TW201250529A - Touch panel having insulators - Google Patents

Touch panel having insulators Download PDF

Info

Publication number
TW201250529A
TW201250529A TW100119790A TW100119790A TW201250529A TW 201250529 A TW201250529 A TW 201250529A TW 100119790 A TW100119790 A TW 100119790A TW 100119790 A TW100119790 A TW 100119790A TW 201250529 A TW201250529 A TW 201250529A
Authority
TW
Taiwan
Prior art keywords
matrix
tin oxide
indium tin
insulator
layer
Prior art date
Application number
TW100119790A
Other languages
Chinese (zh)
Inventor
shi-qiang Li
Original Assignee
Mutto Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mutto Optronics Corp filed Critical Mutto Optronics Corp
Priority to TW100119790A priority Critical patent/TW201250529A/en
Publication of TW201250529A publication Critical patent/TW201250529A/en

Links

Abstract

A touch panel having insulators is disclosed, which comprises a glass substrate; a rectangular ink frame disposed to one side of the glass substrate; an electrode trace arranged on the rectangular ink frame; within the range of the rectangular ink frame, a first indium-tin oxide (ITO) matrix arranged on the glass substrate to form a longitudinally connected sensing unit set (y) and a transversely non-electrically connected sensing unit set (x); an insulator matrix, disposed on the first ITO matrix, covering the longitudinally connected sensing unit set (y), and insulated from the transversely non-electrically connected sensing unit set (x); a conductive layer, installed on the insulator matrix, and electrically connected to the transversely non-electrically connected sensing unit set (x) in an adjacent separation point; and a protective layer covering the conductive layer and the first ITO matrix.

Description

201250529 六、發明說明: 【發明所屬之技術領域】 本案係屬於觸控面板領域,尤指一種帶有絕緣 子的觸控面板,加入絕緣材料以形成電性隔離方 式,於單面基板上形成感應圖案層,有效結合觸控 面板結構之構造以節省貼合加工程序’從而降低觸 控面板之厚度與重量,更大幅提高透光度和觸控敏 感度。 【先前技術】 通常觸控面板的感應圖案層係由相互交錯貼合 之第圖案層與一第二圖案層所組成,將該第一 圖案層與該第二圖案層設置於一基板之同一平面 上’以構成一單層感應層結構之觸控面板;若欲直 接實現該單層感應層結構於一平面上,則所需加工 技術之條件要求相對於分片貼合技術更高。如中華 民國新型專利第M397551號「觸控面板的疊層組合 構造」一案中,請參閱第1圖,係為習知觸控面板 之剖視圖。如圖中所示,該觸控面板結構係包含: 一 Y軸感應層13c係設於一下透明基板14之上,— 顏色邊框12係設於一上透明基板11之上,一 χ軸 感應層1 3a係設於該顏色邊框1 2之上,該X軸感應 層1 3a與該γ軸感應層i 3c分別貼合於一絕緣層1扑 之兩面’而形成一觸控面板1〇。觸控面板之製程中, 201250529 貼合工序係最容易使二相互垂直感應圖案層分離之 方式’然此方法卻也著實使觸控面板之厚度增加, 大幅降低其觸控敏銳度及透光度。 因此,為因應觸控面板朝向質輕及薄型化訴 求,有效節省或省略貼合步驟於加工觸控面板上之 缺點,使整體相應之透光度與觸控敏銳度大幅提 升,係為當前觸控面板領域之發展重點。 有鑑於此,本創作人感其未臻完善而竭其心智 苦心研究,並憑其從事該項產業多年之累積經驗, 進而研發出一種帶有絕緣子的觸控面板,加入絕緣 材料以形成電性隔離方式,於單面基板上形成感應 圖案層,有效結合觸控面板結構以節省貼合加工程 序,更覆塗使用奈米級之喷印技術,以提高成品之 精密度,從而降低觸控面板之厚度與重量,並大幅 提升其透光度和觸控敏感度。 【發明内容】 本發明之目的,旨在提供一種帶有絕緣子的觸 控面板及其製作方法,藉由引入PET熱塑性工程塑 料作為基板素材’其良好的力學強度、耐熱性及耐 化學腐蝕性,符合觸控基材之要求;製作上,於一 基板之單面上分別設置互為垂直之一圖案感應層, 搭配覆塗絕緣材料,而使該感應圖案層中互呈垂直 之圖案線路產生短路,續使用橋接技術使該圖案感 4 201250529 應層之單一方向產生電性相接,從而有效簡化製作 過程中之貼合工序,以朝向質輕化及薄性化之觸控 面板訴求標準。 為達此一目的,本發明之帶有絕緣子的觸控面 板,其係包含一玻璃基板;一矩形油墨邊框,係設 於該玻璃基板之一面;一電極走線,係設於該矩形 第 氧化銦錫矩陣於該玻璃基板之上,形成一縱 向串連感應單元組(y)及一橫向非電性連接感應單 元組(X)’· 一絕緣子矩陣,係設於該第一氧化銦錫矩 陣之上,並包覆該縱向串連感應單元組,而隔離 於該橫向非電性連接感應單元組(X); —導電層,係 設^該絕緣子矩陣之上,且電性連接相鄰斷開處之 該橫向非電性連接感應單元組(X); -保護層,係覆 置於該導電層與該第一氧化銦錫矩陣之上。 為提高本發明製作上之外在適應條件,及成品 ^不同訴求特性,其中,該玻璃基板之厚度為 =〜1.5毫米;該導電層與該第一氧化銦 =度為15奈米〜25奈米;該絕緣 車 為丨.〇微米〜20餌止 ^ ^ 複合金屬層構成。 電極走線係由翻/紹/銷 步驟tt:之製作上需實施於無塵環境條件下,其 印刷該矩形油 墨邊框於該玻璃基板上; 201250529 彼覆金屬材料於該矩形油墨邊框上並蓋覆 一光阻層’設置標靶,實施曝光微影蝕刻而得 該電極走線; 移除該光阻層;彼覆一第一氧化銦錫於該 矩形油墨邊框之範圍内,覆塗光阻材料以實施 光阻蝕刻,脫膜後而得該第一氧化銦錫矩陣; 其中’該第一氧化銦錫矩陣係具有該縱向串連 感應單元組(y)及該橫向非電性連接感應單元 組(X); 旋轉該玻璃基板並覆塗〇C光阻材料於該第 一氧化銦錫矩陣上,實施光阻蝕刻後而得該絕 緣子矩陣; 彼覆一第二氧化銦錫於該絕緣子矩陣上, 並進行光阻蝕刻以產生該導電層,該橫向非電 性連接感應單元組(X)係藉由該導電層產生電 性相接;及 覆置該保護層於該導電層及該第一氧化銦 錫矩陣上》 本發明更提供一改良式之製作方法,需實施於 無塵環境條件下’其步驟係包含: 彼覆該第一氧化銦錫於該玻璃基板上,且 位於該矩形油墨邊框之範圍内; 設置標靶,覆塗光阻材料於該第一氧化銦 錫以實施光阻蝕刻,脫膜後而得該第一氧化銦 6 201250529 其中,該第 係具有該 電性連接 錫矩陣;其中,該第一氧化銦錫矩陣係 縱向串連感應單元組(y)及該橫向非 感應單元組(X ); 旋轉該玻璃基板並覆塗0C光阻材料於該第 一氧化銦錫矩陣上,實施光阻蝕刻於該第一氧 化銦錫矩陣後而得該絕緣子矩陣; 披覆鉬/鋁/鉬福合合J屉热姑够 好201250529 VI. Description of the invention: [Technical field of the invention] The present invention belongs to the field of touch panels, and more particularly to a touch panel with an insulator, which is formed by adding an insulating material to form an electrical isolation manner, and forming a sensing pattern on a single-sided substrate. The layer effectively combines the structure of the touch panel structure to save the bonding process', thereby reducing the thickness and weight of the touch panel, and greatly improving the transmittance and touch sensitivity. [Previous Art] The sensing pattern layer of the touch panel is composed of a first pattern layer and a second pattern layer which are interlaced with each other, and the first pattern layer and the second pattern layer are disposed on the same plane of a substrate. The upper touch panel constitutes a single-layer sensing layer structure; if the single-layer sensing layer structure is to be directly realized on a plane, the conditions of the required processing technology are required to be higher than the chip bonding technique. For example, in the case of the laminated composite structure of the touch panel of the Republic of China, No. M397551, please refer to Fig. 1, which is a cross-sectional view of a conventional touch panel. As shown in the figure, the touch panel structure comprises: a Y-axis sensing layer 13c is disposed on the lower transparent substrate 14, and the color frame 12 is disposed on an upper transparent substrate 11 and a shaft sensing layer 1 3a is disposed on the color frame 12, and the X-axis sensing layer 13a and the γ-axis sensing layer i3c are respectively attached to the two sides of an insulating layer 1 to form a touch panel 1?. In the process of the touch panel, the 201250529 bonding process is the easiest way to separate the two mutually perpendicular sensing pattern layers. However, this method also increases the thickness of the touch panel, greatly reducing the touch acuity and transmittance. . Therefore, in order to respond to the light-weight and thin-type requirements of the touch panel, the disadvantages of the bonding step on the processing of the touch panel are effectively saved or omitted, so that the overall transmittance and the touch acuity are greatly improved, which is the current touch. The development focus of the control panel field. In view of this, the creator feels that he has tried his best to study it, and based on his years of accumulated experience in the industry, he developed a touch panel with insulators and added insulating materials to form electrical properties. The isolation method forms an inductive pattern layer on the single-sided substrate, effectively combines the touch panel structure to save the bonding processing program, and further applies the nano-level printing technology to improve the precision of the finished product, thereby reducing the touch panel. Its thickness and weight, and greatly improve its transparency and touch sensitivity. SUMMARY OF THE INVENTION The object of the present invention is to provide a touch panel with an insulator and a manufacturing method thereof, which are characterized by the introduction of PET thermoplastic engineering plastics as substrate materials, which have good mechanical strength, heat resistance and chemical resistance. In accordance with the requirements of the touch substrate; in the fabrication, a pattern sensing layer perpendicular to each other is disposed on one side of the substrate, and the insulating material is coated with the insulating material, so that the vertical pattern lines in the sensing pattern layer are short-circuited. Continued to use the bridging technology to make the pattern sense 4 201250529 electrical connection in a single direction of the layer, thereby effectively simplifying the bonding process in the manufacturing process, in order to face the standard of touch panel with light weight and thinness. To achieve the above objective, the touch panel with an insulator of the present invention comprises a glass substrate; a rectangular ink frame is disposed on one side of the glass substrate; and an electrode trace is disposed on the rectangular oxidized An indium tin matrix is formed on the glass substrate to form a vertical series sensing unit group (y) and a lateral non-electrical connection sensing unit group (X)'· an insulator matrix, which is disposed on the first indium tin oxide matrix And overlying the vertical series connection sensing unit group, and is isolated from the lateral non-electrical connection sensing unit group (X); the conductive layer is disposed on the insulator sub-matrix and electrically connected to the adjacent The lateral non-electrical connection sensing unit group (X) is opened; a protective layer is disposed on the conductive layer and the first indium tin oxide matrix. In order to improve the conditions of the invention, and the different characteristics of the finished product, wherein the thickness of the glass substrate is = ~ 1.5 mm; the conductive layer and the first indium oxide = 15 nm ~ 25 Nai m; the insulated car is composed of a composite metal layer of 丨.〇micron ~20 bait stop ^ ^. The electrode routing is performed by the turning/sliding/pinning step tt: in the dust-free environment, the rectangular ink frame is printed on the glass substrate; 201250529, the metal material is covered on the rectangular ink frame and covered. Coating a photoresist layer to set a target, performing exposure lithography etching to obtain the electrode trace; removing the photoresist layer; covering a first indium tin oxide in the range of the rectangular ink frame, coating the photoresist The material is subjected to photoresist etching and stripped to obtain the first indium tin oxide matrix; wherein the first indium tin oxide matrix has the vertical series inductive unit group (y) and the lateral non-electrical connection sensing unit Group (X); rotating the glass substrate and coating a 〇C photoresist material on the first indium tin oxide matrix, performing photoresist etching to obtain the insulator matrix; and covering a second indium tin oxide in the insulator matrix And performing photoresist etching to produce the conductive layer, the lateral non-electrical connection sensing unit group (X) is electrically connected by the conductive layer; and covering the protective layer on the conductive layer and the first Indium tin oxide matrix" Further, an improved manufacturing method is provided, which is implemented under a dust-free environment condition, and the steps thereof include: coating the first indium tin oxide on the glass substrate and being within the range of the rectangular ink frame; setting a target Applying a photoresist material to the first indium tin oxide to perform photoresist etching, and removing the film to obtain the first indium oxide 6 201250529, wherein the first system has the electrical connection tin matrix; wherein the first oxidation Indium tin matrix is a vertical series inductance sensing unit group (y) and the lateral non-inductive unit group (X); rotating the glass substrate and coating an OC photoresist material on the first indium tin oxide matrix, performing photoresist etching on The first indium tin oxide matrix is obtained by the insulator matrix; the coated molybdenum/aluminum/molybdenum blending J drawer is good enough

連接感應單元組(X)係藉由該導電層產生 相接;及 覆置該保護層於該導電層及該第一氧化銦 錫矩陣上。 為使本發明之改良式製作方法於實施過程中更 符合不同製作過程之訴求特性,其中,該絕緣子矩 陣之厚度為1.0微米〜2·〇微米;該導電層與該第 —氧化銦錫矩陣之厚度為15奈米〜25奈米。 本發明另提供一喷印技術型製造方法,係實施 於無塵環境條件下’其步驟包含: 印刷該矩形油墨邊框於一透明基板層上; 彼覆金屬材料於該矩形油墨邊框上並蓋覆 該光阻層’設置標靶,實施曝光微影蝕刻而得 該電極走線; 彼覆透明導電材料於該透明基板層上,並 7 201250529 覆塗光阻材料以實施光阻蝕刻,脫膜後而得一 圖案感應線路;其中,該圖案感應線路係具有 該縱向串連感應單元組(y)及該橫向非電性連 接感應單元組(X),並形成一交會處; 噴印一紫外線固化型材料於該交會處,並 施以3 7 0奈米規格之紫外線光照固化以形成該 絕緣子矩陣; 喷印一奈米粒子導電材料於該絕緣子矩陣 之上’並加熱固化以形成該導電層,該橫向非 電性連接感應單元組(X)係藉由該導電層產生 電性相接;及 覆置該保護層於該導電層及該圖案感應線 路之上。 為使本發明之喷印技術型製造方法於實施過程 中符合不同製作標準之訴求,其中,紫外線光照固 化之時間為1 5秒鐘〜2 5秒鐘,加熱固化之溫度為 攝氏120度〜300度,加熱固化之時間為15分鐘〜 30分鐘》針對材料之選取規格尺度上,該透明基板 層之厚度為0.1毫米〜1.5毫米,該絕緣子矩陣之 厚度為1.0微米〜2.0微米’該導電層與該圖案感 應線路之厚度為15奈米〜25奈米。另外,為為提 高成品之精準度及精緻化,更加入奈米等級之各式 材料如下:該電極走線係包含鉬/鋁/鉬複合金屬 層;該透明基板層係包含該玻璃基板,該圖案感應 8 201250529 線路及該奈米粒子導電材料係包含氧化銦錫材料, 該導電層係為奈米電子油墨,且該奈米粒子導電材 料之奈米粒子的直徑係A 15奈米〜15〇奈米,該奈 米粒子導電材料之溶劑係為氣仿或苯,該紫外線^ 化型材料係為丙烯酸聚合物。 【實施方式] 為使貴審查委員能清楚了解本發明之内容,謹 以下列說明搭配圖式,敬請參閲。 請參閱第2及3圖,係為本發明實施例之剖視 圖及單面分佈示意圖。如圖所示,本發明之帶有絕 緣子的觸控面板係包含:一玻璃基板2〇; 一矩形油 墨邊框21,係設於該玻璃基板20之一面;一電極 走線22,係設於該矩形油墨邊框21之上;於該矩 形油墨邊框21之範圍内,佈設一第一氧化銦錫矩陣 23於該玻璃基板2〇之上,形成一縱向串連感應單 疋組(y)28及一橫向非電性連接感應單元組(χ)27 ; 一絕緣子矩陣24,係設於該第一氧化銦錫矩陣23 之上’並包覆該縱向串連感應單元組(y)28,而隔離 於該橫向非電性連接感應單元組27 ; 一導電層 25 ’係設於該絕緣子矩陣24之上,且電性連接相鄰 斷開處之該橫向非電性連接感應單元組(χ)27 ; 一保 護層26’係覆置於該導電層25與該第一氧化銦錫 矩陣23之上。 9 201250529 為了提高本發明製作過程中之外在設定條件, 以及製成品之不同訴求特性,其中,該玻璃基板2〇 之厚度為0.1毫米〜K5毫米;f亥導電層25與該第 一氧化銦錫矩陣23之厚度為15奈米〜託奈米;該 絕緣子矩陣24之厚度為1.G微米〜2. G微米;該電 極走線22係由鉬/鋁/鉬複合金屬層構成。 ^併參閱第4圖,係為本發明實施例之製作 方法之流程步驟圖。由圖觀之,本發明製作過程之 實施,需於無塵環境條件下,其步驟係包含: 印刷該矩形油墨邊框21於該玻璃基板2 〇 上; 彼覆金屬材料於該矩形油墨邊框21上並蓋 覆一光阻層221,設置標靶,實施曝光微影蝕 刻而得該電極走線22 ; 移除該光阻層221;披覆一第一氧化銦錫於 該矩形油墨邊框21之範圍内,覆塗光阻材料以 實施光阻蝕刻’脫膜後而得該第一氧化銦錫矩 陣23,其中,該第一氧化銦錫矩陣23係具有 該縱向串連感應單元組(y)28及該橫向非電性 連接感應單元組(x)27 ; 旋轉該玻璃基板並覆塗〇C光阻材料於該第 一氧化銦錫矩陣23上,實施光阻蝕刻後而得該 絕緣子矩陣24 ; 披覆一第二氧化銦錫於該絕緣子矩陣24 10 201250529 上’並進行光阻蝕刻以產生該導電層25,該橫 向非電性連接感應單元組(x)27係藉由該導電 層25產生電性相接;及 覆置該保護層26於該導電層25及該第一 氧化銦錫矩陣23上。 s青一併參閱第5圖,係為本發明實施例改良式 製作方法之流程步驟圖。由圖觀之,本發明更提供 改良式之製作方法’需實施於無塵環境條件下, 其步驟係包含: 披覆該第一氧化銦錫於該玻璃基板2〇上, 且位於該矩形油墨邊框21之範圍内; 設置標靶’覆塗光阻材料於該第一氧化銦 錫以實施光阻蝕刻,脫膜後而得該第一氧化銦 錫矩陣23;其中’該第一氧化銦錫矩陣23係 具有該縱向串連感應單元組(y)28及該橫向非 電性連接感應單元組(x)27 ; 旋轉該玻璃基板並覆塗〇C光阻材料於該第 一氧化銦錫矩陣2 3上’實施光阻蝕刻於該第— 氧化銦錫矩陣23後而得該絕緣子矩陣24 ; 彼覆鉬/鋁/鉬複合金屬層於該第一氧化鋼 踢矩陣23上並蓋覆以該光阻層22丨,實施曝光 微影蝕刻而得該電極走線22及該導電層25, 該橫向非電性連接感應單元組(x)27係藉由該 導電層產生電性相接;及 201250529 覆置該保護層26於該導電層25及該第一 氧化銦錫矩陣23上。 :此,為使本發明之該改良式製作方法於實施 中更符合不同製作過程之訴求,*中,該絕緣 =陣24之厚度“。微米〜2〇微来;該導電層 與該第-氧化姻錫矩陣23之厚度為15奈米〜以 奈米。 •青併參閱第6圖,係為本發明實施例喷印技 術型製造方法之流程步驟圖。由圖觀之,本發明另 提供-喷印技術型製造方法,係實施於無塵環境.條 件下’其步驟包含: 印刷該矩形油墨邊框21於一透明基板層 30上; 彼覆金屬材料於該矩形油墨邊框2丨上並蓋 覆該光阻層22卜設置標靶,實施曝光微影蝕 刻而得該電極走線22 ; 披覆透明導電材料於該透明基板層3〇上, 並覆塗光阻材料以實施光阻钱刻,脫膜後而得 圖案感應線路33;其中’該圖案感應線路33 係具有該縱向串連感應單元組(y ) 2 8及該橫向 非電性連接感應單元組(x)27,並形成一交會 處, 喷印一紫外線固化型材料於該交會處,並 施以370奈米規格之紫外線光照固化以形成該 12 201250529 絕緣子矩陣24 ; 喷印一奈米粒子導電材料於該絕緣子矩陣 24之上,並加熱固化以形成該導電層25,該橫 向非電性連接感應單元組(χ) 2 7係藉由該導電 層25產生電性相接;及 覆置該保護層26於該導電層25及該圖案 感應線路33之上。 為使本發明之喷印技術型製造方法於實施過程 中符合不同製作標準之訴求’其中,紫外線光照固 化之時間為1 5秒鐘〜25秒鐘,加熱固化之溫度為 攝氏120度〜3〇〇度,加熱固化之時間為15分鐘〜 3〇分鐘。針對材料之選取規格尺度上,該透明基板 層30之厚度為〇. 1毫米〜i. 5毫米,該、絕緣子矩陣 24之厚度為ι〇微米〜go微米,該導電層π與該 圖案感應線路33之厚度為15奈米〜25奈米。另外, 為為提高成品之精準度及精緻化,更加入奈米等級 :各式材料如下:言亥電極走線22係包含钥/銘/翻複 合金屬層;該透明基板層係3〇包含該玻璃基板2〇, 該圖案感應線路33及該奈米粒子導電材料係包含 氧化銦錫材料,該導電層係為奈米電子油墨,且該 奈米粒子導電材料之奈米粒子的直徑係為15奈米 〜U0奈米,該奈米粒子導電材料之溶劑係為氯仿 或苯,該紫外線固化型材料係為丙烯酸聚合物。 綜上所述,本發明之功效在於提供一種帶有絕 13 201250529 緣子的觸控面板及其製作方法,製作上,於一基板 之單面上分別設置互為垂直之該縱向串連感應單元 組(y)28及該橫向非電性連接感應單元組(χ)27,搭 配覆塗絕緣材料,而使該感應圖案層中彼此呈現短 路’續使用橋接技術使該橫向非電性連接感應單元 組(x)27產生電性相接,從而有效簡化製作過程中 之貼合工序’以朝向薄性化之觸控面板訴求,其製 程方法上更覆塗使用奈米級之喷印技術,以提高成 品之精密度,從而降低觸控面板之厚度與重量,並 大幅提升其透光度和觸控敏感度。 以上所述者,僅為本創作之較佳實施例而已, 並非用以限定本創作實施之範圍,故此等熟習此技 術所作出等效或輕易的變化者,在不脫離本創作之 精神與範圍下所作之均等變化與修飾,皆應涵蓋於 本創作之專利範圍内。 201250529 【圖式簡單說明】 第1圖,為習知之觸控面板剖視圖》 第2圖’為本發明實施例之剖視圖。 第3圖,為本發明實施例之單面分佈示意圖。 第4圖,為本發明實施例製作方法之流程步驟圖》 第5圖’為本發明實施例改良式製作方法之流程步 驟圖。 第6圖’為本發明實施例喷印技術型製造方法之流 程步驟圖。 主要元件符號說明】 【習知】 10 觸控面板構造 11 上透明基板 12 顏色邊框 13a X軸感應層 13b 絕緣層 13c Y轴感應層 14 下透明基板 【本創作】 20 玻璃基板 21 矩形油墨邊框 22 電極走線 221 光阻層 23 第一氧化銦錫矩陣 15 201250529 24 絕緣子矩陣 25 導電層 26 保護層 27 橫向非電性連接感應單元組(X) 28 縱向串連感應單元組(y) 30 透明基板層 33 感應圖案線路 16The connection sensing unit group (X) is connected by the conductive layer; and the protective layer is disposed on the conductive layer and the first indium tin oxide matrix. In order to make the improved manufacturing method of the present invention more conform to the appealing characteristics of different manufacturing processes, the thickness of the insulator matrix is 1.0 micrometers to 2 micrometers; the conductive layer and the indium tin oxide matrix are The thickness is 15 nm ~ 25 nm. The invention further provides a printing technology type manufacturing method, which is implemented under a dust-free environment condition, wherein the step comprises: printing the rectangular ink frame on a transparent substrate layer; and covering the metal ink on the rectangular ink frame and covering The photoresist layer 'sets a target, performs exposure lithography etching to obtain the electrode trace; and covers a transparent conductive material on the transparent substrate layer, and 7 201250529 coats the photoresist material to perform photoresist etching, after stripping And a pattern sensing circuit; wherein the pattern sensing circuit has the longitudinal series sensing unit group (y) and the lateral non-electrical connection sensing unit group (X), and forms an intersection; printing a UV curing The material is at the intersection, and is cured by ultraviolet light of 370 nm to form the insulator matrix; printing a nanoparticle conductive material on the insulator matrix 'and heating and curing to form the conductive layer, The lateral non-electrical connection sensing unit group (X) is electrically connected by the conductive layer; and the protective layer is disposed on the conductive layer and the pattern sensing line. In order to make the printing technology manufacturing method of the present invention meet the requirements of different manufacturing standards in the implementation process, the ultraviolet curing time is 15 seconds to 2 5 seconds, and the heating curing temperature is 120 degrees Celsius to 300 degrees Celsius. Degree, the time of heat curing is 15 minutes to 30 minutes. The thickness of the transparent substrate layer is 0.1 mm to 1.5 mm for the selected size of the material, and the thickness of the insulator matrix is 1.0 μm to 2.0 μm. The pattern sensing line has a thickness of 15 nm to 25 nm. In addition, in order to improve the precision and refinement of the finished product, various materials of the nanometer grade are added as follows: the electrode trace comprises a molybdenum/aluminum/molybdenum composite metal layer; the transparent substrate layer comprises the glass substrate, Pattern sensing 8 201250529 The line and the nanoparticle conductive material comprise an indium tin oxide material, the conductive layer is a nanoelectronic ink, and the diameter of the nano particle of the nano particle conductive material is A 15 nm~15〇 In nanometer, the solvent of the nanoparticle conductive material is gas-like or benzene, and the ultraviolet-curable material is an acrylic polymer. [Embodiment] In order to make the reviewer understand the contents of the present invention, please refer to the following description. Please refer to Figures 2 and 3 for a cross-sectional view and a single-sided distribution diagram of an embodiment of the present invention. As shown in the figure, the touch panel with an insulator of the present invention comprises: a glass substrate 2; a rectangular ink frame 21 is disposed on one side of the glass substrate 20; and an electrode trace 22 is disposed on the a rectangular ink frame 21 is disposed; a first indium tin oxide matrix 23 is disposed on the glass substrate 2 , in the range of the rectangular ink frame 21 to form a longitudinal series-connected sensing unit (y) 28 and a a lateral non-electrical connection sensing unit group (χ) 27; an insulator sub-layer 24 is disposed on the first indium tin oxide matrix 23 and covers the longitudinal series sensing unit group (y) 28, and is isolated from The lateral non-electrical connection sensing unit group 27; a conductive layer 25' is disposed on the insulator sub-matrix 24, and electrically connected to the lateral non-electrical connection sensing unit group (χ) 27 adjacent to the opening; A protective layer 26' is overlying the conductive layer 25 and the first indium tin oxide matrix 23. 9 201250529 In order to improve the setting conditions and the different appeal characteristics of the finished product in the manufacturing process of the present invention, the thickness of the glass substrate 2 is 0.1 mm to K5 mm; the conductive layer 25 and the first indium oxide are The thickness of the tin matrix 23 is 15 nm to Tonami; the thickness of the insulator matrix 24 is 1. G micron to 2. G micron; the electrode trace 22 is composed of a molybdenum/aluminum/molybdenum composite metal layer. And referring to Fig. 4, it is a flow chart of the manufacturing method of the embodiment of the present invention. The process of the present invention is carried out in a dust-free environment, and the steps thereof include: printing the rectangular ink frame 21 on the glass substrate 2; and coating the metal material on the rectangular ink frame 21 And covering a photoresist layer 221, setting a target, performing exposure lithography etching to obtain the electrode trace 22; removing the photoresist layer 221; coating a first indium tin oxide in the range of the rectangular ink frame 21 The first indium tin oxide matrix 23 is obtained by coating a photoresist material to perform photoresist etching to remove the film, wherein the first indium tin oxide matrix 23 has the vertical series inductive unit group (y) 28 And the lateral non-electrical connection sensing unit group (x) 27; rotating the glass substrate and coating a 〇C photoresist material on the first indium tin oxide matrix 23, performing photoresist etching to obtain the insulator matrix 24; Coating a second indium tin oxide on the insulator matrix 24 10 201250529 and performing photoresist etching to produce the conductive layer 25, the lateral non-electrical connection sensing unit group (x) 27 being generated by the conductive layer 25 Electrically contacting; and covering the protective layer 26 to the guide The first layer 25 and the matrix 23 of indium tin oxide. Referring to Fig. 5, it is a flow chart of an improved manufacturing method of an embodiment of the present invention. In view of the above, the present invention further provides an improved manufacturing method for performing in a dust-free environment, the method comprising: coating the first indium tin oxide on the glass substrate 2, and located in the rectangular ink Within the range of the frame 21; setting a target 'coating a photoresist material to the first indium tin oxide to perform photoresist etching, and removing the film to obtain the first indium tin oxide matrix 23; wherein the first indium tin oxide The matrix 23 has the longitudinal series sensing unit group (y) 28 and the lateral non-electrical connection sensing unit group (x) 27; rotating the glass substrate and coating the 〇C photoresist material on the first indium tin oxide matrix 2 3' performing photoresist etching on the first indium tin oxide matrix 23 to obtain the insulator matrix 24; a molybdenum/aluminum/molybdenum composite metal layer is coated on the first oxide steel matrix 23 and covered with The photoresist layer 22 is subjected to exposure lithography to obtain the electrode trace 22 and the conductive layer 25, and the lateral non-electrical connection sensing unit group (x) 27 is electrically connected by the conductive layer; 201250529, the protective layer 26 is disposed on the conductive layer 25 and the first indium tin oxide matrix 2 3 on. : In order to make the improved manufacturing method of the present invention more in line with the requirements of different manufacturing processes, the thickness of the insulation = array 24 is "micron ~ 2 〇 micro; the conductive layer and the first - The thickness of the oxidized agglomerated tin matrix 23 is 15 nm to nanometer. • See also Fig. 6, which is a flow chart of the printing technology manufacturing method of the embodiment of the present invention. - The printing technology type manufacturing method is implemented in a dust-free environment. The steps include: printing the rectangular ink frame 21 on a transparent substrate layer 30; and covering the rectangular material on the rectangular ink frame 2 The photoresist layer 22 is covered with a target, and the electrode trace 22 is exposed by exposure lithography; the transparent conductive material is coated on the transparent substrate layer 3, and the photoresist material is coated to perform the photoresist After the film is removed, the pattern sensing circuit 33 is obtained; wherein the pattern sensing circuit 33 has the vertical series sensing unit group (y) 28 and the lateral non-electrical connection sensing unit group (x) 27, and forms a At the intersection, printing a UV-curable material The intersection is subjected to ultraviolet light curing of 370 nm to form the 12 201250529 insulator matrix 24; a nano-particle conductive material is printed on the insulator matrix 24 and heat-cured to form the conductive layer 25, The lateral non-electrical connection sensing unit group (χ) 2 7 is electrically connected by the conductive layer 25; and the protective layer 26 is disposed on the conductive layer 25 and the pattern sensing line 33. The inkjet technology manufacturing method of the invention meets the requirements of different production standards during the implementation process, wherein the ultraviolet light curing time is 15 seconds to 25 seconds, and the heat curing temperature is 120 degrees Celsius to 3 degrees Celsius. The thickness of the transparent substrate layer 30 is 〇. 1 mm to i. 5 mm, and the thickness of the insulator matrix 24 is ι 〇 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 〜 Go micron, the conductive layer π and the pattern sensing line 33 have a thickness of 15 nm to 25 nm. In addition, in order to improve the precision and refinement of the finished product, a nanometer grade is added: various materials are as follows: Electricity The pole trace 22 includes a key/inger/turn composite metal layer; the transparent substrate layer 3 includes the glass substrate 2, the pattern sensing line 33 and the nanoparticle conductive material comprise an indium tin oxide material, and the conductive The layer is a nanoelectronic ink, and the diameter of the nanoparticle of the nanoparticle conductive material is 15 nm to U0 nanometer, and the solvent of the nanoparticle conductive material is chloroform or benzene, the ultraviolet curing material The utility model relates to an acrylic polymer. In summary, the invention has the advantages of providing a touch panel with a rim 13 201250529 and a manufacturing method thereof, which are respectively arranged on a single surface of a substrate and are perpendicular to each other. The longitudinal series sensing unit group (y) 28 and the lateral non-electrical connection sensing unit group (χ) 27 are coated with an insulating material to cause short circuit in the sensing pattern layer. The non-electrical connection sensing unit group (x) 27 is electrically connected, thereby effectively simplifying the bonding process in the manufacturing process, so as to face the thinner touch panel, and the process method is more coated with nanometer level. Printing technology, to improve the precision to the product, thereby reducing the thickness and weight of a touch panel, and significantly improve the transmittance and touch sensitivity. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, the equivalent or easy change of the skill of the present invention is not deviated from the spirit and scope of the present invention. Equivalent changes and modifications made below shall be covered by the scope of this creation. 201250529 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of a conventional touch panel. Fig. 2 is a cross-sectional view showing an embodiment of the present invention. Figure 3 is a schematic diagram showing the distribution of one side of the embodiment of the present invention. 4 is a flow chart of a manufacturing method according to an embodiment of the present invention. FIG. 5 is a flow chart of an improved manufacturing method according to an embodiment of the present invention. Fig. 6 is a flow chart showing the process of the printing type manufacturing method of the embodiment of the present invention. Main component symbol description [Practical] 10 Touch panel structure 11 Upper transparent substrate 12 Color frame 13a X-axis sensing layer 13b Insulation layer 13c Y-axis sensing layer 14 Lower transparent substrate [This creation] 20 Glass substrate 21 Rectangular ink frame 22 Electrode trace 221 photoresist layer 23 first indium tin oxide matrix 15 201250529 24 insulator matrix 25 conductive layer 26 protective layer 27 lateral non-electrical connection sensing unit group (X) 28 longitudinal series sensing unit group (y) 30 transparent substrate Layer 33 sensing pattern line 16

Claims (1)

201250529 七、申請專利範圍: 1、一種帶有絕緣子的觸控面板,係包含:一玻璃基 板;一矩形油墨邊框,係設於該玻璃基板之一面; 一電極走線,係設於該矩形油墨邊框之上;於該 矩形油墨邊框之範圍内,佈設一第一氧化銦錫矩 陣於該玻璃基板之上’形成一縱向串連感應單元 組(y)及一橫向非電性連接感應單元組(χ); 一絕 緣子矩陣,係設於該第一氧化銦錫矩陣之上,並 包覆該縱向串連感應單元組(y),而隔離於該橫向 非電性連接感應單元組(x); —導電層,係設於該 絕緣子矩陣之上,且電性連接相鄰斷開處之該橫 向非電性連接感應單元組(x); 一保護層,係覆置 於該導電層與該第一氧化銦錫矩陣之上。 如申請專利範圍第1項所述之帶有絕緣子的觸控 面板,其中,該玻璃基板之厚度為〇1毫米〜15 毫米;該導電層與該第一氧化銦錫矩陣之厚度為 15奈米〜25奈米;該絕緣子矩陣之厚度為ι〇微 米〜2. 0微米。 一種如申請專利範圍第 觸控面板之製造方法 下’其步驟包含: 1項所述之帶有絕緣子的 係實施於無塵環境條件 17 201250529 印刷該矩形油墨邊框於該玻璃基板上; 披覆金屬材料於該矩形油墨邊框上並蓋覆一 光阻層,設置標靶,實施曝光微影蝕刻而得該電 極走線; 移除該光阻層;彼覆一第一氧化銦錫於該矩 形油墨邊框之範圍内,覆塗光阻材料以實施光阻 钱刻,脫膜後而得該第一氧化銦錫矩陣;其中, 該第一氧化銦錫矩陣係具有該縱向串連感應單元 組(y)及該橫向非電性連接感應單元組(χ); 旋轉該玻璃基板並覆塗oc光阻材料於該第一 氧化銦錫矩陣上,實施光阻蝕刻後而得該絕緣子 矩陣; 彼覆一第二氧化銦錫於該絕緣子矩陣上,並 進行光阻蝕刻以產生該導電層,該橫向非電性連 接感應單元組(X)係藉由該導電層產生電性相 接;及 覆置該保護層於該導電層及該第一氧化姻錫 矩陣上。 、一種如申請專利範圍第1項所述之帶有絕緣子的 觸控面板之改良式製造方法,係實施於無塵環境 條件下’其步驟包含: 彼覆該第一氧化銦錫於該玻璃基板上且位 於該矩形油墨邊框之範圍内; 設置標乾’ |塗光阻材料於該第-氧化銦錫 18 201250529 以實施光阻#刻’脫膜後而得該第一氧化銦錫矩 陣;其中’該第一氧化姻錫矩陣係具有該縱向串 連感應單元組(y)及該橫向非電性連接感應單元 組(X); 旋轉該玻璃基板並覆塗0C光阻材料於該第一 氧化銦錫矩陣上’實施光阻蝕刻於該第一氧化銦 錫矩陣後而得該絕緣子矩陣; 彼覆翻/紹/翻複合金屬層於該第一氧化銦錫 矩陣上並蓋覆以該光阻層,實施曝光微影姓刻而 得該電極走線及該導電層,該橫向非電性連接感 應單元組(X)係藉由該導電層產生電性相接;及 覆置該保護層於該導電層及該第一氧化銦錫 矩陣上。 6、 如申請專利範圍第5項所述之帶有絕緣子的觸控 面板之改良式製造方法,其中,該絕緣子矩陣之 厚度為1.0微米〜2.0微米;該導電層與該第一氧 化銦錫矩陣之厚度為15奈米〜25奈米。 7、 一種如申請專利範圍第1項所述之帶有絕緣子的 觸控面板之喷印技術型製造方法,係實施於無塵 環境條件下,其步驟包含: 印刷該矩形油墨邊框於一透明基板層上; 披覆金屬材料於該矩形油墨邊框上並蓋覆該 光阻層’設置標乾,實施曝光微影餘刻而得該電 極走線; 19 201250529 披覆透明導電材料於該透明基板層上,並覆 塗光阻材料以實施光阻蝕刻,脫膜後而得一圖案 感應線路;其中,該圖案感應線路係具有該縱向 串連感應單元組(y)及該橫向非電性連接感應單 元組(X),並形成一交會處; 喷印一紫外線固化型材料於該交會處,並施 以3 7 0奈米規格之紫外線光照固化以形成該絕緣 子矩陣; 喷印一奈米粒子導電材料於該絕緣子矩陣之 上’並加熱固化以形成該導電層,該橫向非電性 連接感應單元組(X)係藉由該導電層產生電性 接;及 覆置該保護層於該導電層及該圖案感應線路 之上。 如申請專利範圍第7項所述之帶有絕緣子的觸控 面板之喷印技術型製造方法,其中,紫外線光照 固化之時間為1 5秒鐘〜25秒鐘;加熱固化之溫度 為攝氏120度〜300度;加熱固化之時間為15分 鐘〜30分鐘。 、如申請專利範圍第7項所述之帶有絕緣子的觸 面板之喷印技術型製造方法’其中,該透明基 層之厚度為0. 1毫米〜1· 5毫米;該絕緣子矩陣 厚度為1.0微米〜2.0微米;該導電層與該圖案 應線路之厚度為15奈米〜25奈米;該奈米粒子 20 201250529 電材料之奈米粒子的直徑係為1 5奈米〜丨5〇奈 米。 1 0、如申請專利範圍第7項所述之帶有絕緣子的觸控 面板之喷印技術型製造方法,其中,該電極走線 係包含箱/铭/鉬複合金屬層;該透明基板層係包 含該玻璃基板;該圖案感應線路及該奈米粒子導 電材料係包含氧化銦錫材料;該導電層係包含奈 米電子油墨;該奈米粒子導電材料之溶劑係為氣 仿或笨;該紫外線固化型材料係為丙烯酸聚合物。 21201250529 VII. Patent application scope: 1. A touch panel with an insulator comprising: a glass substrate; a rectangular ink frame disposed on one side of the glass substrate; an electrode trace disposed on the rectangular ink Above the frame; a first indium tin oxide matrix is disposed on the glass substrate to form a vertical series sensing unit group (y) and a lateral non-electrical connection sensing unit group (in the range of the rectangular ink frame)绝缘); an insulator sub-matrix, is disposed on the first indium tin oxide matrix, and covers the vertical series sensing unit group (y), and is isolated from the lateral non-electrical connection sensing unit group (x); a conductive layer disposed on the insulator matrix and electrically connected to the lateral non-electrical connection sensing unit group (x) adjacent to the break; a protective layer overlying the conductive layer and the first Above the indium tin oxide matrix. The touch panel with an insulator according to claim 1, wherein the glass substrate has a thickness of 〇1 mm to 15 mm; and the conductive layer and the first indium tin oxide matrix have a thickness of 15 nm. 0微米。 The thickness of the insulator matrix is ι〇 micron ~ 2. 0 microns. In the manufacturing method of the touch panel of the patent application scope, the method includes the following steps: The insulator with the insulator is implemented in a dust-free environment condition 17 201250529, printing the rectangular ink frame on the glass substrate; The material is disposed on the rectangular ink frame and covered with a photoresist layer, and the target is disposed, and the electrode is traced by exposure lithography; the photoresist layer is removed; and a first indium tin oxide is coated on the rectangular ink. In the range of the frame, the photoresist material is coated to perform photoresist etching, and the first indium tin oxide matrix is obtained after the film is removed; wherein the first indium tin oxide matrix has the vertical series sensing unit group (y) And the lateral non-electrical connection sensing unit group (χ); rotating the glass substrate and coating an oc photoresist material on the first indium tin oxide matrix, performing photoresist etching to obtain the insulator matrix; a second indium tin oxide is on the insulator matrix, and is subjected to photoresist etching to produce the conductive layer, wherein the lateral non-electrical connection sensing unit group (X) is electrically connected by the conductive layer; The protective layer on the conductive layer and the first tin oxide benzoin matrix. An improved manufacturing method of an insulative touch panel according to claim 1, wherein the method comprises: performing the step of: covering the first indium tin oxide on the glass substrate And is located in the range of the rectangular ink frame; setting the standard dry coating | the photoresist material is applied to the first indium tin oxide 18 201250529 to implement the photoresist #etched film to obtain the first indium tin oxide matrix; The first oxidized tin matrix has the longitudinal series sensing unit group (y) and the lateral non-electrical connection sensing unit group (X); rotating the glass substrate and coating the 0C photoresist material on the first oxidation On the indium tin matrix, the photoresist matrix is formed after the photoresist is etched on the first indium tin oxide matrix; and the composite metal layer is overturned/rolled over the first indium tin oxide matrix and covered with the photoresist The layer is formed by exposing the lithography to the electrode trace and the conductive layer, and the lateral non-electrical connection sensing unit group (X) is electrically connected by the conductive layer; and the protective layer is overlaid The conductive layer and the first indium tin oxide The battle. 6. The improved manufacturing method of the touch panel with an insulator according to claim 5, wherein the insulator matrix has a thickness of 1.0 micrometer to 2.0 micrometer; the conductive layer and the first indium tin oxide matrix The thickness is 15 nm to 25 nm. 7. A printing technology manufacturing method for an insulative touch panel according to claim 1, wherein the method comprises: printing the rectangular ink frame on a transparent substrate. On the layer; coating the metal material on the rectangular ink frame and covering the photoresist layer to set the stem, and performing the exposure lithography to obtain the electrode trace; 19 201250529 coating the transparent conductive material on the transparent substrate layer And coating a photoresist material to perform photoresist etching, and removing a film to obtain a pattern sensing circuit; wherein the pattern sensing circuit has the vertical series sensing unit group (y) and the lateral non-electrical connection sensing a unit group (X), and forming a meeting place; printing a UV-curable material at the intersection, and applying ultraviolet light curing of 370 nm to form the insulator matrix; printing one nanometer particle conductive The material is over the insulator matrix and heat-cured to form the conductive layer, and the lateral non-electrical connection sensing unit group (X) is electrically connected by the conductive layer; The protective layer on the conductive layer and the patterned sensing circuit. The inkjet printing type manufacturing method of the touch panel with an insulator according to claim 7, wherein the ultraviolet light curing time is 15 seconds to 25 seconds; and the heat curing temperature is 120 degrees Celsius. ~300 degrees; heat curing time is 15 minutes ~ 30 minutes. The method of manufacturing the printed circuit board with an insulator as described in claim 7 wherein the thickness of the transparent substrate is 0.1 mm to 1. 5 mm; the thickness of the insulator matrix is 1.0 μm. 〜2.0微米; the conductive layer and the pattern should have a thickness of 15 nm to 25 nm; the nanoparticle 20 201250529 The diameter of the nanoparticle of the electrical material is 15 nm ~ 丨 5 〇 nanometer. The printing method manufacturing method of the touch panel with an insulator according to claim 7, wherein the electrode routing comprises a box/inscription/molybdenum composite metal layer; the transparent substrate layer Including the glass substrate; the pattern sensing circuit and the nanoparticle conductive material comprise an indium tin oxide material; the conductive layer comprises a nanoelectronic ink; the solvent of the nano particle conductive material is gas-like or stupid; The curable material is an acrylic polymer. twenty one
TW100119790A 2011-06-07 2011-06-07 Touch panel having insulators TW201250529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100119790A TW201250529A (en) 2011-06-07 2011-06-07 Touch panel having insulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100119790A TW201250529A (en) 2011-06-07 2011-06-07 Touch panel having insulators

Publications (1)

Publication Number Publication Date
TW201250529A true TW201250529A (en) 2012-12-16

Family

ID=48139282

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119790A TW201250529A (en) 2011-06-07 2011-06-07 Touch panel having insulators

Country Status (1)

Country Link
TW (1) TW201250529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991299A (en) * 2014-05-29 2014-08-20 深圳市宇顺电子股份有限公司 Printing ink printing method and capacitive type touch screen laser etching technology
TWI498800B (en) * 2013-06-06 2015-09-01 Focaltech Electronics Ltd Electrode structures and lcd apparatus
TWI584180B (en) * 2013-03-29 2017-05-21 東友精細化工有限公司 Transparent electrode pattern structure and touch screen panel having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584180B (en) * 2013-03-29 2017-05-21 東友精細化工有限公司 Transparent electrode pattern structure and touch screen panel having the same
US9760228B2 (en) 2013-03-29 2017-09-12 Dongwoo Fine-Chem Co., Ltd. Transparent electrode pattern structure and touch screen panel including the same
TWI498800B (en) * 2013-06-06 2015-09-01 Focaltech Electronics Ltd Electrode structures and lcd apparatus
CN103991299A (en) * 2014-05-29 2014-08-20 深圳市宇顺电子股份有限公司 Printing ink printing method and capacitive type touch screen laser etching technology
CN103991299B (en) * 2014-05-29 2016-09-14 深圳市宇顺工业智能科技有限公司 Ink printing method and capacitive touch screen laser etch process

Similar Documents

Publication Publication Date Title
Yang et al. Robust and smooth UV-curable layer overcoated AgNW flexible transparent conductor for EMI shielding and film heater
US9253890B2 (en) Patterned conductive film, method of fabricating the same, and application thereof
CN110069152A (en) Touch panel and touch sensing winding
US9448672B2 (en) Touch panel structure and fabrication method for the same
CN110069153A (en) Touch panel and touch sensing winding
TWI395998B (en) Conductive plate and touch plate applied by the same
TW201521984A (en) Method of manufacturing a buried flexible electrode film using thermal lamination transfer
KR101521694B1 (en) flexible/stretchable transparent film having conductivity and manufacturing method thereof
JP2015170404A (en) Transparent conductive body and device using it
TW201537589A (en) Capacitive touch device and method of for making the same
CN105045456A (en) Metal grid transparent conductive body, preparation method thereof and capacitive touch screen
TWM437993U (en) Structure of touch panel
JP2015181097A (en) Base material with transparent conductive film, base material with transparent conductive pattern and method for manufacturing the same, touch panel, and solar cell
CN103430133A (en) Method for manufacturing pad for touch panel, and pad for touch panel manufactured by method
KR102074168B1 (en) Hybrid touch sensing electrode and preparing method thereof
TW201525796A (en) Method for making touch panel
TW201250529A (en) Touch panel having insulators
CN108984032A (en) Touch base plate and preparation method thereof, display device
TWM516189U (en) Touch devices including nanoscale conductive films
CN207867472U (en) Touch panel and touch sensing winding
Qi et al. Microscale hybrid 3D printed ultrahigh aspect ratio embedded silver mesh for flexible transparent electrodes
KR101670275B1 (en) Transparent surface heating device
CN103699253B (en) Touch control device structure and its manufacture method
TW201403419A (en) Touch panel and method of manufacturing the same
CN107102756B (en) Touch device and manufacturing method thereof