WO2018038591A1 - Proceso de fabricación de árbol de levas con componente funcional como inserto de ensamble y el árbol de levas obtenido con el mismo - Google Patents

Proceso de fabricación de árbol de levas con componente funcional como inserto de ensamble y el árbol de levas obtenido con el mismo Download PDF

Info

Publication number
WO2018038591A1
WO2018038591A1 PCT/MX2017/000096 MX2017000096W WO2018038591A1 WO 2018038591 A1 WO2018038591 A1 WO 2018038591A1 MX 2017000096 W MX2017000096 W MX 2017000096W WO 2018038591 A1 WO2018038591 A1 WO 2018038591A1
Authority
WO
WIPO (PCT)
Prior art keywords
camshaft
functional component
type
mold
mechanical
Prior art date
Application number
PCT/MX2017/000096
Other languages
English (en)
French (fr)
Inventor
Juan Ignacio CASTRO SOSA
Marco Antonio VERA VÁZQUEZ
Sergio ÁVILA GLORIA
José Antonio LABORDE DE LA PEÑA
Original Assignee
Arbomex, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arbomex, S.A. De C.V. filed Critical Arbomex, S.A. De C.V.
Priority to CN201780050462.6A priority Critical patent/CN109562444B/zh
Priority to DE112017004231.3T priority patent/DE112017004231B4/de
Priority to US16/316,376 priority patent/US20190299280A1/en
Publication of WO2018038591A1 publication Critical patent/WO2018038591A1/es
Priority to US17/350,886 priority patent/US20210316360A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/02Single-track cams for single-revolution cycles; Camshafts with such cams
    • F16H53/025Single-track cams for single-revolution cycles; Camshafts with such cams characterised by their construction, e.g. assembling or manufacturing features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to a camshaft with a functional component as an assembly insert and the manufacturing process.
  • the invention relates to a process for the production of camshafts with at least one functional component integrated in the body of the tree, taking into account that the material of both, functional component and body, are of different materials; as well as with camshafts produced according to this process for internal combustion engines,
  • the process of The manufacture of these trees consists of generating a sand mold that forms the negative design of the tree to be manufactured, that is, that forms the silhouette of the tree and that in turn has a feeding channel through which the molten material will enter. Once the sand mold is generated, the cast iron is emptied through the feed channel, the cast iron will take the form of the mold and once it cools it will generate the desired tree.
  • the tube After having the tube with the reference component assembled, the tube is placed vertically and the missing components are placed one by one, which are heated and assembled one by one; The heating is done through the induction of a magnetic field by the inner bore of each component. Once heated, the component is taken and placed in the tube body, in the longitudinal and angular position required according to the final design. Already being placed, the piece is cooled. The process of heating the inner diameter of the components is to dilate it and that it can slip through the tube, and when it cools the diameter will return to its original size. It should be clarified that between the diameter of the tube and the bore of the component there is also a mechanical interference, to ensure the mechanical grip.
  • cams manufactured through the foundry and those manufactured by assembly that is, have a higher manufacturing speed, not being limited by the size of the camshaft, getting a complete piece from the origin, increasing the resistance of the functional component that it requires it through this same component being of another material and inserted directly from the molding process prior to smelting and in turn obtaining the required lightness that is so much sought in the internal combustion engine.
  • the aim of the invention is to offer an economical union and capable of being used in series on an industrial scale for the manufacture of camshafts with inserted functional components such as, for example, cams, supports, driving wheels, control discs , for the production of cam trees.
  • the functional components must be able to be produced with materials of different characteristics and properties related to other materials and the union between the functional components and the carrier shaft must exhibit a great mechanical resistance in the circumferential direction (torque transmission) and in the longitudinal direction of the tree carrier.
  • FIGURES Figure 1 is a front view of the functional component of the camshaft of the present invention.
  • Figure 2 is a top perspective view of the functional component of the camshaft of the present invention.
  • Figure 3 is a section of the top perspective view of the functional component of the camshaft of the present invention.
  • Figure 4a illustrates a cross-section of the parts of the mold for manufacturing the camshaft of the present invention and one of the manufacturing steps thereof.
  • Figure 4b illustrates a perspective cross-section of the parts of the mold for manufacturing the camshaft of the present invention and one of the manufacturing steps thereof.
  • Figure 5a illustrates a cross-section of the parts of the mold for manufacturing the camshaft of the present invention and one of the manufacturing steps thereof.
  • Figures 5b and 5e illustrate a cross-sectional perspective view of the parts of the mold for manufacturing the camshaft of the present invention and one of the manufacturing steps thereof.
  • Figure 6 illustrates the closure of the mold with the functional component therein and prior to casting the casting material.
  • Figure 7a illustrates the closure of the mold with the functional component within it and with the casting material.
  • Figure 7b is a perspective view of the closure of the mold with the functional component therein and with the casting material.
  • Figure 8a is a front perspective view of the camshaft obtained by the process of the present invention.
  • Figure 8b is a rear perspective view of the camshaft obtained by the process of the present invention.
  • the present invention relates to a camshaft (30) with a functional component as an assembly insert and the manufacturing process. More specifically, the present invention relates to a process for industrial scale production of camshafts manufactured by the smelting process with at least one functional component (1) as an assembly insert, capable of withstanding mechanical forces in the circumferential direction (torque transmission) and in the longitudinal direction of the carrier shaft, taking the advantage of rapid manufacturing of the iron smelting process and the advantage of having the elements that are subjected to greater stresses manufactured, preferably of steel, as in the assembled tree process.
  • Functional components such as cams, supports, drive wheels, control discs, are produced separately, by some manufacturing process such as machining, forging, sintering or printing, of a type A material, preferably steel, these have an internal hollow (10) with suitable geometry through which the molten material type B passes, preferably iron, to be attached to the cast iron shaft during the solidification process, and thus allow the correct hold for torque transmission and the longitudinal grip.
  • the functional component (1) comprises mechanical gripping means that consist of the geometry of the internal recess (10) mentioned above for said functional components (1) and that consist of a past hole through the component (1), two steps are generated from the same hole (2a, 2b), starting from the center of the track and towards the outside of the track, one on each side and of a larger diameter, which , will serve to give mechanical grip in the longitudinal direction. Then, along the circumferences (2c) generated by the hole and the steps (2a, 2b), at least one hole (3) of smaller diameter is generated, where its horizontal central axis (3a) is tangent to the circumference (2c) generated by the steps (2a, 2b), this hole (3) will serve to give it a mechanical grip in the circumferential direction.
  • heaters (11a, 11b) that will serve to heat each of the functional components (1).
  • These heaters (11a, 11b) depend on the size and shape of the geometry of each functional component (1), but always keeping in mind that these must cover at least 80% of the upper and lower surface of the component (1) and must cover the edges in the section change that occurs in the geometry of the functional component, that is, the change that occurs between the upper or lower face and its nearest side.
  • heaters (11a, 11b) The function of said heaters (11a, 11b) is to heat the functional component (1) from the outside of its geometry, since the molten material that crosses through it through the borehole (3) and the interior will be in charge. internal hollow (10). Since the edges or changes of section are points where it is easier to lose heat by thermodynamic laws, so they must be covered with heaters (11a, 11b).
  • the advantage of heating the functional component (1) in this way is that the thermal shock of the molten material with the material of the functional component (1) will not be so aggressive, and the formation of carbides in the molten material is avoided.
  • the manufacturing process of the present invention consists of the following sequential steps: a) Preparation of a mold (23) comprising of a lower part of the mold (21) and an upper part of the mold (22), which will serve for the smelting process, said mold will be elaborated in a traditional manner to said process, previously placing in place the heaters (11a, 11b) necessary for the functional component (s), said heaters (11a, 11b) are placed from the moment of making the mold; b) Placement of one or several functional components (1) of type A material for each cavity (12) required of the tree (s) in the lower mold (21) used in the casting process, these cavities (12) are the one or more places where the functional components (1) will go and are preformed forms in the mold, thus, they have housings arranged for the functional component (1) in the desired final position both in the lower part of the mold (21) and in the part upper mold (22) of the mold, then both the lower mold part (21) and
  • the functional component (1) i. It must be of a material with superior characteristics, in some sense, to the base material or to the material of the body of the final piece (molten material). These characteristics could be toughness, hardness, ductility, friction resistance, higher melting point, among others. ii. An important feature to take into account is that the melting point of the functional component material must be greater than the molten material that will pass through it, to avoid degradation of the material, iii.
  • the manufacturing of the functional component is not limited to a specific process, it can be achieved through machining, sintering, printing, casting and forging.
  • the external shape of the functional component will depend on the design provided by the customer requesting the final piece. v.
  • the component must have a gap, preferably centered on its own body and concentric to the base body; said hole will serve to allow the flow of molten material through it. saw.
  • the shape of the component hole must contain at least one shape that serves as an anchor to prevent radial movement and another to prevent longitudinal movement, such as holes or steps respectively, although not exclusively these.
  • the quantity and shape of the anchors will depend on the final geometry of the functional component. vii. Depending on the molten material, although mostly it should be, the edges should be avoided as far as possible when making the hole and the anchors of the functional component, decreasing them with rounded or filleted, to allow the molten material to fill completely the same.
  • camshaft manufacturing process i. It is a process for the industrial scale production of cast iron camshafts with at least one functional component of another material, economical and capable of withstanding mechanical forces in the circumferential direction (torque transmission) and in the longitudinal direction of the tree carrier.
  • ii. It is characterized in that one or several functional components are placed per cavity of the camshaft or camshafts that make up the cluster of pieces in the lower mold, these cavities are arranged housings for the inserts in the desired dimensional position both in the base and in the lid of the mold that includes the unicel heaters, the two halves that form the mold are closed and the insert is held by the mold in the assigned position.
  • post-inoculated type B molten material is poured into the mold, which is led to the cavities through the filling channels, this allows heating the external functional component (s) and internally, since at the same time the cavities of the molten tree are filled when crossing through the hollow of the same.
  • Type B cast material is supplied by at least two feed inlets to ensure a homogeneous temperature inside the part, and from this moment the solidification of the cast tree of type B material begins, which by preheating of or Functional components of type A material generate a slow and directed solidification in these interface areas of materials A and B, this ensures that the functional component (s) of type A material are attached to the molten material type B by means of a mechanical assembly by interference, and coupled with the internal geometry of the functional component (s), they can withstand the necessary torques for an internal combustion engine. iv.
  • the cast iron preferably cast iron has a range of use for its emptying between 1390 and 1450 ° C.
  • the material used is ferro silicon, enriched with strontium element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

La presente invención se refiere a un árbol de levas con un componente funcional como inserto de ensamble y el proceso de fabricación de dicho árbol de levas, en donde dicho árbol de levas, cuenta con al menos un componente funcional integrado en el cuerpo del mismo, teniendo en cuenta que el material del componente funcional y el cuerpo del árbol, son de diferentes materiales; y en donde el uno o varios componentes funcionales, comprende un cuerpo de material tipo A con un hueco interno con una geometría adecuada para que pase a través del mismo un material fundido tipo B en un proceso de fundición; medios de agarre que logran un agarre mecánico entre ambos materiales, la de material tipo A y la de material fundido tipo B, para darle agarre mecánico en la dirección longitudinal y circunferencial respecto al cuerpo del árbol de levas.

Description

PROCESO DE FABRICACION DE ARBOL DE LEVAS CON COMPONENTE FUNCTIONAL COMO
INSERTO DE ENSAMBLE Y EL ARBOL DE LEVAS OBTENIDO CON EL MISMO CAMPO TECNICO DE LA INVENCION
La presente invención se refiere a un árbol de levas con un componente funcional como inserto de ensamble y el proceso de fabricación.
Más específicamente, la invención se relaciona con un proceso para la producción de árboles de levas con al menos un componente funcional integrado en el cuerpo del árbol, teniendo en cuenta que el material de ambos, componente funcional y cuerpo, son de diferentes materiales; asi como con árboles de levas producidos según este proceso para motores de combustión interna,
ANTECEDENTES DE LA INVENCIÓN
En el estado de ia técnica se conocen una serie de procesos para la fabricación de árboles de levas, siendo en su versión más común, árboles de levas fabricados desde fundición de hierro de una sola pieza; también se conocen procesos para la fabricación de los mismos mediante el ensamble de los diferentes componentes funcionales del árbol de levas en un tubo, para así obtener la pieza final.
Siguiendo la cronología para la fabricación de los árboles de levas, los primeros se fabricaron en hierro fundido, debido a que las propiedades de dicho material eran suficientes para los requerimientos funcionales de ios motores de combustión interna de esos momentos. El proceso de fabricación de estos árboles consiste en generar un molde de arena que forme el diseño negativo del árbol a fabricar, es decir, que forme la silueta del mismo y que a su vez tenga un canal de alimentación por el cual entrará el material fundido. Una vez teniendo el molde de arena generado, se vacia el hierro fundido a través del canal de alimentación, el hierro fundido tomará la forma del molde y una vez que se enfrie generará asi el árbol deseado.
En esta misma linea, algunas variantes de este tipo de árbol de levas que aparecieron posteriormente llevan un hueco en el cuerpo, con el objetivo de disminuir el peso del mismo para mejorar el rendimiento del motor de combustión interna- Este proceso varia del anterior en el hecho de que dentro del molde de arena se coloca un elemento de cristal, llamado corazón, el cual evitará que en esa área entre material fundido, dejando asi un hueco en el lugar deseado del árbol generado.
Cuando las demandas de los motores de combustión interna empezaron a cambiar, requiriendo una mayor resistencia al desgaste de sus componentes más allá del logrado hasta el momento mediante los procesos de endurecimiento tales como flama, chill iron (hierro con enfriamiento rápido) , inducción, TIG (gas inerte de tungsteno) , hierro austemperizado, combinado con el requerimiento de un menor peso, ia industria desarrolló los árboles de levas ensamblados, esto es, todos los componentes del mismo se van ensamblando uno a uno en un. tubo, todos ellos normalmente de acero.
En el estado de la técnica para los árboles ensamblados fueron apareciendo varios procesos de ensamble, cambiando entre ellos la manera en que se logra el agarre mecánico entre los componentes y el tubo, los procesos van desde uno que involucra el moleteado de tubo y estriado de componentes funcionales, hasta otro proceso donde se realiza el calentamiento de los componentes funcionales para dilatarlos y deslizarlos a través del tubo.
Tomando como ejemplo el último proceso, este se logra fabricando por separado cada uno de los componentes del árbol, tales como levas, apoyos, cola, nariz, arrastres y el tubo donde se ensamblan todos los anteriores; el proceso de fabricación de estos varia según su complejidad, pudiendo ser mecanizados, sinterizados , forjados o impresos. Una vez teniendo los componentes antes mencionados, todos los componentes pasan a la celda de ensamble, donde se ensambla mediante presión mecánica el componente que servirá de referencia para la localización y ensamble de todos los demás, normalmente es la nariz o arrastre, y el ajuste se da debido a la interferencia mecánica entre ambas partes.
Tras tener el tubo con el componente de referencia ensamblado, el tubo es colocado de forma vertical y uno a uno se van colocando los componentes faltantes, los cuales son calentados y ensamblados de uno por uno; el calentamiento se hace a través de la inducción de un campo magnético por el barreno interior de cada componente. Una vez calentado, el componente es tomado y colocado en el cuerpo del tubo, en la posición longitudinal y angular requerida según el diseño final. Ya estando colocada, la pieza es enfriada. El proceso de calentar el diámetro interior de los componentes es para dilatarlo y que pueda entrar deslizante a través del tubo, y al enfriarse el diámetro regresará a su tamaño original. Cabe aclarar que entre el diámetro del tubo y del barreno del componente existe también una interferencia mecánica, para asegurar el agarre mecánico .
Habiendo terminado el ensamble de todos los componentes que van sujetos ai árbol, se procede, normalmente, a ensamblar la cola, la cual entra a presión mecánica asi como la nariz. Al terminar esto, el árbol ensamblado está terminado y listo para seguir su proceso de mecanizado según lo requiera el diseño final. En la producción en serie para los árboles de levas ensamblados, estos procesos requieren una gran inversión en tecnología y requieren de maquinaria y equipos específicos. Tomando como referencia el proceso descrito anteriormente, dicha tecnología consiste en los brazos roboticos que harán el ensamble de las piezas, ya que para el calentamiento y la colocación de los componentes se requiere extrema precisión y un operador humano no podría lograrlo; también se refiere a la máquina de calentamiento del barreno interno de los componentes. Toda esta inversión de tecnología y maquinaria representa una desventaja en cuanto al costo final de la pieza y la velocidad de fabricación.
Otra desventaja de este proceso de árboles ensamblados consiste, en que en diámetros de árbol mayores como se requieren, por ejemplo, para motores de vehículos industriales, las fuerzas necesarias para el ensamble se incrementan de manera desproporcionada, así como el tiempo requerido para su ensamble es cada vez mayor, el tamaño de los robots y de las máquinas de calentamiento, y por tanto el costo de fabricación también va aumentando por la maquinaria requerida para lograrlo. Tomando en consideración los antecedentes anteriormente descritos, la presente invención propone una solución a los problemas técnicos actualmente presentes proporcionando un proceso de fabricación para la obtención
de levas fabricados a través de la fundición y los fabricados por ensamble, esto es, tener una mayor velocidad de fabricación, no estando limitados por el tamaño del árbol de levas, consiguiendo una pieza completa desde el origen, incrementando la resistencia del componente funcional que lo requiera a través de que este mismo componente sea de otro material y se inserte directamente desde el proceso de moldeo previo a la fundición y a su vez obtener la ligereza requerida que tanto se busca en el motor de combustión interna.
El objetivo de la invención es ofrecer una unión económica y capaz de ser usada en serie a escala industrial para la fabricación de árboles de levas con componentes funcionales insertados como, por ejemplo, las levas, los apoyos, las ruedas motrices, los discos de control, para la producción de árboles de leva. Los componentes funcionales deben poder ser producidos con materiales de diferentes características y propiedades afines a otras materias y la unión entre los componentes funcionales y el árbol portador debe exhibir una gran resistencia mecánica en la dirección circunferencial (transmisión de par) y en dirección longitudinal del árbol portador.
DESCRIPCION DE LA INVENCIÓN.
BREVE DESCRIPCION DE LAS FIGURAS La figura 1, es una vista frontal del componente funcional del árbol de levas de la presente invención.
La figura 2, es una vista en perspectiva superior del componente funcional del árbol de levas de la presente invención.
La figura 3, es un corte de la vista en perspectiva superior del componente funcional del árbol de levas de la presente invención. La figura 4a, ilustra un corte transversal de las partes del molde para fabricar el árbol de levas de la presente invención y una de las etapas de fabricación del mismo.
La figura 4b, ilustra un corte transversal en perspectiva de las partes del molde para fabricar el árbol de levas de la presente invención y una de las etapas de fabricación del mismo.
La figura 5a, ilustra un corte transversal de las partes del molde para fabricar el árbol de levas de la presente invención y una de las etapas de fabricación del mismo.
Las figuras 5b y 5e, ilustran un corte transversal en perspectiva de las partes del molde para fabricar el árbol de levas de la presente invención y una de las etapas de fabricación del mismo.
La figura 6, ilustra el cierre del molde con el componente funcional dentro del mismo y previo al colado del material de fundición. La figura 7a, ilustra el cierre del molde con el componente funcional dentro del mismo y con el material de fundición.
La figura 7b, es una vista en perspectiva del cierre del molde con el componente funcional dentro del mismo y con el material de fundición.
La figura 8a, es una vista en perspectiva frontal del árbol de levas obtenido por el proceso de la presente invención.
La figura 8b, es una vista en perspectiva posterior del árbol de levas obtenido por el proceso de la presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCION
La presente invención se refiere a un árbol de levas (30) con un componente funcional como inserto de ensamble y el proceso de fabricación . ás específicamente, la presente invención se refiere a un proceso para la producción en serie a escala industrial de árboles de levas fabricados por el proceso de fundición con al menos un componente funcional (1) como inserto de ensamble, capaces de soportar las fuerzas mecánicas en la dirección circunferencial (transmisión de par) y en dirección longitudinal del árbol portador, tomando la ventaja de fabricación rápida del proceso de fundición de hierro y la ventaja de tener los elementos que se someten a mayores esfuerzos fabricados, preferentemente de acero, como en el proceso de árboles ensamblados. Los componentes funcionales tales como, las levas, los apoyos, las ruedas motrices, los discos de control, son producidos por separado, por algún proceso de fabricación tal como mecanizado, forjado, sinterizado o impresión, de un material tipo A, preferentemente acero, estos poseen un hueco interno (10) con geometría adecuada por el cual pasa el material fundido tipo B, preferentemente hierro, para ser unido al árbol fabricado por fundición durante el proceso de solidificación, y permitir así la correcta sujeción para la transmisión de par y el agarre longitudinal. De acuerdo a lo ilustrado en las figuras 1-3, el componente funcional (1) comprende medios de agarre mecánico que consisten en la geometría del hueco interno (10) antes mencionada para dichos componentes funcionales (1) y que consisten en un barreno pasado a través del componente (1), a partir del mismo barreno se generan dos escalones (2a, 2b) , partiendo del centro de la pista y hacia la parte externa de la misma, uno a cada lado y de un diámetro mayor, los cuales, servirán para darle agarre mecánico en la dirección longitudinal. Después, a lo largo de las circunferencias (2c) generadas por el barreno y los escalones (2a, 2b) , se genera al menos un barreno (3) de menor diámetro, donde su eje central horizontal (3a) es tangente a la circunferencia (2c) generada por los escalones (2a, 2b) , este barreno (3) servirá para darle agarre mecánico en la dirección circunferencial.
A su vez son producidos por separado, de material unicel (usado para el proceso de fundición de espuma perdida) , unas preformas denominadas calentadores (11a, 11b) que servirán para calentar cada uno de los componentes funcionales (1) . Estos calentadores (11a, 11b) dependen en tamaño y forma de la geometría de cada componente funcional (1), pero siempre manteniendo en mente que estos deben de cubrir al menos el 80% de la superficie superior e inferior del componente (1) y deben de cubrir las aristas en el cambio de sección que se presente en la geometría del componente funcional, es decir, el cambio que se presenta entre la cara superior o inferior y su costado más próximo.
La función de dichos calentadores (11a, 11b) es el de calentar el componente funcional (1) desde el exterior de su geometría, ya que del interior se encargará el material fundido que cruce a través de él por el barreno (3) y el hueco interno (10) . Dado que las aristas o cambios de sección son puntos donde es más fácil perder calor por las leyes termodinámicas, por eso se deben de cubrir con los calentadores (11a, 11b) . La ventaja de calentar de esta manera el componente funcional (1) reside en que el choque térmico del material fundido con el material del componente funcional (1) no será tan agresivo, y se evitan la formación de carburos en el material fundido.
De acuerdo a lo ilustrado en las figuras 4a, 4b, 5a-5c, 6, 7a y 7b, el proceso de fabricación de la presente invención, consiste de las siguientes etapas secuenciales : a) Elaboración de un molde (23) que se comprende de una parte inferior de molde (21) y una parte superior de molde (22), que servirán para el proceso de fundición, dicho molde se elaborará de manera tradicional a dicho proceso, ubicando previamente en su lugar los calentadores (11a, 11b) necesarios para el o los componentes funcionales, dichos calentadores (11a, 11b) se colocan desde el momento de elaborar el molde; b) Colocación de uno o varios componentes funcionales (1) del material tipo A por cada cavidad (12) necesaria del o los árboles en el molde inferior (21) usado en el proceso de fundición, estas cavidades (12) son el o los lugares donde irán los componentes funcionales (1) y son formas preformadas en el molde, asi, tienen dispuestos alojamientos para el o los componentes funcionales (1) en la posición final deseada tanto en la parte inferior de molde (21) como en la parte superior de molde (22) del molde, posteriormente se cierran tanto la parte inferior de molde (21) como la parte superior de molde (22) que forman el molde (23) y el o los componentes funcionales (1) quedan sujetos por el molde en la posición asignada; c) Verter dentro del molde cerrado (23) el material fundido (M2) del tipo B, el cual es conducido a las cavidades (12) a través de canales de llenado; al momento de entrar en contacto con los calentadores de unicel (11a, 11b), estos se desalojan del molde por pirólisis y asi permiten que el material fundido (M2) tipo B entre en contacto con el o los componentes funcionales (1), permitiendo calentar el o los componentes funcionales (1) externamente y al mismo tiempo llenar las cavidades que darán forma al árbol de levas fundido del material tipo B, tomando en cuenta que el material fundido (M2) tipo B cruza por los huecos internos (10) del o los componentes funcionales (1) del material tipo A; d) Esperar un tiempo de solidificación del material tipo B, el cual tiene la forma del árbol de levas (30) como se ilustra en las figuras 8a y 8b, que por el calentamiento previo del o los componentes funcionales (1) del material tipo A se genera una solidificación lenta y dirigida en estas zonas de interfaz de los materiales tipo A y B, esto asegura que el o los componentes funcionales (1) del material A queden unidos al material del tipo B mediante un ensamble mecánico por interferencia, y aunado a la geometría interna del o los componentes funcionales (1) , que los mismos soporten los torques requeridos en el desempeño de su función en un motor de combustión interna.
Cabe aclarar que el o los componentes funcionales (1) que entran en contacto con el material fundido tipo A no llegan a la temperatura necesaria para lograr su punto de fusión, evitando así deformaciones en la geometría tanto interna como externa y la unión química de ambos materiales.
Características importantes a considerar para el componente funcional (1) : i. Deberá de ser de un material con características superiores, en algún sentido, al material base o al material del cuerpo de la pieza final (material fundido) . Estas características pudieran ser tenacidad, dureza, ductilidad, resistencia a la fricción, mayor punto de fusión, entre otras. ii. Una característica importante a tomar en cuenta es que el punto de fusión del material del componente funcional debe de ser mayor al del material fundido que pasará a través de él, para evitar la degradación del material, iii. La fabricación del componente funcional no está limitado a un proceso en especifico, puede ser logrado a través de mecanizado, sinterizado, impresión, fundición y forjado. iv. La forma externa del componente funcional dependerá del diseño provisto por el cliente que solicite la pieza final. v. El componente debe de tener un hueco, preferentemente centrado en su propio cuerpo y concéntrico al cuerpo base; dicho hueco servirá para permitir el flujo del material fundido a través de é1. vi. La forma del hueco del componente deberá de contener al menos una forma que sirva como ancla para evitar el movimiento radial y otra para evitar el movimiento longitudinal, tales como barrenos o escalones respectivamente, aunque no exclusivamente estos. La cantidad y forma de las anclas dependerá de la geometría final del componente funcional. vii. Dependiendo del material fundido, aunque mayormente así deberá de ser, deben evitarse en la manera de lo posible las aristas al momento de fabricar el hueco y las anclas del componente funcional, disminuyendo las mismas con redondees o fileteados, para permitir que el material fundido llene completamente el mismo . viii. Se entiende que los términos "redondo", "circular" asi como "liso" no debe entenderse en un sentido matemático estricto, sino que la forma del hueco puede variar de la forma pura de circulo a causa de tolerancias de producción e imprecisiones técnicas inevitables.
Características importantes a considerar en el proceso de fabricación del árbol de levas : i. Es un proceso para la producción en serie a escala industrial de árboles de levas de fundición con al menos un componente funcional de otro material, económico y capaz de soportar las fuerzas mecánicas en la dirección circunferencial (transmisión de par) y en dirección longitudinal del árbol portador. ii. Se caracteriza porque se coloca uno o varios componentes funcionales por cavidad del o los árboles de levas que conforman el racimo de piezas en el molde inferior, estas cavidades tienen dispuestos alojamientos para los insertos en la posición dimensional deseada tanto en la base como en la tapa del molde que incluye los calentadores de unicel, se cierran las dos mitades que forman el molde y el inserto queda sujeto por el molde en la posición asignada. iii. Se caracteriza porque se vierte dentro del molde material fundido tipo B pos-inoculado, el cual es conducido a las cavidades a través de los canales de llenado, esto permite calentar el o los componentes funcionales externa e internamente, dado que al mismo tiempo se llenan las cavidades del árbol fundido al cruzar por el hueco del o los mismos. El material fundido tipo B es abastecido por al menos dos entradas de alimentación para asegurar una temperatura homogénea dentro de la pieza, Y a partir de este momento inicia la solidificación del árbol fundido del material tipo B, el cual por el calentamiento previo de o los componentes funcionales del material tipo A genera una solidificación lenta y dirigida en estas zonas de interfaz de los materiales A y B, esto asegura que el o los componentes funcionales de material tipo A queden unidos al material fundido tipo B mediante un ensamble mecánico por interferencia, y aunado a la geometría interna del o los componentes funcionales, puedan soportar los torques necesarios para un motor de combustión interna. iv. Se caracteriza porque por una pos-inoculación lograda por el uso de un elemento químico que forma parte de la familia de las tierras raras en cantidad suficiente para lograr el objetivo principal, en combinación con la elevada temperatura lograda del componente funcional que; fue calentado durante el llenado del molde sin llegar al punto de fusión, de formar centros de nucleación en el material fundido tipo B que permitan una solidificación dirigida en el crecimiento controlado, en número y tamaño, de los cristales sólidos propios de la estructura del material fundido tipo B. Esta pos-inoculación se realiza lo más próximo a las cavidades del molde para lograr como resultado la eliminación de carburos de hierro en la interfaz del o los componentes funcionales y el árbol de fundición.
En el proceso de la presente invención, el material fundido preferentemente hierro colado tiene un rango de uso para su vaciado de entre 1390 y 1450 ° C. Para el inoculante el material usado es ferro silicio, enriquecido con elemento estroncio.

Claims

REIVINDICACIONES Habiendo descrito suficientemente mi invención, considero como una novedad y por lo tanto reclamo de mi exclusiva propiedad lo contenido en las siguientes reivindicaciones:
1. Un proceso de fabricación de árbol de levas que comprende las etapas de:
a) Elaborar un molde (23) que se comprende de una parte inferior de molde ( 2 1 ) y una parte superior de molde (22), que servirán para el proceso de fundición, ubicando previamente en su lugar unos calentadores (11a, 1 1b ) necesarios para un o unos componentes funcionales ( 1 ) ;
b) Colocar uno o varios componentes funcionales (1) de un material tipo A en al menos una cavidad (12) necesaria del o los árboles en la parte inferior de molde (21) usada en el proceso de fundición, en donde el uno o varios componentes funcionales (1) tienen la función de ser un inserto de ensamble; en donde el uno o varios componentes funcionales ( 1 ) , comprende un cuerpo de acero con un hueco interno (10) con una geometría adecuada para que pase a través del mismo un material fundido tipo B en un proceso de fundición; medios de agarre mecánico para mantener el material fundido tipo B en el proceso de fundición mecánicamente fusionado a dichos medios de agarre mecánico, para darle agarre mecánico en la dirección longitudinal y circunferencial respecto al cuerpo del árbol de levas; c) Verter dentro del molde cerrado (23) el material fundido (M2) del tipo B, el cual es conducido a las cavidades (12) a través de canales de llenado; al momento de entrar en contacto con los calentadores (11a, 11b) , estos se desalojan del molde por pirólisis y asi permiten que el material fundido (M2) tipo B entre en contacto con el o los componentes funcionales (1) , permitiendo calentar el o los componentes funcionales (1) externamente y al mismo tiempo llenar las cavidades que darán forma al árbol de levas fundido del material tipo B, tomando en cuenta que el material fundido (M2) tipo B cruza por los huecos internos (10) del o los componentes funcionales (1) del material tipo A;
d) Esperar un tiempo de solidificación del material tipo B, el cual tiene la forma del árbol de levas (30) .
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque en la etapa a) , el molde se elaborará de manera tradicional al proceso.
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque en la etapa a) , los calentadores (11a, 11b) se colocan desde el momento de elaborar el molde .
El proceso de fabricación de árbol de levas de conformidad con la reivindicación anterior, caracterizado porque los calentadores (11a, 11b) son de unicel.
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque en la etapa h) , las cavidades (12) son el o los lugares donde irán los componentes funcionales (1) y son formas preformadas en el molde, así, tienen dispuestos alojamientos para el o los componentes funcionales (1) en la posición final deseada tanto en la parte inferior de molde (21) como en la parte superior de molde ( 22) del molde, posteriormente se cierran tanto la parte inferior de molde (21} como la parte superior de molde 2(2} que forman el molde (23) y el o los componentes funcionales ( 1) quedan sujetos por el molde en la posición asignada.
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque en la etapa d) , un calentamiento previo del o los componentes funcionales (1) del material tipo A genera una solidificación lenta y dirigida en estas zonas de interfaz de los materiales tipo A y B, esto asegura que el o los componentes funcionales (1) del material A queden unidos al material del tipo B mediante un ensamble mecánico por interferencia, y aunado a la geometría interna del o los componentes funcionales (1) , que los mismos soporten los torques requeridos en el desempeño de su función en un motor de combustión interna .
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque el componente funcional en la etapa b) está hecho de material fundido tipo B preferentemente hierro, para ser unido al árbol fabricado por fundición durante el proceso de solidificación, y permitir así la correcta sujeción para la transmisión de par y el agarre longitudinal.
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque los medios de agarre mecánico del componente funcional en la etapa b) , es un hueco interno (10) con geometría que consiste en un barreno pasado a través del componente (1), en donde, a partir de dicho barreno se generan dos escalones (2a, 2b) , partiendo del centro de la pista y hacia la parte externa de la misma, uno a cada lado y de un diámetro mayor, los cuales, servirán para darle agarre mecánico en la dirección longitudinal con relación a un cuerpo del árbol de levas.
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque los medios de agarre mecánico del componente funcional en la etapa b) , a lo largo de unas circunferencias (2c) generadas por el barreno y los escalones (2a, 2b) , se genera al menos un barreno (3) de menor diámetro, donde su eje central horizontal (3a) es tangente a la circunferencia (2c) generada por los escalones (2a, 2b) , en donde dicho barreno (3) servirá para darle agarre mecánico en la dirección circunferencial con relación a un cuerpo del árbol de levas ,
El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque se presenta una pos-inoculación lograda por el uso de un elemento químico que forma parte de la familia de las tierras raras en cantidad suficiente para lograr el objetivo principal, en combinación con la elevada temperatura lograda del componente funcional que fue calentado durante el llenado del molde sin llegar al punto de fusión, de formar centros de nucleación en el material fundido tipo B que permitan una solidificación dirigida en el crecimiento controlado, en número y tamaño, de los cristales sólidos propios de la estructura del material fundido tipo B, en donde, dicha pos- inoculación se realiza lo más próximo a unas cavidades del molde para lograr como resultado la eliminación de carburos de hierro en la interfaz del o los componentes funcionales y el árbol de fundición.
11. El proceso de fabricación de árbol de levas de conformidad con la reivindicación 1, caracterizado porque el material fundido preferentemente es hierro colado con un rango de uso para su vaciado de entre 1390 y 1450 ° C, en donde el material usado como inoculante es ferro silicio, enriquecido con elemento estroncio.
12. Un árbol de levas (30) con componente funcional como inserto de ensamble, que comprende:
un cuerpo principal (30a) de material fundido (M2) del tipo B; ai menos un componente funcional (1) de un material tipo A, insertado en el cuerpo principal (30a) , comprendiendo dicho componente funcional (1) , un cuerpo de acero con un hueco interno (10) con una geometría adecuada para que pase a través del mismo un material fundido tipo B en un proceso de fundición;
medios de agarre mecánico para mantener el material fundido tipo B en el proceso de fundición mecánicamente fusionado a dichos medios de agarre mecánico, para darle agarre mecánico en la dirección longitudinal y circunferencial respecto al cuerpo (30a) del árbol de levas ( 30 ) .
13. El árbol de levas (30) con componente funcional como inserto de ensamble, de conformidad con la reivindicación 12, caracterizado porque el material fundido tipo B es preferentemente hierro, para ser unido al árbol fabricado por fundición durante el proceso de solidificación, y permitir asi la correcta sujeción para la transmisión de par y el agarre longitudinal.
14. El árbol de levas (30) con componente funcional como inserto de ensamble, de conformidad con la reivindicación 12, caracterizado porque los medios de agarre mecánico es un hueco interno (10) con geometría que consiste en un barreno pasado a través del componente (1), en donde, a partir de dicho barreno se generan dos escalones (2a, 2b) , partiendo del centro de la pista y hacia la parte externa de la misma, uno a cada lado y de un diámetro mayor, los cuales, servirán para darle agarre mecánico en la dirección longitudinal con relación a un cuerpo del árbol de levas.
15. El árbol de levas (30) con componente funcional como inserto de ensamble, de conformidad con la reivindicación 12, caracterizado porque a lo largo de unas circunferencias (2c) generadas por el barreno y los escalones (2a, 2b) , se genera al menos un barreno (3) de menor diámetro, donde su eje central horizontal (3a) es tangente a la circunferencia (2c) generada por los escalones (2a, 2b) , en donde dicho barreno (3) servirá para darle agarre mecánico en la dirección circunferencial con relación a un cuerpo del árbol de levas .
16. Un componente funcional como inserto de ensamble para la fabricación de un árbol de levas (30), que comprende:
un cuerpo de acero con un hueco interno (10) con una geometría adecuada para que pase a través del mismo un material fundido tipo B en un proceso de fundición;
medios de agarre mecánico para mantener el material fundido tipo B en el proceso de fundición mecánicamente fusionado a dichos medios de agarre mecánico, para darle agarre mecánico en la dirección longitudinal y circunferencial respecto al cuerpo (30a) del árbol de levas (30) .
17. El componente funcional como inserto de ensamble para la fabricación de un árbol de levas, de conformidad con la reivindicación 16, caracterizado porque el material fundido tipo B es preferentemente hierro, para ser unido al árbol fabricado por fundición durante el proceso de solidificación, y permitir así la correcta sujeción para la transmisión de par y el agarre longitudinal .
18. El componente funcional como inserto de ensamble para la fabricación de un árbol de levas, de conformidad con la reivindicación 16, caracterizado porque los medios de agarre mecánico es un hueco interno (10) con geometría que consiste en un barreno pasado a través del componente (1), en donde, a partir de dicho barreno se generan dos escalones (2a, 2b) , partiendo del centro de la pista y hacia la parte externa de la misma, uno a cada lado y de un diámetro mayor, los cuales, servirán para darle agarre mecánico en la dirección longitudinal con relación a un cuerpo del árbol de levas .
19. El componente funcional como inserto de ensamble para la fabricación de un árbol de levas, de conformidad con la reivindicación anterior, caracterizado porque a lo largo de unas circunferencias (2c) generadas por el barreno y los escalones (2a, 2b) , se genera al menos un barreno (35 de menor diámetro, donde su eje central horizontal (3a) es tangente a la circunferencia (2c) generada por los escalones (2a, 2b), en donde dicho barreno (3) servirá para darle agarre mecánico en la dirección circunferencial con relación a un cuerpo del árbol de levas.
PCT/MX2017/000096 2016-08-23 2017-08-22 Proceso de fabricación de árbol de levas con componente funcional como inserto de ensamble y el árbol de levas obtenido con el mismo WO2018038591A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780050462.6A CN109562444B (zh) 2016-08-23 2017-08-22 凸轮轴的制造过程和使用它获得的凸轮轴
DE112017004231.3T DE112017004231B4 (de) 2016-08-23 2017-08-22 Herstellungsverfahren einer Nockenwelle mit Funktionsbauteil als Einsatz einer Baugruppe und die damit erhaltene Nockenwelle
US16/316,376 US20190299280A1 (en) 2016-08-23 2017-08-22 Manufacturing process of camshaft with functional component as insert of assembly and the camshaft obtained with it
US17/350,886 US20210316360A1 (en) 2016-08-23 2021-06-17 Manufacturing process of camshaft with functional component as insert of assembly and the camshaft obtained with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2016/010930 2016-08-23
MX2016010930A MX2016010930A (es) 2016-08-23 2016-08-23 Proceso de fabricacion de arbol de levas con componente funcional como inserto de ensamble y el arbol de levas obtenido con el mismo.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/316,376 A-371-Of-International US20190299280A1 (en) 2016-08-23 2017-08-22 Manufacturing process of camshaft with functional component as insert of assembly and the camshaft obtained with it
US17/350,886 Division US20210316360A1 (en) 2016-08-23 2021-06-17 Manufacturing process of camshaft with functional component as insert of assembly and the camshaft obtained with it

Publications (1)

Publication Number Publication Date
WO2018038591A1 true WO2018038591A1 (es) 2018-03-01

Family

ID=59067412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000096 WO2018038591A1 (es) 2016-08-23 2017-08-22 Proceso de fabricación de árbol de levas con componente funcional como inserto de ensamble y el árbol de levas obtenido con el mismo

Country Status (5)

Country Link
US (2) US20190299280A1 (es)
CN (1) CN109562444B (es)
DE (1) DE112017004231B4 (es)
MX (1) MX2016010930A (es)
WO (1) WO2018038591A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021213711A1 (de) 2021-12-02 2023-06-07 Mahle International Gmbh Welle für einen Ventiltrieb

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296935A (ja) * 1986-06-16 1987-12-24 Honda Motor Co Ltd 金型による鋳物の製造方法
DE4004505A1 (de) * 1990-02-14 1991-08-22 Bayerische Motoren Werke Ag Verfahren zum herstellen einer nockenwelle
FR2697766A1 (fr) * 1992-11-06 1994-05-13 Tech Ind Fonderie Centre Procédé pour maîtriser, dans un moule de fonderie contre au moins un refroidisseur métallique, la trempe d'une pièce en fonte lamellaire, telle qu'un arbre à cames, un cylindre de laminoir ou autre.
GB2295784A (en) * 1994-12-05 1996-06-12 Riken Kk Casting process including a cast-in insert
WO2011116073A2 (en) * 2010-03-19 2011-09-22 Textron Inc. Camshaft

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE665129C (de) * 1936-11-08 1938-09-17 Auto Union A G Gusseiserne Wellen
DE1108861B (de) * 1958-04-12 1961-06-15 Harold F Shroyer Giessverfahren unter Verwendung eines ohne merkliche Rueckstaende verbrennbaren Modells
DE3205952A1 (de) * 1981-09-12 1983-03-31 J. Wizemann Gmbh U. Co, 7000 Stuttgart Nockenwelle
JPS61115660A (ja) * 1984-11-13 1986-06-03 Nissan Motor Co Ltd カムシャフトの製造方法
GB2193131B (en) * 1986-07-29 1990-07-11 Honda Motor Co Ltd Method of casting on an insert and casting mold for effecting such method
FR2635534B1 (fr) * 1988-08-12 1992-04-03 Pechiney Electrometallurgie Procede d'obtention de fontes a graphite spheroidal
JPH0699268A (ja) * 1992-09-17 1994-04-12 Mitsubishi Motors Corp 所望部品と鋳鉄との複合部品構造
GB9600807D0 (en) * 1996-01-16 1996-03-20 Foseco Int Composition for inoculating low sulphur grey iron
DE19645112A1 (de) * 1996-11-01 1998-05-14 Roland Klaar Gebaute Nockenwelle
DE19833594A1 (de) * 1998-07-25 2000-01-27 Mwp Mahle J Wizemann Pleuco Gm Nockenwelle aus Stahlguß
CN1108211C (zh) * 2000-09-14 2003-05-14 四川大学 铁基表面复合材料凸轮轴及其制造方法
US7270171B2 (en) * 2003-05-27 2007-09-18 Edgardo Campomanes Evaporative foam risers with exothermic topping
DE102005008015A1 (de) * 2005-02-22 2006-08-31 Bayerische Motoren Werke Ag Verfahren zur Herstellung einer gebauten Getriebewelle sowie gebaute Getriebewelle, die im Schleudergussverfahren hergestellt ist
US20060266492A1 (en) * 2005-05-25 2006-11-30 World Wild Enterprise Co., Ltd. Method for manufacturing crankshafts
DE102006026235B4 (de) * 2006-06-06 2008-12-04 Skw Giesserei Gmbh Verfahren zur Herstellung von Formkörpern und deren Verwendung
DE102007014352A1 (de) * 2007-03-26 2008-10-02 Robert Bosch Gmbh Verfahren zum Gießen eines einen Stator formschlüssig und spielfrei zumindest bereichsweise aufnehmenden Gehäuseelements für eine elektrische Maschine und entsprechende elektrische Maschine
DE102007023087B4 (de) * 2007-05-16 2017-03-02 Daimler Ag Verfahren zur Herstellung eines Nockens
DE102009025023A1 (de) * 2009-06-10 2010-12-16 Neumayer Tekfor Holding Gmbh Verfahren zur Herstellung einer Nockenwelle und entsprechende Nockenwelle
DE102010020682A1 (de) * 2010-05-15 2011-11-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Metallgussteil und Metallgießverfahren
DE102011051480B4 (de) * 2011-06-30 2014-11-20 Thyssenkrupp Presta Teccenter Ag Nockenwelle mit axial verschiebbarem Nockenpaket

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296935A (ja) * 1986-06-16 1987-12-24 Honda Motor Co Ltd 金型による鋳物の製造方法
DE4004505A1 (de) * 1990-02-14 1991-08-22 Bayerische Motoren Werke Ag Verfahren zum herstellen einer nockenwelle
FR2697766A1 (fr) * 1992-11-06 1994-05-13 Tech Ind Fonderie Centre Procédé pour maîtriser, dans un moule de fonderie contre au moins un refroidisseur métallique, la trempe d'une pièce en fonte lamellaire, telle qu'un arbre à cames, un cylindre de laminoir ou autre.
GB2295784A (en) * 1994-12-05 1996-06-12 Riken Kk Casting process including a cast-in insert
WO2011116073A2 (en) * 2010-03-19 2011-09-22 Textron Inc. Camshaft

Also Published As

Publication number Publication date
CN109562444A (zh) 2019-04-02
CN109562444B (zh) 2021-05-18
DE112017004231B4 (de) 2021-07-01
MX2016010930A (es) 2017-04-03
DE112017004231T5 (de) 2019-05-09
US20210316360A1 (en) 2021-10-14
US20190299280A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
ES2323097T3 (es) Procedimiento para la fabricacion de un componente fundido con un tubo fundido dentro del mismo.
US5072771A (en) Method and apparatus for casting a metal article
BR102014022376A2 (pt) método e dispositivo para produzir um componente de metal com o uso de uma ferramenta de fundir e de formar
KR101962525B1 (ko) 저압이나 중력주조법을 이용한 실린더 크랭크케이스 생산장치
ES2655451T5 (es) Inserto de mazarota, elemento de moldeo para el inserto de mazarota y procedimiento para colar metal usando los mismos
JP6408557B2 (ja) 単結晶鋳造用の型
ES2046052T3 (es) Procedimiento de colada complejo.
WO2018038591A1 (es) Proceso de fabricación de árbol de levas con componente funcional como inserto de ensamble y el árbol de levas obtenido con el mismo
PT890020E (pt) Processo para o fabrico de cabecas de cilindro para motores de combustao interna
US4905752A (en) Method of casting a metal article
US4809764A (en) Method of casting a metal article
BRPI0911036B1 (pt) Anel de gargalo para moldar um acabamento de gargalo de recipiente de vidro e método de fabricação do mesmo
ES2270102T3 (es) Molde y procedimiento de moldeo de piezas de fundicion, en particular de bloques de motor, de aleacion ligera.
CN209935807U (zh) 一种用于铸造发动机缸体的砂模
CN105033223B (zh) 一种金属铝环低压铸造用浇注系统
US2391615A (en) Method of making heat interchange apparatus
JPS62176637A (ja) 中空鋳物の製造方法
US2314342A (en) Producing artillery projectile bodies
US1257493A (en) Method of casting furnace fire-pots.
BR112014016642B1 (pt) Roda ferroviária de aço fundido
CN110423855B (zh) 一种汽车曲轴的铸造方法
JP5726985B2 (ja) 鋳造用金型
JPS62296935A (ja) 金型による鋳物の製造方法
US1834996A (en) Permanent mold
JPH031094B2 (es)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17821734

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17821734

Country of ref document: EP

Kind code of ref document: A1