WO2018036379A1 - 一种低成本高强韧薄规格9Ni钢板的制造方法 - Google Patents

一种低成本高强韧薄规格9Ni钢板的制造方法 Download PDF

Info

Publication number
WO2018036379A1
WO2018036379A1 PCT/CN2017/096427 CN2017096427W WO2018036379A1 WO 2018036379 A1 WO2018036379 A1 WO 2018036379A1 CN 2017096427 W CN2017096427 W CN 2017096427W WO 2018036379 A1 WO2018036379 A1 WO 2018036379A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
temperature
cooling
strength
steel
Prior art date
Application number
PCT/CN2017/096427
Other languages
English (en)
French (fr)
Inventor
孙超
李东晖
尹雨群
王从道
赵荣贵
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020187031691A priority Critical patent/KR102013260B1/ko
Publication of WO2018036379A1 publication Critical patent/WO2018036379A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the invention relates to a steel for ultra-low temperature and a manufacturing method thereof, in particular to a method for manufacturing a low-cost high-strength and tough-thickness 9Ni steel sheet.
  • Patent CN103088198A discloses an online heat treatment method for producing 9Ni steel, which has the characteristics of short production process and high efficiency, but the method relies on online heating equipment, high investment, large energy consumption, and actual production. Experience is difficult to promote the application in large-scale production.
  • Patent CN101864537A discloses an ultra-high strength 9Ni steel applied in a cryogenic environment and a preparation process thereof. The 9Ni steel with good comprehensive performance is prepared by on-line quenching and off-line heat treatment, containing Cu element, but the process is accelerated to cool after rolling.
  • Patent CN103602888A discloses a low compression ratio hot rolled 9Ni steel thick plate and a manufacturing method thereof, and an optimized process for producing a thick gauge 9Ni steel plate, which is used for manufacturing a thick gauge 9Ni steel plate, but the method adopts conventional offline quenching and tempering Heat treatment, under-utilization of controlled cooling for structural control, off-line heat treatment including quenching and tempering, high process cost and energy consumption.
  • Another important issue worthy of attention is that, in the above and other published technologies, the material properties of 9Ni steel have not been utilized to optimize the process for thin gauge (8 mm thickness and below), and there is a large space for process cost reduction and consumption reduction. .
  • the technical problems to be solved by the invention are as follows: (1) how to use the high hardenability of 9Ni steel and the high air cooling rate of the thin gauge steel plate to set a reasonable control of the cooling process, so that the element distribution and microstructure are more favorable for improving the material toughness matching. It is beneficial to the control of the thin plate shape, reducing the requirements of the straightening process and further reducing the process cost; (2) how to significantly shorten the process flow and reduce the energy consumption, and greatly reduce the heat treatment cost of the thin plate.
  • a method for manufacturing a low-cost high-strength and tough-thin 9Ni steel plate comprising the following steps:
  • the weight percentage of molten steel is: C: 0.03-0.06%, Si: 0.1-0.2%, Mn: 0.5-0.8%, Ni: 8.6-9.1%, Mo: 0.02-0.05%, Als: 0.015- 0.035%, S ⁇ 0.005%, P ⁇ 0.007%, N ⁇ 0.007%, and the balance Fe and non-removable impurities, smelting and alloying in a vacuum furnace with a vacuum degree ⁇ 50Pa;
  • 9Ni steel is a typical heat-treated steel. It is generally considered that the material requires a water-quenching process to obtain a martensite phase (C exists in the body-centered tetragonal structure as interstitial atoms) and is tempered in the subsequent tempering process. A mixed structure of a body and a rotating austenite. Different from the prior art cognition, the present invention considers that the content of C atoms in 9Ni steel is very low, and the high hardenability mainly comes from the high Ni content, and the phase transformation at a moderate cooling rate forms a ferrite lath bundle. At the same time, the carbon atoms exist in the form of small-sized MA components on the slat boundary or the slab bundle boundary.
  • This structure is more favorable for the formation and stabilization of the rotating austenite during the tempering process.
  • the chemical composition of 9Ni steel determines its high hardenability. If the above-mentioned structural transformation is completed by air cooling process, on the one hand, the quenching energy consumption can be reduced, and on the other hand, the shape control is also facilitated. Further, by performing the above-described structural transformation in the controlled cooling process after rolling, rather than in the offline heat treatment, the heat treatment process flow can be shortened and the process cost can be remarkably reduced.
  • the hardenability of the material is primarily determined by the chemical composition, while the specifications significantly affect the cooling rate.
  • a 9Ni steel sheet having a thickness of 8 mm or less can obtain a slat bundle structure close to a quenching condition under air cooling conditions. After rolling, the cooling is accelerated to 440-550 ° C, which is close to but still higher than the critical point of supercooled austenite transformation. In the subsequent air cooling process, ⁇ -Fe is transformed into ⁇ -Fe by the trimming mechanism to obtain the plate.
  • the ferrite structure in the form of a strip, while the C atom can still diffuse, enriched in the slab boundary or the slab bundle boundary or in the form of MA element interstitial atoms. The distribution of the structure and elements is more conducive to subsequent The formation of the austenite in the process (Fig.
  • FIG. 1 shows the microstructure of the thin gauge 9Ni steel plate in a controlled cooling state, and the matrix structure is a small-sized ferrite lath bundle).
  • accelerated cooling at a cooling rate of 15-40 ° C / s after rolling can avoid the segregation of harmful element grain boundaries and the precipitation of coarse carbides under high temperature and slow cooling conditions, thereby contributing to low temperature toughness.
  • the rotating austenite is formed on the lath boundary or the lath bundle boundary, and further enriches the alloying elements such as Ni to improve the stability during the heat preservation process; the ferrite lath bundle is insulated In the process, a recovery occurs, and harmful elements such as P in the ferrite are also discharged into the austenite, thereby improving the performance of the matrix.
  • the tempering temperature It needs to be controlled near the critical point of material phase transition. When the temperature is too low, austenite cannot be formed. If the temperature is too high, the austenite stability is insufficient, and the proper tempering time can make the austenite rotated under the premise of ensuring the strength. Enriching enough alloying elements and maintaining structural stability under ultra-low temperature conditions of -196 ° C; therefore, in the present invention, the tempering temperature is controlled at 575-605 ° C, and the tempering time is controlled at 45-70 min.
  • Ni element can stabilize the austenite phase, improve hardenability, lower the ductile-brittle transition temperature and improve the deformation properties.
  • the invention controls the Ni content to be 8.6-9.1%, and can cooperate with the controlled rolling, controlled cooling and heat treatment process of the invention to refine the structure and obtain a moderately recovered lath bundle structure with a small amount (volume fraction 1-5%) stable rotation.
  • Austenite the mixed structure has high strength and excellent low temperature toughness. If the Ni content is too low, the stability of the rotating austenite is lowered, and the low temperature toughness is difficult to ensure; if the Ni content is too high, the cost is increased.
  • the C element can increase the strength by solid solution strengthening or precipitation strengthening, and at the same time stabilize the austenite phase, but the C content is too high to be detrimental to the low temperature toughness of the welded heat affected zone.
  • the main element of the stabilized austenite phase of 9Ni steel is Ni, and the C content should be controlled at a low level, so the present invention controls the C content to be 0.03-0.06%.
  • Si is a deoxidizing element in the steel making process.
  • the proper amount of Si can inhibit the segregation of Mn and P, and the O content is too high, and the segregation of Mn and P can damage the low temperature toughness of 9Ni steel.
  • the presence of Si in the form of interstitial solid solution atoms is not conducive to toughness, so the content should not be too high.
  • the present invention controls Si at 0.1-0.2%.
  • Mn is an austenite stabilizing element and a ferrite strengthening element, and can also improve hardenability. Too low a Mn content is disadvantageous to strength, and if the content is too high, it is easy to form a large-sized MnS and impair plasticity and toughness.
  • the invention therefore controls Mn to be between 0.5 and 0.8%.
  • Mo can improve the hardenability, and at the same time, it can improve the tempering resistance of the ferrite matrix, so that the strength of the 9Ni steel can be easily ensured, and the micro-addition can play a significant role, and the excessive content increases the material cost.
  • the amount of Mo element added is controlled to be 0.02-0.05%.
  • Al is a deoxidizing element in the steel making process, but excessive addition forms large-sized Al3O2 and AlN and impairs low-temperature toughness.
  • the present invention controls the Al content (Als) to be between 0.015 and 0.035%.
  • the invention utilizes the material properties of 9Ni steel and the cooling characteristics of the thin gauge steel plate, organically combines the controlled rolling, controlled cooling and heat treatment processes, shortens the process flow and reduces the process energy consumption while improving the material performance, and achieves the reduction of the high strength and toughness specification 9Ni.
  • the invention is used for manufacturing a high-strength and tough 9Ni steel plate with a thickness of 8 mm or less, and can reduce the heat treatment cost of the steel per ton by more than 500 yuan compared with the conventional off-line quenching and tempering process, and has lower energy consumption than the online quenching and offline tempering process. And the performance is better, with good application prospects and economic benefits.
  • Fig. 1 is a structural view showing the controlled cooling state of a thin gauge 9Ni steel sheet.
  • Example 2 is an optical micrograph of a tempered structure of a 9Ni steel sheet in Example 1.
  • the embodiment provides a low-cost high-strength and tough-thin 9Ni steel plate manufacturing method, and the composition is 0.05% C, 0.19% Si, 0.59% Mn, 9.1% Ni, 0.022% Mo, 0.019% Als, 0.0011 according to the element weight percentage. %S, 0.004%P, 0.004%N, and the balance Fe and non-removable impurities, steel is made by 300Kg vacuum induction furnace, the thickness of the slab is 200mm. The slab was heated to 1200 ° C in a heating furnace and held for 140 min, and then opened into a 150 mm thick forging blank.
  • the forging billet is heated to 1140 ° C in a heating furnace, the first-stage rolling and rolling temperature is 1105 ° C, the finishing rolling temperature is 1040 ° C, and the pressing procedure is 150 mm-112 mm-84 mm-63 mm-47 mm-35 mm, and the two-stage rolling is rolled and rolled.
  • the temperature is 940 ° C
  • the final rolling temperature is 775 ° C
  • the pressing procedure is 35 mm-26 mm - 19.5 mm - 15 mm - 12 mm - 9.6 mm - 8 mm.
  • the rolled plate was placed in a heating furnace and heated to 575 ° C for tempering for 70 minutes, and then air-cooled to room temperature.
  • the microstructure of the 9Ni steel plate obtained in the above process is shown in Fig. 2, which is the second phase of the slab bundle matrix plus the rotating austenite, the yield strength is 675 MPa, the tensile strength is 722 MPa, the elongation is 26%, and the transverse impact energy at 196 °C is 142 J (
  • the impact sample has a cross-sectional dimension of 7.5 mm ⁇ 10 mm) and is excellent in strength and toughness.
  • This embodiment provides a method for manufacturing a low-cost, high-strength and tough-thin 9Ni steel sheet.
  • the composition by weight of the element is 0.06% C, 0.11% Si, 0.76% Mn, 8.6% Ni, 0.045% Mo, 0.032% Als, 0.0008% S, 0.003% P, 0.003% N, And the balance Fe and non-removable impurities, using 150Kg vacuum induction furnace steelmaking, the thickness of the slab is 150mm.
  • the slab was heated to 1220 ° C in a heating furnace and held for 90 minutes, and then opened into a 120 mm thick forging blank.
  • the forging blank is heated to 1160 ° C in a heating furnace, the first-stage rolling and rolling temperature is 1110 ° C, the finishing temperature is 1055 ° C, and the pressing procedure is 120 mm-89 mm-67 mm-50 mm-37 mm-27 mm, and the two-stage rolling is rolled and rolled.
  • the temperature is 945 ° C
  • the final rolling temperature is 780 ° C
  • the pressing procedure is 27 mm - 20 mm - 15 mm - 12 mm - 10 mm - 8 mm - 6.8 mm - 6.0 mm.
  • the temperature was accelerated for 12 s and then cooled to 524 ° C at a cooling rate of 30 ° C / s, followed by air cooling to room temperature.
  • the rolled plate was placed in a heating furnace and heated to 605 ° C for tempering for 45 minutes, and then air-cooled to room temperature.
  • the microstructure of the 9Ni steel plate obtained by the above process is the slab beam matrix plus the rotating austenite second phase, the yield strength is 656 MPa, the tensile strength is 719 MPa, the elongation is 23%, and the transverse impact energy at -196 °C is 84 J (the cross-sectional dimension of the impact sample is 5mm ⁇ 10mm), excellent strength and toughness.
  • This embodiment provides a method for manufacturing a low-cost, high-strength and tough-thin 9Ni steel sheet.
  • the composition by weight of the element is 0.03% C, 0.16% Si, 0.63% Mn, 8.9% Ni, 0.036% Mo, 0.024% Als, 0.001% S, 0.004% P, 0.003% N, and the balance Fe and not
  • steel was fabricated using a 150 Kg vacuum induction furnace with a slab thickness of 150 mm. The slab was heated to 1160 ° C in a heating furnace and held for 180 min, and then opened into a 120 mm thick forging blank.
  • the forging billet is heated to 1180 ° C in a heating furnace, the first-stage rolling and rolling temperature is 1120 ° C, the finishing temperature is 1060 ° C, and the pressing procedure is 120 mm-90 mm-67 mm-50 mm-37 mm-28 mm-24 mm, two-stage rolling.
  • the rolling temperature is 960 ° C
  • the finishing temperature is 765 ° C
  • the pressing procedure is 24 mm-18 mm-13.5 mm-11 mm-9 mm-7 mm-6 mm-5.1 mm.
  • the temperature was accelerated for 10 s and then cooled to 550 ° C at a cooling rate of 40 ° C / s, followed by air cooling to room temperature.
  • the rolled plate was placed in a heating furnace and heated to 590 ° C for tempering for 60 minutes, and then air-cooled to room temperature.
  • the microstructure of the 9Ni steel plate obtained by the above process is the slab beam matrix plus the rotating austenite second phase, the yield strength is 668 MPa, the tensile strength is 716 MPa, the elongation is 24%, and the transverse impact energy at -196 °C is 52 J (the cross-sectional dimension of the impact sample is 3.3mm ⁇ 10mm), excellent strength and toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种低成本高强韧薄规格9Ni钢板的制造方法,钢水的重量百分比成分为:C:0.03-0.06%,Si:0.1-0.2%,Mn:0.5-0.8%,Ni:8.6-9.1%,Mo:0.02-0.05%,Als:0.015-0.035%,S≤0.005%,P≤0.007%,N≤0.007%,以及余量Fe和不可去除杂质,采用真空度≤50Pa的真空炉冶炼并合金化;加热温度1160-1220°C,保温时间90-180min,开坯后坯料厚度120-150mm;采用两阶段控制轧制,轧制后待温10-15s,之后以15-40°C/s的冷却速率加速冷却至440-550°C后再空冷至室温;钢板加热至575-605°C回火45-70min后空冷至室温。该方法利用9Ni钢材料特性及薄规格钢板冷却特性,将控轧控冷与热处理工艺有机结合,在提高材料性能的同时缩短工艺流程、减少工艺能耗,达到了降低高强韧薄规格9Ni钢板生产成本的目的。

Description

一种低成本高强韧薄规格9Ni钢板的制造方法 技术领域
本发明涉及一种超低温用钢及其制造方法,尤其是涉及一种低成本高强韧薄规格9Ni钢板的制造方法。
背景技术
随着天然气在能源需求中比例不断提高,LNG输送及储存技术迅速发展,而9Ni钢因其在-196℃超低温环境下具有优良韧性得以广泛应用。目前我国已经实现了9Ni钢的规模化工业生产。作为一种典型的热处理钢种,9Ni钢生产难度大,特别是热处理工艺窗口窄,过程能耗高,因而生产成本高(特别是薄规格9Ni钢吨钢热处理成本高)。因此,如何在前道工序实施有效的组织调控,从而减少热处理工艺流程及能耗,达到降低生产成本的目的,是9Ni钢生产在顺应钢铁行业发展大趋势过程中面临的重要课题。据检索,现有技术中,专利CN103088198A公开了一种生产9Ni钢的在线热处理方法,具有生产流程短、效率高的特点,但该方法依赖在线加热设备,投资高、能耗大,从实际生产经验来看难以在规模化生产中推广应用。专利CN101864537A公开了一种应用于深冷环境的超高强度9Ni钢及其制备工艺,通过在线淬火加离线热处理制备综合性能良好的9Ni钢,含Cu元素,但该工艺中轧制后加速冷却至200℃以下,“一淬到底”的在线淬火方式使材料在快速冷却过程中发生马氏体相变,因此板形难以控制,而且离线热处理包括两相区淬火和回火等两道工艺,与调质相比未能缩短工艺流程。专利CN103602888A公开了一种低压缩比热轧9Ni钢厚板及其制造方法,针对厚规格9Ni钢板生产提出了优化工艺,该方法用于制造厚规格9Ni钢板,但该方法采用常规的离线调质热处理,未充分利用控制冷却进行组织调控,离线热处理包含淬火和回火,工艺成本及能耗较高。另一个值得关注的重要问题是,在上述及其它已公开技术中,都未能利用9Ni钢材料特性针对薄规格(8mm厚度及以下)情况提出优化工艺,工艺降本及降耗存在较大空间。
发明内容
本发明所要解决的技术问题是:⑴如何利用9Ni钢淬透性高以及薄规格钢板空冷速率高的特点设定合理控制冷却工艺,使元素分布和显微组织更有利于改善材料强韧性匹配,且有利于薄板板形的控制,降低对矫直工艺的要求,进一步降低工艺成本;⑵如何显著缩短工艺流程并减少了能耗,大大降低薄板热处理成本。
本发明解决以上技术问题的技术方案是:
一种低成本高强韧薄规格9Ni钢板的制造方法,包括以下步骤:
㈠炼钢:钢水的重量百分比成分为:C:0.03-0.06%,Si:0.1-0.2%,Mn:0.5-0.8%,Ni:8.6-9.1%,Mo:0.02-0.05%,Als:0.015-0.035%,S≤0.005%,P≤0.007%,N≤0.007%,以及余量Fe和不可去除杂质,采用真空度≤50Pa的真空炉冶炼并合金化;
㈡开坯:加热温度1160-1220℃,保温时间90-180min,开坯后坯料厚度120-150mm;
㈢轧制:采用两阶段控制轧制,板坯加热温度1140-1180℃,一阶段轧制温度为1020-1120℃,道次压下量15-30%,二阶段轧制温度为750-960℃,道次压下量≥12%,累计压下率≥60%,轧制厚度≤8mm;
㈣冷却:轧制后待温10-15s,使轧件温度均匀化,之后以15-40℃/s的冷却速率加速冷却至440-550℃后再空冷至室温;
㈤热处理:钢板加热至575-605℃回火45-70min后空冷至室温。
本发明工艺条件的限定起到的作用为:
9Ni钢是典型的热处理钢种,通常认为该材料需要水冷淬火工艺得到马氏体相(C以间隙原子形式存在于体心四方结构中),并在随后的回火工艺中得到回火马氏体与回转奥氏体的混合组织。与该现有工艺认知不同的是,本发明认为9Ni钢中C原子含量很低,其高淬透性主要来自于高Ni含量,以适中的冷却速率发生相变形成铁素体板条束,同时使碳原子以小尺寸M-A组元形式存在于板条界或板条束界上,这种结构更有利于回火过程中回转奥氏体的形成与稳定化。9Ni钢化学成分决定了其具有高淬透性,若利用空冷工艺完成上述组织转变,一方面能够降低淬火能耗,另一方面也有利于板形控制。进一步地,在轧制后的控制冷却过程中而不是离线热处理中完成上述组织转变,则能够缩短热处理工艺流程并显著降低工艺成本。材料的淬透性主要由化学成分决定,而规格则显著影响冷却速率。本发明中8mm以下厚度规格的9Ni钢板在空冷条件下能够得到接近于淬火条件的板条束组织。轧制后加速冷却至440-550℃,该温度区间接近但仍高于过冷奥氏体相变临界点,在随后的空冷过程中γ-Fe以切边机制转变为α-Fe,得到板条束形态的铁素体组织,而C原子则仍能够发生扩散,在板条界或板条束界上富集或以M-A组元间隙原子形式存在,该组织及元素分布状态更有利于后续工艺中回转奥氏体的形成(图1所示为薄规格9Ni钢板控制冷却状态的组织形态,基体组织为尺寸细小的铁素体板条束)。此外,轧制后以15-40℃/s的冷却速率加速冷却能够避免高温缓冷条件下有害元素晶界偏聚及粗大碳化物析出,从而有利于低温韧性。在之后的离线回火工艺中,回转奥氏体在板条界或板条束界上形成,并在保温过程中进一步富集Ni等合金元素以提高稳定性;铁素体板条束在保温过程中则发生回复,同时铁素体中的P等有害元素也被排至回转奥氏体中,从而改善了基体性能。为了在回火过程中得到回转奥氏体,回火温度 需要控制在材料相变临界点附近,温度过低则不能形成奥氏体,温度过高则奥氏体稳定性不足,而恰当的回火时间则能够在保证强度的前提下使回转奥氏体富集足够多的合金元素而在-196℃的超低温条件下也能够保持结构稳定;因此本发明中将回火温度控制在575-605℃,将回火时间控制在45-70min。
本发明化学成分含量限定理由如下:
Ni元素能够稳定奥氏体相、提高淬透性、降低韧脆转变温度并能够改善变形性能。本发明将Ni含量控制在8.6-9.1%,配合本发明的控轧控冷及热处理工艺,可以细化组织并得到适度回复的板条束组织加少量(体积分数1-5%)稳定的回转奥氏体,该混合组织具有较高强度及优良低温韧性。Ni含量过低,回转奥氏体稳定性下降,低温韧性难以保证;Ni含量过高则使成本增加。
C元素能够通过固溶强化或析出强化提高强度,同时能够稳定奥氏体相,但C含量过高不利于焊接热影响区低温韧性。9Ni钢稳定奥氏体相的主要元素为Ni,C含量应控制在较低水平,因此本发明将C含量控制在0.03-0.06%。
Si在炼钢过程中为脱氧元素,适量Si能够抑制Mn和P的偏聚,而O含量过高、Mn和P的偏聚都会损害9Ni钢低温韧性。但Si以间隙固溶原子形式存在时不利于韧性,因此含量不能过高。本发明将Si控制在0.1-0.2%。
Mn是奥氏体稳定元素,也是铁素体强化元素,还能够提高淬透性。Mn含量过低不利于强度,含量过高则易于形成大尺寸的MnS并损害塑性及韧性。因此本发明将Mn控制在0.5-0.8%。
Mo能够提高淬透性,同时也能够提高铁素体基体的回火抗力,使9Ni钢强度容易保证,微量添加即可发挥显著作用,含量过高则增加材料成本。本发明将Mo元素添加量控制在0.02-0.05%。
Al在炼钢过程中为脱氧元素,但过量添加会形成大尺寸的Al3O2和AlN并损害低温韧性。本发明将Al含量(Als)控制在0.015-0.035%。
S易与Mn形成MnS,P容易在晶界偏聚并降低晶界抗裂纹扩展能力,N容易与Al形成大尺寸的AlN,这些元素都会降低9Ni钢低温韧性,需要控制在最低限度。
本发明的有益效果是:
⑴利用9Ni钢淬透性高以及薄规格钢板空冷速率高的特点合理制定控制冷却工艺,在高 温段加速冷却,在低温段自然空冷,与传统在线淬火工艺“一淬到底”的方式相比降低了能耗,并且元素分布和显微组织更有利于改善材料强韧性匹配。此外,在相变温度区间采取空冷方式也有利于薄板板形的控制,从而降低了对矫直工艺的要求,进一步降低了工艺成本;⑵热处理工艺仅有一道回火,与传统9Ni钢离线调质工艺相比减少了一道淬火,因而显著缩短了工艺流程并减少了能耗,大大降低了薄板热处理成本。
总之,本发明利用9Ni钢材料特性及薄规格钢板冷却特性,将控轧控冷与热处理工艺有机结合,在提高材料性能的同时缩短工艺流程、减少工艺能耗,达到了降低高强韧薄规格9Ni钢板生产成本的目的。本发明用于制造8mm及以下厚度规格高强韧9Ni钢板,与常规的离线调质工艺相比,能够降低吨钢热处理成本500元以上,并且与在线淬火加离线回火工艺相比能耗更低且性能更佳,具有良好的应用前景及经济效益。
附图说明
图1为薄规格9Ni钢板控制冷却状态的组织形态图。
图2为实施例1中9Ni钢板回火组织的光学显微照片。
具体实施方式
实施例1
本实施例提供一种低成本高强韧薄规格9Ni钢板制造方法,按元素重量百分比其成分为:0.05%C,0.19%Si,0.59%Mn,9.1%Ni,0.022%Mo,0.019%Als,0.0011%S,0.004%P,0.004%N,以及余量Fe和不可去除杂质,采用300Kg真空感应炉炼钢,铸坯厚度200mm。将铸坯在加热炉中加热至1200℃并保温140min后开坯成150mm厚锻坯。将锻坯在加热炉中加热至1140℃,一阶段轧制开轧温度1105℃、终轧温度1040℃,压下规程为150mm-112mm-84mm-63mm-47mm-35mm,二阶段轧制开轧温度940℃、终轧温度775℃,压下规程为35mm-26mm-19.5mm-15mm-12mm-9.6mm-8mm。轧制后待温15s再以15℃/s的冷却速率加速冷却至440℃,之后空冷至室温。将轧板放入加热炉中加热至575℃回火70min后空冷至室温。上述工艺所得9Ni钢板显微组织如图2所示,为板条束基体加回转奥氏体第二相,屈服强度675MPa,抗拉强度722MPa,延伸率26%,-196℃横向冲击功142J(冲击试样截面尺寸为7.5mm×10mm),强度及韧性优良。
实施例2
本实施例提供一种低成本高强韧薄规格9Ni钢板制造方法。按元素重量百分比其成分为:0.06%C,0.11%Si,0.76%Mn,8.6%Ni,0.045%Mo,0.032%Als,0.0008%S,0.003%P,0.003%N, 以及余量Fe和不可去除杂质,采用150Kg真空感应炉炼钢,铸坯厚度150mm。将铸坯在加热炉中加热至1220℃并保温90min后开坯成120mm厚锻坯。将锻坯在加热炉中加热至1160℃,一阶段轧制开轧温度1110℃、终轧温度1055℃,压下规程为120mm-89mm-67mm-50mm-37mm-27mm,二阶段轧制开轧温度945℃、终轧温度780℃,压下规程为27mm-20mm-15mm-12mm-10mm-8mm-6.8mm-6.0mm。轧制后待温12s再以30℃/s的冷却速率加速冷却至524℃,之后空冷至室温。将轧板放入加热炉中加热至605℃回火45min后空冷至室温。上述工艺所得9Ni钢板显微组织为板条束基体加回转奥氏体第二相,屈服强度656MPa,抗拉强度719MPa,延伸率23%,-196℃横向冲击功84J(冲击试样截面尺寸为5mm×10mm),强度及韧性优良。
实施例3
本实施例提供一种低成本高强韧薄规格9Ni钢板制造方法。按元素重量百分比其成分为:0.03%C,0.16%Si,0.63%Mn,8.9%Ni,0.036%Mo,0.024%Als,0.001%S,0.004%P,0.003%N,以及余量Fe和不可去除杂质,采用150Kg真空感应炉炼钢,铸坯厚度150mm。将铸坯在加热炉中加热至1160℃并保温180min后开坯成120mm厚锻坯。将锻坯在加热炉中加热至1180℃,一阶段轧制开轧温度1120℃、终轧温度1060℃,压下规程为120mm-90mm-67mm-50mm-37mm-28mm-24mm,二阶段轧制开轧温度960℃、终轧温度765℃,压下规程为24mm-18mm-13.5mm-11mm-9mm-7mm-6mm-5.1mm。轧制后待温10s再以40℃/s的冷却速率加速冷却至550℃,之后空冷至室温。将轧板放入加热炉中加热至590℃回火60min后空冷至室温。上述工艺所得9Ni钢板显微组织为板条束基体加回转奥氏体第二相,屈服强度668MPa,抗拉强度716MPa,延伸率24%,-196℃横向冲击功52J(冲击试样截面尺寸为3.3mm×10mm),强度及韧性优良。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种低成本高强韧薄规格9Ni钢板的制造方法,其特征在于:包括以下步骤:
    ㈠炼钢:钢水的重量百分比成分为:C:0.03-0.06%,Si:0.1-0.2%,Mn:0.5-0.8%,Ni:8.6-9.1%,Mo:0.02-0.05%,Als:0.015-0.035%,S≤0.005%,P≤0.007%,N≤0.007%,以及余量Fe和不可去除杂质,采用真空度≤50Pa的真空炉冶炼并合金化;
    ㈡开坯:加热温度1160-1220℃,保温时间90-180min,开坯后坯料厚度120-150mm;
    ㈢轧制:采用两阶段控制轧制,板坯加热温度1140-1180℃,一阶段轧制温度为1020-1120℃,道次压下量15-30%,二阶段轧制温度为750-960℃,道次压下量≥12%,累计压下率≥60%,轧制厚度≤8mm;
    ㈣冷却:轧制后待温10-15s,使轧件温度均匀化,之后以15-40℃/s的冷却速率加速冷却至440-550℃后再空冷至室温;
    ㈤热处理:钢板加热至575-605℃回火45-70min后空冷至室温。
  2. 如权利要求1所述的低成本高强韧薄规格9Ni钢板的制造方法,其特征在于:所述步骤㈣中,轧制后加速冷却至440-550℃,该温度区间接近但仍高于过冷奥氏体相变临界点,在随后的空冷过程中γ-Fe以切边机制转变为α-Fe,得到板条束形态的铁素体组织,而C原子则能够发生扩散,在板条界或板条束界上富集或以M-A组元间隙原子形式存在,该组织及元素分布状态更有利于后续工艺中回转奥氏体的形成;轧制后加速冷却还能够避免高温缓冷条件下有害元素晶界偏聚及粗大碳化物析出,有利于低温韧性。
  3. 如权利要求1所述的低成本高强韧薄规格9Ni钢板的制造方法,其特征在于:所述步骤㈤中,钢板加热至575-605℃回火45-70min后空冷至室温,回转奥氏体在板条界或板条束界上形成,并在保温过程中进一步富集合金元素以提高稳定性;铁素体板条束在保温过程中则发生回复,同时铁素体中的有害元素也被排至回转奥氏体中,从而改善了基体性能。
  4. 如权利要求1或2或3所述的低成本高强韧薄规格9Ni钢板的制造方法,其特征在于:包括以下步骤:按元素重量百分比其成分为:0.05%C,0.19%Si,0.59%Mn,9.1%Ni,0.022%Mo,0.019%Als,0.0011%S,0.004%P,0.004%N,以及余量Fe和不可去除杂质,采用300Kg真空感应炉炼钢,铸坯厚度200mm;将铸坯在加热炉中加热至1200℃并保温140min后开坯成150mm厚锻坯;将锻坯在加热炉中加热至1140℃,一阶段轧制开轧温度1105℃、终轧温度1040℃,压下规程为150mm-112mm-84mm-63mm-47mm-35mm,二阶段轧制开轧温度940℃、终轧温度775℃,压下规程为35mm-26mm-19.5mm-15mm-12mm-9.6mm-8mm;轧制后待温15s再以15℃/s的冷却速率加速冷却至440℃,之后空冷至室温;将轧板放入加热炉中加热至575℃回火70min后空冷至室温;所得9Ni钢板显微组织为板条束基体加回转奥氏体第二相,屈 服强度675MPa,抗拉强度722MPa,延伸率26%,-196℃横向冲击功142J。
  5. 如权利要求1或2或3所述的低成本高强韧薄规格9Ni钢板的制造方法,其特征在于:包括以下步骤:按元素重量百分比其成分为:0.06%C,0.11%Si,0.76%Mn,8.6%Ni,0.045%Mo,0.032%Als,0.0008%S,0.003%P,0.003%N,以及余量Fe和不可去除杂质,采用150Kg真空感应炉炼钢,铸坯厚度150mm;将铸坯在加热炉中加热至1220℃并保温90min后开坯成120mm厚锻坯;将锻坯在加热炉中加热至1160℃,一阶段轧制开轧温度1110℃、终轧温度1055℃,压下规程为120mm-89mm-67mm-50mm-37mm-27mm,二阶段轧制开轧温度945℃、终轧温度780℃,压下规程为27mm-20mm-15mm-12mm-10mm-8mm-6.8mm-6.0mm;轧制后待温12s再以30℃/s的冷却速率加速冷却至524℃,之后空冷至室温;将轧板放入加热炉中加热至605℃回火45min后空冷至室温;所得9Ni钢板显微组织为板条束基体加回转奥氏体第二相,屈服强度656MPa,抗拉强度719MPa,延伸率23%,-196℃横向冲击功84J。
  6. 如权利要求1或2或3所述的低成本高强韧薄规格9Ni钢板的制造方法,其特征在于:包括以下步骤:按元素重量百分比其成分为:0.03%C,0.16%Si,0.63%Mn,8.9%Ni,0.036%Mo,0.024%Als,0.001%S,0.004%P,0.003%N,以及余量Fe和不可去除杂质,采用150Kg真空感应炉炼钢,铸坯厚度150mm;将铸坯在加热炉中加热至1160℃并保温180min后开坯成120mm厚锻坯;将锻坯在加热炉中加热至1180℃,一阶段轧制开轧温度1120℃、终轧温度1060℃,压下规程为120mm-90mm-67mm-50mm-37mm-28mm-24mm,二阶段轧制开轧温度960℃、终轧温度765℃,压下规程为24mm-18mm-13.5mm-11mm-9mm-7mm-6mm-5.1mm;轧制后待温10s再以40℃/s的冷却速率加速冷却至550℃,之后空冷至室温;将轧板放入加热炉中加热至590℃回火60min后空冷至室温;所得9Ni钢板显微组织为板条束基体加回转奥氏体第二相,屈服强度668MPa,抗拉强度716MPa,延伸率24%,-196℃横向冲击功52J。
PCT/CN2017/096427 2016-08-23 2017-08-08 一种低成本高强韧薄规格9Ni钢板的制造方法 WO2018036379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020187031691A KR102013260B1 (ko) 2016-08-23 2017-08-08 저원가 고강도 강인성 초박형 9Ni강판의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610712293.5 2016-08-23
CN201610712293.5A CN106191661B (zh) 2016-08-23 2016-08-23 一种低成本高强韧薄规格9Ni钢板的制造方法

Publications (1)

Publication Number Publication Date
WO2018036379A1 true WO2018036379A1 (zh) 2018-03-01

Family

ID=57524508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096427 WO2018036379A1 (zh) 2016-08-23 2017-08-08 一种低成本高强韧薄规格9Ni钢板的制造方法

Country Status (3)

Country Link
KR (1) KR102013260B1 (zh)
CN (1) CN106191661B (zh)
WO (1) WO2018036379A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481546A (zh) * 2020-11-26 2021-03-12 南阳汉冶特钢有限公司 一种特厚塑料模具用钢板p20的生产方法
CN113957354A (zh) * 2021-10-29 2022-01-21 河南中原特钢装备制造有限公司 避免PCrNi3MoV锻件因晶粒遗传形成稳定过热的方法
CN114134388A (zh) * 2021-11-15 2022-03-04 山东钢铁集团日照有限公司 一种抗拉强度1300MPa级薄规格超高强钢板及其制造方法
CN114672743A (zh) * 2022-03-02 2022-06-28 福建三宝钢铁有限公司 一种低合金结构钢q355的制备方法
CN114807772A (zh) * 2022-04-29 2022-07-29 燕山大学 一种时效强化的高强韧轻质钢及其制造方法
CN114888115A (zh) * 2022-04-28 2022-08-12 湖南华菱湘潭钢铁有限公司 一种热轧冷镦钢盘条的生产方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191661B (zh) * 2016-08-23 2017-10-27 南京钢铁股份有限公司 一种低成本高强韧薄规格9Ni钢板的制造方法
KR102351770B1 (ko) * 2017-08-25 2022-01-14 가부시키가이샤 고베 세이코쇼 Ni 함유 강판의 제조 방법
CN109576449B (zh) * 2018-12-27 2020-10-30 江阴兴澄特种钢铁有限公司 一种抵抗剩磁增加、节约生产能耗的9Ni钢板的生产方法
CN110229998B (zh) * 2019-06-03 2021-03-16 江阴兴澄特种钢铁有限公司 一种低屈强比的薄规格9Ni钢板
CN113600618A (zh) * 2021-06-30 2021-11-05 张家港宏昌钢板有限公司 一种9Ni钢防表面氧化铁压入方法及轧制工艺
CN114836692A (zh) * 2022-05-06 2022-08-02 鞍钢股份有限公司 大压缩比、低屈强比船用高镍钢板及其制造方法
CN116790989A (zh) * 2023-06-30 2023-09-22 湖南华菱湘潭钢铁有限公司 一种超低温调质钢薄板及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371520A (ja) * 1991-06-19 1992-12-24 Nippon Steel Corp 母材および溶接熱影響部のCTOD特性の優れた厚肉9%Ni鋼の製造法
JPH06240348A (ja) * 1993-02-19 1994-08-30 Kobe Steel Ltd 高靭性低温用鋼の製造法
JP2007063602A (ja) * 2005-08-30 2007-03-15 Jfe Steel Kk 低温靱性に優れた9%Ni鋼の製造方法
CN104264042A (zh) * 2014-09-30 2015-01-07 衡阳华菱钢管有限公司 一种低温用9Ni钢的电炉氧化法冶炼方法
CN104404364A (zh) * 2014-09-19 2015-03-11 衡阳华菱钢管有限公司 大口径9Ni低温用无缝钢管及生产方法
CN104561484A (zh) * 2013-10-29 2015-04-29 青岛齐力铸钢有限公司 9Ni钢轧制工艺技术
CN106191661A (zh) * 2016-08-23 2016-12-07 南京钢铁股份有限公司 一种低成本高强韧薄规格9Ni钢板的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655351B2 (ja) * 2010-03-31 2015-01-21 Jfeスチール株式会社 強度および低温靭性に優れた9%Ni鋼の製造方法
JP5741454B2 (ja) 2012-01-13 2015-07-01 新日鐵住金株式会社 −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
CN104438334B (zh) * 2014-09-19 2016-11-23 衡阳华菱钢管有限公司 中口径9Ni低温用无缝钢管及生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371520A (ja) * 1991-06-19 1992-12-24 Nippon Steel Corp 母材および溶接熱影響部のCTOD特性の優れた厚肉9%Ni鋼の製造法
JPH06240348A (ja) * 1993-02-19 1994-08-30 Kobe Steel Ltd 高靭性低温用鋼の製造法
JP2007063602A (ja) * 2005-08-30 2007-03-15 Jfe Steel Kk 低温靱性に優れた9%Ni鋼の製造方法
CN104561484A (zh) * 2013-10-29 2015-04-29 青岛齐力铸钢有限公司 9Ni钢轧制工艺技术
CN104404364A (zh) * 2014-09-19 2015-03-11 衡阳华菱钢管有限公司 大口径9Ni低温用无缝钢管及生产方法
CN104264042A (zh) * 2014-09-30 2015-01-07 衡阳华菱钢管有限公司 一种低温用9Ni钢的电炉氧化法冶炼方法
CN106191661A (zh) * 2016-08-23 2016-12-07 南京钢铁股份有限公司 一种低成本高强韧薄规格9Ni钢板的制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481546A (zh) * 2020-11-26 2021-03-12 南阳汉冶特钢有限公司 一种特厚塑料模具用钢板p20的生产方法
CN112481546B (zh) * 2020-11-26 2022-06-14 南阳汉冶特钢有限公司 一种特厚塑料模具用钢板p20的生产方法
CN113957354A (zh) * 2021-10-29 2022-01-21 河南中原特钢装备制造有限公司 避免PCrNi3MoV锻件因晶粒遗传形成稳定过热的方法
CN113957354B (zh) * 2021-10-29 2022-10-25 河南中原特钢装备制造有限公司 避免PCrNi3MoV锻件因晶粒遗传形成稳定过热的方法
CN114134388A (zh) * 2021-11-15 2022-03-04 山东钢铁集团日照有限公司 一种抗拉强度1300MPa级薄规格超高强钢板及其制造方法
CN114672743A (zh) * 2022-03-02 2022-06-28 福建三宝钢铁有限公司 一种低合金结构钢q355的制备方法
CN114888115A (zh) * 2022-04-28 2022-08-12 湖南华菱湘潭钢铁有限公司 一种热轧冷镦钢盘条的生产方法
CN114807772A (zh) * 2022-04-29 2022-07-29 燕山大学 一种时效强化的高强韧轻质钢及其制造方法
CN114807772B (zh) * 2022-04-29 2023-03-17 燕山大学 一种时效强化的高强韧轻质钢及其制造方法

Also Published As

Publication number Publication date
CN106191661A (zh) 2016-12-07
CN106191661B (zh) 2017-10-27
KR20180125012A (ko) 2018-11-21
KR102013260B1 (ko) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018036379A1 (zh) 一种低成本高强韧薄规格9Ni钢板的制造方法
US11180822B2 (en) Low-yield-ratio ultra-high-strength hot-rolled QandP steel and production method therefor
CN112981235B (zh) 一种屈服强度420MPa级的调质型建筑结构用钢板及其生产方法
CN101985722B (zh) 低屈强比细晶粒高强管线钢板及其生产方法
CN107385353B (zh) 一种海洋平台用250mm 特厚EH36钢板及其制备方法
CN104264064B (zh) 一种特厚规格q690高强度结构钢板及其制造方法
WO2016045266A1 (zh) 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
CN109881091A (zh) 一种高强度耐候钢薄带及其生产方法
CN110760757A (zh) 一种热轧钢筋的低成本强化工艺
CN110129685B (zh) 一种超低温容器用7Ni钢厚板的制造方法
KR102229530B1 (ko) 고강도 강판 및 그의 제조방법
CN115161536B (zh) 热轧盘条钢筋
CN103667912B (zh) 一种低合金钢板及钢板的热处理方法
KR20230037040A (ko) 우량한 코어부 인성을 구비한 고강도 용기용 후판(厚板) 및 제조방법
CN105112782A (zh) 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
WO2011089845A1 (ja) 高炭素熱延鋼板の製造方法
CN114480806A (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN110592491B (zh) 一种高耐磨性马氏体/奥氏体双相耐磨钢板及制造方法
CN105441814A (zh) 屈服强度700MPa级超低屈强比热轧Q&P钢及其制造方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN103233169A (zh) 板形优良的高强度薄规格钢板及其生产方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
CN114752855A (zh) 一种460MPa级经济性低屈强比低裂纹敏感性结构钢及其制造方法
WO2021258584A1 (zh) 一种800MPa工程机械用中锰中厚钢及其制造方法
CN111440991B (zh) 一种屈服强度800MPa级热轧钢板及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031691

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842802

Country of ref document: EP

Kind code of ref document: A1