control center of the device 1 the first light source 13a for the bright field light source; the second light source 13b for the dark field light source; the first image collector 14a for the bright field, and the An image collector 14a performs image acquisition on the device to be optically detected by the first light source 13a; a second image collector 14b for the dark field, and the second image collector 14b functions in the second light source 13b.
  • the electric shutter 16 closes the bright field light source optical path before the second light source 13b for the dark field light source light path is turned on.
  • the first light source 13a for the bright field light source and the second light source 13b for the dark field light source are both LED illumination sources.
  • the first image collector 14a for the bright field and the second image collector 14b for the dark field are both CMOS image acquisition cameras.
  • the synchronization control system 15 further includes a PCI synchronization pulse signal generation board, and the PCI synchronization pulse signal generation board emits a 5V square wave pulse signal at a preset time point.
  • the opening and closing speed of the electric shutter 16 is on the order of milliseconds.
  • the structure and detection method of the automatic optical detecting device of the present invention will be clarified in combination with specific embodiments.
  • the specific types of the functional components of the automatic optical detecting device, the number of time points, and the like are merely enumerated, and should not be construed as limiting the technical solution of the present invention.
  • FIG. 2 is a timing chart of detection control of the first embodiment of the automatic optical detecting device of the present invention.
  • the timing logic of the pulse generated by the synchronous control system 15 is to send a pulse corresponding to the time points T 1 , T 2 , T 3 , T 5 , T 6 in any pulse period, and set the electric shutter
  • the opening and closing time of 16 is ⁇ t 1 , and the afterglow effect of the first light source lasts for ⁇ t 2 , and the time point satisfies:
  • C f is a coefficient, 1.0 is taken above 1KV, 1.5 is taken below 1KV; E n is typical accident energy (J/cm 2 ); x is distance index; D is arc discharge distance.
  • FIG. 3 is a flowchart of the first embodiment of the automatic optical detecting device of the present invention.
  • the detection method of the automatic optical detecting device includes:
  • the workpiece table 11 is moved to the test position, the IPC 12 and signals required for image acquisition, the IPC 12 and the synchronous control command while the shutter system 15 to the motor 16 Sending a trigger signal, the electric shutter 16 starts to open;
  • the electric shutter 16 has the largest opening, and the synchronization control system 15 issues a trigger signal to the first image collector 14a for the bright field light source path, and the first image collector 14a starts integral acquisition. image;
  • the synchronous control system 15 issues a trigger signal to the bright-field light source for a first light path 13a, the first light source 13a starts lighting, the first image acquisition unit 14a continuously in the bright-field Lighting collection status;
  • the synchronous control system 15 issues a trigger signal to the second image acquisition source for dark field optical path 14b, the second image acquisition unit 14b to the integrating Capture images.
  • T 1 to T 4 time interval corresponds to the opening and closing times of the electric shutter 16, at time T 4 just the electric shutter 16 in a closed state.
  • the dark field image acquisition is bound to be affected by the afterglow of the bright field source, resulting in measurement error, or in order to avoid the influence of afterglow, the start time of the second image collector must be postponed until after T 7 , resulting in detection efficiency. Greatly reduced.
  • the present invention can solve the above problems, at time T 4, the electric shutter 16 just in the closed state, so the synchronous control 15 to the optical path of the light source for dark field illumination system at a second time point of said T 5 13b emits a trigger signal, and when the second light source 13b is lit, it is not affected by the afterglow effect of the first light source 13a.
  • the second embodiment of the automatic optical detecting apparatus has the same names as those of the first embodiment, and is distinguished only by numerical numbers.
  • the automatic optical detecting device 2 includes: a workpiece table 21 for setting a device to be optically detected, the workpiece table 21 operating according to a preset trajectory by an external driving device (not shown); as an automatic optical detecting
  • the industrial computer 22 of the control center of the device 2 the first light source 23a for the bright field light source; the second light source 23b for the dark field light source; the first image collector 24a for the bright field, and the An image collector 24a performs image acquisition on the device to be optically detected by the first light source 23a; a second image collector 24b for the dark field, and the second image collector 24b functions in the second light source 23b.
  • liquid crystal switching device 26 disposed in the bright field light source and controlled by a synchronous control system 25, and the industrial computer 22 controls the liquid crystal through the synchronous control system 25.
  • the switching device 26 turns off the bright field light source optical path before the second light source 23b for the dark field source light path is turned on.
  • Liquid crystal switching devices 26 typically include a substrate, and a thin film transistor array, a liquid crystal layer, and a cathode, which are sequentially disposed on the substrate.
  • the liquid crystal layer controls a switching state of the liquid crystal layer through a voltage control signal provided by the thin film transistor array and the cathode.
  • the liquid crystal layer In the on state, the liquid crystal layer is in a transparent state, so that light in the bright field light source optical path can pass through the liquid crystal switching device 26
  • the liquid crystal layer In the off state, the liquid crystal layer is in a non-transparent state, that is, functions to turn off the light path of the bright field source.
  • the voltage control signals described above may be provided by the synchronous control system 25 to the thin film transistor array and cathode through data lines and scan lines.
  • the liquid crystal switching device 26 and the first light source 23a for the bright field light source optical path are connected in parallel and then connected in series with the synchronous control system 25.
  • the first light source 23a for the bright field light source and the second light source 23b for the dark field light source are all xenon illumination sources.
  • the first image collector 24a for the bright field and the second image collector 24b for the dark field are both CMOS image acquisition cameras.
  • the synchronization control system 25 further includes a PCI sync pulse signal generation board that emits a square wave pulse signal of, for example, 5V at a preset time point.
  • the opening and closing speed of the liquid crystal switching device 26 is Within seconds and less.
  • the opening time of the liquid crystal switching device 26 is set to be less than or equal to the lighting duration of the first light source 23a for the bright field light source.
  • the structure and detection method of the automatic optical detecting device of the present invention will be clarified in combination with specific embodiments.
  • the specific types of the functional components of the automatic optical detecting device, the number of time points, and the like are merely enumerated, and should not be construed as limiting the technical solution of the present invention.
  • FIG. 5 is a timing chart of detection control of the second embodiment of the automatic optical detecting device of the present invention.
  • the timing logic of the pulse generated by the synchronous control system 25 is that a pulse is transmitted corresponding to the time points T 1 , T 2 , T 3 , and T 4 in any one of the pulse periods, and the liquid crystal switching device 26 is set.
  • the opening and closing time is ⁇ t 3
  • the integration time of the first image collector 24a for the bright field is ⁇ t 4
  • the time point satisfies:
  • FIG. 6 is a flowchart of a second embodiment of the automatic optical detecting device of the present invention.
  • the detection method of the automatic optical detecting device includes:
  • the workpiece table 21 is moved to the test position, the IPC 22 and signals required for image acquisition, the IPC 22 and when receiving the signal station 21 of the workpiece, the The synchronization control system 25 issues a trigger signal to the first image collector 14a for the bright field light source path, and the first image collector 14a starts integrating the acquired image;
  • the synchronous control system 25 simultaneously issues a trigger signal to the liquid crystal switching device 26 and the first light source 23a for the bright field light source path, while simultaneously opening the liquid crystal switching device 26 and lighting for The first light source 23a of the bright field light source path is subjected to bright field illumination collection by the first image collector 24a;
  • the liquid crystal switching device 26 is closed, the synchronous control system 25 for a trigger signal to the second dark-field image acquirer 24b, a second for the dark field image acquirer 24b Start integral collection;
  • the synchronous control system 25 for the dark field light source to the optical path of the second light source 23b emits a trigger signal, the second light source 23b starts lighting, the second image acquisition is continued in a dark-field 24b Lighting acquisition status.
  • the persistence duration of the first light source 23 a for the bright field light source is defined as ⁇ t 5 . Since the liquid crystal switching device 26 is turned off at the time T 3 , the time is from T 3 to T 5 . 5 between the inner length ⁇ t, the bright-field light source for the optical path of the first light source 23a afterglow does not affect the path of the dark field light source illuminating a second light source 23b, the second for the dark field
  • the two image collectors 24b can perform image acquisition entirely under the second light source 23b.
  • the synchronous control system 25 is connected to the liquid crystal switching device 26 and the first light source 23a for the bright field light source path by the same control signal, thereby realizing the liquid crystal switching device 26 and the first light source. 23a synchronization control.
  • the liquid crystal shutter means 26 and the first light source 23a while closing, eliminating not only the afterglow effect, and means 26 are omitted and the first light source 23a to the trigger signal to the switching liquid crystal Time further enhances the accuracy and efficiency of images captured in the dark field.
  • the automatic optical detecting device of the present invention provides a switching device controlled by the synchronous control system in the bright field light source optical path, and the switching device instructs the synchronous control system to be used by the industrial computer Turning off the bright field light source before the second light source of the dark field light source is turned on, not only effectively eliminating the afterglow effect, but further improving the dark field acquisition image. Authenticity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Image Input (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种自动光学检测装置,包括:工件台(11,21),作为控制中心的工控机(12,22),用于明场光源光路的第一光源(13a,23a),用于暗场光源光路的第二光源(13b,23b),用于明场图像采集的第一图像采集器(14a,24a),用于暗场图像采集的第二图像采集器(14b,24b),以及设置在明场光源光路中的开关装置(16,26),工控机(12,22)用于控制开关装置(16,26)在用于暗场光源光路的第二光源(13b,23b)点亮前关闭明场光源光路。通过在明场光源光路中设置开关装置(16,26),且开关装置(16,26)在用于暗场光源光路的第二光源(13b,23b)点亮前关闭明场光源光路,不仅有效的消除了余辉效应,而且进一步提升了暗场采集图像的精确性。

Description

一种自动光学检测装置及其检测方法 技术领域
本发明涉及半导体制造技术领域,尤其涉及一种自动光学检测装置及其检测方法。
背景技术
自动光学检测(Automated Optical Inspection,AOI)系统是一种快速的,自动的视觉检测系统,广泛用于PCB、LCD、TFT等的光学检测中。一般而言,该系统是用一台或者多台相机自动扫描待检测的器件,进而检测出待测器件中的各种缺陷(例如:形状的不规则,表明凸起颗粒物等)。因为AOI检测过程不需要和待测物品直接接触,所以AOI能够快速、高效地检测待测物品。目前,该检测系统被广泛运用于各个生产领域中。
在自动光学检测过程中,目前市面上各种产品普遍采用明场与暗场照明扫描的方式。请参阅图7,图7所示为现有明场、暗场光源照射示意图。明场照明的特点是让待测物品上反射的光线,即明场光束2全部进入物镜3成像,所以扫描出的图像是明亮的一片,可以获取待测物表面图像。相反,暗场照明的特点是照明光束,即暗场光束4以极大的倾斜角度投射在待测物品5上,因此从待测物品上反射的光线不能进入物镜3成像,扫描出的图像也是漆黑一片。但是,如果待测物品5表面存在颗粒物,则会形成漫反射,漫反射光线会进入物镜3,从而扫描成像。
目前市面上的光学检测系统利用明场与暗场的成像特点,对不同的产品缺陷进行检测。被测物表面的缺陷例如划痕,刮伤等可以通过明场照明检测出来。而被测物表面的微小颗粒物,凸起等可以在暗场照明的情况下进行检 测。
公开号为CN105043982的中国专利申请,揭露一种自动光学检测系统,所述自动光学检测系统就是采用明场和暗场对硅片进行照明检测。其运用一套同步控制系统分别控制多个不同的闪烁光源和探测器,进而分别获取明场与暗场下的扫描检测图像。相对以前光学检测产品来说,该发明虽然可以同步获取明场与暗场的扫描图像,不需要让检测系统分别进行明场与暗场的图像扫描,进而大大提升检测效率。可是在实际运用过程中,发现当明场、暗场光源切换的过程中容易产生余辉效应,进而造成了检测结果的不准确。
在该系统中,照明光源采用氙灯光源,气体放电灯有余辉效应,而光源的电压、电流与光源的输出响应速度非常快,因此该效应对本系统产生较大影响。请参阅图8,图8所示为理想状态下之明场、暗场切换示意图。当同步系统发出第二脉冲信号6时,明场光源点亮;当同步系统发出第四脉冲信号7时,暗场光源被点亮。同时,由于工件台的运行速度极快(正常情况下约200m/s),为了保证明场、暗场照明情况下所采集的图像能够具有99%~99.9%的共同区域,明场、暗场光源发光的时间间隔应该较短,正常情况应小于100μs。
请参阅图9,图9所示为明场、暗场实际切换效果示意图。在实际测试过程中,光源闪烁并不是一个阶跃的过程,而是一个连续的过程。特别是该系统选用的氙灯光源。该同步控制系统是控制氙灯光源上的电压,当作为明场光源8的氙灯光源上电压为0时,明场光源8并不会马上熄灭,而是持续一段时间Δt逐渐熄灭。在明场光源8、暗场光源9切换时间较短的情况下,则明场光源8势必会对暗场光源产生串扰,影响所采集图像的精确度。
在本领域中,所述Δt持续时间即为余辉持续时间。定义作为明场光源的 所述氙灯的波长为λ,光速为c,因此氙灯发光峰值到发光阈值之间的能量为:
Figure PCTCN2017099791-appb-000001
其中,h为普朗克常数;
由于氙灯采用电弧放电原理,电弧能量公式为:
Figure PCTCN2017099791-appb-000002
其中,Cf为系数,1KV以上取1.0,1KV以下取1.5;En为典型事故能量(J/cm2);x为距离指数;D为电弧放电距离。
则,所述余辉持续时间Δt为:
Figure PCTCN2017099791-appb-000003
故针对现有技术存在的问题,本案设计人凭借从事此行业多年的经验,积极研究改良,于是有了本发明一种自动光学检测装置及其检测方法。
发明内容
本发明是针对现有技术中,传统的自动光学检测装置在明场光源、暗场光源切换的过程中容易产生余辉效应,进而造成了检测结果的不准确等缺陷提供一种自动光学检测装置。
本发明之第二目的是针对现有技术中,传统的自动光学检测装置在明场光源、暗场光源切换的过程中容易产生余辉效应,进而造成了检测结果的不准确等缺陷提供一种自动光学检测装置的检测方法。
为实现本发明之目的,本发明提供一种自动光学检测装置,包括:用于设置待光学检测之器件的工件台,且所述工件台在外界驱动装置的作用下按 预设轨迹运行;作为自动光学检测装置之控制中心的工控机;用于明场光源光路的第一光源;用于暗场光源光路的第二光源;第一图像采集器,用于在第一光源的照明下进行待光学检测之器件的明场图像采集;第二图像采集器,用于在第二光源的照明下进行待光学检测之器件的暗场图像采集;以及设置在所述明场光源光路中的开关装置,所述工控机用于控制所述开关装置在用于暗场光源光路的所述第二光源点亮前关闭所述明场光源光路。
可选地,所述工控机通过一同步控制系统控制所述开关装置,所述同步控制系统包括PCI同步脉冲信号发生板卡,且所述PCI同步脉冲信号发生板卡用于在预设时间点上发出脉冲信号以分别触发所述第一光源、第二光源、第一图像采集器、第二图像采集器和开关装置。
可选地,用于明场光源光路的所述第一光源和用于暗场光源光路的所述第二光源均为LED照明光源。
可选地,所述开关装置是机械方式控制的或液晶开关控制的。
可选地,所述开关装置自开始打开至完全关闭的最小时长为毫秒量级。
可选地,所述开关装置自开始打开至完全关闭的最小时长为
Figure PCTCN2017099791-appb-000004
秒及以内。
可选地,用于明场光源光路的所述第一光源和用于暗场光源光路的所述第二光源均为氙灯照明光源。
可选地,所述工控机用于对所述开关装置和用于明场光源光路的所述第一光源进行同步控制。
可选地,所述开关装置自开始打开至完全关闭的时间设定为小于等于用于明场光源光路的所述第一光源之点亮持续时间。
为实现本发明之又一目的,本发明提供一种自动光学检测装置之检测方法,包括:在开关装置打开的状态下进行待光学检测之器件的明场图像采集; 在用于暗场光源光路的第二光源点亮前通过关闭所述开关装置来关闭明场光源光路;以及在所述开关装置的关闭状态下进行待光学检测之器件的暗场图像采集。
可选地,在所述明场图像采集步骤之前还包括:打开所述开关装置;以及打开用于明场图像采集的第一图像采集器,其中,所述开关装置在所述第一图像采集器打开之前、同时或者之后被打开。
可选地,在所述明场图像采集步骤之前还包括:打开用于所述明场光源光路的第一光源,其中,所述第一光源的打开时间不早于所述第一图像采集器的打开时间。
可选地,所述开关装置和所述第一光源在所述第一图像采集器打开后被同步打开。
综上所述,本发明自动光学检测装置通过在所述明场光源光路中设置开关装置,且所述开关装置在用于暗场光源光路的所述第二光源点亮前关闭所述明场光源光路,不仅有效的消除了余辉效应,而且进一步提升了暗场采集图片的精确性。
附图说明
图1所示为本发明之自动光学检测装置的第一实施方式框架结构示意图;
图2所示为本发明自动光学检测装置之第一实施方式的检测控制时序图;
图3所述为本发明自动光学检测装置之第一实施方式的流程图;
图4所示为本发明自动光学检测装置之第二实施方式的框架结构示意图;
图5所示为本发明自动光学检测装置之第二实施方式的检测控制时序图;
图6所述为本发明自动光学检测装置之第二实施方式的流程图;
图7所示为现有明场、暗场光源照射示意图;
图8所示为理想状态下之明场、暗场切换示意图;
图9所示为明场、暗场实际切换效果示意图。
具体实施方式
为详细说明本发明创造的技术内容、构造特征、所达成目的及功效,下面将结合实施例并配合附图予以详细说明。
第一实施方式
请参阅图1,图1所示为本发明之自动光学检测装置的第一实施方式框架结构示意图。所述自动光学检测装置1,包括:用于设置待光学检测之器件的工件台11,所述工件台11在外界驱动装置(未图示)的作用下按预设轨迹运行;作为自动光学检测装置1之控制中心的工控机12;用于明场光源光路的第一光源13a;用于暗场光源光路的第二光源13b;用于明场的第一图像采集器14a,且所述第一图像采集器14a在第一光源13a的作用下对待光学检测之器件进行图像采集;用于暗场的第二图像采集器14b,且所述第二图像采集器14b在第二光源13b的作用下对待光学检测之器件进行图像采集;以及设置在所述明场光源光路中,并通过一同步控制系统15控制的电动快门16,且所述工控机12通过所述同步控制系统15控制所述电动快门16在用于暗场光源光路的所述第二光源13b点亮前关闭所述明场光源光路。
作为本发明之具体实施方式,用于明场光源光路的所述第一光源13a和用于暗场光源光路的所述第二光源13b均为LED照明光源。用于明场的所述第一图像采集器14a和用于暗场的所述第二图像采集器14b均为CMOS图像采集相机。所述同步控制系统15进一步包括PCI同步脉冲信号发生板卡,所述PCI同步脉冲信号发生板卡在预设时间点上发出5V方波脉冲信号。所述电动快门16之开合速度为毫秒量级。
为了更直观的揭露本发明之技术方案,凸显本发明之有益效果,现结合具体实施方式对本发明自动光学检测装置之结构和检测方法进行阐明。在具体实施方式中,所述自动光学检测装置之各功能部件的具体类型,时间点的数量等仅为列举,不应视为对本发明技术方案的限制。
请参阅图2,并结合参阅图1,图2所示为本发明自动光学检测装置之第一实施方式的检测控制时序图。非限制性地,例如所述同步控制系统15发生脉冲的时序逻辑是在任一脉冲周期内分别对应时间点T1、T2、T3、T5、T6发送脉冲,设定所述电动快门16的开合时间为Δt1,第一光源的余辉效应持续时长为Δt2,且所述时间点满足:
T1<T2≤T3
Figure PCTCN2017099791-appb-000005
T1+Δt1=T4≤T5
T5+Δt2=T7
作为本领域技术人员,容易知晓地,所述余辉持续时长
Figure PCTCN2017099791-appb-000006
其中,Cf为系数,1KV以上取1.0,1KV以下取1.5;En为典型事故能量(J/cm2);x为距离指数;D为电弧放电距离。
请参阅图3,并结合参阅图1、图2,图3所述为本发明自动光学检测装置之第一实施方式的流程图。所述自动光学检测装置之检测方法,包括:
在T1时刻,所述工件台11运动至测试位置,并向所述工控机12发出信号,要求进行图像采集,且所述工控机12同时指令所述同步控制系统15向所述电动快门16发出触发信号,所述电动快门16开始打开;
在T2时刻,所述电动快门16开口最大,所述同步控制系统15向用于明场光源光路的所述第一图像采集器14a发出触发信号,所述第一图像采集器 14a开始积分采集图像;
在T3时刻,所述同步控制系统15向用于明场光源光路的所述第一光源13a发出触发信号,所述第一光源13a开始照明,所述第一图像采集器14a持续处于明场照明采集状态;
在T4时刻,所述电动快门16闭合;
在T5时刻,所述电动快门16处于闭合状态,所述同步控制系统15向用于暗场光源光路的所述第二图像采集器14b发出触发信号,所述第二图像采集器14b开始积分采集图像。
请继续参阅图2,由于T1到T4时间间隔对应于所述电动快门16的开合时间,在T4时刻所述电动快门16恰呈闭合状态。在本发明中,若无所述电动快门16以在用于暗场光源光路的所述第二光源13b点亮前关闭所述明场光源光路,则由于第一光源的余辉效应,所述第一光源13a将持续到T6时刻才处于完全关闭状态,进而余辉效应持续时长Δt2=T7-T5。在Δt2时长中,则暗场图像采集势必受到明场光源的余辉影响,导致测量误差,或者为了免受余辉影响则必须推迟第二图像采集器的启动时间至T7时刻以后,导致检测效率大大降低。本发明则能很好地解决上述问题,在T4时刻,所述电动快门16恰处于闭合状态,因此在T5时刻所述同步控制系统15向用于暗场光源光路的所述第二光源13b发出触发信号,点亮所述第二光源13b时,则不会受到所述第一光源13a的余辉效应影响。
第二实施方式
为了描述简便,所述自动光学检测装置之第二实施方式与第一实施方式相同的功能部件采用相同的名称,仅通过数字编号加以区别。
请参阅图4,图4所示为本发明自动光学检测装置之第二实施方式的框架 结构示意图。所述自动光学检测装置2,包括:用于设置待光学检测之器件的工件台21,所述工件台21在外界驱动装置(未图示)的作用下按预设轨迹运行;作为自动光学检测装置2之控制中心的工控机22;用于明场光源光路的第一光源23a;用于暗场光源光路的第二光源23b;用于明场的第一图像采集器24a,且所述第一图像采集器24a在第一光源23a的作用下对待光学检测之器件进行图像采集;用于暗场的第二图像采集器24b,且所述第二图像采集器24b在第二光源23b的作用下对待光学检测之器件进行图像采集;以及设置在所述明场光源光路中,并通过一同步控制系统25控制的液晶开关装置26,且所述工控机22通过同步控制系统25控制所述液晶开关装置26在用于暗场光源光路的所述第二光源23b点亮前关闭所述明场光源光路。
本领域熟知的液晶开关装置26通常包括基板,以及依次位于基板上的薄膜晶体管阵列、液晶层以及阴极。所述液晶层通过所述薄膜晶体管阵列与阴极提供的电压控制信号控制其开关状态,在开启状态下,所述液晶层为透明状态,使得明场光源光路中的光可以透过液晶开关装置26;在关闭状态下,所述液晶层为非透明状态,即起到关闭所述明场光源光路的作用。上述电压控制信号可由同步控制系统25通过数据线和扫描线提供给薄膜晶体管阵列与阴极。
作为本发明之具体实施方式,所述液晶开关装置26和用于明场光源光路的所述第一光源23a并联后再与所述同步控制系统25串联。用于明场光源光路的所述第一光源23a和用于暗场光源光路的所述第二光源23b均为氙灯照明光源。用于明场的所述第一图像采集器24a和用于暗场的所述第二图像采集器24b均为CMOS图像采集相机。所述同步控制系统25进一步包括PCI同步脉冲信号发生板卡,所述PCI同步脉冲信号发生板卡在预设时间点上发出例如5V的方波脉冲信号。所述液晶开关装置26之开合速度为
Figure PCTCN2017099791-appb-000007
秒及以 内。所述液晶开关装置26之打开时间设定为小于等于用于明场光源光路的所述第一光源23a之点亮持续时间。
为了更直观的揭露本发明之技术方案,凸显本发明之有益效果,现结合具体实施方式对本发明自动光学检测装置之结构和检测方法进行阐明。在具体实施方式中,所述自动光学检测装置之各功能部件的具体类型,时间点的数量等仅为列举,不应视为对本发明技术方案的限制。
请参阅图5,并结合参阅图4,图5所示为本发明自动光学检测装置之第二实施方式的检测控制时序图。非限制性地,例如所述同步控制系统25发生脉冲的时序逻辑为在任一脉冲周期内分别对应时间点T1、T2、T3、T4发送脉冲,设定所述液晶开关装置26的开合时间为Δt3,用于明场的第一图像采集器24a之积分时间为Δt4,且所述时间点满足:
T1≤T2<T3≤T4
T2+Δt3≤T3
T1+Δt4≤T3
请参阅图6,并结合参阅图4、图5,图6所述为本发明自动光学检测装置之第二实施方式的流程图。所述自动光学检测装置之检测方法,包括:
在T1时刻,所述工件台21运动至测试位置,并向所述工控机22发出信号,要求进行图像采集,且所述工控机22在接受到所述工件台21之信号时,所述同步控制系统25向用于明场光源光路的所述第一图像采集器14a发出触发信号,所述第一图像采集器14a开始积分采集图像;
在T2时刻,所述同步控制系统25同时向所述液晶开关装置26和用于明场光源光路的所述第一光源23a发出触发信号,同时打开所述液晶开关装置26和点亮用于明场光源光路的所述第一光源23a,由所述第一图像采集器24a进行明场照明采集;
在T3时刻,所述液晶开关装置26关闭,所述同步控制系统25向用于暗场的所述第二图像采集器24b发出触发信号,用于暗场的所述第二图像采集器24b开始积分采集;
在T4时刻,所述同步控制系统25向用于暗场光源光路的所述第二光源23b发出触发信号,所述第二光源23b开始照明,所述第二图像采集器24b持续处于暗场照明采集状态。
请继续参阅图6,定义用于明场光源光路的所述第一光源23a的余辉持续时长为Δt5,由于在T3时刻所述液晶开关装置26关闭,则在T3到T5时刻之间的Δt5时长内,用于明场光源光路的所述第一光源23a之余辉不会对暗场光源光路中的所述第二光源23b之照明产生影响,用于暗场的所述第二图像采集器24b可完全在所述第二光源23b下进行图像采集。在本发明中,所述同步控制系统25通过同一个控制信号与所述液晶开关装置26和用于明场光源光路的所述第一光源23a连接,从而实现对液晶开关装置26和第一光源23a的同步控制。在T3时刻,所述液晶开关装置26和所述第一光源23a同时关闭,不仅消除了余辉效应,而且省去了分别向所述液晶开关装置26和所述第一光源23a发出触发信号的时间,进一步提升了暗场采集图像的精确性和效率。
虽然上述实施例中以电动快门16和液晶开关装置26为例对本发明进行了说明,然而本领域技术人员应当理解,任何合适的开关装置,无论是机械式还是电子式、是有线信号控制还是无线信号控制等,都可以用于本发明,只要该开关装置能够在控制信号的作用下打开和关闭明场光源光路即可。
综上所述,本发明自动光学检测装置通过在所述明场光源光路中设置由所述同步控制系统控制的开关装置,且所述开关装置通过所述工控机指令所述同步控制系统在用于暗场光源光路的所述第二光源点亮前关闭所述明场光源光路,不仅有效的消除了余辉效应,而且进一步提升了暗场采集图像的精 确性。
本领域技术人员均应了解,在不脱离本发明的精神或范围的情况下,可以对本发明进行各种修改和变型。因而,如果任何修改或变型落入所附权利要求书及等同物的保护范围内时,认为本发明涵盖这些修改和变型。

Claims (13)

  1. 一种自动光学检测装置,其特征在于,所述自动光学检测装置,包括:
    用于设置待光学检测之器件的工件台,且所述工件台在外界驱动装置的作用下按预设轨迹运行;
    作为自动光学检测装置之控制中心的工控机;
    用于明场光源光路的第一光源;
    用于暗场光源光路的第二光源;
    第一图像采集器,用于在第一光源的照明下进行待光学检测之器件的明场图像采集;
    第二图像采集器,用于在第二光源的照明下进行待光学检测之器件的暗场图像采集;以及
    设置在所述明场光源光路中的开关装置,所述工控机用于控制所述开关装置在用于暗场光源光路的所述第二光源点亮前关闭所述明场光源光路。
  2. 如权利要求1所述的自动光学检测装置,其特征在于,所述工控机通过一同步控制系统控制所述开关装置,所述同步控制系统包括PCI同步脉冲信号发生板卡,且所述PCI同步脉冲信号发生板卡用于在预设时间点上发出脉冲信号以分别触发所述第一光源、第二光源、第一图像采集器、第二图像采集器和开关装置。
  3. 如权利要求1所述的自动光学检测装置,其特征在于,用于明场光源光路的所述第一光源和用于暗场光源光路的所述第二光源均为LED照明光源。
  4. 如权利要求1所述的自动光学检测装置,其特征在于,所述开关装置是机械方式控制的或液晶开关控制的。
  5. 如权利要求1所述的自动光学检测装置,其特征在于,所述开关装置自开始打开至完全关闭的最小时长为毫秒量级。
  6. 如权利要求5所述的自动光学检测装置,其特征在于,所述开关装置自开始打开至完全关闭的最小时长为
    Figure PCTCN2017099791-appb-100001
    秒及以内。
  7. 如权利要求1所述的自动光学检测装置,其特征在于,用于明场光源光路的所述第一光源和用于暗场光源光路的所述第二光源均为氙灯照明光源。
  8. 如权利要求1所述的自动光学检测装置,其特征在于,所述工控机用于对所述开关装置和用于明场光源光路的所述第一光源进行同步控制。
  9. 如权利要求8所述的自动光学检测装置,其特征在于,所述开关装置自开始打开至完全关闭的时间设定为小于等于用于明场光源光路的所述第一光源之点亮持续时间。
  10. 一种采用如权利要求1所述的自动光学检测装置的检测方法,其特征在于,包括:
    在开关装置打开的状态下进行待光学检测之器件的明场图像采集;
    在用于暗场光源光路的第二光源点亮前通过关闭所述开关装置来关闭明场光源光路;以及
    在所述开关装置的关闭状态下进行待光学检测之器件的暗场图像采集。
  11. 如权利要求10所述的检测方法,其特征在于,在所述明场图像采集步骤之前还包括:
    打开所述开关装置;以及
    打开用于明场图像采集的第一图像采集器,
    其中,所述开关装置在所述第一图像采集器打开之前、同时或者之后被打开。
  12. 如权利要求11所述的检测方法,其特征在于,在所述明场图像采集步骤之前还包括:
    打开用于所述明场光源光路的第一光源,
    其中,所述第一光源的打开时间不早于所述第一图像采集器的打开时间。
  13. 如权利要求12所述的检测方法,其特征在于,所述开关装置和所述第一光源在所述第一图像采集器打开后被同步打开。
PCT/CN2017/099791 2016-08-31 2017-08-31 一种自动光学检测装置及其检测方法 WO2018041169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610795343.0 2016-08-31
CN201610795343.0A CN107782738A (zh) 2016-08-31 2016-08-31 一种自动光学检测装置及其检测方法

Publications (1)

Publication Number Publication Date
WO2018041169A1 true WO2018041169A1 (zh) 2018-03-08

Family

ID=61300199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099791 WO2018041169A1 (zh) 2016-08-31 2017-08-31 一种自动光学检测装置及其检测方法

Country Status (3)

Country Link
CN (1) CN107782738A (zh)
TW (1) TW201812274A (zh)
WO (1) WO2018041169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116242254A (zh) * 2023-05-12 2023-06-09 厦门微亚智能科技有限公司 手机屏体及fpc上预留基准点的同步检测方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414530A (zh) * 2018-03-13 2018-08-17 昆山国显光电有限公司 自动光学检测设备
CN110657946B (zh) * 2018-06-29 2021-09-21 上海微电子装备(集团)股份有限公司 屏幕缺陷检测系统、屏幕检测线以及屏幕缺陷检测方法
TWI705242B (zh) * 2018-10-08 2020-09-21 銓發科技股份有限公司 光學檢測設備及方法
CN109361873A (zh) * 2018-12-10 2019-02-19 成都泓睿科技有限责任公司 一种高速控制光源相机触发控制系统及控制方法
CN111610195A (zh) * 2019-02-22 2020-09-01 上海微电子装备(集团)股份有限公司 一种缺陷检测装置
CN110108720A (zh) * 2019-05-30 2019-08-09 苏州精濑光电有限公司 光学检测装置
CN115412689B (zh) * 2022-07-26 2023-04-25 瀚湄信息科技(上海)有限公司 一种基于动态标定的暗场噪音处理方法、装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284223A (ja) * 1999-03-30 2000-10-13 Idemitsu Kosan Co Ltd 立体表示方法および立体表示装置
JP2003045343A (ja) * 2001-08-03 2003-02-14 Nippon Hoso Kyokai <Nhk> 立体画像表示装置
CN202918392U (zh) * 2012-09-03 2013-05-01 广州市盛光微电子有限公司 一种应用快速开关光源的高速摄像装置
CN103634986A (zh) * 2013-11-04 2014-03-12 惠州雷士光电科技有限公司 多路调光装置及其调光方法
CN105043982A (zh) * 2015-07-02 2015-11-11 武汉中导光电设备有限公司 一种自动光学检测系统
CN105738384A (zh) * 2016-03-11 2016-07-06 伍祥辰 玻璃表面缺陷检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585315A (en) * 1984-11-13 1986-04-29 International Business Machines Corporation Brightfield/darkfield microscope illuminator
CN100594371C (zh) * 2003-01-16 2010-03-17 北京师范大学 长余辉荧光粉发光特性自动测试装置及其测试方法
CN101887030A (zh) * 2009-05-15 2010-11-17 圣戈本玻璃法国公司 用于检测透明基板表面和/或其内部的缺陷的方法及系统
GB201311366D0 (en) * 2013-06-26 2013-08-14 Thermoteknix Systems Ltd High dynamic range imaging
JP6154291B2 (ja) * 2013-11-01 2017-06-28 浜松ホトニクス株式会社 画像取得装置及び画像取得装置の画像取得方法
CN104125456A (zh) * 2014-07-15 2014-10-29 中国电子科技集团公司第四十一研究所 一种ccd器件系统增益测量装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284223A (ja) * 1999-03-30 2000-10-13 Idemitsu Kosan Co Ltd 立体表示方法および立体表示装置
JP2003045343A (ja) * 2001-08-03 2003-02-14 Nippon Hoso Kyokai <Nhk> 立体画像表示装置
CN202918392U (zh) * 2012-09-03 2013-05-01 广州市盛光微电子有限公司 一种应用快速开关光源的高速摄像装置
CN103634986A (zh) * 2013-11-04 2014-03-12 惠州雷士光电科技有限公司 多路调光装置及其调光方法
CN105043982A (zh) * 2015-07-02 2015-11-11 武汉中导光电设备有限公司 一种自动光学检测系统
CN105738384A (zh) * 2016-03-11 2016-07-06 伍祥辰 玻璃表面缺陷检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116242254A (zh) * 2023-05-12 2023-06-09 厦门微亚智能科技有限公司 手机屏体及fpc上预留基准点的同步检测方法和装置
CN116242254B (zh) * 2023-05-12 2023-09-01 厦门微亚智能科技股份有限公司 手机屏体及fpc上预留基准点的同步检测方法和装置

Also Published As

Publication number Publication date
CN107782738A (zh) 2018-03-09
TW201812274A (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
WO2018041169A1 (zh) 一种自动光学检测装置及其检测方法
WO2017206966A1 (zh) 一种自动光学检测装置及方法
TWI667469B (zh) Automatic optical detection method
CN105259189A (zh) 玻璃的缺陷成像系统和方法
TWI491871B (zh) 用於光學檢測的照明系統及使用其之檢測系統、檢測方法
US20110310244A1 (en) System and method for detecting a defect of a substrate
JPH0599861A (ja) 透明容器の検査方法及び装置
CN209803004U (zh) 同时对物体正反两个表面进行光学检测的装置
KR101733197B1 (ko) 멀티 광학 비전 장치
TW201616123A (zh) 缺陷檢測系統及方法
WO2014139231A1 (zh) 光源光强均一性测调系统及测调方法
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
TW201245701A (en) Method for inspecting minute defect of translucent board-like body, and apparatus for inspecting minute defect of translucent board-like body
JP2981942B2 (ja) ボンデイングワイヤ検査方法
TWI743660B (zh) 缺陷檢測裝置
TW201411122A (zh) 表面異物檢查系統及其控制方法
KR100863341B1 (ko) 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼검사시스템
JP2012026762A (ja) 透明管の泡検出装置および泡検出方法
JP2017166903A (ja) 欠陥検査装置及び欠陥検査方法
KR20160121716A (ko) 하이브리드 조명 기반 표면 검사 장치
TWI704343B (zh) 一種自動光學檢測裝置及方法
JP5648185B2 (ja) パーティクル検出用光学装置およびパーティクル検出装置
TW201425916A (zh) 檢測系統
TW201710664A (zh) 瑕疵檢測裝置
JP2012194067A (ja) 表面検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845471

Country of ref document: EP

Kind code of ref document: A1