WO2018036767A1 - Dispositif d'entraînement électrique - Google Patents

Dispositif d'entraînement électrique Download PDF

Info

Publication number
WO2018036767A1
WO2018036767A1 PCT/EP2017/069519 EP2017069519W WO2018036767A1 WO 2018036767 A1 WO2018036767 A1 WO 2018036767A1 EP 2017069519 W EP2017069519 W EP 2017069519W WO 2018036767 A1 WO2018036767 A1 WO 2018036767A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
winding
electrical
drive device
stator
Prior art date
Application number
PCT/EP2017/069519
Other languages
German (de)
English (en)
Inventor
Tobias Schneider
Kurt Reutlinger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018036767A1 publication Critical patent/WO2018036767A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • H02K17/14Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the invention relates to an electric drive device according to the preamble of the main claim.
  • the electric machine comprises a rotor and a stator, wherein the stator has a multi-phase electrical winding comprising a plurality of winding strands, wherein the winding strands each associated with one of a plurality of electrical phases and are each connected to one of a plurality of inverters.
  • the in-phase winding phases are each connected to a different inverter.
  • the electric machine has a certain torque-speed characteristic, according to which the electric machine can deliver a substantially constant first torque in a low first speed range and after that the torque in a higher, in the so-called field weakening range second speed range starting from the first torque with increasing speed decreases.
  • higher torques would be desirable in the second speed range in order to achieve better acceleration of a vehicle driven by the electric machine.
  • Torque-speed characteristic of the electric machine by changing the number of poles is variable such that in the second speed range of the characteristic by pole change a higher torque can be achieved.
  • the invention consists in dividing the multi-phase winding into winding sections and energizing them by means of separate inverters.
  • Winding sections can then be fed independently by the separate inverters.
  • the current reversal is done by the winding sections are controlled separately and the inverters either
  • half pole number according to a second characteristic is operable, can be realized by the electric machine, a first gear according to the first characteristic and a second gear according to the second characteristic without a mechanical transmission.
  • the first gear is suitable for low speeds, ie for starting, and can provide high torques
  • the second gear is suitable for high speeds and has a particularly good efficiency for economical driving.
  • the invention thus makes it possible to dispense with a mechanical transmission in the vehicle and the gears and their switching by the
  • inverter and their interconnection to be realized electronically are compared to an electric machine with only a single inverter interpreted only for half the power of two inverters and only one quarter of the power in four inverters. In addition to the inverters, no further power semiconductors or mechanical switches are required for the pole changeover.
  • two inverters and, for each electrical phase, two winding phases are provided in the polyphase winding of the electrical machine.
  • This embodiment is relatively inexpensive to manufacture.
  • inverters and, for six electrical phases, two winding phases each are provided in the polyphase winding of the electrical machine.
  • the two torque-speed characteristics can be shifted to even higher torques compared to the first embodiment, so that the performance of the electric machine is increased.
  • Winding phases are each connected to a star point or connected in a triangle or in a star-delta circuit to adapt the electrical machine to the respective inverter.
  • the electrical winding of the electrical machine is designed as a single-layer winding, in which only electrical conductors are provided in each groove of the stator, which are assigned to the same winding strand and the same electrical phase. This type of winding is particularly easy to produce.
  • the electrical winding of the electric machine is designed as a two-layer winding in which electrical conductors of two phase-different winding strands are provided in each slot of the stator.
  • This type of winding results in particularly small winding heads and thus size advantages.
  • a small harmonic content is achieved in the field exciter curve. This is very advantageous because harmonics cause the power or the torque of the electric machine to drop faster at high speeds in the field weakening range. In addition, the harmonics cause losses, which reduce the efficiency of the electric machine.
  • the electrical winding of the electrical machine is designed as a two-layer winding in which electrical conductors of two phase-different winding strands are provided in each second slot of the stator and in the grooves between only electrical conductors of the same winding phase and the same electrical phase are arranged , This design achieves a good compromise between good winding factor and low harmonic content.
  • the electrical machine is an asynchronous machine and the rotor is a squirrel-cage rotor, since the asynchronous machine enables the pole changeover according to the invention in a simple manner.
  • Fig.l shows a circuit diagram for an electric drive device with a
  • FIG. 2 shows a three-phase first current profile generated by the first inverter according to FIG. 1 and a three-phase second current profile generated by the second inverter according to FIG. 1, wherein the two
  • Inverters are operated in phase
  • 3 shows a three-phase first current profile generated by the first inverter according to FIG. 1 and a three-phase second current characteristic generated by the second inverter according to FIG. 1, wherein the two
  • FIG. 5 shows a winding diagram of the electric machine according to Fig.l with a
  • FIG. 6 shows a winding diagram of the electrical machine according to Fig.l with a
  • FIG. 7 shows a winding diagram of the electrical machine according to Fig.l with an alternative
  • FIG. 8 is a circuit diagram for an electric drive device with a
  • FIG. 9 is a circuit diagram for an electric drive device with a
  • FIG. 10 shows a circuit diagram for an electric drive device with a
  • FIG. 1 shows a circuit diagram for an electric drive device with an electric machine and two inverters after a first one
  • the electric machine 1 is designed, for example, as an asynchronous machine and comprises a rotor 2, for example designed as a cage rotor, and a stator 3 with an electric polyphase winding 4.
  • the polyphase winding 4 has a plurality of winding phases Ul ... n, Vl ... n, Wl ... n, which are each assigned to one of a plurality of electrical phases U, V, W and are each connected to one of a plurality of inverters 6.
  • the inverters 6 direct the DC voltage into AC or DC into AC and, for example, as a three-phase inverter in a B6 circuit, ie in six-pulse bridge circuit is formed.
  • two inverters are 6.1,6.2 and for each of the example, three electrical phases U, V, W two winding strands
  • U1, U2, V1, V2, W1, W2 provided. Instead of, for example, three electrical phases U, VW but also six electrical phases U, V, W, R, S, T can be provided.
  • the in-phase winding phases U1, U2 or V1, V2 or W1, W2 are each connected to a different or other of the two inverters 6.1,6.2.
  • the phase U associated winding line Ul the first inverter 6.1 and the phase U associated winding line U2 is the second
  • phase V associated winding line VI is again at one of the terminals of the first inverter 6.1 and the phase V associated winding line V2 at one of the terminals of the second
  • phase W associated winding line Wl is the first inverter 6.1 and the phase W associated
  • Winding line W2 associated with the second inverter 6.2 Through this
  • the multi-phase winding 4 is divided into two winding halves, which can be energized independently by the separate inverter 6.1,6.2.
  • the torque-speed characteristic of the electric machine by changing the number of poles is variable, so that there is a pole-changing winding or a pole-changing electric machine.
  • Inverters 6.1,6.2 provided current in the in-phase winding strands U1, U2 or V1, V2 or W1, W2 is such inphase or inversely phased einêtbar that at in-phase current a certain number of poles and anti-phase current doubling or halving the number of poles in the stator 3 results.
  • the current of the respective phase U, V, W is therefore driven in the second inverter 6.2 in phase or in phase opposition to the current of the same phase U, V, W in the first inverter 6.1.
  • the phase offset is 180 degrees.
  • FIG. 2 shows a signal generated by the first inverter 6.1 according to FIG.
  • Inverter 6 are operated in phase by a control unit. If the two inverters 6 according to FIG. 1 are operated with the same phase position or if the current in the in-phase winding phases U1, U2 or V1, V2 or W1, W2 is in phase, the polyphase winding 4 generates a field exciter curve with a specific number of poles and thus one Magnetic field with this particular number of poles. 3 shows a generated by the first inverter 6.1 according to Fig.l.
  • Inverter 6 are operated in phase opposition by a control unit. If the current in the second inverter 6.2 is driven in phase opposition to the first inverter 6.1, the current in the second winding half 4.2 flows in the reverse direction to the current in the first winding half 4.1.
  • the polyphase winding 4 thereby generates a field exciter curve with half or twice the number of poles compared to in-phase operation. Whether halving or doubling of the number of poles depends on which of the two ends of the winding phases U1, U2, V1, V2, W1, W2 is respectively connected to the associated inverter 6 or to the associated star point 7.
  • the mode with the larger number of poles provides a high torque at low speeds.
  • the operating mode with the smaller number of poles offers higher power or higher torque in the higher speed range.
  • the electric machine behaves in a simple, ie not doubled, number of poles according to a first characteristic K2 and twice the number of poles according to a second characteristic Kl.
  • the electric machine can therefore be operated according to two different characteristic curves K1, K2.
  • Both curves K1, K2 have at low speeds each have a first speed range K1.1, K2.1, in which the torque M, for example, is substantially constant, and then for larger speeds one field weakening range
  • the first characteristic curve Kl allows higher torques at low speeds than the second characteristic K2.
  • the second characteristic curve K2 at higher speeds higher torques than the first characteristic Kl.
  • the first speed range K2.1 of the second curve K2 extends to higher speeds up to a speed n2, which is greater than the corresponding speed nl the first curve Kl.
  • FIG. 5 shows a winding diagram of the electric machine according to Fig.l according to the first embodiment.
  • the polyphase winding 4 and its winding strands are distributed as
  • the electric polyphase winding 4 is shown in Figure 5 as a single-layer winding
  • stator 3 formed in which in each groove of the stator 3, only electrical conductors are provided, which are assigned to the same winding phase and the same electrical phase U, V, W.
  • the grooves of the stator 3 are provided with a numbering in FIG.
  • the electric polyphase winding 4 is formed as a two-layer winding, wherein in each groove of the stator electrical conductors of two
  • Phase-different winding strands are provided ( Figure 6).
  • the grooves of the stator 3 are also provided with a numbering in FIG.
  • the electric polyphase winding 4 may be formed as a two-layer winding, in which electrical conductors of two phase-different winding strands are provided in each second groove of the stator and in the grooves therebetween only electrical conductors of the same winding strand and the same electrical phase are arranged (Fig.7).
  • the grooves of the stator 3 are provided in Fig.7 analogous to the Fig.5,6 with a numbering.
  • FIG. 8 shows a circuit diagram for an electric drive device with an electric machine and two inverters after a second
  • Embodiment only in that the same inverter 6.1,6.2 associated winding strands U1, V1, W1; U2, V2, W2 of the electric machine 1 are each connected in a triangle. In the case of the delta connection, the ends of two of these winding phases each have a common node, which is connected to one of the terminals of one of the two inverters 6.1, 2.6.
  • the electric drive device or the electric machine 1 is designed analogously to the first embodiment.
  • Embodiment only in that the same inverter 6 associated winding strands U1, V1, W1; U2, V2, W2 of the electric machine 1 are each connected in a star-delta circuit.
  • the electric machine 6 associated winding strands U1, V1, W1; U2, V2, W2 of the electric machine 1 are each connected in a star-delta circuit.
  • FIG. 10 shows a circuit diagram for a four-inverter electric machine according to a fourth embodiment.
  • the fourth embodiment differs from the first embodiment in that instead of two inverters four inverters 6.1,6.2,6.3,6.4 and for each of the example, six electrical phases U, V, W, R, S, T two winding strands U1, U2; V1, V2, W1, W2; R1, R2, S1, S2, T1, T2 are provided on the electric machine 1.
  • the electric drive device or the electric machine 1 is designed analogously to the first embodiment.
  • the four inverters provide a 12-pulse inverter.
  • 6.1,6.2,6.3,6.4 provided current in the in-phase winding strands U1, U2 or V1.V2 or W1.W2 or R1.R2 or S1.S2 or T1.T2 so in-phase or out of phase controlled so that at in-phase current results in a certain number of poles and in antiphase current doubling or halving the number of poles in the stator 3.
  • the current of the respective phase U, V, W is thus in the second
  • Inverter 6.2 in-phase or out-of-phase with the current of the same phase U, V, W in the first inverter 6.1 and the current of the respective phase P » S, T in the fourth inverter 6.4 in-phase or out-of-phase with the current of the same phase P», S, T in the third inverter 6.3 controlled.
  • phase offset is 180 degrees.
  • the polyphase winding 4 is divided into four winding sections, which can be energized independently of each other by the four separate inverters 6.1,6.2.
  • U1.V1.W1; U2, V2, W2, U3, V3, W3; U4, V4, W4 are after the fourth

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

On connaît déjà des dispositifs d'entraînement électriques comportant une machine électrique et une pluralité d'onduleurs. La machine électrique comprend un rotor et un stator. Le stator comprend un enroulement électrique polyphasé muni d'une pluralité de brins d'enroulement. Les brins d'enroulement sont associés chacun à l'une d'une pluralité de phases électriques et sont raccordés chacun à l'un d'une pluralité d'onduleurs. Dans cette machine électrique, les brins d'enroulement en phase sont raccordés chacun à un onduleur différent. La machine électrique présente une caractéristique couple-vitesse spécifique selon laquelle la machine électrique peut délivrer un premier couple sensiblement constant dans une première gamme de vitesses de rotation basse et selon laquelle le couple d'une seconde gamme de vitesses de rotation plus élevée, situé dans ce que l'on appelle la zone de shuntage, diminue à partir du premier couple à mesure que la vitesse augmente. Pour faire fonctionner la machine électrique, il serait souhaitable d'avoir des couples plus élevés dans la seconde gamme de vitesses de rotation pour obtenir une meilleure accélération d'un véhicule entraîné par la machine électrique. Dans le dispositif d'entraînement électrique de l'invention, un couple plus élevé peut être obtenu dans la seconde gamme de vitesses de rotation de la caractéristique de la machine électrique par commutation de polarité. Selon l'invention, le courant produit par les différents onduleurs (6.1, 6.2, 6.3, 6.4) peut être introduit en phase ou en opposition de phase dans les brins d'enroulement en phase (U1, U2 ;V1, V2 ; W1, W2 ; R1, R2 ; S1, S2 ; T1, T2) de sorte que, dans le stator (3), pour un courant en phase on obtient un nombre de pôles déterminé et pour un courant en opposition de phase on obtient le double ou la moitié du nombre de pôles.
PCT/EP2017/069519 2016-08-22 2017-08-02 Dispositif d'entraînement électrique WO2018036767A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016215705.1 2016-08-22
DE102016215705.1A DE102016215705A1 (de) 2016-08-22 2016-08-22 Elektrische Antriebseinrichtung

Publications (1)

Publication Number Publication Date
WO2018036767A1 true WO2018036767A1 (fr) 2018-03-01

Family

ID=59506285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/069519 WO2018036767A1 (fr) 2016-08-22 2017-08-02 Dispositif d'entraînement électrique

Country Status (2)

Country Link
DE (1) DE102016215705A1 (fr)
WO (1) WO2018036767A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495054A (zh) * 2018-12-24 2019-03-19 重庆理工大学 一种多绕组电机绕组切换装置和控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH14112A (de) 1897-02-10 1897-10-31 Robert Dahlander Asynchroner Wechselstrommotor mit veränderlicher Polzahl
DE759076C (de) 1939-04-04 1954-06-08 Siemens Schuckertwerke A G Polumschaltbare Wicklung
EP0696103A1 (fr) * 1994-08-02 1996-02-07 Performance Controls, Inc. Moteur à grande vitesse avec puissance constante
US6008616A (en) * 1994-12-12 1999-12-28 Kabushiki Kaisha Meidensha Pole change induction motor and control apparatus and method for the same
DE102006021354A1 (de) * 2006-05-08 2007-11-15 Siemens Ag Elektrische Maschine, insbesondere Synchronmotor, mit redundanten Statorwicklungen
DE102012203525A1 (de) 2012-03-06 2013-09-12 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit elektrischer Maschine und Verfahren zum Betreiben dieser
DE102014104225A1 (de) * 2014-03-26 2015-10-01 Feaam Gmbh Elektrische Maschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH14112A (de) 1897-02-10 1897-10-31 Robert Dahlander Asynchroner Wechselstrommotor mit veränderlicher Polzahl
DE759076C (de) 1939-04-04 1954-06-08 Siemens Schuckertwerke A G Polumschaltbare Wicklung
EP0696103A1 (fr) * 1994-08-02 1996-02-07 Performance Controls, Inc. Moteur à grande vitesse avec puissance constante
US6008616A (en) * 1994-12-12 1999-12-28 Kabushiki Kaisha Meidensha Pole change induction motor and control apparatus and method for the same
DE102006021354A1 (de) * 2006-05-08 2007-11-15 Siemens Ag Elektrische Maschine, insbesondere Synchronmotor, mit redundanten Statorwicklungen
DE102012203525A1 (de) 2012-03-06 2013-09-12 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit elektrischer Maschine und Verfahren zum Betreiben dieser
DE102014104225A1 (de) * 2014-03-26 2015-10-01 Feaam Gmbh Elektrische Maschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HEINRICH SEQUENZ: "Die Wicklungen elektrischer Maschinen", vol. 3, 1954, SPRINGER VERLAG

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495054A (zh) * 2018-12-24 2019-03-19 重庆理工大学 一种多绕组电机绕组切换装置和控制方法
CN109495054B (zh) * 2018-12-24 2020-04-07 重庆理工大学 一种多绕组电机绕组切换装置和控制方法

Also Published As

Publication number Publication date
DE102016215705A1 (de) 2018-02-22

Similar Documents

Publication Publication Date Title
EP2186189B1 (fr) Machine électrique
DE102015120373A1 (de) Bürstenloser Gleichstrommotor und Elektrisches Servolenkungssystem
EP1745541A1 (fr) Moteur a collecteur comprenant plusieurs groupes d'enroulements de champ
WO2012119795A2 (fr) Unité de commande
DE2007495B2 (de) Ständerwicklung für einen elektrischen Dreiphasen-Induktions-Motor
DE102006035652A1 (de) Wechselstrommotor, der dafür ausgelegt ist, um einen hohen Wirkungsgrad im Betrieb sicherzustellen
EP2659582B1 (fr) Procédé et dispositif pour faire fonctionner un moteur électrique à excitation séparée ou hybride
DE10234594B4 (de) Generator/Motor-System und Verfahren zum Betreiben dieses Generator/Motor-Systems
DE3107654C2 (de) Teilwicklungsschaltung zum Anfahren eines Drehstrommotors
WO2018036767A1 (fr) Dispositif d'entraînement électrique
DE2331543A1 (de) Stator fuer wechselstrom-induktionsmotor mit kurzem stator
DE2208854B2 (de) Synchronmotor mit einem mehrpoligen permanentmagneten
EP0525466A2 (fr) Moteur multi-phasé à vitesse réglable alimenté par un convertisseur
DE2218193B2 (de) Verfahren zur schnellen Drehrichtungsumkehr eines Einphasen-Induktionsmotors
DE102017130869A1 (de) Elektrisches Getriebe und Verfahren zum Betreiben eines Elektromotors
DE102019122466A1 (de) Ölpumpe mit Windungsanzahlumschaltung
DE2556582A1 (de) Verfahren und motor-vorrichtung zur erzeugung hoher drehzahlen
WO2008155293A2 (fr) Moteur à commutation électronique comprenant un stator amélioré
DE830977C (de) Ein- und mehrphasige Frequenz- und Phasenwandlergruppe
DE324516C (de) Verfahren zum stufenweisen Regeln der Geschwindigkeit von Drehfeldmotoren, die von eigenen Wechselstromgeneratoren gespeist werden
DE484185C (de) Kompensierte elektrische Wechselstrommaschine
WO2023078740A1 (fr) Entraînement électrique comprenant une machine électrique dotée d'une connexion en étoile
DE2206232C3 (de) Elektrischer Drehstrommotor mit einem Ständer, der eine im Verhältnis 1 zu 2 polumschaltbare Ständerwicklung aufweist
AT100409B (de) Verfahren und Einrichtung zur willkürlichen Leistungsübertragung zwischen zwei nicht starr miteinander verbundenen Wechselstromnetzen mittels zweier gekuppelter Synchronmaschinen.
DE442925C (de) Asynchronmaschine fuer veraenderliche Drehzahl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746487

Country of ref document: EP

Kind code of ref document: A1