WO2018036527A1 - 自移动设备以及自移动设备控制方法 - Google Patents

自移动设备以及自移动设备控制方法 Download PDF

Info

Publication number
WO2018036527A1
WO2018036527A1 PCT/CN2017/098679 CN2017098679W WO2018036527A1 WO 2018036527 A1 WO2018036527 A1 WO 2018036527A1 CN 2017098679 W CN2017098679 W CN 2017098679W WO 2018036527 A1 WO2018036527 A1 WO 2018036527A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
contact sensor
self
moving device
adjusted
Prior art date
Application number
PCT/CN2017/098679
Other languages
English (en)
French (fr)
Inventor
多尔夫达维德
Original Assignee
宝时得科技(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝时得科技(中国)有限公司 filed Critical 宝时得科技(中国)有限公司
Publication of WO2018036527A1 publication Critical patent/WO2018036527A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the present invention relates to the field of machinery, and in particular to a self-mobile device and a self-mobile device control method.
  • the automation of mobile devices has become increasingly important.
  • the above problem can be effectively solved by providing a non-contact sensor on the self-mobile device, but although the non-contact sensor is used, the self-mobile device It will still avoid certain areas that we do not intend to avoid, and that mobile devices will still collide with obstacles, resulting in work that does not meet the requirements of the mobile device or damage from the body of the mobile device.
  • a self-moving device includes a non-contact sensor for detecting whether there is an obstacle in front, wherein the non-contact sensor has an adjustable detection angle, and the self-mobile device further includes a balance detection module and a control a module, an output end of the balance detecting module is connected to an input end of the control module, and an output end of the control module is connected to the non-contact sensor;
  • the balance detection module is configured to detect the inclination of the self-mobile device in real time
  • the control module is configured to acquire a direction of an angle to be adjusted of the non-contact sensor according to the direction of the tilt angle, and calculate an angle of the non-contact sensor to be adjusted according to the magnitude of the tilt angle. After the size, the detection angle of the non-contact sensor is adjusted in real time.
  • the detection angle of the non-contact sensor can be adjusted, and the accuracy of the non-contact sensor to recognize the obstacle is improved, so that the slope can be prevented from being mistaken when the mobile device is climbing the state.
  • Retreating from obstacles for example, when the mobile device is a lawn mower, the grass on the slope is not cut off, and it can also be avoided that the detection angle of the non-contact sensor is not detected when the mobile device is in the downhill state. Obstructions on the slope, resulting in damage to the fuselage from the mobile device.
  • control module includes an angular direction acquiring unit and an angular size a calculating unit and an output unit, wherein the input end of the angular direction acquiring unit and the input end of the angle calculating unit are connected to an output end of the balance detecting module, and the output of the angular direction acquiring unit And an output end of the angle calculating unit is respectively connected to an input end of the output unit, and an output end of the output unit is connected to the non-contact sensor;
  • the angle direction acquiring unit is configured to acquire a direction of an angle to be adjusted of the non-contact sensor according to a relative direction of two inclination angles of the front and rear adjacent outputs of the balance detecting module;
  • the angle size calculation unit is configured to calculate a size of an angle to be adjusted of the non-contact sensor according to a difference between two inclination angles of the front and rear adjacent outputs of the balance detection module;
  • the output unit is configured to adjust the detection angle of the non-contact sensor according to the direction of the angle to be adjusted output by the angular direction acquisition unit and the size of the angle to be adjusted output by the angle calculation unit. .
  • the balance detection module is an angle sensor.
  • the non-contact sensor includes a first bracket and a roadblock detecting head, the first bracket is fixed to the self-moving device, and the roadblock detecting head is rotatably fixed to the On the first bracket.
  • the non-contact sensor includes a second bracket, a third bracket, and a barrier detecting head, and the first end of the second bracket and the first end of the third bracket are respectively fixed to the The second end of the second bracket and the second end of the third bracket are respectively connected to the barrier detecting head, and the second bracket and the third The brackets are all height-adjustable brackets.
  • the non-contact sensor is an ultrasonic contactless sensor or a radar non-contact sensor.
  • a self-moving device control method comprising:
  • the self-moving device control method described above provides an adjustment of the angle of the non-contact sensor, and improves the accuracy of the non-contact sensor to identify an obstacle, thereby avoiding the mistake of using the slope as an obstacle when the mobile device is climbing the state. And backing up, for example, when the mobile device is a lawn mower, it will cause a slope The grass is not cut off, and it is also possible to avoid the problem of damage from the mobile device body due to the fact that the obstacle is not detected on the slope due to the detection angle problem of the non-contact sensor when the mobile device is in the downhill state.
  • the step of acquiring the direction of the angle to be adjusted of the non-contact sensor according to the direction of the tilt angle is based on the detected tilt angle of the self-moving device Obtaining the direction of the angle to be adjusted of the non-contact sensor from the direction of the inclination of the mobile device;
  • the step of calculating the size of the angle to be adjusted of the non-contact sensor according to the magnitude of the tilt angle is based on the detected tilt angle of the self-moving device from the previous detection of the tilt angle of the self-moving device The difference calculates the magnitude of the angle to be adjusted by the non-contact sensor.
  • FIG. 1 is a schematic structural view of a self-mobile device according to the present invention.
  • FIG. 2 is a schematic structural view of a non-contact sensor in a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a non-contact sensor in a preferred embodiment of the present invention.
  • FIG. 4 is a schematic view showing a state in which the self-moving device is in a climbing state according to the present invention
  • FIG. 5 is a schematic diagram of a module of a self-mobile device according to the present invention.
  • FIG. 6 is a schematic block diagram of a self-mobile device in a more preferred embodiment of the present invention.
  • FIG. 7 is a block diagram of a control module in a preferred embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for controlling a self-mobile device according to the present invention.
  • the term "contactless sensor 300” is broadly defined and includes any device, device or system having a function of detecting a roadblock, including but not limited to ultrasonic contactless sensors and radar non-contact. Sensors, etc. Those skilled in the art can provide other non-contact sensors 300 with adjustable detection angles as needed to accurately and reliably detect obstacles directly from the front of the mobile device 400.
  • the term “self-mobile device 400” is also broadly defined, including any device, device, etc. that may cause an erroneous determination of an obstacle due to the presence of the non-contact sensor 300 in a hill climbing state or a downhill state, including but not limited. For lawn mowers.
  • the "hill climbing state” and the “downhill state” as used in the present invention mean that the mobile device 400 is in the process of climbing or descending, that is, the front wheel is on the first road surface, and the rear wheel is in the second road. On the road surface, there is an angle between the first road surface and the second road surface that is not equal to 0 degrees.
  • both the "hill climbing state” and the “downhill state” described herein are considered to be a dynamic process, rather than being entirely on the slope from the mobile device 400.
  • the control module 700 adjusts the detection angle of the non-contact sensor 300 so that it still points to the self-moving Directly in front of device 400.
  • the "hill climbing state” and “downhill state” in the present invention may be determined by comparing the magnitudes of the inclinations of the mobile device 400 at different different points in time, for example, when the mobile device 400 is at a different time adjacent to each other. When the inclination angles of the points are not equal, they can be considered to be in a "climbing state” or a “downhill state”. When the inclination angles of the mobile device 400 at different different time points are equal, they are considered to be neither "climbing”. "Status” is also not in the "downhill state”.
  • FIG. 1 is a schematic structural diagram of a self-mobile device according to the present invention.
  • the device 400 includes a non-contact sensor 300 for detecting whether there is an obstacle in front, and the detection angle thereof is adjustable, so that when the self-moving device 400 is in a climbing state or a downhill state, obstacles caused by the slope can be avoided. Misjudgment. For example, on the one hand, when the self-moving device 400 is in a climbing state, if the non-contact sensor 300 of the mobile device 400 cannot perform the detection angle adjustment, the non-contact sensor 300 may use the slope as an obstacle, as shown in FIG.
  • the second arrow 2 is shown, resulting in a change in the path from the mobile device 400, such as a backoff or the like.
  • the self-moving device 400 is a lawn mower, grass that grows on the slope cannot be cut off from the mobile device 400.
  • the self-moving device 400 is in the downhill state, if the non-contact sensor 300 of the mobile device 400 cannot perform the detection angle adjustment, and there is an obstacle on the slope, the non-contact sensor 300 cannot The obstacle is detected in time, which may cause damage from the mobile device 400 and reduce the life of the mobile device 400.
  • the detection angle of the non-contact sensor 300 in the present invention is mainly adjustable by being adjustable up and down with respect to the detection angle of the self-moving device 400, and is adjustable with respect to the detection angle of the self-moving device 400, and can be expanded.
  • the detection angle of the non-contact sensor 300 is performed, for example, the ultrasonic wave and the emission angle of the radar are expanded, and the details are not described herein.
  • FIG. 2 is a non-contact in a preferred embodiment of the present invention.
  • the non-contact sensor 300 includes a first bracket 321 and a roadblock detecting head 311.
  • the first bracket 321 is fixed to the self-moving device 400, and the roadblock detecting head 311.
  • the angle is adjustably fixed to the first bracket 321 .
  • the self-moving device 400 is in a hill climbing state or a downhill state, the adjustment of the angle of the roadblock detecting head 311 is realized by an automatic control theory.
  • FIG. 3 is a schematic structural diagram of a non-contact sensor according to a preferred embodiment of the present invention.
  • the non-contact sensor 300 includes a second bracket 331, a third bracket 332, and a roadblock detecting head 311.
  • the first end of the second bracket 331 and the first end of the third bracket 332 are respectively Fixed to the self-moving device 400, the second end of the second bracket 331 and the second end of the third bracket 332 are respectively connected to the roadblock detecting head 311, and the The second bracket 331 and the third bracket 332 are both height-adjustable brackets.
  • the self-moving device 400 is in a climbing state or a downhill state, the adjustment of the height of the second bracket 331 and the third bracket 332 can be realized by an automatic control theory.
  • the method of adjusting the non-contact sensor 300 is to automatically adjust the detection angle of the non-contact sensor 300 by automatic control.
  • the self-mobile device 400 includes at least a balance detection module 500 for detecting the inclination of the self-mobile device 400 in real time and according to Obtaining the direction of the angle of the non-contact sensor 300 to be adjusted according to the direction of the tilt angle, and calculating the angle of the angle to be adjusted by the non-contact sensor 300 according to the magnitude of the tilt angle, and adjusting the position in real time.
  • the control module 700 of the angle of the proximity sensor 300 as shown in FIG.
  • the control module 700 detects the detection angle of the non-contact sensor 300 from the second arrow according to the tilt angle.
  • the 2 moves to the first arrow 1 so that the non-contact sensor 300 can detect the obstacle on the slope in real time without treating the slope as an obstacle.
  • the detection angle of the non-contact sensor 300 is moved upward relative to the self-moving device 400, and the climbing state is a dynamic process, and in the process, The detection angle of the touch sensor 300 may be upward or downward relative to the self-moving device 400.
  • the direction of the specific movement needs to be performed according to the positional relationship between the two inclination angles of the adjacent output of the balance detection module 500. It is judged that the words relating to angles, such as the inclination angle, the included angle, the angle, and the like, which are involved in the present invention, are all vectors.
  • FIG. 4 is a schematic diagram of a state in which the self-moving device is in a climbing state according to the present invention.
  • it may be detected by detecting the angle between the mobile device 400 and the road surface, or by determining the self-moving device 400 and the horizontal plane. The angle between the two is carried out.
  • other reasonable ways of determining the angle of adjustment of the proximity sensor 300 may be present.
  • the angle between the self-moving device 400 and the road surface described herein may refer to an angle between the mobile device 400 and the road surface where the front wheel is located, and may also refer to the road surface from the mobile device 400 and the rear wheel thereof.
  • the angle between the self-moving device 400 and the horizontal plane described herein refers to the angle between the mobile device 400 and the horizontal plane in which the direction of motion is located.
  • the above angles are vector signals. Further, for example, when the angle between the mobile device 400 and the horizontal plane where the moving direction is located is the inclination angle, as shown in FIG.
  • the self-moving device 400 when the difference between the two inclination angles of the front and rear adjacent outputs of the balance detecting module 500 is not equal to 0 degrees
  • the self-moving device 400 is considered to be in a hill climbing state or a downhill state.
  • the numerical values involved in the present invention for example, when the difference in inclination angle is equal to 0 degrees, it does not only include absolute 0 degrees, but refers to a range, for example, +/- 1 degree, +/- 2 degrees, etc. , those skilled in the art In understanding the above values, particular care should be taken not to limit the scope of the invention to only absolute zero degrees and the like.
  • FIG. 5 is a schematic diagram of a module of the self-mobile device of the present invention.
  • the balance detection module 500 detects the tilt angle of the self-moving device 400 in real time, and then outputs it to the control module 700, so that the control module 700 adjusts the detection angle of the non-contact sensor 300 according to the tilt angle, in which, when the control is performed
  • the control module 700 acquires the non-contact sensor 300 according to the direction of the tilt angle.
  • the control module 700 keeps the detection angle of the non-contact sensor 300 unchanged when the self-moving device 400 is neither in the climbing state nor the downhill state according to the tilt angle.
  • the balance detection module 500 is an angle sensor 600, as shown in FIG. 6.
  • FIG. 7 is a schematic diagram of a module of the control module of the present invention.
  • the control module 700 includes an angle direction acquiring unit 701, an angle size calculating unit 702, and an output unit 703, and an input end of the angle direction acquiring unit 701 and the angle size calculating unit 702.
  • the input end is connected to the output end of the balance detecting module 500, and the output end of the angle direction acquiring unit 701 and the output end of the angle size calculating unit 702 are respectively input to the output unit 703.
  • the output terminal of the output unit 703 is connected to the non-contact sensor 300; the angle direction acquiring unit 701 is configured to perform two tilt angles of the front and rear adjacent outputs according to the balance detecting module 500.
  • the direction of the angle of the non-contact sensor 300 to be adjusted is obtained in the opposite direction; the angle size calculation unit 702 is configured to calculate the non-contact according to the difference between the two inclination angles of the front and rear adjacent outputs of the balance detection module 500 The size of the angle to be adjusted by the sensor 300; the output unit 703 is configured to acquire the angle to be adjusted according to the angular direction acquiring unit 701 The direction and angle to be adjusted size calculation unit 702 outputs the angle adjustment of the detection angle of the magnitude of the non-contact sensor 300, the specific processing flow will be described in detail below.
  • the self-moving device control method includes adjusting an angle of the non-contact sensor 300 when the self-moving device 400 is in a hill climbing state or a downhill state.
  • FIG. 8 is a flowchart of a self-mobile device control method of the present invention.
  • the self-mobile device control method of the present invention specifically includes the following steps:
  • S200 Obtain a direction of an angle to be adjusted of the non-contact sensor 300 according to the direction of the tilt angle, and calculate a size of an angle to be adjusted by the non-contact sensor 300 according to the magnitude of the tilt angle;
  • the step of acquiring the direction of the angle to be adjusted of the non-contact sensor 300 according to the direction of the tilt angle is based on the current detected self-mobile device 400. Obtaining a direction of an angle to be adjusted of the non-contact sensor 300 from a direction of a tilt angle of the mobile device 400 that was previously detected;
  • the step of calculating the size of the angle to be adjusted of the non-contact sensor 300 according to the magnitude of the tilt angle is based on the detected tilt angle of the mobile device 400 from the mobile device 400 detected previously.
  • the difference in the inclination angle calculates the magnitude of the angle to be adjusted of the non-contact sensor 300.
  • the tilt angle output by the balance detecting module 500 is a vector, which is directional, and the angle direction acquiring unit can detect the tilt angle of the self-moving device 400 from the current detection of the self-moving device 400.
  • the direction of the inclination angle is obtained, and the direction of the angle at which the non-contact sensor 300 needs to be adjusted is obtained.
  • the angle size calculation unit 702 can detect the inclination angle of the self-moving device 400 from the current detection from the mobile device 400.
  • the difference in the angle of inclination indicates the magnitude of the angle that the non-contact sensor 300 needs to adjust, so that the output module 703 can obtain the direction of the angle to be adjusted output by the unit 701 according to the angular direction and the output of the angle size calculation unit 702.
  • the size of the angle to be adjusted adjusts the detection angle of the non-contact sensor 300. It should be noted here that when the difference between the two inclination angles of the front and rear adjacent outputs output by the balance detecting module 500 is 0, it is considered that the self-moving device 400 is neither in the climbing state nor in the downhill state. It is not necessary to adjust the detection angle of the non-contact sensor 300 described above. It can also be understood that when the difference between the two inclination angles of the front and rear adjacent outputs output by the balance detecting module 500 is 0, the angle of the angle that the non-contact sensor 300 calculated by the angle size calculating unit 702 needs to be adjusted is also 0, that is, not adjusted. The angle of detection of the non-contact sensor 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自移动设备(400)以及自移动设备(400)控制方法,其中自移动设备(400)包括检测角度可调的非接触式传感器(300)、平衡检测模块(500)以及控制模块(700),平衡检测模块(500)的输出端与控制模块(700)的输入端相连接,控制模块(700)的输出端与非接触式传感器(300)相连接;平衡检测模块(500)用于实时检测自移动设备(400)的倾角;控制模块(700)用于根据倾角的方向获取非接触式传感器(300)待调整的角度的方向,且根据倾角的大小计算非接触式传感器(300)待调整的角度的大小后,实时调整非接触式传感器(300)的检测角度。非接触式传感器(300)的检测角度是可以调整的,提高了非接触式传感器(300)识别障碍物的精度,从而有效地避免了自移动设备(400)的工作不符合要求或自移动设备(400)的机身的损害的问题,应用范围较为广泛。

Description

自移动设备以及自移动设备控制方法 技术领域
本发明涉及机械领域,特别是涉及一种自移动设备以及自移动设备控制方法。
背景技术
随着自动控制的飞速发展,自移动设备的自动化运行愈发重要。一般地,为了防止自移动设备在自动运行过程中与障碍物碰撞,通过在自移动设备上设置非接触式传感器,可以有效的解决上述问题,但是,虽然使用了非接触式传感器,自移动设备仍会避开某些我们不打算让其避开的区域,以及自移动设备仍会与障碍物碰撞,从而导致自移动设备的工作不符合要求或自移动设备的机身的损害。
发明内容
基于此,有必要提供一种自移动设备以及自移动设备控制方法,可以根据需要调整非接触式传感器的检测角度,以更准确地识别障碍物。
一种自移动设备,包括用于检测前方是否有障碍物的非接触式传感器,其特征在于,所述非接触式传感器的检测角度可调,所述的自移动设备还包括平衡检测模块以及控制模块,所述的平衡检测模块的输出端与所述的控制模块的输入端相连接,所述的控制模块的输出端与所述的非接触式传感器相连接;
所述的平衡检测模块用于实时检测所述的自移动设备的倾角;
所述的控制模块用于根据所述的倾角的方向获取所述的非接触式传感器待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器待调整的角度的大小后,实时调整所述的非接触式传感器的检测角度。
以上所述的自移动设备,其非接触式传感器的检测角度是可以调整的,提高了非接触式传感器识别障碍物的精度,因此可以避免自移动设备在爬坡状态时,误将斜坡当作障碍物而后退,例如当自移动设备为割草机时,会导致斜坡上的草未被割除,且也可以避免自移动设备在下坡状态时,由于非接触式传感器的检测角度问题未检测到斜坡上的障碍物,从而导致的自移动设备机身损害问题。
在其中一个实施例中,所述的控制模块包括角度方向获取单元、角度大小 计算单元以及输出单元,所述的角度方向获取单元的输入端以及所述的角度大小计算单元的输入端均与所述的平衡检测模块的输出端相连接,所述的角度方向获取单元的输出端以及所述的角度大小计算单元的输出端分别与所述的输出单元的输入端相连接,所述的输出单元的输出端与所述的非接触式传感器相连接;
所述的角度方向获取单元用于根据所述的平衡检测模块前后相邻输出的两个倾角的相对方向获取所述的非接触式传感器待调整的角度的方向;
所述的角度大小计算单元用于根据所述的平衡检测模块前后相邻输出的两个倾角的差计算所述的非接触式传感器待调整的角度的大小;
所述的输出单元用于根据所述的角度方向获取单元输出的待调整的角度的方向以及所述的角度大小计算单元输出的待调整的角度的大小调整所述的非接触式传感器的检测角度。
在其中一个实施例中,所述的平衡检测模块为角度传感器。
在其中一个实施例中,所述的非接触式传感器包括第一支架以及路障检测头,所述的第一支架固定于所述的自移动设备上,所述的路障检测头可旋转地固定于所述的第一支架上。
在其中一个实施例中,所述的非接触式传感器包括第二支架、第三支架以及路障检测头,所述的第二支架的第一端以及第三支架第一端分别固定于所述的自移动设备上,所述的第二支架的第二端以及所述的第三支架的第二端分别与所述的路障检测头相连接,且所述的第二支架以及所述的第三支架均为高度可调的支架。
在其中一个实施例中,所述的非接触式传感器为超声波非接触式传感器或雷达非接触式传感器。
一种自移动设备控制方法,所述自移动设备包括用于检测前方是否有障碍物的非接触式传感器,所述的方法包括:
检测所述的自移动设备的倾角;
根据所述的倾角的方向获取所述的非接触式传感器待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器待调整的角度的大小;
调整所述的非接触式传感器的角度。
以上所述的自移动设备控制方法,提供调整非接触式传感器的角度,提高了非接触式传感器识别障碍物的精度,因此可以避免自移动设备在爬坡状态时,误将斜坡当作障碍物而后退,例如当自移动设备为割草机时,会导致斜坡上的 草未被割除,且也可以避免自移动设备在下坡状态时,由于非接触式传感器的检测角度问题未检测到斜坡上的障碍物,从而导致的自移动设备机身损害问题。
在其中一个实施例中,所述根据所述的倾角的方向获取所述的非接触式传感器待调整的角度的方向的步骤,是根据本次检测到的自移动设备的倾角相对前一次检测到的自移动设备的倾角的方向获取所述的非接触式传感器待调整的角度的方向;
所述根据所述的倾角的大小计算所述的非接触式传感器待调整的角度的大小的步骤,是根据本次检测到的自移动设备的倾角相对前一次检测到的自移动设备的倾角的差计算所述的非接触式传感器待调整的角度的大小。
附图说明
以上所述的本发明解决的技术问题、技术方案以及有益效果可以通过下面的能够实现本发明的较佳的具体实施例的详细描述,同时结合附图描述而清楚地获得。
图1为本发明的自移动设备的结构示意图;
图2为本发明的一优选的实施例中的非接触式传感器的结构示意图;
图3为本发明的一优选的实施例中的非接触式传感器的结构示意图;
图4为本发明的自移动设备处于爬坡状态时的状态示意图;
图5为本发明的自移动设备的模块示意图;
图6为本发明的一更为优选的实施例中自移动设备的模块示意图;
图7为本发明的一优选的实施例中的控制模块的模块示意图;
图8为本发明的自移动设备控制方法的流程图。
1第一箭头                    2第二箭头
300非接触式传感器            311路障检测头
321第一支架                  331第二支架
332第三支架                  400自移动设备
500平衡检测模块              600角度传感器
700控制模块                  701角度大小获取单元
702角度大小计算单元          703输出单元
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用于解释本发明,并不用于限定本发明。
在详细说明根据本发明的实施例前,应该注意到的是,所述的实施例主要在于与自移动设备以及自移动设备控制方法相关的步骤和系统组件的组合。因此,所属系统组件和方法步骤已经在附图中通过常规符号在适当的位置表示出来了,并且只示出了与理解本发明的实施例有关的细节,以免因对于得益于本发明的本领域普通技术人员而言显而易见的那些细节模糊了本发明的公开内容。
在本文中,诸如左和右,上和下,前和后,第一和第二之类的关系术语仅仅用来区分一个实体或动作与另一个实体或动作,而不一定要求或暗示这种实体或动作之间的任何实际的这种关系或顺序。术语“包括”、“包含”或任何其他变体旨在涵盖非排他性的包含,由此使得包括一系列要素的过程、方法、物品或者设备不仅包含这些要素,而且还包含没有明确列出的其他要素,或者为这种过程、方法、物品或者设备所固有的要素。
出于本发明的公开的目的,术语“非接触式传感器300”是广义定义的,包括任何具有检测路障功能的装置、设备或系统,包含但不局限于超声波非接触式传感器和雷达非接触式传感器等。本领域技术人员可以根据需要而设置其他的检测角度可调的非接触式传感器300,以准确地、可靠地检测该自移动设备400正前方的障碍。此外,术语“自移动设备400”也是广义定义的,包括任何处于爬坡状态或下坡状态时由于非接触式传感器300的存在可能造成障碍物的误判的装置、设备等,包括但不局限于割草机。
此外,本发明中所述的“爬坡状态”以及“下坡状态”是指自移动设备400处于爬坡过程中或下坡过程中,即前轮在第一路面上,而后轮在第二路面上,且第一路面和第二路面之间具有一不等于0度的夹角。因此,此处所述的“爬坡状态”以及“下坡状态”均被认为是一个动态过程,而非自移动设备400整体处于斜坡上。在本发明中的自移动设备400爬坡或下坡完成后,即当自移动设备400整体位于斜坡上时,控制模块700会调整非接触式传感器300的检测角度,使其仍指向该自移动设备400的正前方。本发明中的“爬坡状态”、“下坡状态”可以通过比较自移动设备400在相邻的不同的时间点的倾角的大小来确定,例如当自移动设备400在相邻的不同的时间点的倾角不相等时,可以认为其处于“爬坡状态”或“下坡状态”,当自移动设备400在相邻的不同的时间点的倾角相等时,则认为其既不处于“爬坡状态”,也不处于“下坡状态”。
如图1所示,图1为本发明的自移动设备的结构示意图。本发明的自移动 设备400包括用于检测前方是否有障碍物非接触式传感器300,其检测角度可调,这样当该自移动设备400在处于爬坡状态或下坡状态时,可以避免因斜坡而造成障碍物的误判。例如,一方面,当自移动设备400处于爬坡状态时,如果自移动设备400的非接触式传感器300不能进行检测角度调整,则该非接触式传感器300可能将斜坡作为障碍物,如图4中所示的第二箭头2,从而导致自移动设备400的路径发生变化,例如后退等。当所述的自移动设备400为割草机时,会使得长在斜坡上的草不能被自移动设备400割除。另外一方面,当自移动设备400处于下坡状态时,如果自移动设备400的非接触式传感器300不能进行检测角度调整,而斜坡上刚好存在障碍物,此时,该非接触式传感器300不能及时地检测到该障碍物,从而可能造成自移动设备400的损伤,降低自移动设备400的寿命。
另外,本发明中的非接触式传感器300的检测角度可调主要在于相对于自移动设备400的检测角度的上下可调,而相对于自移动设备400的检测角度的左右可调,可以通过扩大非接触式传感器300的检测角进行,例如,扩大超声波和雷达的发射角等,在此不再赘述。
为了实现所述的自移动设备400的非接触式传感器300的检测角度可调,在一种实施例中,请参阅图2所示,图2为本发明的一优选的实施例中的非接触式传感器的结构示意图。在该实施例中,所述的非接触式传感器300包括第一支架321以及路障检测头311,所述的第一支架321固定于所述的自移动设备400上,所述的路障检测头311角度可调地固定于所述的第一支架321上。当所述的自移动设备400处于爬坡状态或下坡状态时,通过自动控制理论来实现对路障检测头311的角度的调整。
在另外一种优选的实施例中,请参阅图3所示,图3为本发明的一优选的实施例中的非接触式传感器的结构示意图。在该实施例中,所述的非接触式传感器300包括第二支架331、第三支架332以及路障检测头311,所述的第二支架331的第一端以及第三支架332第一端分别固定于所述的自移动设备400上,所述的第二支架331的第二端以及所述的第三支架332的第二端分别与所述的路障检测头311相连接,且所述的第二支架331以及所述的第三支架332均为高度可调的支架。当所述的自移动设备400处于爬坡状态或下坡状态时,可以通过自动控制理论来实现对所述的第二支架331以及所述的第三支架332的高度的调整。
上述两种实施方式仅为本发明中优选的实施方式,本领域技术人员可以根 据需要而设置其他的检测角度可调的非接触式传感器300,以准确地、可靠地检测该自移动设备400正前方的障碍。
在本发明中,调整非接触式传感器300的方法是通过自动控制实现该非接触式传感器300的检测角度的自动调整。对于该非接触式传感器300的检测角度的自动调整,在一种优选的实施方式中,该自移动设备400至少包括用于实时检测所述的自移动设备400的倾角的平衡检测模块500以及根据所述的倾角的方向获取所述的非接触式传感器300待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器300待调整的角度的大小后,实时调整所述的非接触式传感器300的角度的控制模块700,如图4中,当自移动设备400处于爬坡状态时,该控制模块700根据该倾角将非接触式传感器300的检测角度从第二箭头2处移动至第一箭头1处,以使得非接触式传感器300可以实时检测斜坡上的障碍物,而不会将斜坡当成障碍物进行处理。需要注意的是并非自移动设备400处于爬坡状态均是将非接触式传感器300的检测角度相对于所述的自移动设备400向上移动,该爬坡状态为一个动态过程,在该过程中非接触式传感器300的检测角度可能是相对于所述的自移动设备400向上移动也可能是向下移动,具体移动的方向需要根据平衡检测模块500相邻输出的两个倾角之间的位置关系进行判断,因此本发明中所涉及的有关角度的词,例如倾角、夹角、角度等均为矢量。
请参阅图4所示,图4为本发明的自移动设备处于爬坡状态时的状态示意图。在一种优选的实施方式中,为了确定非接触式传感器300需要调整的角度的大小,可以通过检测自移动设备400与路面之间的夹角进行,也可以通过确定自移动设备400与水平面之间的夹角进行。此外,在其他的实施方式中,也可以存在其他的确定非接触式传感器300的调整的角度的合理的方式。
其中,在此处所述的自移动设备400与路面之间的夹角可以指自移动设备400与其前轮所在的路面之间的夹角,也可以指自移动设备400与其后轮所在的路面之间的夹角。此处所述的自移动设备400与水平面之间的夹角,指自移动设备400与运动方向所在的水平面的夹角。但是需要特别注意的是上述夹角均是矢量信号。此外,例如,当选择自移动设备400与运动方向所在的水平面的夹角为该倾角时,如图4所示,当平衡检测模块500前后相邻输出的两个倾角之差不等于0度时,则会认为该自移动设备400处于爬坡状态或下坡状态。其中本发明中所涉及到的数值,例如上述的倾角之差等于0度时,其并不仅仅包含绝对0度,而是指一个范围,例如,+/-1度、+/-2度等,本领域技术人员 在理解上述数值时,应该特别注意不能将本发明的范围仅仅限制到绝对0度等。
在一种优选的实施方式中,如图5所示,图5为本发明的自移动设备的模块示意图。例如,平衡检测模块500实时检测所述的自移动设备400的倾角,然后输出至控制模块700,从而控制模块700根据该倾角调整非接触式传感器300的检测角度,在其中,当所述的控制模块700根据所述的倾角判断出所述的自移动设备400处于爬坡状态或下坡状态时,则所述的控制模块700根据所述的倾角的方向获取所述的非接触式传感器300待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器300待调整的角度的大小后,实时调整所述的非接触式传感器300的角度,当所述的控制模块700根据所述的倾角判断出所述的自移动设备400既不处于爬坡状态也不处于下坡状态时,所述的控制模块700保持所述的非接触式传感器300的检测角度不变。在一种更为优选的实施方式中,所述的平衡检测模块500为一角度传感器600,具体如图6所示。
在一种优选的实施方式中,请参阅图7所示,图7为本发明的控制模块的模块示意图。在该实施例中,所述的控制模块700包括角度方向获取单元701、角度大小计算单元702以及输出单元703,所述的角度方向获取单元701的输入端以及所述的角度大小计算单元702的输入端均与所述的平衡检测模块500的输出端相连接,所述的角度方向获取单元701的输出端以及所述的角度大小计算单元702的输出端分别与所述的输出单元703的输入端相连接,所述的输出单元703的输出端与所述的非接触式传感器300相连接;角度方向获取单元701,用于根据所述的平衡检测模块500前后相邻输出的两个倾角的相对方向获取所述的非接触式传感器300待调整的角度的方向;角度大小计算单元702,用于根据所述的平衡检测模块500前后相邻输出的两个倾角的差计算所述的非接触式传感器300待调整的角度的大小;输出单元703,用于根据所述的角度方向获取单元701输出的待调整的角度的方向以及所述的角度大小计算单元702输出的待调整的角度的大小调整所述的非接触式传感器300的检测角度,其具体处理流程将在下文详细描述。
在本发明中,该自移动设备控制方法包括:当所述的自移动设备400处于爬坡状态或下坡状态时,调整所述的非接触式传感器300的角度。请参阅图8所示,图8本发明的自移动设备控制方法的流程图。本发明的自移动设备控制方法具体包括以下步骤:
S100:检测所述的自移动设备400的倾角;
S200:根据所述的倾角的方向获取所述的非接触式传感器300待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器300待调整的角度的大小;
S300:调整所述的非接触式传感器300的检测角度。
在一种更为优选的实施例中,所述根据所述的倾角的方向获取所述的非接触式传感器300待调整的角度的方向的步骤,是根据本次检测到的自移动设备400的倾角相对前一次检测到的自移动设备400的倾角的方向获取所述的非接触式传感器300待调整的角度的方向;
所述根据所述的倾角的大小计算所述的非接触式传感器300待调整的角度的大小的步骤,是根据本次检测到的自移动设备400的倾角相对前一次检测到的自移动设备400的倾角的差计算所述的非接触式传感器300待调整的角度的大小。
在步骤S210中,平衡检测模块500输出的倾角时一个矢量,其是有方向性的,角度方向获取单元可以通过本次检测到的自移动设备400的倾角相对前一次检测到的自移动设备400的倾角的方向,得出非接触式传感器300需要调整的角度的方向,此外,角度大小计算单元702可以通过本次检测到的自移动设备400的倾角相对前一次检测到的自移动设备400的倾角的差,得出非接触式传感器300需要调整的角度的大小,这样输出模块703可以根据所述的角度方向获取单元701输出的待调整的角度的方向以及所述的角度大小计算单元702输出的待调整的角度的大小调整所述的非接触式传感器300的检测角度。此处需要注意的是当平衡检测模块500输出的前后相邻输出的两个倾角的差为0时,则认为所述的自移动设备400既不处于爬坡状态也不处于下坡状态,则不需要调整所述的非接触式传感器300的检测角度。也可以理解成当平衡检测模块500输出的前后相邻输出的两个倾角的差为0时,角度大小计算单元702计算的非接触式传感器300需要调整的角度的大小也为0,即不要调整所述的非接触式传感器300的检测角度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改 进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种自移动设备,包括用于检测前方是否有障碍物的非接触式传感器,其特征在于,所述非接触式传感器的检测角度可调,所述的自移动设备还包括平衡检测模块以及控制模块,所述的平衡检测模块的输出端与所述的控制模块的输入端相连接,所述的控制模块的输出端与所述的非接触式传感器相连接;
    所述的平衡检测模块用于实时检测所述的自移动设备的倾角;
    所述的控制模块用于根据所述的倾角的方向获取所述的非接触式传感器待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器待调整的角度的大小后,实时调整所述的非接触式传感器的检测角度。
  2. 根据权利要求1所述的自移动设备,其特征在于,所述的控制模块包括角度方向获取单元、角度大小计算单元以及输出单元,所述的角度方向获取单元的输入端以及所述的角度大小计算单元的输入端均与所述的平衡检测模块的输出端相连接,所述的角度方向获取单元的输出端以及所述的角度大小计算单元的输出端分别与所述的输出单元的输入端相连接,所述的输出单元的输出端与所述的非接触式传感器相连接;
    所述的角度方向获取单元用于根据所述的平衡检测模块前后相邻输出的两个倾角的相对方向获取所述的非接触式传感器待调整的角度的方向;
    所述的角度大小计算单元用于根据所述的平衡检测模块前后相邻输出的两个倾角的差计算所述的非接触式传感器待调整的角度的大小;
    所述的输出单元用于根据所述的角度方向获取单元输出的待调整的角度的方向以及所述的角度大小计算单元输出的待调整的角度的大小调整所述的非接触式传感器的检测角度。
  3. 根据权利要求1所述的自移动设备,其特征在于,所述的平衡检测模块为角度传感器。
  4. 根据权利要求1至3任一项所述的自移动设备,其特征在于,所述的非接触式传感器包括第一支架以及路障检测头,所述的第一支架固定于所述的自移动设备上,所述的路障检测头可旋转地固定于所述的第一支架上。
  5. 根据权利要求1至3任一项所述的自移动设备,其特征在于,所述的非接触式传感器包括第二支架、第三支架以及路障检测头,所述的第二支架的第一端以及第三支架第一端分别固定于所述的自移动设备上,所述的第二支架的第二端以及所述的第三支架的第二端分别与所述的路障检测头相连接,且所述的第二支架以及所述的第三支架均为高度可调的支架。
  6. 根据权利要求1至3任一项所述的自移动设备,其特征在于,所述的非接触式传感器为超声波非接触式传感器或雷达非接触式传感器。
  7. 一种自移动设备控制方法,所述自移动设备包括用于检测前方是否有障碍物的非接触式传感器,其特征在于,所述的方法包括:
    检测所述的自移动设备的倾角;
    根据所述的倾角的方向获取所述的非接触式传感器待调整的角度的方向,且根据所述的倾角的大小计算所述的非接触式传感器待调整的角度的大小;
    调整所述的非接触式传感器的检测角度。
  8. 根据权利要求7所述的自移动设备控制方法,其特征在于,所述根据所述的倾角的方向获取所述的非接触式传感器待调整的角度的方向的步骤,是根据本次检测到的自移动设备的倾角相对前一次检测到的自移动设备的倾角的方向获取所述的非接触式传感器待调整的角度的方向;
    所述根据所述的倾角的大小计算所述的非接触式传感器待调整的角度的大小的步骤,是根据本次检测到的自移动设备的倾角相对前一次检测到的自移动设备的倾角的差计算所述的非接触式传感器待调整的角度的大小。
PCT/CN2017/098679 2016-08-23 2017-08-23 自移动设备以及自移动设备控制方法 WO2018036527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610707458.X 2016-08-23
CN201610707458.XA CN107765697B (zh) 2016-08-23 2016-08-23 自移动设备以及自移动设备控制方法

Publications (1)

Publication Number Publication Date
WO2018036527A1 true WO2018036527A1 (zh) 2018-03-01

Family

ID=61246390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098679 WO2018036527A1 (zh) 2016-08-23 2017-08-23 自移动设备以及自移动设备控制方法

Country Status (2)

Country Link
CN (1) CN107765697B (zh)
WO (1) WO2018036527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4178338A4 (en) * 2020-07-08 2024-05-29 Scythe Robotics, Inc. ORIENTATION-BASED MOWER CONTROL

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918444B (zh) * 2021-03-22 2022-07-19 苏州大学 自移动设备的驻车控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247803A (ja) * 2005-03-14 2006-09-21 Hitachi Ltd 自律移動ロボット
CN203840762U (zh) * 2014-05-06 2014-09-24 杭州菲沃机器人科技有限公司 障碍物检测机构的支撑系统
CN105074600A (zh) * 2013-02-27 2015-11-18 夏普株式会社 周围环境识别装置、使用其的自主移动系统以及周围环境识别方法
US9213337B1 (en) * 2013-06-21 2015-12-15 Google Inc. Detecting lane closures and lane shifts by an autonomous vehicle
CN105242675A (zh) * 2014-06-17 2016-01-13 苏州宝时得电动工具有限公司 自动行走设备
CN204968565U (zh) * 2015-07-22 2016-01-20 苏州美达斯机电有限公司 避障式打草机
CN205176290U (zh) * 2015-11-28 2016-04-20 宁波市德霖机械有限公司 智能割草机障碍物检测机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265801A (ja) * 2008-04-23 2009-11-12 Panasonic Corp 自律走行装置およびこの装置を機能させるためのプログラム
JP2010286417A (ja) * 2009-06-15 2010-12-24 Clarion Co Ltd 超音波センサの車体への取付け角度計測方法及びその計測システム
JP6218209B2 (ja) * 2012-02-10 2017-10-25 学校法人甲南学園 障害物検出装置
JP6247904B2 (ja) * 2013-11-08 2017-12-13 日立建機株式会社 鉱山用運搬車両
JP2016007152A (ja) * 2014-06-23 2016-01-18 井関農機株式会社 芝刈機
CN206075142U (zh) * 2016-08-23 2017-04-05 苏州宝时得电动工具有限公司 自移动设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247803A (ja) * 2005-03-14 2006-09-21 Hitachi Ltd 自律移動ロボット
CN105074600A (zh) * 2013-02-27 2015-11-18 夏普株式会社 周围环境识别装置、使用其的自主移动系统以及周围环境识别方法
US9213337B1 (en) * 2013-06-21 2015-12-15 Google Inc. Detecting lane closures and lane shifts by an autonomous vehicle
CN203840762U (zh) * 2014-05-06 2014-09-24 杭州菲沃机器人科技有限公司 障碍物检测机构的支撑系统
CN105242675A (zh) * 2014-06-17 2016-01-13 苏州宝时得电动工具有限公司 自动行走设备
CN204968565U (zh) * 2015-07-22 2016-01-20 苏州美达斯机电有限公司 避障式打草机
CN205176290U (zh) * 2015-11-28 2016-04-20 宁波市德霖机械有限公司 智能割草机障碍物检测机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4178338A4 (en) * 2020-07-08 2024-05-29 Scythe Robotics, Inc. ORIENTATION-BASED MOWER CONTROL

Also Published As

Publication number Publication date
CN107765697B (zh) 2023-11-03
CN107765697A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
EP3552532B1 (en) Method for angle correction of mobile robot in working area and mobile robot
WO2021008611A1 (zh) 机器人被困检测及脱困方法
US9229450B2 (en) Autonomous movement system
US7818090B2 (en) Method of controlling movement of mobile robot
KR101152720B1 (ko) 이동 로봇의 슬립 감지 장치 및 방법
KR102326062B1 (ko) 자율주행차량의 장애물 회피 시스템 및 방법
KR100772912B1 (ko) 절대 방위각을 이용한 로봇 및 이를 이용한 맵 작성 방법
CN112363513B (zh) 一种基于深度信息的障碍物分类避障控制方法
WO2018036527A1 (zh) 自移动设备以及自移动设备控制方法
US20130024065A1 (en) Autonomous Electronic Device and Method of Controlling Motion of the Autonomous Electronic Device Thereof
US10245730B2 (en) Autonomous mobile robot and control method thereof
KR20100052383A (ko) 이동 로봇의 안전경로 생성 방법 및 장치
CN206075142U (zh) 自移动设备
CN111435164A (zh) 一种机器人检测障碍的方法及机器人
US11392136B2 (en) Automated guided vehicle system and own-position estimation method for automated guided vehicle
KR20150067682A (ko) 검출 영역을 최적화하는 장애물 추적 장치 및 방법
CN114052561A (zh) 自移动机器人
CN105538309B (zh) 一种有限传感能力的机器人障碍物动态识别算法
US11378652B2 (en) Enhancement of vehicle radar system robustness based on elevation information
CN111856443A (zh) 用于物体跟踪的航向角估算
JP7062558B2 (ja) 移動体の位置検出装置、及び、位置検出装置を備えた移動体
EP4071576A1 (en) Motion lockout for platform mover system
CN112484718B (zh) 一种基于环境地图修正的边沿导航的装置和方法
WO2021082855A1 (zh) 自主机器人及其及移动控制方法、装置和存储介质
CN114096930B (zh) 自移动设备及其自动移动和工作的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842949

Country of ref document: EP

Kind code of ref document: A1