WO2018036248A1 - 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板 - Google Patents

柔性导电薄膜及其制备方法、柔性触摸屏及显示面板 Download PDF

Info

Publication number
WO2018036248A1
WO2018036248A1 PCT/CN2017/089211 CN2017089211W WO2018036248A1 WO 2018036248 A1 WO2018036248 A1 WO 2018036248A1 CN 2017089211 W CN2017089211 W CN 2017089211W WO 2018036248 A1 WO2018036248 A1 WO 2018036248A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive metal
substrate
flexible
metal pattern
polyimide varnish
Prior art date
Application number
PCT/CN2017/089211
Other languages
English (en)
French (fr)
Inventor
胡海峰
曾亭
谢涛峰
殷刘岳
张由婷
马伟杰
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/751,031 priority Critical patent/US10973118B2/en
Publication of WO2018036248A1 publication Critical patent/WO2018036248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes

Definitions

  • Embodiments of the present invention relate to a flexible conductive film and a method of fabricating the same, a flexible touch screen, and a flexible touch display panel.
  • metal mesh structures are more suitable for flexible display devices because of their higher ductility than fragile indium tin oxide materials.
  • the metal mesh structure is flexible, its adhesion to the surface of the flexible polymer is poor, so that the stability of its mechanical strength is also poor. Therefore, the adhesion of the metal mesh structure on the polymer surface needs to be improved to better realize the application of the metal mesh structure in the flexible display device.
  • At least one embodiment of the present invention provides a method for preparing a flexible conductive film, the method comprising: providing a first substrate; coating a first conductive metal ink on the first substrate and obtaining a first conductive metal pattern; Applying a polyimide varnish on a surface of the first substrate having the first conductive metal pattern; after the polyimide varnish is cured, the first substrate is immersed in deionized water; The cured polyimide varnish and the first conductive metal pattern are removed on the first substrate to obtain the flexible conductive film.
  • the preparation method provided by at least one embodiment of the present invention further includes: providing a second substrate; coating a second conductive metal ink on the second substrate and obtaining a second conductive metal pattern; The side of the second substrate having the second conductive metal pattern is pasted onto the polyimide varnish that has been coated on the first substrate before the varnish is cured; After the polyimide varnish between the first substrate and the second substrate is cured, the first substrate and the second substrate are immersed in deionized water.
  • the preparation method provided by at least one embodiment of the present invention further includes: performing plasma treatment on the first conductive metal pattern to remove the insulating material of the first conductive metal pattern.
  • the preparation method provided by at least one embodiment of the present invention further includes: performing plasma treatment on the second conductive metal pattern to remove the insulating material of the second conductive metal pattern.
  • the insulating material comprises polyvinylpyrrolidone.
  • the plasma treatment is performed under a protective atmosphere or a reactive atmosphere.
  • the protective atmosphere is any one or a combination of argon gas, helium gas, nitrogen gas, and helium gas.
  • the reactive atmosphere is any one or a combination of air, oxygen, hydrogen, ammonia, and carbon dioxide.
  • the first conductive metal ink comprises nano silver, nano gold or nano copper.
  • the first conductive metal ink includes nano metal wires or nano metal particles.
  • the second conductive metal ink comprises nano silver, nano gold or nano copper.
  • the second conductive metal ink includes nano metal wires or nano metal particles.
  • the first conductive metal ink and the second conductive metal ink are different from each other.
  • At least one embodiment of the present invention provides a flexible conductive film comprising: a cured polyimide varnish and a conductive metal pattern embedded in the cured polyimide varnish.
  • the material of the conductive metal pattern includes nano silver, nano gold or nano copper.
  • the conductive metal pattern includes a first conductive metal pattern embedded in a first surface of the cured polyimide varnish and/or embedded in the cured a second conductive metal pattern of the second surface of the polyimide varnish.
  • the cured polyimide varnish is interposed between the first conductive metal pattern and the second conductive metal pattern.
  • the first conductive metal pattern has a thickness of 1 to 10 ⁇ m
  • the second conductive metal pattern has a thickness of 1 to 10 ⁇ m
  • the polyimide The varnish has a thickness of 50 to 250 ⁇ m.
  • At least one embodiment of the present invention provides a flexible touch screen including: a flexible substrate; The above flexible conductive film on the flexible substrate.
  • At least one embodiment of the present invention provides a flexible touch display panel comprising: a flexible substrate; and the above flexible conductive film disposed on the flexible substrate.
  • FIG. 1 is a flow chart of a method for preparing a flexible conductive film according to an embodiment of the present invention
  • Figure 2 is a process diagram corresponding to the flow chart of the preparation method shown in Figure 1;
  • FIG. 3 is a flow chart of a method for preparing a flexible conductive film according to another embodiment of the present invention.
  • 4A is a process diagram corresponding to the flowchart of the preparation method shown in FIG. 3;
  • 4B and 4C are schematic views of a conductive metal pattern in a flexible conductive film
  • FIG. 5 is a schematic cross-sectional view of a flexible conductive film according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional structural view of another flexible conductive film according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a flexible touch screen according to an embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a flexible touch display panel according to an embodiment of the invention.
  • a method of preparing a nanosilver mesh structure on a flexible substrate comprises: coating a nanosilver solution on the substrate to form a nanosilver film, and then forming the nanosilver film into a nanosilver pattern by a patterning process.
  • the adhesion of the nanosilver pattern to the flexible substrate is poor, so that its mechanical strength is also poor.
  • a transparent adhesive may be coated on the surface of the substrate before the nano silver solution is coated, and a transparent adhesive is added during the process of forming the nano silver pattern.
  • Mechanical pressing increases the contact area of the nano-silver pattern and the substrate, or an annealing treatment or the like.
  • the addition of the adhesive increases the thickness of the electrode, mechanical pressing may cause damage to the electrode structure, and annealing may cause the film to be destroyed, so the effect is not satisfactory.
  • At least one embodiment of the present invention provides a flexible conductive film, a method of fabricating the same, a flexible touch screen, and a flexible touch display panel.
  • the method for preparing the flexible conductive film comprises: providing a first substrate; coating a first conductive metal ink on the first substrate and obtaining a first conductive metal pattern; coating on a surface of the first substrate having the first conductive metal pattern a polyimide varnish; after the polyimide varnish is cured, the first substrate is immersed in deionized water; and the cured polyimide varnish and the first conductive metal pattern are removed from the first substrate to obtain a flexible conductive film.
  • the flexible conductive film prepared by the method can be applied to a flexible touch screen and a flexible touch display panel to improve the adhesion of the nano metal (for example, nano silver material) to the flexible substrate and improve the mechanical strength stability thereof.
  • the nano metal for example, nano silver material
  • Embodiments of the present invention provide a method for preparing a flexible conductive film
  • FIG. 1 is a flow chart of a method for preparing a flexible conductive film according to an embodiment of the present invention. As shown in FIG. 1, the method for preparing the flexible conductive film comprises the following steps:
  • a first substrate is provided.
  • the first substrate is a glass substrate, a quartz substrate, or the like.
  • the first conductive metal ink is a transparent ink mixed with a nano metal, which may be a thermoplastic polyurethane having a relative molecular mass of 10,000 to 1,000,000.
  • a thermoplastic polyurethane having a relative molecular mass of 10,000 to 1,000,000.
  • the thermoplastic polyurethane is cured by an aliphatic isocyanate or an aromatic isocyanate and a polyester curing agent or a polyether.
  • the agent is prepared and has a thermoplastic and a polyurethane that is transparent in the visible region.
  • the layer thickness of the first conductive metal ink obtained by coating may be from 100 nm to 100 ⁇ m.
  • the nanometal can be prepared by a liquid phase reduction method.
  • the surface of the nanometal prepared by the liquid phase reduction method usually has an insulating polyvinylpyrrolidone (PVP) remaining.
  • PVP polyvinylpyrrolidone
  • the nano metal in the first conductive metal ink includes nano silver, nano gold or nano copper, and the nano metal may be in the shape of a nano metal wire or a nano metal particle, for example, the size may range from 50 to 100 nm, for example, 50 nm, 80 nm or 100 nm.
  • the coated first conductive metal ink is patterned to obtain a first conductive metal pattern.
  • the process of the patterning process employs a photolithography process including a step of coating photoresist, exposure, development, and the like.
  • the resulting first conductive metal pattern may include a plurality of strip electrodes parallel to each other and spaced apart from each other (see, for example, FIGS. 4B and 4C).
  • the first conductive metal pattern may be obtained by other methods, for example, by inkjet printing or screen printing, and simultaneously obtained by applying the first conductive metal ink to the first substrate.
  • the first conductive metal pattern may be obtained by other methods, for example, by inkjet printing or screen printing, and simultaneously obtained by applying the first conductive metal ink to the first substrate.
  • the solvent in the first conductive metal ink can be volatilized and removed by standing for a certain period of time or baking.
  • a polyimide varnish is coated on the surface of the first substrate having the first conductive metal pattern.
  • Polyimide varnish has the characteristics of high tensile strength and strong water absorption.
  • the first substrate is immersed in deionized water. After the cured polyimide varnish is placed in deionized water, it is easily removed from the first substrate by moisture absorption and expansion.
  • the cured polyimide varnish and the first conductive metal pattern are removed from the first substrate to obtain a flexible conductive film.
  • the flexible conductive film is a film in which a conductive metal pattern is adhered to the surface of the cured polyimide varnish.
  • the first conductive metal pattern may be plasma-treated to remove the first conductive metal pattern surface insulating material.
  • PVP polyvinylpyrrolidone
  • a plasma can be generated by using a radio frequency tube having a power of 10 W to 5000 W, and the first conductive metal pattern is subjected to plasma treatment for 30 seconds to 30 minutes.
  • the plasma treatment can be carried out under a protective atmosphere or a reactive atmosphere, and the protective atmosphere can be nitrogen, argon, One of a mixture of helium and neon or a mixture of gases.
  • the reactive atmosphere is one of air, oxygen, hydrogen, ammonia, carbon dioxide or a mixed gas.
  • the nano metal for example, nano silver wire
  • PVP polyvinylpyrrolidone
  • the surface of the nano metal can also form a specific structure.
  • These specific structures are characterized by a number of uniformly distributed nano "protrusions" appearing on the surface of the nanometal, which are beneficial for improving the adhesion between the nanometal and other substances.
  • time parameters and power parameters of the plasma processing method described above can be controlled as needed. If the strength or time of the plasma treatment is not enough, the specific protrusion structure will not be formed, and if the intensity of the plasma treatment is too high or too long, the nano metal wire may be blown and the nano metal conductive grid may be destroyed. After the plasma treatment in the above time range and power range, the expected effect can be better achieved.
  • the layer thickness of the first conductive metal pattern may be 1 to 10 ⁇ m, and the thickness of the film layer of the polyimide varnish may be 50 to 250 ⁇ m, thereby making the first conductive layer
  • the metal pattern is completely embedded in the film layer of the polyimide varnish.
  • the polyimide varnish may be a mixed solution obtained by dissolving a polyimide/polyimide precursor in an organic solvent, and by coating the mixed solution on a substrate, it may be cured by heat treatment. A polyimide film layer is formed on the substrate.
  • the organic solvent can be removed by volatilization, and any organic solvent currently suitable can be used.
  • FIG. 2 is a process diagram corresponding to the flowchart of the preparation method shown in FIG. 1.
  • the first conductive metal ink is taken as an example including a nano silver ink, and the process includes the following steps:
  • the first substrate coated with the nano silver ink is subjected to a photolithography process such as photoresist, exposure, development, etc. to obtain a first conductive metal pattern;
  • the first substrate having the first conductive metal pattern is plasma treated to remove the insulating material on the surface of the first conductive metal pattern, such as polyvinylpyrrolidone (PVP);
  • PVP polyvinylpyrrolidone
  • the first substrate coated with the polyimide varnish is immersed in a deionized water tank, and after being swelled by moisture absorption, the polyimide varnish and the first conductive metal pattern are removed from the first substrate to obtain nano silver.
  • a pattern of transparent flexible polyimide varnish film is
  • a flexible conductive film having a first conductive metal pattern on one surface of the cured polyimide varnish is a flexible conductive film having a first conductive metal pattern on one surface of the cured polyimide varnish.
  • the flexible conductive film prepared by the method in the present embodiment can be used in a flexible touch display panel.
  • Polyimide varnish has good flexibility, and when it is placed on a polymer material (for example, a flexible substrate), it has strong adhesion and good mechanical strength stability.
  • the method is simple in technology and can improve product competitiveness while improving product quality, and can be widely used.
  • FIG. 3 is a flow chart of a method for preparing a flexible conductive film according to an embodiment of the present invention. As shown in FIG. 3, the method for preparing the flexible conductive film comprises the following steps:
  • first substrate and a second substrate are provided.
  • the first substrate and the second substrate may be a glass substrate, a quartz substrate, or the like.
  • the nano metal in the first conductive metal ink and the second conductive metal ink may be prepared by a liquid phase reduction method, and the surface of the nano metal prepared by the liquid phase reduction method usually has an insulating polyvinylpyrrolidone (PVP). ).
  • PVP polyvinylpyrrolidone
  • the conductive metal in the first conductive metal ink and the second conductive metal ink may include nano silver, nano gold or nano copper, and the shape of the nano metal may be nano metal wire or nano metal particle or the like.
  • the first conductive metal ink coated on the first substrate and the second conductive metal ink coated on the second substrate are patterned to obtain a first conductive metal pattern and a second conductive metal pattern, respectively.
  • the first conductive metal pattern and the second conductive metal pattern may be formed by a photolithography process, and details are not described herein again. For related content, refer to the related description in the above.
  • the composite substrate is immersed in deionized water, and the cured polyimide varnish is placed in deionized water together with the first substrate and the second substrate, and after being absorbed and expanded, Easy to remove from the first substrate and the second substrate.
  • the cured polyimide varnish and the first conductive metal pattern and the second conductive metal pattern are sequentially removed from the first substrate and the second substrate to obtain a flexible conductive film which is a cured polyimide varnish.
  • a film of the first conductive metal pattern and the second conductive metal pattern is adhered to the surface, respectively.
  • the first conductive metal pattern and the second conductive metal pattern described above may be any desired pattern.
  • the first conductive metal pattern 23 and the second conductive metal pattern 25 are respectively located on both sides of a polyimide varnish film layer (not shown).
  • the first conductive metal pattern 23 includes a plurality of first strip electrodes that are parallel to each other extending in a horizontal direction; and the second conductive metal pattern 25 includes a plurality of second strips that are parallel to each other and extend in a plurality of directions electrode.
  • the plurality of first strip electrodes of the first conductive metal pattern 23 and the plurality of second strip electrodes of the second conductive metal pattern 25 cross each other.
  • the flexible conductive film as shown in FIG. 4B can be used for a mutual capacitance type touch screen, and a detection capacitance is formed at a position where the first strip electrode and the second strip electrode cross each other.
  • the first conductive metal pattern 33 and the second conductive metal pattern 35 are respectively located on both sides of a polyimide varnish film layer (not shown).
  • the first conductive metal pattern 33 includes a plurality of first strip electrodes arranged at equal intervals in a vertical direction, and each of the first strip electrodes includes a plurality of wide portions and a plurality of narrow portions, the wide portion and the narrow portion The parts are alternately arranged and connected in sequence.
  • the second conductive metal pattern 35 includes a plurality of second strip electrodes arranged at equal intervals in a horizontal direction, each of the second strip electrodes including a plurality of wide portions and a plurality of narrow portions, the wide portion and the narrow portion Alternately arranged and connected in sequence.
  • the flexible conductive film as shown in FIG. 4C can also be used for a mutual capacitance type touch screen, and a detection capacitance is formed at a position where the first strip electrode and the second strip electrode cross each other.
  • the insulating material is polyvinylpyrrolidone (PVP).
  • PVP polyvinylpyrrolidone
  • the thickness of the first conductive metal pattern may be 1 to 10 ⁇ m
  • the thickness of the second conductive metal pattern may be 1 to 10 ⁇ m
  • the thickness of the polyimide varnish is 50 to 250 ⁇ m.
  • the first conductive metal pattern 23 and the second conductive metal pattern 25 are all completely embedded in the film layer of the polyimide varnish.
  • FIG. 4 is a process diagram corresponding to the flowchart of the preparation method shown in FIG. 3, as shown in FIG. 4, the process includes the following steps, taking the nano-conductive metal as a nano-silver wire as an example for description:
  • a first conductive metal ink and a second conductive metal ink including nano silver wires are respectively coated on the surfaces of the cleaned first substrate and the second substrate.
  • the composite substrate formed by the first substrate and the second substrate is placed in a deionized water bath, and after being hygroscopically and swelled, the transparent flexible polyimide varnish containing the nano silver pattern is sequentially obtained by tearing from the two substrates. film.
  • the first conductive metal pattern and the second conductive metal pattern may be obtained by other methods.
  • the conductive metal ink may be applied to the first substrate by inkjet printing or screen printing.
  • a first conductive metal pattern and a second conductive metal pattern obtained simultaneously in the process on the second substrate.
  • the first conductive metal pattern and the second conductive metal pattern may be obtained using the same or different conductive metal inks. For example, coating a first conductive metal ink on a first substrate and obtaining a first conductive metal pattern, coating a second conductive metal ink on the second substrate and obtaining a second conductive metal pattern, the first conductive metal ink and the second
  • the conductive metal ink can be a different conductive metal ink, for example containing different nanometals.
  • the cured polyimide is obtained by the method of the embodiment of the invention.
  • the upper and lower surfaces of the varnish have a flexible conductive film of a first conductive metal pattern and a second metal conductive pattern, respectively, and the first conductive metal pattern and the second metal conductive pattern are spaced apart by the insulating polyimide varnish.
  • the first conductive metal pattern and the second metal conductive pattern have a cross portion in a spatial distribution.
  • the flexible conductive film prepared by the method of the embodiment of the present invention can be used in a flexible touch screen.
  • Polyimide varnish has good flexibility, and when it is placed on a polymer material (for example, a flexible substrate), it has strong adhesion and good mechanical strength stability. The method is simple in technology and can improve product competitiveness while improving product quality. Moreover, this technology can be widely used.
  • At least one embodiment of the present invention also provides a flexible conductive film produced by the above-described method of preparing a flexible conductive film.
  • the flexible conductive film includes a cured polyimide varnish and a conductive metal pattern embedded in the cured polyimide varnish.
  • the conductive metal pattern may include a first conductive metal pattern and/or a second conductive metal pattern.
  • the conductive material of the conductive metal pattern includes any one of nano silver, nano gold, or nano copper.
  • FIG. 5 is a schematic structural view of a flexible conductive film produced by the method for preparing a flexible conductive film shown in FIG. 1.
  • the polyimide varnish has a first conductive metal pattern 1051 on one surface thereof.
  • FIG. 6 is a schematic structural view of a flexible conductive film produced by the method for preparing a flexible conductive film shown in FIG.
  • the flexible conductive film includes a polyimide varnish 104, a first conductive metal pattern 1051 embedded in a first surface of the cured polyimide varnish, and a second surface embedded in the cured polyimide varnish.
  • the second conductive metal pattern 1052 is a schematic structural view of a flexible conductive film produced by the method for preparing a flexible conductive film shown in FIG.
  • the flexible conductive film includes a polyimide varnish 104, a first conductive metal pattern 1051 embedded in a first surface of the cured polyimide varnish, and a second surface embedded in the cured polyimide varnish.
  • the second conductive metal pattern 1052 is a schematic structural view of a flexible conductive film produced by the method for preparing a flexible conductive film shown in FIG.
  • the flexible conductive film includes a polyimide varnish 104, a first conductive metal pattern 1051 embedded in
  • a cured polyimide varnish 104 is interposed between the first conductive metal pattern 1051 and the second conductive metal pattern 1052 to insulate the two.
  • the first conductive metal pattern 1051 may have a thickness of 1 to 10 ⁇ m
  • the second conductive metal pattern 1052 may have a thickness of 1 to 10 ⁇ m
  • the polyimide varnish 104 may have a thickness of 50 to 250 ⁇ m.
  • FIG. 7 is a schematic cross-sectional view of the flexible touch screen including a flexible substrate 101 and a flexible conductive film 102 disposed on the flexible substrate 101.
  • the flexible touch screen 100 may further include a protective film 103 disposed on the flexible conductive film 102 as needed.
  • the protective film 103 is a transparent insulating material such as an inorganic insulating material such as silicon dioxide or silicon oxynitride, and may be an organic insulating material such as a resin. Obviously, in the present embodiment, it is not limited to the listed materials, and may be other materials of similar properties.
  • the flexible conductive film 102 provided by the embodiment of the present invention is located on the flexible substrate 101.
  • the flexible conductive film 102 includes a cured polyimide varnish 104 and a first conductive metal pattern 1051 embedded in the cured polyimide varnish.
  • the second conductive metal pattern 1052, the planar shape of the first conductive metal pattern 1051 and the second conductive metal pattern 1052 can be seen, for example, in FIGS. 4B and 4C, but embodiments of the present invention are not limited to these specific shapes and layouts.
  • the first conductive metal pattern 1051 and the second conductive metal pattern 1052 may be further connected to a touch chip (not shown) by wires.
  • the flexible substrate 101 has thermoplasticity, visible light region transparency, and materials conforming to this condition can be used to manufacture a flexible transparent substrate.
  • materials that can be used to make the flexible substrate include: polyethylene terephthalate, polybutylene phthalate, polyethylene naphthalate or polycarbonate, and the size and shape of the flexible transparent substrate are The size of the conductive film to be actually manufactured is determined.
  • the flexible conductive film included in the flexible touch screen provided by the embodiment of the present invention is prepared by the method for preparing the flexible conductive film described above, and details are not described herein again.
  • the flexible touch display panel 200 includes a flexible display panel 201 and a flexible conductive film 202 disposed on the flexible display panel 201.
  • the flexible touch display panel 200 may further include a protective film 203 disposed on the flexible conductive film 202 as needed.
  • the flexible conductive film 202 provided by the embodiment of the present invention is located on the flexible display panel 201.
  • the flexible conductive film 202 includes a cured polyimide varnish 204 and a first conductive metal pattern embedded in the cured polyimide varnish.
  • the planar shape of the first conductive metal pattern 2051 and the second conductive metal pattern 2052, the first conductive metal pattern 2051 and the second conductive metal pattern 2052 can be seen, for example, in FIGS. 4B and 4C, but embodiments of the present invention are not limited to these specific shapes and layouts.
  • the first conductive metal pattern 2051 and the second conductive metal pattern 2052 may be further connected to a touch chip (not shown) through a wire.
  • the flexible display panel may be an electronic paper flexible display panel, an OLED (Organic Light-Emitting Diode) display flexible display panel,
  • a liquid crystal flexible display panel or the like can be realized as any product or component having a display function such as a television, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator or the like.
  • Embodiments of the present invention provide a flexible conductive film, a method of fabricating the same, a flexible touch screen, and a flexible touch display panel, and have at least one of the following beneficial effects:
  • the method is simple in technology and can improve product competitiveness while improving product quality. In addition, this technology can be widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

一种柔性导电薄膜及其制备方法、柔性触摸屏及柔性触摸显示面板,该柔性导电薄膜的制备方法包括:提供第一基板;在所述第一基板上涂覆第一导电金属油墨并得到第一导电金属图案;在所述第一基板的具有所述第一导电金属图案的表面上涂覆聚酰亚胺清漆;待所述聚酰亚胺清漆固化后将所述第一基板置于去离子水中浸泡;从所述第一基板上移除所述固化的聚酰亚胺清漆和所述第一导电金属图案得到所述柔性导电薄膜。将采用该方法制备的柔性导电薄膜应用于柔性触摸屏及柔性触摸显示面板中,可提高纳米银材料对柔性基板的附着力,改善其机械强度稳定性。

Description

柔性导电薄膜及其制备方法、柔性触摸屏及显示面板 技术领域
本发明的实施例涉及一种柔性导电薄膜及其制备方法、柔性触摸屏及柔性触摸显示面板。
背景技术
在显示技术领域中,相比于易脆的氧化铟锡材料,金属网格结构因其具有更高的延展性更适用于柔性显示装置。虽然金属网格结构具有柔性,但其在柔性高分子表面的附着力不佳,使得其机械强度的稳定性也不好。因此,需要对金属网格结构在高分子表面的附着力进行改善,以更好地实现金属网格结构在柔性显示装置中的应用。
发明内容
本发明至少一实施例提供一种柔性导电薄膜的制备方法,该制备方法包括:提供第一基板;在所述第一基板上涂覆第一导电金属油墨并得到第一导电金属图案;在所述第一基板的具有所述第一导电金属图案的表面上涂覆聚酰亚胺清漆;待所述聚酰亚胺清漆固化后将所述第一基板置于去离子水中浸泡;从所述第一基板上移除所述固化的聚酰亚胺清漆和所述第一导电金属图案得到所述柔性导电薄膜。
例如,本发明至少一实施例提供的制备方法,还包括:提供第二基板;在所述第二基板上涂覆第二导电金属油墨并得到第二导电金属图案;在所述聚酰亚胺清漆固化前将所述第二基板的具有所述第二导电金属图案的一侧贴覆到已经涂覆在所述第一基板上的所述聚酰亚胺清漆上;待夹持在所述第一基板和所述第二基板之间的所述聚酰亚胺清漆固化后再将所述第一基板和所述第二基板置于去离子水中浸泡。
例如,本发明至少一实施例提供的制备方法,还包括:对所述第一导电金属图案进行等离子体处理,以去除所述第一导电金属图案的绝缘物质。
例如,本发明至少一实施例提供的制备方法,还包括:对所述第二导电金属图案进行等离子体处理,以去除所述第二导电金属图案的绝缘物质。
例如,在本发明至少一实施例提供的制备方法中,所述绝缘物质包括聚乙烯吡咯烷酮。
例如,在本发明至少一实施例提供的制备方法中,所述等离子体处理在保护性气氛或反应性气氛下进行。
例如,在本发明至少一实施例提供的制备方法中,所述保护性气氛为氩气、氦气、氮气、氖气中的任意一种或组合。
例如,在本发明至少一实施例提供的制备方法中,所述反应性气氛为空气、氧气、氢气、氨气、二氧化碳中的任意一种或组合。
例如,在本发明至少一实施例提供的制备方法中,所述第一导电金属油墨包括纳米银、纳米金或纳米铜。
例如,在本发明至少一实施例提供的制备方法中,所述第一导电金属油墨包括纳米金属线或者纳米金属颗粒。
例如,在本发明至少一实施例提供的制备方法中,所述第二导电金属油墨包括纳米银、纳米金或纳米铜。
例如,在本发明至少一实施例提供的制备方法中,所述第二导电金属油墨包括纳米金属线或者纳米金属颗粒。
例如,在本发明至少一实施例提供的制备方法中,所述第一导电金属油墨和所述第二导电金属油墨彼此不同。
本发明至少一实施例提供一种柔性导电薄膜,包括:固化的聚酰亚胺清漆和嵌入所述固化的聚酰亚胺清漆中的导电金属图案。
例如,在本发明至少一实施例提供的柔性导电薄膜中,所述导电金属图案的材料包括纳米银、纳米金或纳米铜。
例如,在本发明至少一实施例提供的柔性导电薄膜中,所述导电金属图案包括嵌入所述固化的聚酰亚胺清漆的第一表面的第一导电金属图案和/或嵌入所述固化的聚酰亚胺清漆的第二表面的第二导电金属图案。
例如,在本发明至少一实施例提供的柔性导电薄膜中,所述第一导电金属图案和所述第二导电金属图案之间间隔有所述固化的聚酰亚胺清漆。
例如,在本发明至少一实施例提供的柔性导电薄膜中,所述第一导电金属图案的厚度为1~10μm,所述第二导电金属图案的厚度为1~10μm,所述聚酰亚胺清漆的厚度为50~250μm。
本发明至少一实施例提供一种柔性触摸屏,包括:柔性基板;设置在 所述柔性基板上的上述中的柔性导电薄膜。
本发明至少一实施例提供一种柔性触摸显示面板,包括:柔性基板;设置在所述柔性基板上的上述中的柔性导电薄膜。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明一实施例提供的一种柔性导电薄膜的制备方法的流程图;
图2为图1中所示制备方法的流程图对应的过程图;
图3为本发明另一实施例提供的一种柔性导电薄膜的制备方法的流程图;
图4A为图3中所示制备方法的流程图对应的过程图;
图4B和图4C为柔性导电薄膜中导电金属图案的示意图;
图5本发明一实施例提供的一种柔性导电薄膜的截面结构示意图;
图6本发明一实施例提供的另一种柔性导电薄膜的截面结构示意图;
图7为本发明一实施例提供的一种柔性触摸屏的截面结构示意图;以及
图8为本发明一实施例提供的一种柔性触摸显示面板的截面结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词 前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
例如,在柔性衬底基板上制备纳米银网格结构的方法包括:在基板上涂覆纳米银溶液以形成纳米银薄膜,然后通过构图工艺将该纳米银薄膜形成纳米银图案。但是,纳米银图案与柔性基板的附着力很差,使得其机械强度也很差。
为了解决上述纳米银与柔性基板的附着力差的问题,可以在涂覆纳米银溶液前在基板的表面上涂覆透明粘胶剂,在形成纳米银图案的过程中加入透明粘胶剂,通过机械按压提高纳米银图案和基板的接触面积,或者采用退火处理等。但是在这些方法中,增加粘胶剂会增大电极的厚度,机械按压可能造成电极结构的破坏,退火处理可能导致膜层被破坏,因此效果都不理想。
通过这些方法制备的纳米金属网格结构在柔性材料表面的附着力差的问题,限制了纳米金属网格结构在柔性电子领域的应用。
本发明至少一实施例提供了一种柔性导电薄膜及其制备方法、柔性触摸屏及柔性触摸显示面板。该柔性导电薄膜的制备方法包括:提供第一基板;在第一基板上涂覆第一导电金属油墨并得到第一导电金属图案;在第一基板的具有第一导电金属图案的表面上涂覆聚酰亚胺清漆;待聚酰亚胺清漆固化后将第一基板置于去离子水中浸泡;从第一基板上移除固化的聚酰亚胺清漆和第一导电金属图案得到柔性导电薄膜。
可以将采用该方法制备的柔性导电薄膜应用于柔性触摸屏及柔性触摸显示面板中,以提高纳米金属(例如纳米银材料)对柔性基板的附着力,改善其机械强度稳定性。
本发明的实施例提供一种柔性导电薄膜的制备方法,图1为本发明的实施例提供的一种柔性导电薄膜的制备方法的流程图。如图1所示,该柔性导电薄膜的制备方法包括以下步骤:
提供第一基板,例如,该第一基板为玻璃基板、石英基板等。
在第一基板上涂覆第一导电金属油墨,例如,该第一导电金属油墨为 混合有纳米金属的透明油墨,该透明油墨可以为相对分子质量为1万~100万的热塑性聚氨酯,例如该热塑性聚氨酯为由脂肪族异氰酸酯或芳香族异氰酸酯与聚酯型固化剂或聚醚型固化剂反应制得、且具有热塑性和在可见光区透明的聚氨酯。涂覆得到的第一导电金属油墨的层厚可以为100nm~100μm。该纳米金属可以是通过液相还原法制备的。通过液相还原法制备的纳米金属的表面通常残留有绝缘的聚乙烯吡咯烷酮(PVP)。例如,该第一导电金属油墨中的纳米金属包括纳米银、纳米金或纳米铜,并且纳米金属可以为纳米金属线或者纳米金属颗粒等形状,例如,其尺寸范围可以为50~100nm,例如,50nm,80nm或者100nm。
将涂覆的第一导电金属油墨经图案化处理得到第一导电金属图案。例如,该图案化处理的过程采用光刻工艺,光刻工艺包括涂覆光刻胶、曝光、显影等步骤。所得到的第一导电金属图案可以包括多条彼此平行且间隔一定间距的条状电极(例如参见图4B和图4C)。
在本发明的实施例中,可以采用其他方法得到第一导电金属图案,例如可以采用喷墨打印或者丝网印刷的方法,在将第一导电金属油墨涂覆到第一基板的过程中同时得到的第一导电金属图案。
之后,第一导电金属油墨中的溶剂可以通过放置一定时间或者烘烤而挥发、去除。
在第一基板的具有第一导电金属图案的表面上涂覆聚酰亚胺清漆。聚酰亚胺清漆具有拉伸强度大,吸水性强等特点。
待聚酰亚胺清漆固化后将第一基板置于去离子水中浸泡。固化后的聚酰亚胺清漆放入去离子水后,经过吸湿、膨胀易从第一基板上移除。
从第一基板上移除固化的聚酰亚胺清漆和第一导电金属图案得到柔性导电薄膜。该柔性导电薄膜为在固化的聚酰亚胺清漆表面粘附有导电金属图案的薄膜。
例如,在第一基板上形成第一导电金属图案之后,且在涂覆聚酰亚胺清漆之前,还可以对第一导电金属图案进行等离子体处理,以去除第一导电金属图案表面绝缘物质,例如,聚乙烯吡咯烷酮(PVP)。
例如,可以采用功率为10W~5000W的射频管产生等离子体,对第一导电金属图案进行30秒至30分钟的等离子处理。例如,该等离子体处理可在保护性气氛或者反应性气氛下进行,保护性气氛可以为氮气、氩气、 氦气、氖气中的一种或者混合气体。反应性气氛为空气、氧气、氢气、氨气、二氧化碳中的一种或者混合气体。
当采用上述功率范围以及时间范围内对第一导电金属图案进行等离子体处理后,通过观察等离子处理后得到的第一导电金属图案的扫描电镜图,可发现其中的纳米金属(例如纳米银线)材料表面的聚乙烯吡咯烷酮(PVP)被分解、去除,且纳米金属渗流网络的节点可能发生烧结而彼此结合由此可以大大降低纳米金属之间的接触电阻,提高了第一导电金属图案导电性。
另外,经过等离子处理后,纳米金属表面还可以形成特异结构。这些特异结构表现为纳米金属的表面出现的许多均匀分布的纳米“突起”,这些突起有利于改善纳米金属与其他物质之间粘结力。
需要注意的是,上述等离子体处理方式的时间参数和功率参数可以根据需要控制。如果等离子处理的强度或时间不够,会形成不了特定的突起结构达不到烧结的效果;如果等离子处理的强度过高或时间过长,可能使纳米金属线熔断,破坏纳米金属导电网格,在上述时间范围和功率范围下进行等离子处理后,能更好地达到预期的效果。
需要说明的是,在本实施例的一个示例中,第一导电金属图案的层厚可以为1~10μm,聚酰亚胺清漆的膜层的厚度可以为50~250μm,从而使得,第一导电金属图案完全嵌入到聚酰亚胺清漆的膜层之中。聚酰亚胺清漆可以是将聚酰亚胺/聚酰亚胺前体溶于有机溶剂中得到的一种混合溶液,通过将该混合溶液涂在基板之上,然后可以通过热处理将其固化从而在基板上形成聚酰亚胺膜层。该有机溶剂可以通过挥发去除,可以选用当前适当的任何有机溶剂。
例如,图2为图1中所示制备方法的流程图对应的过程图。如图2所示,以第一导电金属油墨为包括纳米银线油墨为例进行说明,该过程包括如下步骤:
1)在清洗干净的第一基板的表面涂覆纳米银线油墨;
2)将上述涂覆有纳米银线油墨的第一基板经过涂覆光刻胶、曝光、显影等光刻工艺得到第一导电金属图案;
3)将上述具有第一导电金属图案的第一基板经等离子体处理,去除第一导电金属图案表面的绝缘物质,例如聚乙烯吡咯烷酮(PVP);
4)将上述第一基板的具有第一导电金属图案的表面涂覆透明聚酰亚胺清漆;
5)将上述涂覆有聚酰亚胺清漆第一基板置于去离子水槽中浸泡,经吸湿溶胀后从第一基板上移除聚酰亚胺清漆和第一导电金属图案,得到含纳米银图案的透明柔性聚酰亚胺清漆薄膜。
需要说明的是,采用该方法得到的是在固化的聚酰亚胺清漆的一个表面上具有第一导电金属图案的柔性导电薄膜。采用本实施例中的方法制备的柔性导电薄膜可用于柔性触摸显示面板中。聚酰亚胺清漆具有很好的柔韧性,将其设置在高分子材料(例如柔性基板)上时,具有较强的附着力,且机械强度稳定性好。该方法技术实现简单,在提高产品品质的同时可提高产品竞争力,可被广泛推广使用。
本发明至少一实施例还提供一种柔性导电薄膜的制备方法,图3为本发明的实施例提供的一种柔性导电薄膜的制备方法的流程图。如图3所示,该柔性导电薄膜的制备方法包括以下步骤:
首先,提供第一基板和第二基板,例如,该第一基板和第二基板可为玻璃基板、石英基板等。
在第一基板上涂覆第一导电金属油墨,在第二基板上涂覆第二导电金属油墨,该第一导电金属油墨和第二导电油墨的性质、材料、涂覆厚度参见实施例一中第一导电金属油墨的相关描述,在此不再赘述。同样地,该第一导电金属油墨和第二导电金属油墨中的纳米金属可以是通过液相还原法制备的,通过液相还原法制备的纳米金属的表面通常残留有绝缘的聚乙烯吡咯烷酮(PVP)。例如,第一导电金属油墨和第二导电金属油墨中的导电金属可包括纳米银、纳米金或纳米铜等,纳米金属的形状可以为纳米金属线或者纳米金属颗粒等。
将第一基板上涂覆的第一导电金属油墨和第二基板上涂覆的第二导电金属油墨经图案化处理分别得到第一导电金属图案和第二导电金属图案。同样地,可以采用光刻工艺形成第一导电金属图案和第二导电金属图案,在此不再赘述,相关内容参见上述中的相关描述。
在第一基板的具有第一导电金属图案的表面上涂覆聚酰亚胺清漆,在该聚酰亚胺清漆固化之前,将第二基板的具有第二导电金属图案的一侧贴覆于该涂覆于所述第一基板上的聚酰亚胺清漆上,形成复合基板。这样就 形成了第一基板和第二基板之间夹持着聚酰亚胺清漆、第一导电金属图案和第二导电金属图案的结构。
待上述聚酰亚胺清漆固化后,将复合基板置于去离子水中浸泡,将固化后的聚酰亚胺清漆与第一基板和第二基板一起放入去离子水中,经过吸湿、膨胀后其易从第一基板和第二基板上移除。
从第一基板和第二基板上依次移除固化的聚酰亚胺清漆和第一导电金属图案、第二导电金属图案得到柔性导电薄膜,该柔性导电薄膜为在固化的聚酰亚胺清漆的表面分别粘附有第一导电金属图案和第二导电金属图案的薄膜。
上述第一导电金属图案和第二导电金属图案可以为任何需要的图案。如图4B所示,第一导电金属图案23和第二导电金属图案25分别位于聚酰亚胺清漆膜层(图中未示出)的两个侧面。在图中,第一导电金属图案23包括多个水平方向延伸的多个彼此平行的第一条状电极;第二导电金属图案25包括多个垂直方向延伸的多个彼此平行的第二条状电极。第一导电金属图案23的多个第一条状电极和第二导电金属图案25的多个第二条状电极彼此交叉。如图4B所示的柔性导电薄膜可以用于互电容型触摸屏,在第一条状电极和第二条状电极彼此交叉位置处构成检测电容。
又例如,如图4C所示,如图5所示,第一导电金属图案33和第二导电金属图案35分别位于聚酰亚胺清漆膜层(图中未示出)的两个侧面。所述第一导电金属图案33包括等间距在垂直方向排列的多个第一条状电极,所述每个第一条状电极包括形成多个宽部和多个窄部,上述宽部和窄部交替布置并顺序连接。所述第二导电金属图案35包括等间距在水平方向排列的多个第二条状电极,所述每个第二条状电极包括多个宽部和多个窄部,上述宽部和窄部交替布置并顺序连接。如图4C所示的柔性导电薄膜同样可以用于互电容型触摸屏,在第一条状电极和第二条状电极彼此交叉位置处构成检测电容。
例如,在形成第一导电金属图案之后且在涂覆聚酰亚胺清漆之前,还包括对第一导电金属图案和第二导电金属图案进行等离子体处理,以去除第一导电金属图案和第二导电金属图案表面绝缘物质,例如,该绝缘物质为聚乙烯吡咯烷酮(PVP)。例如,等离子体处理所采用的功率、处理的时间、所采用的保护性气氛和反应性气氛可参见上述中的相关描述,在此不 再赘述。
需要说明的是,在本实施例中,第一导电金属图案的厚度可以为1~10μm,第二导电金属图案的厚度可以为1~10μm,聚酰亚胺清漆的厚度为50~250μm。第一导电金属图案23和第二导电金属图案25均完全嵌入到聚酰亚胺清漆的膜层之中。
例如,图4为图3中所示制备方法的流程图对应的过程图,如图4所示,该过程包括以下步骤,以纳米导电金属为纳米银线为例进行说明:
1)在清洗干净的第一基板和第二基板的表面分别涂覆包括纳米银线的第一导电金属油墨和第二导电金属油墨。
2)将上述涂覆有包括纳米银线的第一导电金属油墨的第一基板和涂覆有包括纳米银线的第二导电金属油墨的第二基板经过涂覆光刻胶、曝光、显影等光刻工艺后分别得到具有第一导电金属图案、第二金属导电图案的第一基板和第二基板。
3)将上述具有第一导电金属图案的第一基板和具有第二金属导电图案的第二基板经等离子体处理,去除第一导电金属图案和第二金属导电图案表面的绝缘物质(例如聚乙烯吡咯烷酮PVP)。
4)将上述第一基板表面涂覆无色聚酰亚胺清漆,再将第二基板翻转贴覆到聚酰亚胺清漆的表面,然后固化该聚酰亚胺清漆。
5)将上述第一基板和第二基板对盒形成的复合基板置于去离子水槽中浸泡,经吸湿、溶胀后依次从两基板上撕取得到含纳米银图案的透明柔性聚酰亚胺清漆薄膜。
在本发明的实施例中,同样可以采用其他方法得到第一导电金属图案和第二导电金属图案,例如可以采用喷墨打印或者丝网印刷的方法,在将导电金属油墨涂覆到第一基板和第二基板上的过程中同时得到的第一导电金属图案和第二导电金属图案。
在本发明的实施例中,第一导电金属图案和第二导电金属图案可以采用相同或不同的导电金属油墨得到。例如,在第一基板上涂覆第一导电金属油墨并得到第一导电金属图案,在第二基板上涂覆第二导电金属油墨并得到第二导电金属图案,第一导电金属油墨和第二导电金属油墨可以是不同的导电金属油墨,例如含有不同的纳米金属。
需要说明的是,采用本发明实施例中的方法得到了在固化的聚酰亚胺 清漆的上、下表面分别具有第一导电金属图案和第二金属导电图案的柔性导电薄膜,且第一导电金属图案和第二金属导电图案被绝缘的聚酰亚胺清漆间隔开。第一导电金属图案和第二金属导电图案在空间分布上具有交叉部分。采用本发明实施例中的方法制备的柔性导电薄膜可用于柔性触摸屏中。聚酰亚胺清漆具有很好的柔韧性,将其设置在高分子材料(例如柔性基板)上时,具有较强的附着力,且机械强度稳定性好。该方法技术实现简单,在提高产品品质的同时可提高产品竞争力,此外此技术可被广泛推广使用。
本发明至少一实施例还提供一种柔性导电薄膜,该柔性导电薄膜由上述柔性导电薄膜的制备方法制成。该柔性导电薄膜包括固化的聚酰亚胺清漆和嵌入固化的聚酰亚胺清漆中的导电金属图案。
例如,该导电金属图案可以包括第一导电金属图案和/或第二导电金属图案。
例如,该导电金属图案的导电材料包括纳米银、纳米金或纳米铜中的任意一种。
例如,图5为采用图1所示的柔性导电薄膜的制备方法制成的柔性导电薄膜的结构示意图。如图5所示,该聚酰亚胺清漆的一个表面上具有第一导电金属图案1051。
例如,图6为采用图3所示的柔性导电薄膜的制备方法制成的柔性导电薄膜的结构示意图。如图6所示,该柔性导电薄膜包括聚酰亚胺清漆104、嵌入固化的聚酰亚胺清漆的第一表面的第一导电金属图案1051和嵌入固化的聚酰亚胺清漆的第二表面的第二导电金属图案1052。
例如,如图6所示,第一导电金属图案1051和第二导电金属图案1052之间间隔有固化的聚酰亚胺清漆104,以将二者绝缘。
例如,如图6所示,第一导电金属图案1051的厚度可以为1~10μm,第二导电金属图案1052的厚度可以为1~10μm,聚酰亚胺清漆104的厚度可以为50~250μm。
本发明至少一实施例还提供一种柔性触摸屏100,例如,图7为该柔性触摸屏的截面结构示意图,该柔性触摸屏包括柔性基板101和设置在柔性基板101上的柔性导电薄膜102。根据需要,该柔性触摸屏100还可以包括设置在柔性导电薄膜102上的保护膜103。
例如,该保护膜103为一种透明绝缘材料,例如二氧化硅、氮氧化硅等无机绝缘材料,也可以为树脂等有机绝缘材料。显然,在本实施例中并不限于所列出的材料,还可以是其他类似性能的材料。
本发明的实施例提供的柔性导电薄膜102位于柔性基板101上,例如,该柔性导电薄膜102包括固化的聚酰亚胺清漆104和嵌入固化的聚酰亚胺清漆中的第一导电金属图案1051和第二导电金属图案1052,第一导电金属图案1051和第二导电金属图案1052的平面形状例如可以参见图4B和图4C,但是本发明的实施例不限于这些具体的形状、布局。第一导电金属图案1051和第二导电金属图案1052可以进一步通过引线连接到触控芯片(未示出)。
例如,该柔性基板101具有热塑性、可见光区透明性,符合该条件的材料都可以用于制造柔性透明基板。例如,可用于制作柔性基板的材料包括:聚苯二甲酸乙二醇酯、聚苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯或聚碳酸酯,柔性透明基板的大小和形状根据实际要制造的导电膜尺寸决定。
本发明的实施例提供的柔性触摸屏所包含的柔性导电薄膜采用上述中的柔性导电薄膜的制备方法制备,在此不再赘述。
本发明至少一实施例还提供一种柔性触摸显示面板,如图8所示,该柔性触摸显示面板200包括:柔性显示面板201和设置在柔性显示面板201上的柔性导电薄膜202。根据需要,该柔性触摸显示面板200还可以包括设置在柔性导电薄膜202上的保护膜203。
本发明的实施例提供的柔性导电薄膜202位于柔性显示面板201上,例如,该柔性导电薄膜202包括固化的聚酰亚胺清漆204和嵌入固化的聚酰亚胺清漆中的第一导电金属图案2051和第二导电金属图案2052,第一导电金属图案2051和第二导电金属图案2052的平面形状例如可以参见图4B和图4C,但是本发明的实施例不限于这些具体的形状、布局。第一导电金属图案2051和第二导电金属图案2052可以进一步通过引线连接到触控芯片(未示出)。
上述保护膜203的相关材料和设计可参见上述中的相关描述,在此不再赘述。
在本实施例中,例如,该柔性显示面板可以为电子纸柔性显示面板、OLED(Organic Light-Emitting Diode,有机发光二极管)显示柔性显示面板、 液晶柔性显示面板等,其可以实现为电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
本发明的实施例提供一种柔性导电薄膜及其制备方法、柔性触摸屏及柔性触摸显示面板,并且具有以下至少一项有益效果:
(1)通过等离子体处理去除纳米金属表面的绝缘物质聚乙烯吡咯烷酮(PVP),从而提高了导电金属图案的导电率;
(2)将纳米金属导电金属图案嵌入到聚酰亚胺清漆表面形成柔性导电薄膜,可提高纳米金属在柔性高分子材料表面的附着力,提高其机械强度;
(3)该方法技术实现简单,在提高产品品质的同时可提高产品竞争力,此外此技术可被广泛推广使用。
对于本公开,还有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年8月26日递交的中国专利申请第201610741256.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种柔性导电薄膜的制备方法,包括:
    提供第一基板;
    在所述第一基板上涂覆第一导电金属油墨并得到第一导电金属图案;
    在所述第一基板的具有所述第一导电金属图案的表面上涂覆聚酰亚胺清漆;
    待所述聚酰亚胺清漆固化后将所述第一基板置于去离子水中浸泡;
    从所述第一基板上移除所述固化的聚酰亚胺清漆和所述第一导电金属图案得到所述柔性导电薄膜。
  2. 根据权利要求1所述的制备方法,还包括:
    提供第二基板;
    在所述第二基板上涂覆第二导电金属油墨并得到第二导电金属图案;
    在所述聚酰亚胺清漆固化前将所述第二基板的具有所述第二导电金属图案的一侧贴覆到已经涂覆在所述第一基板上的所述聚酰亚胺清漆上;
    待夹持在所述第一基板和所述第二基板之间的所述聚酰亚胺清漆固化后再将所述第一基板和所述第二基板置于去离子水中浸泡。
  3. 根据权利要求1或2所述的制备方法,还包括:对所述第一导电金属图案进行等离子体处理,以去除所述第一导电金属图案的绝缘物质。
  4. 根据权利要求1-3中任一项所述的制备方法,还包括:对所述第二导电金属图案进行等离子体处理,以去除所述第二导电金属图案的绝缘物质。
  5. 根据权利要求3或4所述的制备方法,其中,所述绝缘物质包括聚乙烯吡咯烷酮。
  6. 根据权利要求3或4所述的制备方法,其中,所述等离子体处理在保护性气氛或反应性气氛下进行。
  7. 根据权利要求6所述的制备方法,其中,所述保护性气氛为氩气、氦气、氮气、氖气中的任意一种或组合。
  8. 根据权利要求6所述的制备方法,其中,所述反应性气氛为空气、氧气、氢气、氨气、二氧化碳中的任意一种或组合。
  9. 根据权利要求1-8中任一项所述的制备方法,其中,所述第一导电 金属油墨包括纳米银、纳米金或纳米铜。
  10. 根据权利要求1-8中任一项所述的制备方法,其中,所述第一导电金属油墨包括纳米金属线或者纳米金属颗粒。
  11. 根据权利要求2所述的制备方法,其中,所述第二导电金属油墨包括纳米银、纳米金或纳米铜。
  12. 根据权利要求2所述的制备方法,其中,所述第二导电金属油墨包括纳米金属线或者纳米金属颗粒。
  13. 根据权利要求2所述的制备方法,其中,所述第一导电金属油墨和所述第二导电金属油墨彼此不同。
  14. 一种柔性导电薄膜,包括:固化的聚酰亚胺清漆和嵌入所述固化的聚酰亚胺清漆中的导电金属图案。
  15. 根据权利要求14所述的柔性导电薄膜,其中,所述导电金属图案的材料包括纳米银、纳米金或纳米铜。
  16. 根据权利要求14或15所述的柔性导电薄膜,其中,所述导电金属图案包括嵌入所述固化的聚酰亚胺清漆的第一表面的第一导电金属图案和/或嵌入所述固化的聚酰亚胺清漆的第二表面的第二导电金属图案。
  17. 根据权利要求16所述的柔性导电薄膜,其中,所述第一导电金属图案和所述第二导电金属图案之间间隔有所述固化的聚酰亚胺清漆。
  18. 根据权利要求17所述的柔性导电薄膜,其中,所述第一导电金属图案的厚度为1~10μm,所述第二导电金属图案的厚度为1~10μm,所述聚酰亚胺清漆的厚度为50~250μm。
  19. 一种柔性触摸屏,包括:
    柔性基板;
    设置在所述柔性基板上的如权利要求14-18中任一项所述的柔性导电薄膜。
  20. 一种柔性触摸显示面板,包括:
    柔性基板;
    设置在所述柔性基板上的如权利要求14-18中任一项所述的柔性导电薄膜。
PCT/CN2017/089211 2016-08-26 2017-06-20 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板 WO2018036248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,031 US10973118B2 (en) 2016-08-26 2017-06-20 Flexible conductive film, its manufacturing method, flexible touch screen and flexible display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610741256.7 2016-08-26
CN201610741256.7A CN106297967B (zh) 2016-08-26 2016-08-26 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板

Publications (1)

Publication Number Publication Date
WO2018036248A1 true WO2018036248A1 (zh) 2018-03-01

Family

ID=57677178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089211 WO2018036248A1 (zh) 2016-08-26 2017-06-20 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板

Country Status (3)

Country Link
US (1) US10973118B2 (zh)
CN (1) CN106297967B (zh)
WO (1) WO2018036248A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114596778A (zh) * 2021-06-08 2022-06-07 友达光电股份有限公司 显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297967B (zh) 2016-08-26 2018-01-16 京东方科技集团股份有限公司 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板
CN108287622B (zh) * 2017-01-10 2021-07-16 昆山国显光电有限公司 触控显示装置及其制造方法
CN108695358B (zh) * 2017-04-05 2021-09-28 上海和辉光电股份有限公司 一种显示面板及显示装置
CN108039122B (zh) * 2017-12-29 2019-08-30 深圳市华星光电半导体显示技术有限公司 一种柔性显示器的制备方法及柔性显示器
US10515569B2 (en) 2017-12-29 2019-12-24 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Preparation method of flexible display and flexible display
CN108492935B (zh) * 2018-04-16 2020-01-14 哈尔滨工业大学(深圳) 一种制备柔性可拉伸导电胶透明导电薄膜的方法
CN109493734B (zh) * 2018-10-26 2020-09-08 深圳市华星光电半导体显示技术有限公司 像素电极的制作方法、显示面板
CN109904185B (zh) * 2019-02-14 2021-01-01 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
US11789576B2 (en) * 2021-11-16 2023-10-17 Electronics And Telecommunications Research Institute Flexible touch panel and method of manufacturing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252980A (ja) * 2005-03-11 2006-09-21 Sumitomo Bakelite Co Ltd 異方導電性フィルム及びそれを用いた電子機器
CN102529302A (zh) * 2010-12-20 2012-07-04 Sk新技术 一种聚酰亚胺厚膜柔性覆金属层压板的制备方法
CN103109391A (zh) * 2010-09-24 2013-05-15 加利福尼亚大学董事会 纳米线-聚合物复合材料电极
CN104303242A (zh) * 2012-07-03 2015-01-21 日本石原化学株式会社 导电膜形成方法与烧结助剂
CN106297967A (zh) * 2016-08-26 2017-01-04 京东方科技集团股份有限公司 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070298253A1 (en) * 2004-09-17 2007-12-27 Kenji Hata Transparent Conductive Carbon Nanotube Film and a Method for Producing the Same
SG150514A1 (en) * 2005-08-12 2009-03-30 Cambrios Technologies Corp Nanowires-based transparent conductors
CN101597019A (zh) 2008-06-02 2009-12-09 中国航天科技集团公司第五研究院第五一○研究所 一种以聚酰亚胺为机械载体的薄膜微桥结构及制备方法
JP5496343B2 (ja) * 2009-09-29 2014-05-21 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー ナノファイバーを用いた導電性ポリマー接着剤及びその製造方法
CN103985434B (zh) 2014-05-05 2016-09-21 清华大学深圳研究生院 一种透明导电膜的制造方法及透明导电膜
TWI534840B (zh) * 2014-10-30 2016-05-21 國立臺灣大學 可撓性透明電極及製備其之方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252980A (ja) * 2005-03-11 2006-09-21 Sumitomo Bakelite Co Ltd 異方導電性フィルム及びそれを用いた電子機器
CN103109391A (zh) * 2010-09-24 2013-05-15 加利福尼亚大学董事会 纳米线-聚合物复合材料电极
CN102529302A (zh) * 2010-12-20 2012-07-04 Sk新技术 一种聚酰亚胺厚膜柔性覆金属层压板的制备方法
CN104303242A (zh) * 2012-07-03 2015-01-21 日本石原化学株式会社 导电膜形成方法与烧结助剂
CN106297967A (zh) * 2016-08-26 2017-01-04 京东方科技集团股份有限公司 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114596778A (zh) * 2021-06-08 2022-06-07 友达光电股份有限公司 显示装置
CN114596778B (zh) * 2021-06-08 2023-11-07 友达光电股份有限公司 显示装置

Also Published As

Publication number Publication date
US20200092990A1 (en) 2020-03-19
CN106297967B (zh) 2018-01-16
US10973118B2 (en) 2021-04-06
CN106297967A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018036248A1 (zh) 柔性导电薄膜及其制备方法、柔性触摸屏及显示面板
An et al. Self-Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating.
US9253890B2 (en) Patterned conductive film, method of fabricating the same, and application thereof
KR101878011B1 (ko) 그라펜을 주성분으로 하는 투명 도전막을 구비한 전사 시트와 그 제조방법, 및 투명 도전물
US9462681B2 (en) Conductive film with networked nano-material
US10512170B2 (en) Highly conductive transparent glass-based circuit board
KR101521694B1 (ko) 플렉서블/스트레처블 투명도전성 필름 및 그 제조방법
WO2016095428A1 (zh) 柔性电极结构、其制作方法及柔性显示基板
US9594193B2 (en) Printing plate, scattering layer, method for fabricating the same, and display apparatus
US20180196538A1 (en) Method for manufacturing touch screen, touch screen and display device
US10329660B2 (en) Flexible transparent thin film
KR101372534B1 (ko) 터치 패널
KR101992029B1 (ko) 전도성 폴리머 복합체 및 그 제조 방법
TW201743170A (zh) 顯示器與觸控面板的超細銅質網線及其製造方法
KR101521693B1 (ko) 플렉서블/스트레처블 투명도전성 필름 및 그 제조방법
KR20160048546A (ko) 전도성 부재 및 이의 제조 방법
KR101358254B1 (ko) 기판 상에 기능성 조성물의 패턴을 형성하는 방법 및 그 방법에 의하여 형성된 기능성 패턴을 구비한 전자 장치
WO2021036044A1 (zh) 发光面板、发光面板的制备方法及显示装置
US11296298B2 (en) Method for manufacturing flexible organic light-emitting diode display panel
KR20160077459A (ko) 금속나노와이어 전극제조방법
TW201352086A (zh) 陶瓷基板複合體及陶瓷基板複合體之製造方法
TW201250529A (en) Touch panel having insulators
JP2009196846A (ja) 1次元ナノ材料からなる薄膜の製造方法及び電子装置の製造方法
CN109848011B (zh) 纳米银线溶液的制作方法和触控面板的制作方法
TWI842220B (zh) 可拉伸複合電極及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17842673

Country of ref document: EP

Kind code of ref document: A1