WO2018038299A1 - 방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템 - Google Patents

방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템 Download PDF

Info

Publication number
WO2018038299A1
WO2018038299A1 PCT/KR2016/009622 KR2016009622W WO2018038299A1 WO 2018038299 A1 WO2018038299 A1 WO 2018038299A1 KR 2016009622 W KR2016009622 W KR 2016009622W WO 2018038299 A1 WO2018038299 A1 WO 2018038299A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
radiation
region
light reflector
Prior art date
Application number
PCT/KR2016/009622
Other languages
English (en)
French (fr)
Inventor
김태호
강성희
김동수
조민석
김경현
신동석
서태석
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to US16/327,710 priority Critical patent/US11065474B2/en
Publication of WO2018038299A1 publication Critical patent/WO2018038299A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/589Setting distance between source unit and patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1056Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1059Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using cameras imaging the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1068Gating the beam as a function of a physiological signal

Definitions

  • the present invention relates to a beam field-based patient alignment method and system using a light field and a body-contact light reflector. Specifically, in the present invention, after attaching a reflector having the same size and shape as the beam field set in the treatment plan to the patient's table to be incident, the beam field area irradiated from the irradiation head is attached to the patient's table. The beam field reflector area is reflected, and the reflected beam field is continuously acquired by using a camera-based imaging device.
  • the present invention relates to a method and apparatus for quantitatively comparing and analyzing whether or not an incident is accurately entered into a body table.
  • Radiation therapy uses high-energy waves, such as X-rays, gamma rays, or high-energy particles, such as electron beams or protons, to damage or destroy target tissues, thereby delaying, preventing, or even extinguishing the growth of malignant tissues.
  • high-energy waves such as X-rays, gamma rays, or high-energy particles, such as electron beams or protons
  • Radiation therapy is used to treat not only cancer, but also benign tumors, medical diseases, and some skin diseases.
  • Radiation therapy is not only used to treat tumors on their own, but is also used in conjunction with other surgical procedures to treat localized areas where the tumor is large and invasive, which makes it difficult or difficult to remove. It can be used to make surgical procedures easier or to destroy malignant cells left after surgery.
  • Extracorporeal radiation therapy devices that irradiate radiation from outside may be classified into low energy X-ray therapy devices, radioisotope therapy devices, linear accelerators, particle accelerators, and the like, depending on the method of generating high energy particles or radiation.
  • Low-energy X-ray treatment devices have been used for the treatment of skin diseases and heart using X-ray generators, but are rarely used at present.
  • Radioisotope treatment devices utilize gamma rays that occur in radioisotopes, such as cobalt 60 (Co-60). It uses somewhat stronger energy gamma rays than low-energy X-ray therapy devices, but its use is gradually decreasing.
  • Co-60 cobalt 60
  • Linear accelerators are used as a standard for radiation therapy, capable of X-ray and electron beam output, delivering a variety of energy, and enabling high dose rates and beam-forming.
  • Particle accelerators have a structure that transports the neutron or proton particles accelerated by the cyclotron accelerator through the beam transport tube and emits them to the desired area at the nozzle.
  • the dose can be minimized and energy can be concentrated only in the deep tumors.
  • CT computerized tomography
  • the most famous diagnostic device using radiation detects the intensity of X-rays that enter X-rays into biological tissues and pass through biological tissues from the opposite side while rotating around the biological tissues.
  • a tomography technique is performed by reconstructing a tomography image based on data.
  • such a medical radiation device intentionally changes the position of the patient, or the patient unconsciously moves the body, the less accurate the diagnosis, the more effective the treatment, the higher the radiation dose absorbed by the normal tissue around the lesion, the time and cost Will increase.
  • the medical radiation apparatus has been developed in such a way that the radiation head and the detector are simply faced at fixed positions, and the radiation head and the detector are gradually moved around the patient.
  • the setup should be based on the location of the tumor to deliver accurate doses to the tumor.
  • the clinically used beam field-based patient alignment method does not have a quantitative evaluation method and commercially available monitoring equipment, and is only performed based on the experience and know-how of a radiologist.
  • An object of the present invention is to provide a user with a beam field-based patient alignment method and system using a light field and a body-contact light reflector.
  • the beam field area irradiated from the irradiation head is attached to the patient's table.
  • the beam field reflector area is reflected, and the reflected beam field is continuously acquired by using a camera-based imaging device.
  • an object alignment system using a light reflector including: a user input unit configured to preset a first area to irradiate an object with radiation; A display unit displaying information on the first area; A radiation irradiator for irradiating the radiation to the first region when a light reflector formed corresponding to the shape of the first region is attached to the first region; A light irradiator radiating light in the same direction as the radiation to the first region; And a camera photographing an area of the light reflecting body that emits light when the light reflecting body emits light using the light. And controlling the display unit to additionally display an area of the light reflecting body that is photographed by the camera, and whether the radiation is being irradiated to the first area using whether the area of the light reflector is included in the first area.
  • the control unit may determine whether or not.
  • the radiation is the first in the step of aligning the object to align the object to perform a treatment by irradiating the radiation to the object in order to plan the irradiation of the radiation It can be determined whether or not the area is being irradiated.
  • the controller may stop the irradiation operation of the radiation irradiation unit.
  • the camera is attached to the radiation irradiator as a singular unit, and the controller controls whether the radiation is irradiated to the first region using a change in the area of the light reflector region included in the first region. Can be determined.
  • the camera is a plurality
  • the control unit through the plurality of images obtained by using the plurality of cameras, the three-dimensional translation and rotation of the light reflector region with respect to the first region (rotation) ) May be determined, and it may be determined whether the radiation is being irradiated to the first area based on the change.
  • the apparatus may further include a sensor configured to detect a respiratory signal related to the respiration of the object.
  • the controller may stop the irradiation operation of the radiation irradiation unit.
  • the object alignment method using a light reflector which is another aspect of the present invention for achieving the above technical problem, the first step of aligning the object; A first step 1-2 of presetting a first area to be irradiated with respect to the object; Displaying the information on the first area in steps 1-3; A first to fourth step of attaching a light reflector formed in correspondence with the shape of the first region in the first region; A first to fifth step of irradiating light in the same direction as the direction in which the radiation is to be irradiated to the first region; 1-6 step of the light reflector to emit light using the light; First to seventh steps of additionally displaying an area of the light reflecting body that the camera photographs; And establishing a radiation plan for the object by using whether the area of the light reflector is included in the first area.
  • step 2-1 to irradiate the radiation to the first area
  • step 2-2 of irradiating light in the same direction as the radiation to the first area
  • a second step of the light reflector emitting light using the light A second step of additionally displaying an area of the light reflecting body that the camera photographs; And determining whether the radiation is being irradiated to the first area by using whether the area of the light reflector is included in the first area.
  • the method may further include steps 2-7 to stop the irradiation operation when the area of the light reflector deviates from the first area by more than a preset ratio after the second to sixth steps.
  • steps 2 to 5 may include changing a width of the light reflector area included in the first area, a three-dimensional translation and rotation change of the light reflector area with respect to the first area. Using at least one, it may be determined whether the radiation is being irradiated to the first area.
  • the second to seventh steps of detecting a breathing signal related to the breathing of the object After the second to sixth steps, the second to seventh steps of detecting a breathing signal related to the breathing of the object; And step 2-8 of stopping the irradiation operation when the change of the breathing signal is out of a preset range.
  • the present invention can provide a user with a beam field-based patient alignment method and system using a light field and a body-contact light reflector.
  • the beam field area irradiated from the irradiation head is attached to the patient's table.
  • the beam field reflector area is reflected, and the reflected beam field is continuously acquired by using a camera-based imaging device.
  • a user may be provided with a method and apparatus for quantitatively comparing and analyzing whether or not an incident is accurately entered into a body table.
  • the present invention can be identified in real time as well as the alignment error before radiation treatment can be a great help to improve the results of radiation therapy.
  • the present invention is very costly to develop, in addition to the clinical advantages, there is little increase in the amount of work and treatment time given to the user in the actual clinical application is considered to be very advantageous for commercialization.
  • FIG. 1 illustrates a specific example of a medical radiation apparatus generally used.
  • Figure 2 shows a specific example of the image enhancement device of the configuration of a generally used medical radiation device.
  • Figure 3 shows a specific example of the body surface contact type light reflector that can be applied to the present invention.
  • FIG. 5 shows a specific example of the reflection area of the body-contact light reflector leaving the planned beam field area based on the structure described with reference to FIG. 4.
  • FIG. 6 is a view for explaining a method for monitoring the change in the area of the reflection area using a single camera in accordance with the present invention.
  • FIG. 7A and 7B are views for explaining a three-dimensional coordinate movement and rotation movement change monitoring method of the patient body itself attached to the light reflector using two cameras in accordance with the present invention.
  • FIG. 8 is a view for explaining the respiratory synchrotherapy through the monitoring of the light reflection area in relation to the present invention.
  • FIG. 9 is a flowchart illustrating a method of maintaining accurate patient alignment before radiation treatment and patient alignment during radiation treatment in relation to the present invention.
  • FIG. 1 illustrates a specific example of a medical radiographic apparatus generally used
  • FIG. 2 illustrates a specific example of an image enhancing apparatus in the configuration of a medical radiographic apparatus generally used.
  • the medical radiation apparatus includes an image intensifier 10 for acquiring an image and a display apparatus 20 for displaying the acquired image to a user or an operator.
  • the image augmentation apparatus 10 includes a body portion 11, a C-arm gantry 12, a therapeutic radiation unit 13, a diagnostic radiation emission unit 14, and a diagnostic It may comprise a radiation detection unit 15.
  • the image augmentation apparatus 10 may further include a bed unit 101, a control unit 102, and a reading unit 103 in which the patient is to be positioned.
  • the body portion 11 provides mechanical balance and support to the image augmentation apparatus 10, and also provides a way for the electromagnetic energy or high energy particles to the outside required by the units 13, 14 and 15. It can provide a delivery route.
  • the body portion 11 stands up from the floor on which the image augmentation apparatus 10 is placed to at least a plane on which isocenter X is to be located, where C- of the image augmentation apparatus 10 is upright.
  • the weight of the arm gantry 12 may be supported.
  • various well-known support structures such as a counter-balancing structure, may be employed to reduce the risk of torsion, error or rollover due to movement of the center of gravity during driving.
  • Isometric centers are locations where the radiation emitted from various locations is delivered intensively and may be selected to match specific areas on the body that need treatment or diagnosis. Therefore, it can be said that the plane in which the iso-central point is located refers to a conceptual plane determined by the position of the body lesion of the lying patient.
  • Body portion 11 may have a base 111 that can move the wheel or move on a predetermined track installed on the floor to move the image augmentation apparatus 10 to the desired position.
  • the body portion 11 is a fixing means 112 installed at a position in contact with the arc center of curvature of the C-arm 121 of the C-arm gantry 12, the fixing means 122 of the C-arm gantry 12 ) Can be mechanically fastened.
  • the fixing means 122 of the C-arm gantry 12 with respect to the fixing means 112 of the body portion 11 may be rotatably fixed.
  • the body portion 11 may further comprise rotational drive means 113 such as, for example, a motor and a gear.
  • the C-arm gantry 12 may comprise a C-arm 121 and a fixing means 122.
  • the C-arm 121 is a curved C-shaped arc shape with one side open, and specifically, for example, when the C-arm 121 is vertically erected and radiated, the C-arm 121 is symmetric with respect to the plane where the iso-center point is to be located. It is a phosphorus shape and it is a shape open toward an iso dose center point.
  • the fixing means 122 of the C-arm gantry 12 may mechanically couple at least a portion of the outer surface of the C-arm 121 to the fixing means 112 of the body portion 11.
  • the fixing means 122 of the C-arm gantry 12 may be engaged with the fixing means 112 of the body portion 11 at the outer side of the arc-curved center position of the C-arm 121. Furthermore, the fixing means 122 of the C-arm gantry 12 may be pivotally pivoted relative to the fixing means 112 of the body portion 11 to be rotatable. At this time, the fixing means 122 of the C-arm gantry 12 may be fastened to be rotatable with respect to the body portion 11 about an axis that connects a portion fixed to the body portion 11 and an isocenter point.
  • the therapeutic radiation unit 13 may support a therapeutic radiation emitting head 132 that emits therapeutic radiation at the head support 131. At this time, the therapeutic radiation unit 13, as indicated by the control unit 102 according to a predetermined dose plan, the dose of therapeutic radiation emitted from the therapeutic radiation emitting head 132 isoline
  • the therapeutic radiation emitting head 131 may be positioned at a particular location and angle on the medial side of the C-arm 121 that may effectively act on the subject tissue at the dose center point.
  • the therapeutic radiation emitting head 132 may emit X-rays, gamma rays, high energy electrons, high energy protons or other high energy particles, depending on the embodiment.
  • the therapeutic radiation emitting head 132 may comprise any one of an X-ray generator, a radioisotope source, or a linear accelerator.
  • the therapeutic radiation head 132 may receive and emit a high energy particle beam generated by accelerating in a particle accelerator installed outside the image augmentation apparatus 10.
  • the therapeutic radiation emitting head 132 may be implemented as a multi-leaf collimator (MLC). Using a multi-leaf collimator, the therapeutic radiation emitting head 132 is capable of beam shaping internally, thus enabling more efficient radiation energy transfer.
  • MLC multi-leaf collimator
  • the image augmentation apparatus 10 may further include a diagnostic radiation source unit 14 and a diagnostic radiation detection unit 15 mounted to face each other with an isocenter point interposed therebetween on the inner side of the C-arm 121.
  • the diagnostic radiation source unit 14 may comprise an X-ray source
  • the diagnostic radiation detection unit 15 may comprise an X-ray detection sensor
  • the reading unit 103 may constitute one CT scanner.
  • the diagnostic radiation source unit 14 may include at least one camera.
  • the camera here can be used to monitor the change in the area of the reflection area in comparing the projected beam field area with the reflection area of the body-contact light reflector.
  • the plurality of cameras may be used to monitor the three-dimensional coordinate movement and rotational movement change of the patient body itself with the light reflector attached.
  • the bed unit 160 may lie down on the patient, and in some embodiments, may have wheels or tracks in contact with the floor.
  • the control unit 102 controls the driving of the fixing means 112 and the rotation driving means 113 of the body portion 11, the diagnostic radiation source direction and the intensity of the diagnostic radiation source unit 14 according to the diagnostic plan input in advance. Or, according to the dose plan input in advance, the driving of the fixing means 112 and the rotation driving means 113 of the body portion 11, the position, angle, direction, beam shaping of the therapeutic radiation unit 13 can be controlled. have.
  • the reading unit 103 may reconstruct a CT image by analyzing a signal detected by the diagnostic radiation detecting unit 15.
  • the setup should be based on the location of the tumor to deliver accurate doses to the tumor.
  • the clinically used beam field-based patient alignment method does not have a quantitative evaluation method and commercially available monitoring equipment, and is only performed based on the experience and know-how of a radiologist.
  • a beam field-based patient alignment method and system using a light field and a body surface-contact light reflector to provide a user.
  • the beam field area irradiated from the irradiation head is attached to the patient's table.
  • the beam field reflector area is reflected, and the reflected beam field is continuously acquired by using a camera-based imaging device. It is intended to provide a user with a method and apparatus for quantitatively comparing and analyzing whether or not a person is accurately incident on a body table.
  • the light reflector may include an object emitting light by light.
  • the light provided to the light reflector may be separately provided to the radiation head 14 or may be provided to the at least one camera 33.
  • a light reflector that is in close contact with the body surface of the patient to be treated.
  • Figure 3 shows a specific example of the body surface contact type light reflector that can be applied to the present invention.
  • 3 (c) shows a specific state in which a light reflector is attached to a plurality of mechanisms, and light is emitted by projecting light.
  • 3 (d) shows a state in which a light reflector is attached to a specific region of the radiation equipment and the specific region emits light by irradiating light.
  • 3 (e) shows a specific state in which a body region of a specific patient emits light by irradiating light after the light reflector is closely attached or applied to a part of the patient's body.
  • the area to be irradiated with radiation may be set in advance, and a light reflector having a shape corresponding to the set area may be attached to the body of the patient.
  • light may be projected in the same direction as the irradiation head 14 to which the radiation is projected, thereby allowing the light reflector to emit light.
  • the display apparatus 20 may confirm in real time through the display apparatus 20 whether the area to which the radiation is to be irradiated matches the area of the light reflector emitting light.
  • the radiation treatment may be stopped.
  • the determination of whether the area to be irradiated with the area of the light reflector that emits light may be performed before and during the radiation treatment.
  • Pretreatment setup prior to radiation therapy and maintaining the accuracy of intra-fraction patient setup during radiation therapy are one of the most important factors that influence the outcome of radiation therapy.
  • the advantage is that the alignment of the patient in the stages and treatment steps can be performed accurately.
  • 4A illustrates a specific example of a region to which predetermined radiation is to be irradiated.
  • Figure 4 (b) shows the application of a light reflector having a shape corresponding to the region to be irradiated with the radiation of Figure 4 (a) to a portion of the body.
  • (c) of FIG. 4 shows a state in which the region of the light reflection emitted through the irradiated light and the region to be irradiated do not coincide with each other.
  • Figure 4 (d) shows a specific appearance of adjusting the area to be irradiated and the area of the light reflection and the radiation emitted through the light irradiated through the camera.
  • FIG. 5 illustrates a specific example in which the reflection area of the body-contact light reflector leaves the planned beam field area based on the structure described with reference to FIG. 4.
  • a region to which radiation is to be irradiated is referred to as a radiation treatment region 31, and a region of a light reflector that emits light through irradiated light is referred to as a light reflector region 32.
  • a radiation treatment region 31 preset by a user is illustrated, and a light reflector region 32 having a shape corresponding thereto is illustrated.
  • the light reflector region 32 may be formed to be exactly the same as the area of the radiation treatment region 31 or to have a smaller area.
  • FIG. 5B shows a scene in which the light reflector region 32 includes only 15% of the radiation treatment region 31 due to the change of the patient's movement and the surrounding conditions. In this case, the radiation treatment is stopped. desirable.
  • (c) of FIG. 5 illustrates a scene in which the light reflector region 32 includes only 20% of the radiation treatment region 31 due to the change of the patient's movement and ambient conditions, and in this case, the radiation treatment is stopped. It is desirable to.
  • FIG. 5 illustrates a scene in which the light reflector region 32 includes only 50% of the radiation treatment region 31 due to the change of the patient's movement and surrounding conditions, and in this case, the radiation treatment is stopped. It is desirable to.
  • the light reflector region 32 matches more than 80% of the radiation treatment region 31, it is possible to adjust the light reflector region 32 to be included in the radiation treatment region 31 through alignment of the patient and the equipment. Do.
  • Determination of the extent to which the light reflector region 32 is included in the radiation treatment region 31 may be performed by Equation 1 below.
  • FIG. 6 is a view for explaining a method for monitoring the change in the area of the reflection area using a single camera in accordance with the present invention.
  • one camera 33 according to the present invention may be used.
  • the camera of FIG. 6A may be formed in a structure attached to the radiation head 14, thereby acquiring an image of the light reflector region 32.
  • one camera 33 is attached to the radiation head (gantry head) 14, and as shown in Fig. 6 (b), the light through a method of monitoring the change in the area of the beam's eye view reflection area It may be determined whether the reflector area 32 is included in the radiation treatment area 31.
  • FIG. 6C illustrates a representative example of driving of the beam's eye view-based fuselage monitoring software.
  • FIG. 7A and 7B are views for explaining a three-dimensional coordinate movement and rotation movement change monitoring method of the patient body itself attached to the light reflector using two cameras in accordance with the present invention.
  • FIG. 7A two cameras 33a and 33b are shown that can be applied to the present invention.
  • the two cameras 33a and 33b do not need to be attached to the radiation head 14 unlike the one camera 30 in FIG. 6a, and detect the change in dimensional coordinate movement and rotation movement based on a specific criterion. To be spaced apart a predetermined distance in order to.
  • FIG. 7B (a) a detailed view of a reference for determining whether the light reflector region 32 is included in the radiation treatment region 31 is shown.
  • FIG. 7B (b) shows a specific state of detecting a change in three-dimensional coordinate translation of the patient's body on which the light reflector is attached using the two cameras 33a and 33b described in FIG. 7A.
  • FIG. 7B (c) shows a specific state of detecting a change in rotation of the patient's body to which the light reflector is attached using the two cameras 33a and 33b described with reference to FIG. 7A.
  • FIG. 7B (d) simultaneously monitors the change of the three-dimensional coordinate translation and the rotation of the patient body with the light reflector attached by using the two cameras 33a and 33b described in FIG. 7A. The specific appearance is shown.
  • FIG. 8 is a view for explaining the respiratory synchrotherapy through the monitoring of the light reflection area in relation to the present invention.
  • a method of monitoring the patient's breathing, determining that the light reflector region 32 has left the radiation treatment region 31 when the breathing signal is out of a specific setup range, and stopping the radiation treatment may be additionally used.
  • FIG. 9 is a flowchart illustrating a method of maintaining accurate patient alignment before radiation treatment and patient alignment during radiation treatment in relation to the present invention.
  • stage of patient alignment prior to treatment based on the line of S3 is shown at the top, and the stage of patient alignment monitoring during treatment is shown at the bottom.
  • the method of determining whether the light reflector region 32 leaves the radiation treatment region 31 in both the pre-treatment patient alignment step and the patient alignment monitoring step during treatment may be applied.
  • a reflection area monitoring start step is performed (S100).
  • step S100 whether or not the light reflector region 32 is mapped to the radiation treatment region 31 may be checked and corrected in step S100 through the method described with reference to FIG. 7B.
  • step S140 of checking and correcting patient alignment accuracy is performed, and step S130 is performed again.
  • the reflection area is 100% included in the planned beam field (S200).
  • step S210 If the reflection area is 100% included in the planned beam field in step S200 is irradiated (S210), otherwise the radiation treatment is stopped, the patient alignment is corrected in real time (S220).
  • step S230 a step (S230) of determining whether all the treatment doses are irradiated is performed. If all the irradiation doses are irradiated, the monitoring of the reflection area is terminated (S240).
  • a reflector having the same size and shape as the beam field set in the treatment plan is incident.
  • the beam field area irradiated from the irradiation head illuminates the beam field reflector area attached to the patient's body, and the reflected beam field provides a camera-based imaging device.
  • the present invention can be identified in real time as well as the alignment error before radiation treatment can be a great help to improve the results of radiation therapy.
  • the present invention is very costly to develop, in addition to the clinical advantages, there is little increase in the amount of work and treatment time given to the user in the actual clinical application is considered to be very advantageous for commercialization.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Psychiatry (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명은 광 조사야(light field)와 체표밀착형 광반사체를 이용한 빔 필드 기반의 환자정렬 방법 및 시스템에 관한 것이다. 본 발명의 일 양상인 광반사체를 이용한 객체 정렬 시스템은, 객체에 대해 방사선을 조사할 제 1 영역을 미리 설정하기 위한 사용자 입력부; 상기 제 1 영역에 대한 정보를 표시하는 디스플레이부; 상기 제 1 영역의 형태에 대응하여 형성된 광 반사체가 상기 제 1 영역 내에 부착된 경우, 상기 제 1 영역에 상기 방사선을 조사하는 방사선 조사부; 상기 제 1 영역으로 상기 방사선과 같은 방향의 빛을 조사하는 광 조사부; 및 상기 광 반사체가 상기 빛을 이용하여 발광하는 경우, 상기 발광하는 광 반사체의 영역을 촬영하는 카메라; 및 상기 카메라가 촬영한 발광하는 광 반사체의 영역을 상기 디스플레이부가 추가적으로 표시하도록 제어하고, 상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 제어부;를 포함할 수 있다.

Description

방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템
본 발명은 광 조사야(light field)와 체표밀착형 광반사체를 이용한 빔 필드 기반의 환자정렬 방법 및 시스템에 관한 것이다. 구체적으로 본 발명은 치료계획 시 설정된 빔 필드와 동일한 크기 및 모양의 반사체를 입사되어야 할 환자의 체표에 부착한 후, 방사선 조사 헤드(gantry head)로 부터 조사되는 빔 필드 영역이 환자 체표에 부착된 빔 필드 반사체영역을 비추게 하고, 반사된 빔 필드는 카메라 기반의 영상장치를 이용하여 연속적으로 획득하며, 치료계획 시 설정된 빔 필드와의 실시간 비교를 통해 가시적인 관찰이 불가한 방사선치료 빔이 환자체표에 정확하게 입사되는지 여부를 정량적으로 비교 분석하는 방법 및 장치에 대한 것이다.
방사선 치료는 엑스선, 감마선과 같은 고에너지 파동 또는 전자선, 양성자선과 같은 고에너지 입자를 이용하여 타겟 조직에 손상을 가하거나 파괴함으로써 악성 조직의 성장을 지연시키거나 저지하거나 나아가 소멸시키는 방법이다.
방사선 치료는 암뿐만 아니라, 양성 종양, 내과적 질병, 일부 피부질환의 치료에 이용되기도 한다.
최근에는 두개골을 절개하는 신경외과적 수술방식을 대체하여, 절개 수술 없이 한번에 다량의 방사선을 조사하여 치료하는 방사선 수술 방법도 개발되었다.
또한, 암환자의 약 60% 이상이 방사선 치료를 받을 정도로 일반화되어 있다.
방사선 치료는 그 자체로 종양을 치료하는 데에 이용될 뿐 아니라, 종양이 크고 침습이 되어 수술이 어렵거나, 수술로 제거하지 못한 국부를 치료하는 다른 외과적 수술과 함께 사용되어 종양의 크기를 줄여 외과적 수술을 쉽게 만들거나 수술 후에 남은 악성 세포를 파괴하는 용도로 이용될 수 있다.
외부에서 방사선을 조사하는 체외 방사선 치료 기기는 고에너지 입자나 방사선을 생성하는 방식에 따라 저에너지 엑스선 치료기, 방사성 동위원소 치료 장치, 선형 가속기, 입자 가속기 등으로 분류될 수 있다.
저에너지 엑스선 치료기는 엑스선 발생 장치를 이용하여 피부질환이나 심부 치료에 이용되었으나 현재에는 거의 사용되지 않는다.
방사성 동위원소 치료 장치는 코발트60(Co-60)과 같은 방사성 동위원소에서 발생하는 감마선을 이용한다. 저에너지 엑스선 치료기보다 다소 강한 에너지의 감마선을 이용하지만, 점차 사용이 줄어들고 있다.
선형 가속기는 방사선 치료의 표준처럼 이용되는 장비로서, 엑스선 및 전자선 출력이 가능하고 다양한 에너지를 전달할 수 있으며, 높은 선량율, 빔 형상의 조절(beam-forming)이 가능하다.
입자 가속기는 사이클로트론 가속기에서 가속한 중성자나 양성자 입자들을 빔 이송관을 통해 이송하고 노즐에서 원하는 부위로 방출하는 구조를 가지는데, 선형 가속기보다 깊은 브래크 피크(Bragg's peak)를 가질 수 있어 정상 조직에는 선량을 최소화하고 심부의 종양에만 에너지를 집중시킬 수 있다.
한편, 방사선을 이용한 진단 장치로 가장 유명한 컴퓨터 단층 촬영(CT: computerized tomography)은 생체 조직 주위를 회전하면서 생체 조직에 엑스선을 입사하고 그 반대편에서 생체 조직을 통과한 엑스선의 세기를 검출하며, 검출된 데이터들을 기초로 단층 이미지를 재구성하는 방식으로 단층 촬영하는 기법이다.
일반적으로 이러한 의료용 방사선 장치는 의도적으로 환자의 위치를 바꿀수록 또는 환자가 무의식적으로 몸을 움직일수록 진단의 정확도나 치료 효과가 떨어지고, 병변 주변의 정상 조직에 흡수되는 방사선 선량이 높아지며, 시간과 비용이 증가하게 된다.
이에 따라 의료용 방사선 장치는 방사선 방출 헤드와 검출부가 단순히 고정된 위치에서 마주보는 방식으로 개발되었다가, 방사선 방출 헤드와 검출부가 차츰 환자 주위를 움직일 수 있는 형태로 발전하였다.
최근의 의료용 방사선 장치는 크게 L-형, U-형, C-형 암을 가진 갠트리에 방사선방출 헤드를 장착하는 형태 또는 링 형태의 갠트리를 가지는 방식으로 각각 발전하고 있다.
한편, 방사선치료 이전 정확한 환자정렬(pretreatment setup)과 방사선치료 중 환자정렬(intra-fraction patient setup)의 정확성 유지는 방사선치료의 성적을 좌우하는 매우 중요한 요소 중 하나이다.
이상의 요건을 충족시키기 위해 레이저 시스템을 이용한 한자 정렬방법, 스테레오 비전 기술을 활용한 환자 정렬방법 등 다양한 모니터링 방법들이 제시되고 있다.
하지만 기술적 한계 및 검증부족 등으로 정확성 향상에 큰 도움은 주지 못하고 있는 현실이다.
종양에 정확한 선량을 전달하기 위해서는 종양의 위치를 기반으로 셋업을 수행하는 것이 이상적이다.
하지만 이를 위해 X-ray, CT 등 방사선을 이용하여 실시간 모니터링을 수행할 경우 환자에게 필요이상의 선량을 전달하게(imaging dose) 되어 문제가 될 수 있다.
현재, 임상에서는 대안적 방법으로서 빔 필드 기반의 환자 정렬을 수행하고 있으나, 이 또한 정량적 검증을 거치지 않고 사용자의 경험(사람이 눈으로 확인)에 의존하여 환자정렬을 수행하기 때문에 정확성을 확신하기에는 무리가 있다.
즉, 임상적으로 이용되는 빔 필드 기반의 환자 정렬방식은 정량화된 평가 방법 및 상용화된 모니터링 장비가 존재하지 않으며, 단지 방사선사의 경험 및 노하우에 의존해 수행되고 있다.
또한 방사선치료 전 단 한번의 확인과정만 있을 뿐 치료 중 변화에 대해서는 적절한 대비책을 제시하지 못하고 있다.
따라서 이러한 문제점을 해소하기 위한 방안이 요구되고 있는 실정이다.
본 발명은 광 조사야(light field)와 체표밀착형 광반사체를 이용한 빔 필드 기반의 환자정렬 방법 및 시스템을 사용자에게 제공하는 것에 목적이 있다.
구체적으로 본 발명은 치료계획 시 설정된 빔 필드와 동일한 크기 및 모양의 반사체를 입사되어야 할 환자의 체표에 부착한 후, 방사선 조사 헤드(gantry head)로 부터 조사되는 빔 필드 영역이 환자 체표에 부착된 빔 필드 반사체영역을 비추게 하고, 반사된 빔 필드는 카메라 기반의 영상장치를 이용하여 연속적으로 획득하며, 치료계획 시 설정된 빔 필드와의 실시간 비교를 통해 가시적인 관찰이 불가한 방사선치료 빔이 환자체표에 정확하게 입사되는지 여부를 정량적으로 비교 분석하는 방법 및 장치를 사용자에게 제공하는 것에 목적이 있다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한 본 발명의 일 양상인 광반사체를 이용한 객체 정렬 시스템은, 객체에 대해 방사선을 조사할 제 1 영역을 미리 설정하기 위한 사용자 입력부; 상기 제 1 영역에 대한 정보를 표시하는 디스플레이부; 상기 제 1 영역의 형태에 대응하여 형성된 광 반사체가 상기 제 1 영역 내에 부착된 경우, 상기 제 1 영역에 상기 방사선을 조사하는 방사선 조사부; 상기 제 1 영역으로 상기 방사선과 같은 방향의 빛을 조사하는 광 조사부; 및 상기 광 반사체가 상기 빛을 이용하여 발광하는 경우, 상기 발광하는 광 반사체의 영역을 촬영하는 카메라; 및 상기 카메라가 촬영한 발광하는 광 반사체의 영역을 상기 디스플레이부가 추가적으로 표시하도록 제어하고, 상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 제어부;를 포함할 수 있다.
또한, 상기 제어부는, 상기 방사선을 조사하기 위한 계획을 세우기 위해 상기 객체를 정렬하는 단계와 상기 객체에 방사선을 조사하여 치료를 수행하기 위해 상기 객체를 정렬하는 단계에서 이중으로 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단할 수 있다.
또한, 상기 광 반사체의 영역이 상기 제 1 영역을 기 설정된 비율 이상 벗어나는 경우, 상기 제어부는 상기 방사선 조사부의 방사선 조사 동작을 중단시킬 수 있다.
또한, 상기 카메라는, 단수로서 상기 방사선 조사부에 부착하여 구비되며, 상기 제어부는, 상기 제 1 영역 내에 포함되는 상기 광 반사체 영역의 넓이 변화를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단할 수 있다.
또한, 상기 카메라는 복수이고, 상기 제어부는, 상기 복수의 카메라를 이용하여 획득된 복수의 영상을 통해, 상기 제 1 영역에 대한 상기 광 반사체 영역의 3차원 좌표이동(translation) 및 회전이동(rotation) 변화를 판단하고, 상기 변화를 기초로 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단할 수 있다.
또한, 상기 객체의 호흡과 관련된 호흡신호를 감지하는 센서;를 더 포함하고, 상기 호흡신호의 변화가 기 설정된 범위를 벗어나는 경우, 상기 제어부는 상기 방사선 조사부의 방사선 조사 동작을 중단시킬 수 있다.
한편, 상기의 기술적 과제를 달성하기 위한 본 발명의 다른 양상인 광반사체를 이용한 객체 정렬 방법은, 객체를 정렬하는 제 1-1 단계; 상기 객체에 대해 방사선을 조사할 제 1 영역을 미리 설정하는 제 1-2 단계; 상기 제 1 영역에 대한 정보를 표시하는 제 1-3 단계; 상기 제 1 영역의 형태에 대응하여 형성된 광 반사체가 상기 제 1 영역 내에 부착되는 제 1-4 단계; 상기 제 1 영역으로 상기 방사선을 조사할 방향과 같은 방향의 빛을 조사하는 제 1-5 단계; 상기 광 반사체가 상기 빛을 이용하여 발광하는 제 1-6 단계; 카메라가 촬영한 상기 발광하는 광 반사체의 영역을 추가적으로 표시하는 제 1-7 단계; 및 상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 객체에 대해 방사선 조사 계획을 수립하는 제 1-8 단계;를 포함할 수 있다.
또한, 상기 제 1-8 단계 이후에는, 상기 제 1 영역에 상기 방사선을 조사하는 제 2-1 단계; 상기 제 1 영역으로 상기 방사선과 같은 방향의 빛을 조사하는 제 2-2 단계; 상기 광 반사체가 상기 빛을 이용하여 발광하는 제 2-3 단계; 카메라가 촬영한 상기 발광하는 광 반사체의 영역을 추가적으로 표시하는 제 2-4 단계; 및 상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 제 2-5 단계;를 더 포함할 수 있다.
또한, 상기 제 2-6 단계 이후에는, 상기 광 반사체의 영역이 상기 제 1 영역을 기 설정된 비율 이상 벗어나는 경우, 상기 방사선 조사 동작을 중단하는 제 2-7 단계;를 더 포함할 수 있다.
또한, 제 2-5 단계는, 상기 제 1 영역 내에 포함되는 상기 광 반사체 영역의 넓이 변화, 상기 제 1 영역에 대한 상기 광 반사체 영역의 3차원 좌표이동(translation) 및 회전이동(rotation) 변화 중 적어도 하나를 이용하여, 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단할 수 있다.
또한, 상기 제 2-6 단계 이후에는, 상기 객체의 호흡과 관련된 호흡신호를 감지하는 제 2-7 단계; 및 상기 호흡신호의 변화가 기 설정된 범위를 벗어나는 경우, 상기 방사선 조사 동작을 중단하는 제 2-8 단계;를 더 포함할 수 있다.
본 발명은 광 조사야(light field)와 체표밀착형 광반사체를 이용한 빔 필드 기반의 환자정렬 방법 및 시스템을 사용자에게 제공할 수 있다.
구체적으로 본 발명은 치료계획 시 설정된 빔 필드와 동일한 크기 및 모양의 반사체를 입사되어야 할 환자의 체표에 부착한 후, 방사선 조사 헤드(gantry head)로 부터 조사되는 빔 필드 영역이 환자 체표에 부착된 빔 필드 반사체영역을 비추게 하고, 반사된 빔 필드는 카메라 기반의 영상장치를 이용하여 연속적으로 획득하며, 치료계획 시 설정된 빔 필드와의 실시간 비교를 통해 가시적인 관찰이 불가한 방사선치료 빔이 환자체표에 정확하게 입사되는지 여부를 정량적으로 비교 분석하는 방법 및 장치를 사용자에게 제공할 수 있다.
또한, 본 발명에 따르면, 실시간 분석 시스템을 통해 정량화된 평가가 가능하며, 사람에 의해 발생되는 에러를 방지할 수 있다.
또한, 본 발명은 방사선치료 전 정렬 에러뿐 아니라 치료 중 발생되는 에러를 실시간으로 확인할 수 있어 방사선치료 성적향상에 큰 도움을 줄 수 있을 것으로 사료된다.
또한, 본 발명을 통해 제안된 방법 및 모니터링 시스템을 사용할 경우 기존의 사람에 의존한 방식에서는 불가능 했던 정량적 분석이 가능하게 되며, 방사선 치료 중에도 모니터링이 가능하게 되어 방사선치료 성적 향상에 큰 도움을 줄 수 있을 것으로 판단된다.
또한, 본 발명은 임상적 장점 이외에도 개발에 투입되는 비용이 매우 적고, 실제 임상 적용 시 사용자에게 주어지는 업무량의 증가 및 치료시간 증가가 거의 없어 상업화에 매우 유리할 것으로 판단된다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 일반적으로 이용되는 의료용 방사선 장치의 구체적인 일례를 도시한 것이다.
도 2는 일반적으로 이용되는 의료용 방사선 장치의 구성 중 영상증강장치의 구체적인 일례를 도시한 것이다.
도 3은 본 발명에 적용될 수 있는 체표밀착형 광반사체의 구체적인 일례를 도시한 것이다.
도 4는 본 발명과 관련하여, 체표밀착형 광반사체의 반사영역과 계획된 빔 필드 영역을 비교하는 구체적인 일례를 도시한 것이다.
도 5는 도 4에서 설명한 구조를 기초로, 체표밀착형 광반사체의 반사영역이 계획된 빔 필드 영역을 벗어나는 구체적인 일례를 도시한 것이다.
도 6은 본 발명과 관련하여, 카메라 한대를 이용한 반사영역의 넓이 변화를 모니터링하는 방법을 설명하기 위한 도면이다.
도 7a 및 도 7b는 본 발명과 관련하여, 두 대의 카메라를 이용한 광 반사체가 부착된 환자 체표 자체의 3차원 좌표이동 및 회전이동 변화 모니터링 방법을 설명하기 위한 도면이다.
도 8은 본 발명과 관련하여, 광 반사영역 모니터링을 통한 호흡동조 치료를 설명하기 위한 도면이다.
도 9는 본 발명과 관련하여, 방사선치료 이전 정확한 환자정렬과 방사선치료 중 환자정렬의 정확성을 유지하는 방법을 설명하기 위한 순서도이다.
도 1은 일반적으로 이용되는 의료용 방사선 장치의 구체적인 일례를 도시한 것이고, 도 2는 일반적으로 이용되는 의료용 방사선 장치의 구성 중 영상증강장치의 구체적인 일례를 도시한 것이다.
도 1을 참조하면, 본 발명에 따른 의료용 방사선 장치는 영상을 획득하기 위한 영상증강장치(10)와 획득된 영상을 사용자 또는 시술자에게 표시해주는 디스플레이 장치(20)로 구성된다.
도 2를 참조하면, 영상증강장치(10)는 몸체부(11), C-암 갠트리(C-arm Gantry)(12), 치료용 방사선 유닛(13), 진단용 방사선 방출 유닛(14) 및 진단용 방사선 검출 유닛(15)을 포함할 수 있다.
추가적으로 영상증강장치(10)는 환자가 위치할 베드 유닛(101), 제어부(102) 및 판독부(103)가 더 포함될 수 있다.
먼저, 몸체부(11)는 영상증강장치(10)에 기계적인 균형과 지지를 제공하며, 또한 각 유닛들(13, 14, 15)이 필요로 하는 외부와의 전자기적 에너지 또는 고에너지 입자의 전달 경로를 제공할 수 있다. 구체적으로, 몸체부(11)는 영상증강장치(10)가 놓이는 바닥면(floor)으로부터 적어도 등선량중심점(isocenter)(X)이 위치할 평면까지 직립하는데, 영상증강장치(10)의 C-암 갠트리(12)의 중량을 지지할 수 있다. 또한, 구동 시에 무게 중심의 이동에 따른 비틀림, 오차 발생 내지 전복 위험을 줄일 수 있도록, 예를 들어 상쇄 중량 균형(counter-balancing) 구조와 같은 다양한 주지의 지지 구조들을 채택할 수 있다. 등선량중심점은 여러 위치에서 방출되는 방사선이 집중적으로 전달되는 위치로서, 치료 또는 진단이 필요한 신체 상의 특정 부위와 일치하도록 선택될 수 있다. 따라서 등선량중심점이 위치할 평면은 누워있는 환자의 신체 병변 위치에 따라 정해지는 개념상의 평면을 가리킨다고 할 수 있다. 몸체부(11)는 영상증강장치(10)를 원하는 위치로 옮길 수 있도록 바퀴가 달리거나 또는 바닥면에 설치된 정해진 궤도 위를 움직일 수 있는 기부(111)를 가질 수 있다. 또한, 몸체부(11)는 C-암 갠트리(12)의 C-암(121)의 원호 곡률 중심과 맞닿는 위치에 설치한 고정 수단(112)으로써 C-암 갠트리(12)의 고정 수단(122)과 기계적으로 체결될 수 있다. 이때, 몸체부(11)의 고정 수단(112)에 대해 C-암 갠트리(12)의 고정 수단(122)은 회전 가능하게 고정될 수 있다. 이를 위해, 몸체부(11)는 예를 들어 모터 및 기어와 같은 회전 구동 수단(113)을 더 포함할 수 있다.
C-암 갠트리(12)는 C-암(C-arm)(121) 및 고정 수단(122)을 포함할 수 있다. C-암(121)은 한쪽이 열린 만곡된 C자 형태의 원호 형상으로서, 구체적으로 예를 들면, C-암(121)이 수직으로 세워져 방열될 때에는 등선량중심점이 위치할 평면을 기준으로 대칭인 형상이고, 또한 등선량중심점을 향하여 열린 형상이다. C-암 갠트리(12)의 고정 수단(122)은 C-암(121)의 외측면의 적어도 일부를 몸체부(11)의 고정 수단(112)에 기계적으로 결합될 수 있다. 바람직하게는, C-암 갠트리(12)의 고정 수단(122)은 C-암(121)의 원호 곡률 중심 위치의 외측면에서 몸체부(11)의 고정 수단(112)과 결합될 수 있다. 나아가, C-암 갠트리(12)의 고정 수단(122)은 몸체부(11)의 고정 수단(112)에 대해 피봇팅되어 회전 가능하도록 체결될 수도 있다. 이때, C-암 갠트리(12)의 고정 수단(122)은 몸체부(11)에 고정되는 부위 및 등선량중심점을 잇는 축을 중심으로 몸체부(11)에 대해 회전 가능하도록 체결될 수 있다.
치료용 방사선 유닛(13)은 헤드 지지부(131)에서 치료용 방사선을 방출하는 치료용 방사선 방출 헤드(132)를 지지할 수 있다. 이때, 치료용 방사선 유닛(13)은, 사전에 결정된 선량 계획(dose plan)에 의해 제어부(102)가 지시하는 바에 따라, 치료용 방사선 방출 헤드(132)에서 방출되는 치료용 방사선의 선량이 등선량중심점에서 유효하게 대상 조직에 작용할 수 있는 C-암(121)의 내측면 상의 특정 위치 및 각도로 치료용 방사선 방출 헤드(131)의 위치를 정할 수 있다. 치료용 방사선 방출 헤드(132)는 실시예에 따라, 엑스선, 감마선, 고에너지 전자, 고에너지 양성자 또는 그 밖의 고에너지 미립자를 방출할 수 있다.
실시예에 따라, 치료용 방사선 방출 헤드(132)는 엑스선 발생 장치, 방사선 동위원소 소스, 또는 선형 가속기 중 어느 하나를 포함할 수 있다. 다른 실시예에서 치료용 방사선 방출 헤드(132)는 영상증강장치(10)의 외부에 설치된 입자 가속기에서 가속시켜 생성한 고에너지 미립자 빔을 전달받아 방출할 수 있다. 또한, 실시예에 따라, 치료용 방사선 방출 헤드(132)는 다엽 콜리메이터(MLC: Multi-leaf Collimator)로 구현될 수 있다. 다엽 콜리메이터를 이용하면, 치료용 방사선 방출 헤드(132)는 내부적으로 빔 성형이 가능하므로 좀 더 효율적인 방사선 에너지 전달을 가능하게 할 수 있다.
영상증강장치(10)는 C-암(121)의 내측면에서 등선량중심점을 사이에 두고 서로 마주보도록 장착되는 진단용 방사선 소스 유닛(14) 및 진단용 방사선 검출 유닛(15)을 더 포함할 수 있다. 바람직한 실시예에서, 진단용 방사선 소스 유닛(14)은 엑스선 소스를 포함하고, 진단용 방사선 검출 유닛(15)은 엑스선 검출 센서를 포함할 수 있으며, 진단용 방사선 소스 유닛(14)과 진단용 방사선 검출 유닛(15) 및 판독부(103)가 하나의 컴퓨터 단층 촬영 장치(CT)를 구성할 수 있다.
도시되지는 않았지만 진단용 방사선 소스 유닛(14)에는 적어도 하나의 카메라가 포함될 수 있다.
여기서의 카메라는 체표밀착형 광반사체의 반사영역과 계획된 빔 필드 영역을 비교함에 있어, 반사영역의 넓이 변화를 모니터링하기 위해 이용될 수 있다.
또한, 복수의 카메라는 광 반사체가 부착된 환자 체표 자체의 3차원 좌표이동 및 회전이동 변화 모니터링하기 위해 이용될 수도 있다.
베드 유닛(160)은 환자를 눕힐 수 있고, 실시예에 따라서는 바닥면과 닿는 부위에 바퀴나 트랙을 가질 수 있다.
제어부(102)는 미리 입력되는 진단 계획에 따라 몸체부(11)의 고정 수단(112) 및 회전 구동 수단(113)의 구동, 진단용 방사선 소스 유닛(14)의 진단용 방사선 방출 방향 및 세기를 제어하고, 또는 미리 입력되는 선량 계획에 따라 몸체부(11)의 고정 수단(112) 및 회전 구동 수단(113)의 구동, 치료용 방사선 유닛(13)의 위치, 각도, 방향, 빔 성형을 제어할 수 있다.
판독부(103)는 진단용 방사선 검출 유닛(15)에서 검출되는 신호를 분석하여 CT 영상으로 재구성할 수 있다.
한편, 방사선치료 이전 정확한 환자정렬(pretreatment setup)과 방사선치료 중 환자정렬(intra-fraction patient setup)의 정확성 유지는 방사선치료의 성적을 좌우하는 매우 중요한 요소 중 하나이다.
이상의 요건을 충족시키기 위해 레이저 시스템을 이용한 한자 정렬방법, 스테레오 비전 기술을 활용한 환자 정렬방법 등 다양한 모니터링 방법들이 제시되고 있다.
하지만 기술적 한계 및 검증부족 등으로 정확성 향상에 큰 도움은 주지 못하고 있는 현실이다.
종양에 정확한 선량을 전달하기 위해서는 종양의 위치를 기반으로 셋업을 수행하는 것이 이상적이다.
하지만 이를 위해 X-ray, CT 등 방사선을 이용하여 실시간 모니터링을 수행할 경우 환자에게 필요이상의 선량을 전달하게(imaging dose) 되어 문제가 될 수 있다.
현재, 임상에서는 대안적 방법으로서 빔 필드 기반의 환자 정렬을 수행하고 있으나, 이 또한 정량적 검증을 거치지 않고 사용자의 경험(사람이 눈으로 확인)에 의존하여 환자정렬을 수행하기 때문에 정확성을 확신하기에는 무리가 있다.
즉, 임상적으로 이용되는 빔 필드 기반의 환자 정렬방식은 정량화된 평가 방법 및 상용화된 모니터링 장비가 존재하지 않으며, 단지 방사선사의 경험 및 노하우에 의존해 수행되고 있다.
또한 방사선치료 전 단 한번의 확인과정만 있을 뿐 치료 중 변화에 대해서는 적절한 대비책을 제시하지 못하고 있다.
따라서 본 발명에서는 전술한 문제점을 해소하기 위해, 광 조사야(light field)와 체표밀착형 광반사체를 이용한 빔 필드 기반의 환자정렬 방법 및 시스템을 사용자에게 제공하고자 한다.
구체적으로 본 발명은 치료계획 시 설정된 빔 필드와 동일한 크기 및 모양의 반사체를 입사되어야 할 환자의 체표에 부착한 후, 방사선 조사 헤드(gantry head)로 부터 조사되는 빔 필드 영역이 환자 체표에 부착된 빔 필드 반사체영역을 비추게 하고, 반사된 빔 필드는 카메라 기반의 영상장치를 이용하여 연속적으로 획득하며, 치료계획 시 설정된 빔 필드와의 실시간 비교를 통해 가시적인 관찰이 불가한 방사선치료 빔이 환자체표에 정확하게 입사되는지 여부를 정량적으로 비교 분석하는 방법 및 장치를 사용자에게 제공하고자 한다.
본 발명의 구체적인 설명에 앞서, 본 발명에 적용되는 광반사체에 대해 설명한다.
광반사체는 빛에 의해 발광하는 객체를 포함할 수 있다.
여기서 광반사체에 제공하는 빛은 방사선 조사 헤드(14)에 별도로 구비되거나 적어도 하나의 카메라(33)에 구비될 수 있다.
특히, 본 발명에서는 치료하고자 하는 환자의 체표에 밀착되는 광반사체를 이용하는 것이 바람직하다.
도 3은 본 발명에 적용될 수 있는 체표밀착형 광반사체의 구체적인 일례를 도시한 것이다.
도 3의 (a)를 참조하면 손에 광반사체를 도포한 이후에 빛을 조사하기 전과 빛을 조사한 이후의 상태를 비교한 것이다.
도 3의 (b)를 참조하면, 사슴의 몸통에 별 모양의 광반사체를 밀착시킨 이후에 빛을 조사하여 발광하는 구체적인 모습을 도시한 것이다.
도 3의 (c)는 복수의 기구에 광반사체를 부착하고, 빛을 투사하여 발광하는 구체적인 모습을 도시한 것이다.
도 3의 (d)는 방사선 장비의 특정 영역에 광반사체를 부착하고, 빛을 조사하여 특정 영역이 발광하는 모습을 도시한 것이다.
도 3의 (e)는 환자의 신체의 일부에 광반사체를 밀착 또는 도포한 이후에, 빛을 조사하여 특정 환자의 신체 영역이 발광하는 구체적인 모습을 도시한 것이다.
본 발명에서는 도 3에서 설명한 광반사체를 통해 눈에 보이지 않는 방사선의 조사 영역을 실시간으로 확인하는 방법을 이용한다.
즉, 방사선을 조사하고자 하는 영역을 미리 설정하고, 설정된 영역에 대응하는 형태를 가진 광반사체를 환자의 신체에 부착할 수 있다.
이후, 방사선이 투사되는 방사선 조사 헤드(gantry head, 14)와 같은 방향으로 빛이 투사되도록 하고, 이에 의해 광반사체가 발광하도록 할 수 있다.
또한, 상기 방사선을 조사하고자 하는 영역과 발광하는 광반사체의 영역이 일치하는지 여부를 디스플레이 장치(20)를 통해 실시간으로 확인할 수 있다.
약간의 불일치만 있는 경우에는 환자의 고정위치 변화를 통해 광반사체의 영역이 조사하고자 하는 영역과 일치하도록 조정하는 것이 가능하다.
또한, 방사선을 조사하고자 하는 영역과 발광하는 광반사체의 영역이 많이 차이나는 경우에는 방사선 치료를 중단할 수 있다.
또한, 방사선을 조사하고자 하는 영역과 발광하는 광반사체의 영역이 일치하는지 여부의 판단은 방사선치료 이전과 방사선치료 중에 이중으로 수행될 수 있다.
방사선치료 이전 정확한 환자정렬(pretreatment setup)과 방사선치료 중 환자정렬(intra-fraction patient setup)의 정확성 유지는 방사선치료의 성적을 좌우하는 매우 중요한 요소 중 하나이고, 본 발명이 제안하는 방법을 통해 계획 단계와 치료 단계에서의 환자의 정렬을 정확하게 수행할 수 있다는 장점이 있다.
도 4는 본 발명과 관련하여, 체표밀착형 광반사체의 반사영역과 계획된 빔 필드 영역을 비교하는 구체적인 일례를 도시한 것이다.
도 4의 (a)는 미리 정해진 방사선을 조사하고자 하는 영역의 구체적인 일례를 도시한 것이다.
또한, 도 4의 (b)는 도 4의 (a)의 방사선을 조사하고자 하는 영역에 대응되는 모양을 갖는 광 반사체를 신체의 일부 영역에 도포하는 것을 도시한 것이다.
또한, 도 4의 (c)는 조사된 빛을 통해 발광하는 광 반사의 영역과 방사선을 조사하고자 하는 영역이 서로 일치하지 않게 되는 모습을 도시한 것이다.
또한, 도 4의 (d)는 카메라를 통해 조사된 빛을 통해 발광하는 광 반사의 영역과 방사선을 조사하고자 하는 영역을 조정하는 구체적인 모습을 도시한 것이다.
구체적으로 도 5는 도 4에서 설명한 구조를 기초로, 체표밀착형 광반사체의 반사영역이 계획된 빔 필드 영역을 벗어나는 구체적인 일례를 도시한 것이다.
이하에서는 설명의 편의를 위해, 방사선을 조사하고자 하는 영역을 방사선 치료 영역(31)이라고 호칭하고, 조사된 빛을 통해 발광하는 광 반사체의 영역을 광 반사체 영역(32)이라고 호칭한다.
도 5의 (a)를 참조하면, 사용자에 의해 미리 설정된 방사선 치료 영역(31)이 도시되어 있고, 이에 대응하는 형태를 갖는 광 반사체 영역(32)이 도시된다.
광 반사체 영역(32)은 방사선 치료 영역(31)의 면적과 완전히 동일하게 형성되거나 좀 더 작은 면적을 갖도록 형성될 수 있다.
도 5의 (b)는 환자의 움직임, 주변 조건의 변화로 인해 광 반사체 영역(32)이 방사선 치료 영역(31)의 15%만 포함되는 장면을 도시하고, 이러한 경우에는 방사선 치료를 중단하는 것이 바람직하다.
또한, 도 5의 (c)는 환자의 움직임, 주변 조건의 변화로 인해 광 반사체 영역(32)이 방사선 치료 영역(31)의 20%만 포함되는 장면을 도시하고, 이 경우에도 방사선 치료를 중단하는 것이 바람직하다.
또한, 도 5의 (d)는 환자의 움직임, 주변 조건의 변화로 인해 광 반사체 영역(32)이 방사선 치료 영역(31)의 50%만 포함되는 장면을 도시하고, 이 경우에도 방사선 치료를 중단하는 것이 바람직하다.
다만, 광 반사체 영역(32)이 방사선 치료 영역(31)의 80% 이상 일치하는 경우에는 환자 및 장비의 정렬을 통해 광 반사체 영역(32)이 방사선 치료 영역(31)에 포함되도록 조정하는 것이 가능하다.
광 반사체 영역(32)이 방사선 치료 영역(31)에 포함되는 정도의 판단은 하기의 수학식 1에 의해 수행될 수 있다.
Figure PCTKR2016009622-appb-M000001
또한, 전술한 내용을 기초로 본 발명에서 광 반사체 영역(32)이 방사선 치료 영역(31) 내에 포함하는지 여부를 판단하는 구체적인 방법을 설명한다.
도 6은 본 발명과 관련하여, 카메라 한대를 이용한 반사영역의 넓이 변화를 모니터링하는 방법을 설명하기 위한 도면이다.
도 6의 (a)를 참조하면, 본 발명에 따른 1 대의 카메라(33)를 이용할 수 있다.
도 6의 (a)의 카메라는 방사선조사부(gantry head, 14)에 부착되는 구조로 형성될 수 있고, 이에 따라 광 반사체 영역(32)에 대한 영상을 획득할 수 있다.
또한, 1대의 카메라(33)를 방사선조사부(gantry head, 14)에 부착하고, 도 6의 (b)와 같이, 빔스 아이 뷰(beam’s eye view) 반사영역의 넓이 변화를 모니터링하는 방법을 통해 광 반사체 영역(32)이 방사선 치료 영역(31) 내에 포함하는지 여부를 판단할 수 있다.
도 6의 (c)는 빔스 아이 뷰(beam’s eye view) 기반 동체 모니터링 소프트웨어의 구동 모습의 대표적인 일례를 도시한 것이다.
또한, 복수의 카메라를 이용하여 광 반사체가 부착된 환자 체표 자체의 3차원 좌표이동(translation) 및 회전이동(rotation) 변화를 모니터링 하는 것도 가능하다.
도 7a 및 도 7b는 본 발명과 관련하여, 두 대의 카메라를 이용한 광 반사체가 부착된 환자 체표 자체의 3차원 좌표이동 및 회전이동 변화 모니터링 방법을 설명하기 위한 도면이다.
도 7a를 참조하면, 본 발명에 적용될 수 있는 2개의 카메라(33a, 33b)가 도시되어 있다.
2개의 카메라(33a, 33b)는 도 6a에서의 1대의 카메라(30)와 달리 방사선조사부(gantry head, 14)에 부착될 필요는 없고, 특정 기준을 기초로 차원 좌표이동 및 회전이동 변화를 감지하기 위해 소정 거리로 이격되어 배치될 수 있다.
도 7b의 (a)를 참조하면, 광 반사체 영역(32)이 방사선 치료 영역(31) 내에 포함되는지 여부를 판단하기 위한 기준(reference)의 구체적인 모습이 도시된다.
도 7b의 (b)는 도 7a에서 설명한 2대의 카메라(33a, 33b)를 이용하여 광 반사체가 부착된 환자 체표 자체의 3차원 좌표이동(translation)의 변화를 감지하는 구체적인 모습이 도시되어 있다.
도 7b의 (c)는 도 7a에서 설명한 2대의 카메라(33a, 33b)를 이용하여 광 반사체가 부착된 환자 체표 자체의 회전이동(rotation) 변화를 감지하는 구체적인 모습이 도시되어 있다.
도 7b의 (d)는 도 7a에서 설명한 2대의 카메라(33a, 33b)를 이용하여 광 반사체가 부착된 환자 체표 자체의 3차원 좌표이동(translation)의 변화와 회전이동(rotation) 변화를 동시에 모니터링 하는 구체적인 모습이 도시되어 있다.
또한, 본 발명의 일 실시예에 따르면, 광 반사영역 모니터링을 통한 호흡동조 치료를 수행하는 것도 가능하다.
도 8은 본 발명과 관련하여, 광 반사영역 모니터링을 통한 호흡동조 치료를 설명하기 위한 도면이다.
도 8을 참조하면, 호흡신호가 미리 설정된 셋업 범위를 벗어남에 의해 빔 필드 영역의 에러가 발생되는 것을 확인할 수 있다.
도 8의 (a), (b) 및 (c) 영역을 참조하면 사용자에 의한 셋업 범위를 호흡신호가 벗어나는 지점에서 광 반사체 영역(32)이 방사선 치료 영역(31)을 이탈하게 되는 모습을 확인할 수 있다.
따라서 환자의 호흡을 모니터링 하여, 특정 셋업 범위를 호흡신호가 벗어나는 경우에는 광 반사체 영역(32)이 방사선 치료 영역(31)을 이탈한 것으로 단정하고, 방사선 치료를 중단하는 방법이 추가적으로 이용될 수도 있다.
한편, 전술한 광 반사체 영역(32)이 방사선 치료 영역(31)을 이탈하는지 여부를 판단하는 방법을 기초로, 방사선치료 이전 정확한 환자정렬과 방사선치료 중 환자정렬의 정확성을 유지하는 방법에 대해 구체적으로 설명한다.
도 9는 본 발명과 관련하여, 방사선치료 이전 정확한 환자정렬과 방사선치료 중 환자정렬의 정확성을 유지하는 방법을 설명하기 위한 순서도이다.
도 9를 참조하면, S3의 선을 기준으로 치료 전 환자 정렬의 단계가 상단에 도시되고, 치료 중 환자 정렬 모니터링 단계가 하단에 도시된다.
상기 치료 전 환자 정렬의 단계와 치료 중 환자 정렬 모니터링 단계에서 모두 광 반사체 영역(32)이 방사선 치료 영역(31)을 이탈하는지 여부를 판단하는 방법이 적용될 수 있게 된다.
도 9를 참조하면, 가장 먼저, 반사영역 모니터링 시작 단계가 수행된다(S100).
다음으로, 환자체표(치료계획필드)의 translation 또는 rotation 이동 확인 후 교정을 수행하는 단계(S110)가 진행된다.
즉, 도 7b에서 설명한 방법을 통해 광 반사체 영역(32)이 방사선 치료 영역(31)에 매핑(mapping)되는지 여부를 S100 단계에서 확인하고, 교정할 수 있다.
또한, 반사영역이 계획된 빔 필드 내에 100% 포함되는지 여부를 한번 더 확인하는 단계가 수행된다(S130).
S130 단계에서 반사영역이 계획된 빔 필드 내에 100% 포함되는 경우에는 치료 전 환자정렬 완료 및 방사선 치료가 시작된다(S100).
그 이외의 경우에는 환자정렬 정확성 확인 및 수정을 수행하는 단계(S140)가 진행되고, S130 단계가 다시 진행된다.
S3의 선을 기준으로 상단의 치료 전 환자 정렬의 단계가 종료되면, 하단의 치료 중 환자 정렬 모니터링 단계가 진행된다.
치료 중 환자 정렬 모니터링 단계에서는 가장 먼저, 반사영역이 계획된 빔 필드 내에 100% 포함되는지 여부를 판단하게 된다(S200).
S200 단계에서 반사영역이 계획된 빔 필드 내에 100% 포함되는 경우에는 방사선 조사가 수행되나(S210), 그렇지 않은 경우에는 방사선치료가 중단되고, 실시간으로 환자정렬이 수정되는 단계가 진행된다(S220).
S210 단계 이후에는 치료선량을 모두 조사했는지 여부를 판단하는 단계(S230)가 진행되고, 모두 조사한 경우에는 반사영역 모니터링을 종료(S240)하게 되나 그 이외의 경우에는 S200 단계가 다시 진행된다.
따라서 전술한 본 발명에 따른 광 조사야(light field)와 체표밀착형 광반사체를 이용한 빔 필드 기반의 환자정렬 방법 및 시스템이 적용되는 경우, 치료계획 시 설정된 빔 필드와 동일한 크기 및 모양의 반사체를 입사되어야 할 환자의 체표에 부착한 후, 방사선 조사 헤드(gantry head)로 부터 조사되는 빔 필드 영역이 환자 체표에 부착된 빔 필드 반사체영역을 비추게 하고, 반사된 빔 필드는 카메라 기반의 영상장치를 이용하여 연속적으로 획득하며, 치료계획 시 설정된 빔 필드와의 실시간 비교를 통해 가시적인 관찰이 불가한 방사선치료 빔이 환자체표에 정확하게 입사되는지 여부를 정량적으로 비교 분석할 수 있게 된다.
또한, 본 발명에 따르면, 실시간 분석 시스템을 통해 정량화된 평가가 가능하며, 사람에 의해 발생되는 에러를 방지할 수 있다.
또한, 본 발명은 방사선치료 전 정렬 에러뿐 아니라 치료 중 발생되는 에러를 실시간으로 확인할 수 있어 방사선치료 성적향상에 큰 도움을 줄 수 있을 것으로 사료된다.
또한, 본 발명을 통해 제안된 방법 및 모니터링 시스템을 사용할 경우 기존의 사람에 의존한 방식에서는 불가능 했던 정량적 분석이 가능하게 되며, 방사선 치료 중에도 모니터링이 가능하게 되어 방사선치료 성적 향상에 큰 도움을 줄 수 있을 것으로 판단된다.
또한, 본 발명은 임상적 장점 이외에도 개발에 투입되는 비용이 매우 적고, 실제 임상 적용 시 사용자에게 주어지는 업무량의 증가 및 치료시간 증가가 거의 없어 상업화에 매우 유리할 것으로 판단된다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다.
상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.

Claims (12)

  1. 객체에 대해 방사선을 조사할 제 1 영역을 미리 설정하기 위한 사용자 입력부;
    상기 제 1 영역에 대한 정보를 표시하는 디스플레이부;
    상기 제 1 영역의 형태에 대응하여 형성된 광 반사체가 상기 제 1 영역 내에 부착된 경우, 상기 제 1 영역에 상기 방사선을 조사하는 방사선 조사부;
    상기 제 1 영역으로 상기 방사선과 같은 방향의 빛을 조사하는 광 조사부; 및
    상기 광 반사체가 상기 빛을 이용하여 발광하는 경우, 상기 발광하는 광 반사체의 영역을 촬영하는 카메라; 및
    상기 카메라가 촬영한 발광하는 광 반사체의 영역을 상기 디스플레이부가 추가적으로 표시하도록 제어하고, 상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 제어부;를 포함하는 광반사체를 이용한 객체 정렬 시스템.
  2. 제 1항에 있어서,
    상기 제어부는,
    상기 방사선을 조사하기 위한 계획을 세우기 위해 상기 객체를 정렬하는 단계와 상기 객체에 방사선을 조사하여 치료를 수행하기 위해 상기 객체를 정렬하는 단계에서 이중으로 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 시스템.
  3. 제 1항에 있어서,
    상기 광 반사체의 영역이 상기 제 1 영역을 기 설정된 비율 이상 벗어나는 경우,
    상기 제어부는 상기 방사선 조사부의 방사선 조사 동작을 중단시키는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 시스템.
  4. 제 1항에 있어서,
    상기 카메라는, 단수로서 상기 방사선 조사부에 부착하여 구비되며,
    상기 제어부는, 상기 제 1 영역 내에 포함되는 상기 광 반사체 영역의 넓이 변화를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 시스템.
  5. 제 1항에 있어서,
    상기 카메라는 복수이고,
    상기 제어부는, 상기 복수의 카메라를 이용하여 획득된 복수의 영상을 통해, 상기 제 1 영역에 대한 상기 광 반사체 영역의 3차원 좌표이동(translation) 및 회전이동(rotation) 변화를 판단하고, 상기 변화를 기초로 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 시스템.
  6. 제 1항에 있어서,
    상기 객체의 호흡과 관련된 호흡신호를 감지하는 센서;를 더 포함하고,
    상기 호흡신호의 변화가 기 설정된 범위를 벗어나는 경우, 상기 제어부는 상기 방사선 조사부의 방사선 조사 동작을 중단시키는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 시스템.
  7. 제 1항에 있어서,
    상기 방사선과 상기 빛은 동시에 조사되는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 시스템.
  8. 객체를 정렬하는 제 1-1 단계;
    상기 객체에 대해 방사선을 조사할 제 1 영역을 미리 설정하는 제 1-2 단계;
    상기 제 1 영역에 대한 정보를 표시하는 제 1-3 단계;
    상기 제 1 영역의 형태에 대응하여 형성된 광 반사체가 상기 제 1 영역 내에 부착되는 제 1-4 단계;
    상기 제 1 영역으로 상기 방사선을 조사할 방향과 같은 방향의 빛을 조사하는 제 1-5 단계;
    상기 광 반사체가 상기 빛을 이용하여 발광하는 제 1-6 단계;
    카메라가 촬영한 상기 발광하는 광 반사체의 영역을 추가적으로 표시하는 제 1-7 단계; 및
    상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 객체에 대해 방사선 조사 계획을 수립하는 제 1-8 단계;를 포함하는 광반사체를 이용한 객체 정렬 방법.
  9. 제 8에 있어서,
    상기 제 1-8 단계 이후에는,
    상기 제 1 영역에 상기 방사선을 조사하는 제 2-1 단계;
    상기 제 1 영역으로 상기 방사선과 같은 방향의 빛을 조사하는 제 2-2 단계;
    상기 광 반사체가 상기 빛을 이용하여 발광하는 제 2-3 단계;
    카메라가 촬영한 상기 발광하는 광 반사체의 영역을 추가적으로 표시하는 제 2-4 단계; 및
    상기 광 반사체의 영역이 상기 제 1 영역 내에 포함되는지 여부를 이용하여 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 제 2-5 단계;를 더 포함하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 방법.
  10. 제 9에 있어서,
    상기 제 2-6 단계 이후에는,
    상기 광 반사체의 영역이 상기 제 1 영역을 기 설정된 비율 이상 벗어나는 경우, 상기 방사선 조사 동작을 중단하는 제 2-7 단계;를 더 포함하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 방법.
  11. 제 9에 있어서,
    제 2-5 단계는,
    상기 제 1 영역 내에 포함되는 상기 광 반사체 영역의 넓이 변화, 상기 제 1 영역에 대한 상기 광 반사체 영역의 3차원 좌표이동(translation) 및 회전이동(rotation) 변화 중 적어도 하나를 이용하여, 상기 방사선이 상기 제 1 영역에 조사되고 있는지 여부를 판단하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 방법.
  12. 제 9에 있어서,
    상기 제 2-6 단계 이후에는,
    상기 객체의 호흡과 관련된 호흡신호를 감지하는 제 2-7 단계; 및
    상기 호흡신호의 변화가 기 설정된 범위를 벗어나는 경우, 상기 방사선 조사 동작을 중단하는 제 2-8 단계;를 더 포함하는 것을 특징으로 하는 광반사체를 이용한 객체 정렬 방법.
PCT/KR2016/009622 2016-08-25 2016-08-30 방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템 WO2018038299A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/327,710 US11065474B2 (en) 2016-08-25 2016-08-30 Patient alignment method and system using light field and light reflector during radiation therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160108495A KR101788468B1 (ko) 2016-08-25 2016-08-25 방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템
KR10-2016-0108495 2016-08-25

Publications (1)

Publication Number Publication Date
WO2018038299A1 true WO2018038299A1 (ko) 2018-03-01

Family

ID=60299062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009622 WO2018038299A1 (ko) 2016-08-25 2016-08-30 방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템

Country Status (3)

Country Link
US (1) US11065474B2 (ko)
KR (1) KR101788468B1 (ko)
WO (1) WO2018038299A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223769B1 (ko) * 2019-04-08 2021-03-05 사회복지법인 삼성생명공익재단 방사선 진단 및 치료 장치의 모션 평가 시스템 및 방법
JP2024012272A (ja) * 2022-07-18 2024-01-30 ビジョン アールティ リミテッド 放射線入射監視方法及びシステム
US20240054646A1 (en) * 2022-08-09 2024-02-15 Varian Medical Systems International Ag Methods, systems and computer readable mediums for light field verification on a patient surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029530A (ko) * 1996-09-19 2001-04-06 유니버시티 오브 피츠버그 오브 더 코몬웰츠 시스템 오브 하이어 에듀케이션 치료/진단동안 환자의 움직임에 응답하는 장치
KR20010099718A (ko) * 1998-10-23 2001-11-09 추후제출 환자의 위치지정을 위한 방법 및 시스템
JP2009226015A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 患者位置決め装置
JP2012130700A (ja) * 2010-12-23 2012-07-12 General Electric Co <Ge> データを誘導式に伝送するためのシステム及び方法
KR101470522B1 (ko) * 2014-01-23 2014-12-08 국립암센터 방사선 치료용 레이저 정렬 장치 및 정렬 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446548A (en) * 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
JP2014039796A (ja) * 2012-07-23 2014-03-06 Fujifilm Corp 検出限界導出装置、放射線検出装置、放射線画像撮影システム、検出限界導出プログラム、及び検出限界導出方法
US20190105514A1 (en) * 2017-10-09 2019-04-11 Varian Medical Systems, Inc. Optical system for radiation treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010029530A (ko) * 1996-09-19 2001-04-06 유니버시티 오브 피츠버그 오브 더 코몬웰츠 시스템 오브 하이어 에듀케이션 치료/진단동안 환자의 움직임에 응답하는 장치
KR20010099718A (ko) * 1998-10-23 2001-11-09 추후제출 환자의 위치지정을 위한 방법 및 시스템
JP2009226015A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 患者位置決め装置
JP2012130700A (ja) * 2010-12-23 2012-07-12 General Electric Co <Ge> データを誘導式に伝送するためのシステム及び方法
KR101470522B1 (ko) * 2014-01-23 2014-12-08 국립암센터 방사선 치료용 레이저 정렬 장치 및 정렬 방법

Also Published As

Publication number Publication date
US20190209866A1 (en) 2019-07-11
KR101788468B1 (ko) 2017-10-20
US11065474B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
US8681938B2 (en) Treatment planning simulation and verification system
US7502443B1 (en) Radiation therapy machine with triple KV/MV imaging
US9492125B2 (en) Patient positioning and imaging system
AU2002353904B2 (en) Method and device for delivering radiotherapy
EP1960051B1 (en) Device and method for positioning a target volume in a radiation therapy apparatus
US7847275B2 (en) Method and apparatus for teletherapy positioning and validation
WO2018023344A1 (zh) 一种放射治疗设备以及射束成像方法
CN110234275A (zh) 用于发射引导式高能光子传输的系统
US20030206614A1 (en) Method and apparatus for alignment of medical radiation beams using a body frame
US7418079B2 (en) System for the real-time detection of targets for radiation therapy
JP2004166975A (ja) 放射線治療装置及び放射線治療装置の動作方法
US20090202045A1 (en) Treatment booth for radiation therapy
US20090252290A1 (en) In bore ct localization marking lasers
GB2317545A (en) System for aligning a radiation beam for radiation therapy
US9486645B2 (en) Radiation therapy device for ocular melanoma
WO2016010398A1 (ko) 방사선 치료기 및 방사선 치료기의 정도 관리 방법
WO2018038299A1 (ko) 방사선 치료 시 광조사야 및 광반사체를 이용한 환자정렬 방법 및 시스템
CN111035861A (zh) 放射治疗系统和操作方法
Via et al. Noninvasive eye localization in ocular proton therapy through optical eye tracking: A proof of concept
US11904188B2 (en) Fully-spherical radiation therapy system
WO2018004052A1 (ko) 환자의 기하학적 관계를 이용한 호흡 연동 방사선 치료에서의 플래닝 페이즈 최적화 방법
JP2000176029A (ja) ビーム照射装置
Via et al. A platform for patient positioning and motion monitoring in ocular proton therapy with a non-dedicated beamline
CN107693958A (zh) 放射治疗全程位置验证的方法
US20040042582A1 (en) Method and apparatus for locating a medical target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914278

Country of ref document: EP

Kind code of ref document: A1