WO2018036001A1 - Nanomatériau d'oxyde de cobalt et de nickel en forme sous forme de cire et son procédé de préparation - Google Patents

Nanomatériau d'oxyde de cobalt et de nickel en forme sous forme de cire et son procédé de préparation Download PDF

Info

Publication number
WO2018036001A1
WO2018036001A1 PCT/CN2016/106227 CN2016106227W WO2018036001A1 WO 2018036001 A1 WO2018036001 A1 WO 2018036001A1 CN 2016106227 W CN2016106227 W CN 2016106227W WO 2018036001 A1 WO2018036001 A1 WO 2018036001A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
preparation
bayberry
nanomaterial
nickel cobaltate
Prior art date
Application number
PCT/CN2016/106227
Other languages
English (en)
Chinese (zh)
Inventor
郑玉婴
郑文庆
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2018036001A1 publication Critical patent/WO2018036001A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of material synthesis and electrochemistry, and particularly relates to a bayberry-like nickel cobalt nanomaterial and a preparation method thereof.
  • Nickel cobaltate As a promising electrode material, nickel cobaltate has been extensively studied in the application of supercapacitors.
  • Nickel cobaltate is a typical spinel-type mixed valence metal composite oxide. Compared to single nickel oxide and cobalt sesquioxide, nickel cobaltate itself has good electrical conductivity. Among them, nickel ions occupy the octahedral position, and cobalt ions occupy both the octahedral position and the tetrahedral position.
  • the presence of solid redox on Co 2+ /Co 3+ and Ni 2+ /Ni 3+ in the structure provides two active centers for the generation of tantalum capacitors.
  • the addition of binders in conventional electrode preparation methods hinders the rapid transfer of electrons. These factors make the capacitance of the active material far from the theoretical capacitance.
  • the nickel cobaltate material prepared by the prior method has a small specific surface area and is insufficient for use in a supercapacitor.
  • Nickel cobaltate exhibits different electrochemical properties under different nanostructures. It is of great significance to construct a nanomaterial with three-dimensional structure by regulating hydrothermal conditions and heat treatment conditions. Therefore, under certain experimental conditions, the present invention is extremely urgent in preparing a nickel-cobalt-like nano-material having a myrica-like shape to meet the requirements of a supercapacitor.
  • the object of the present invention is to provide a method for preparing a bayberry-like nickel cobaltate nano material and an electrochemical application thereof.
  • Nickel cobaltate nanomaterials can be obtained by simple hydrothermal method and subsequent heat treatment, while hydrothermal temperature and time affect the crystal structure of the precursor, heat treatment temperature and time affect the crystal structure of the secondary recrystallization, thereby affecting its specific surface area.
  • the size which in turn affects its electrochemical performance as an electrode material. Therefore, the present invention constructs a nanostructure having a relatively high specific surface area by adjusting hydrothermal conditions and heat treatment conditions to obtain an electrode material having a large specific capacitance.
  • a preparation method of a bayberry-like nickel cobaltate nano material comprising: the following steps:
  • reaction solution dissolving nickel chloride, cobalt chloride and urea in deionized water and ultrasonically dispersing to form a reaction solution;
  • reaction solution prepared in the step (1) is transferred to an autoclave, and reacted at 90-110 ° C for 9-15 h; after sufficient reaction, it is cooled to room temperature, and the reaction product is obtained. Rinse and vacuum dry to obtain a solid phase precursor;
  • the solid phase precursor is calcined at 300-400 ° C for 3 h in an argon atmosphere, and the heating rate is 2 ° C. /min; Then, it is calcined at 300-400 ° C for 3 h in an air atmosphere at a heating rate of 2 ° C / min, and the obtained product is a bayberry-like nickel cobaltate nanomaterial.
  • the molar ratio of nickel chloride, cobalt chloride and urea in the step (1) is 1:2:6.
  • the vacuum drying described in the step (2) was: vacuum drying at 60 ° C for 24 hours.
  • the carnation-like nickel cobaltate nanomaterial prepared in the step (3) has a nano microsphere structure, and the microspheres have a diameter of 8 ⁇ m to 12 ⁇ m.
  • the carnation-like nickel cobaltate nanomaterial prepared by the invention has a three-dimensional structure, and the surface growth of the nanorods arranged neatly has a large specific surface area, which is favorable for the rapid transmission of electrons and ions at the interface between the electrode and the electrolyte.
  • nickel cobaltate with nano-microsphere structure is constructed.
  • the nano-needle on the surface of the microsphere has a porous structure, which is very favorable for the penetration of electrolyte ions.
  • the porous structure has a large specific surface area.
  • the active sites are increased to exhibit excellent electrochemical performance. Electrochemical tests show that the specific capacitance reaches 2512 F/g at a current density of 1 A/g.
  • Example 1 is an SEM image of a bayberry-like nickel cobaltate nanomaterial prepared in Example 1 of the present invention and an electrochemical charge and discharge graph thereof at 1 A/g;
  • Example 2 is an SEM image of a bayberry-like nickel cobaltate nanomaterial prepared in Example 2 of the present invention and an electrochemical charge and discharge graph thereof at 1 A/g;
  • Example 3 is an SEM image of a bayberry-like nickel cobaltate nanomaterial prepared in Example 3 of the present invention and an electrochemical charge and discharge graph thereof at 1 A/g.
  • a preparation method of a bayberry-like nickel cobaltate nano material comprising the following steps:
  • the substrate prepared in (1) was transferred to 100 mL of polytetrafluoroethylene liner by a substrateless hydrothermal method, and subjected to high temperature and high pressure hydrothermal reaction.
  • the reaction temperature was controlled at 90 ° C, and the reaction time was controlled at 15 h; Cool to room temperature with distilled water
  • the reaction product was washed with ethanol and dried under vacuum at 60 ° C for 24 h to obtain a solid phase precursor;
  • the precursor is subjected to heat treatment by two-step calcination; firstly, calcination in an argon atmosphere for 3 h, the reaction temperature is controlled at 350 ° C; secondly, calcination in an air atmosphere for 3 h, the reaction temperature is controlled at 350 ° C;
  • the obtained product is a bayberry-like nickel cobaltate nanomaterial. It can be seen from the scanning electron micrograph that the obtained nickel cobaltate nanospheres have spherical particles grown on the surface and have a small specific surface area. Electrochemical tests show that the specific capacitance reaches 1912 F/g at a current density of 1 A/g.
  • a preparation method of a bayberry-like nickel cobaltate nano material comprising the following steps:
  • the substrate prepared in (1) was transferred to 100 mL of polytetrafluoroethylene liner by a substrateless hydrothermal method, and subjected to high temperature and high pressure hydrothermal reaction.
  • the reaction temperature was controlled at 100 ° C, and the reaction time was controlled for 12 hours;
  • the reaction product was washed with distilled water and ethanol to room temperature, and dried under vacuum at 60 ° C for 24 h to obtain a solid phase precursor;
  • the precursor is subjected to heat treatment by two-step calcination; firstly, calcination in an argon atmosphere for 3 h, the reaction temperature is controlled at 350 ° C; secondly, calcination in an air atmosphere for 3 h, the reaction temperature is controlled at 300 ° C;
  • the obtained product is a carmine-like nickel cobaltate nanomaterial. It can be seen by scanning electron micrograph that the obtained nickel cobaltate nanospheres have nano-bars with neatly arranged surface, which have a large specific surface area; It has a specific capacitance of 2512 F/g at a current density of 1 A/g.
  • a preparation method of a bayberry-like nickel cobaltate nano material comprising the following steps:
  • the substrate prepared in (1) was transferred to 100 mL of polytetrafluoroethylene liner by a substrateless hydrothermal method, and subjected to high temperature and high pressure hydrothermal reaction.
  • the reaction temperature was controlled at 110 ° C, and the reaction time was controlled for 9 hours;
  • To room temperature, with distilled water and The reaction product was washed with ethanol, and dried under vacuum at 60 ° C for 24 h to obtain a solid phase precursor;
  • the precursor is subjected to heat treatment by two-step calcination; first, calcination in an argon atmosphere for 3 h, the reaction temperature is controlled at 400 ° C; secondly, calcination in an air atmosphere for 3 h, the reaction temperature is controlled at 300 ° C;
  • the obtained product is a bayberry-like nickel cobaltate nanomaterial. It can be seen from the scanning electron micrograph that the obtained nano-cobalt nanospheres have a fluffy surface and a low specific surface area; It has a specific capacitance of 2145 F/g at a current density of 1 A/g.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

L'invention concerne également un procédé de préparation d'un nanomatériau d'oxyde de cobalt et de nickel sous forme de cire, comprenant les étapes consistant à : dissoudre du chlorure de nickel, du chlorure de cobalt et de l'urée dans de l'eau désionisée à un rapport molaire de 1:2 6, agiter pour former une solution rose, puis transférer la solution à un réacteur haute pression pour réagir complètement, refroidir la solution à température ambiante, et sécher celle-ci pour obtenir un précurseur en phase solide; et réaliser un traitement thermique sur le précurseur en phase solide par un procédé de calcination en deux étapes pour obtenir le nanomatériau d'oxyde de cobalt et de nickel sous forme de cire. Le matériau a une structure de nano-microsphères. Des nanotiges sont agencées dans un éventail ordonné sur la surface de microsphères de telle sorte que le matériau présente une surface spécifique supérieure de 81 m2•g-1, et peut être utilisé comme matériau d'électrode d'un supercondensateur.
PCT/CN2016/106227 2016-08-24 2016-11-17 Nanomatériau d'oxyde de cobalt et de nickel en forme sous forme de cire et son procédé de préparation WO2018036001A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610714345.2A CN106315695B (zh) 2016-08-24 2016-08-24 一种杨梅状钴酸镍纳米材料及其制备方法
CN201610714345.2 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018036001A1 true WO2018036001A1 (fr) 2018-03-01

Family

ID=57790140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106227 WO2018036001A1 (fr) 2016-08-24 2016-11-17 Nanomatériau d'oxyde de cobalt et de nickel en forme sous forme de cire et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN106315695B (fr)
WO (1) WO2018036001A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908522A (zh) * 2020-09-01 2020-11-10 上海应用技术大学 三维棱带状钴酸镍/二氧化硅纳米复合材料及其制备方法
CN112221513A (zh) * 2020-09-17 2021-01-15 上海应用技术大学 二氧化锰/钴酸镍@泡沫镍核壳异质催化剂的制备方法
CN112409028A (zh) * 2020-10-28 2021-02-26 桂林电子科技大学 一种CC-NiO-CuCoS复合材料及其制备方法和应用
CN113327774A (zh) * 2021-05-31 2021-08-31 青岛科技大学 一种碳基金属硒化物复合材料的制备方法
CN113502469A (zh) * 2021-07-21 2021-10-15 中国石油大学(华东) 一种用于油水分离的可自修复超疏水/超亲油铝合金网的制备方法
CN113713761A (zh) * 2021-07-30 2021-11-30 安徽建筑大学 一种废水中六价铬的吸附脱除方法及使用的镍碳复合材料
CN113745530A (zh) * 2021-09-08 2021-12-03 山东大学 一种高性能球花状磷掺杂氧化镍锂二氧化碳电池正极催化材料及其制备方法
CN114149032A (zh) * 2021-12-06 2022-03-08 安徽师范大学 纳米分级结构硫代钴酸镍材料及制备方法、半固态双离子电池正极浆料、半固态双离子电池
CN114284496A (zh) * 2021-11-16 2022-04-05 石家庄科林电气股份有限公司 一种三维大骨架多级结构电极材料的制备方法
CN114804219A (zh) * 2022-04-04 2022-07-29 渤海大学 一种二维多孔纳米片组装的花状过渡金属氧化物及其制备方法、应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493458B (zh) * 2018-02-09 2020-05-26 山东大学 一种高性能海胆状氧化镍/钴酸镍微球锂氧气电池正极催化材料及其制备方法
CN109755036B (zh) * 2018-12-24 2021-04-20 南京航空航天大学 硫化镍/硫钴镍/碳纳米管泡沫的制备方法与应用
CN111634963A (zh) * 2020-07-03 2020-09-08 朱义奎 一种用于超级电容器的铁掺杂纳米氧化镍粉体的制备方法
CN113658810B (zh) * 2021-07-13 2022-12-09 齐齐哈尔大学 一种高比表面积缺陷型钴酸镍的制备方法
CN114394628B (zh) * 2022-01-07 2024-05-17 大连海事大学 一种具有择优取向及容量逆增长的类杨桃状CoWO4微球及其应用
CN114582636B (zh) * 2022-04-12 2023-12-12 桂林电子科技大学 一种海胆状微球钴镍基电极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960035A (zh) * 2006-11-06 2007-05-09 北京科技大学 一种锂离子电池用层状Li[Ni1/2Mn1/2]O2材料的制备方法
CN102745752A (zh) * 2012-07-02 2012-10-24 同济大学 水热法合成介孔钴酸镍纳米线的方法及其应用
CN105293585A (zh) * 2015-12-01 2016-02-03 福建江夏学院 一种锌镍掺杂的钛酸铁纳米粉体及其制备方法
WO2016029841A1 (fr) * 2014-08-26 2016-03-03 江苏合志锂硫电池技术有限公司 Microsphère mésoporeuse d'oxyde de nickel et de cobalt et son procédé de préparation
EP3015429A1 (fr) * 2014-10-30 2016-05-04 Wintershall Holding GmbH Monocouche à partir d'au moins un hydroxyde double lamellaire (HDL)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891016B (zh) * 2012-10-19 2016-08-10 常州大学 一种钴酸镍石墨烯复合材料及其用途和制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960035A (zh) * 2006-11-06 2007-05-09 北京科技大学 一种锂离子电池用层状Li[Ni1/2Mn1/2]O2材料的制备方法
CN102745752A (zh) * 2012-07-02 2012-10-24 同济大学 水热法合成介孔钴酸镍纳米线的方法及其应用
WO2016029841A1 (fr) * 2014-08-26 2016-03-03 江苏合志锂硫电池技术有限公司 Microsphère mésoporeuse d'oxyde de nickel et de cobalt et son procédé de préparation
EP3015429A1 (fr) * 2014-10-30 2016-05-04 Wintershall Holding GmbH Monocouche à partir d'au moins un hydroxyde double lamellaire (HDL)
CN105293585A (zh) * 2015-12-01 2016-02-03 福建江夏学院 一种锌镍掺杂的钛酸铁纳米粉体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZOU, R.J. ET AL.: "Chain-like NiCo204 Nanowires with Exposed Different Reactive Planes for High-performance Supercapacitors", JOURNAL OF MATERIALS CHEMISTRY A, 5 September 2013 (2013-09-05), pages 8561, XP055470009 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908522B (zh) * 2020-09-01 2022-10-14 上海应用技术大学 三维棱带状钴酸镍/二氧化硅纳米复合材料及其制备方法
CN111908522A (zh) * 2020-09-01 2020-11-10 上海应用技术大学 三维棱带状钴酸镍/二氧化硅纳米复合材料及其制备方法
CN112221513A (zh) * 2020-09-17 2021-01-15 上海应用技术大学 二氧化锰/钴酸镍@泡沫镍核壳异质催化剂的制备方法
CN112409028A (zh) * 2020-10-28 2021-02-26 桂林电子科技大学 一种CC-NiO-CuCoS复合材料及其制备方法和应用
CN113327774A (zh) * 2021-05-31 2021-08-31 青岛科技大学 一种碳基金属硒化物复合材料的制备方法
CN113327774B (zh) * 2021-05-31 2022-11-11 青岛科技大学 一种碳基金属硒化物复合材料的制备方法
CN113502469B (zh) * 2021-07-21 2022-12-02 中国石油大学(华东) 一种用于油水分离的可自修复超疏水/超亲油铝合金网的制备方法
CN113502469A (zh) * 2021-07-21 2021-10-15 中国石油大学(华东) 一种用于油水分离的可自修复超疏水/超亲油铝合金网的制备方法
CN113713761A (zh) * 2021-07-30 2021-11-30 安徽建筑大学 一种废水中六价铬的吸附脱除方法及使用的镍碳复合材料
CN113745530A (zh) * 2021-09-08 2021-12-03 山东大学 一种高性能球花状磷掺杂氧化镍锂二氧化碳电池正极催化材料及其制备方法
CN113745530B (zh) * 2021-09-08 2023-02-28 山东大学 一种高性能球花状磷掺杂氧化镍锂二氧化碳电池正极催化材料及其制备方法
CN114284496A (zh) * 2021-11-16 2022-04-05 石家庄科林电气股份有限公司 一种三维大骨架多级结构电极材料的制备方法
CN114284496B (zh) * 2021-11-16 2023-07-25 石家庄科林电气股份有限公司 一种三维大骨架多级结构电极材料的制备方法
CN114149032A (zh) * 2021-12-06 2022-03-08 安徽师范大学 纳米分级结构硫代钴酸镍材料及制备方法、半固态双离子电池正极浆料、半固态双离子电池
CN114149032B (zh) * 2021-12-06 2024-01-16 安徽师范大学 纳米分级结构硫代钴酸镍材料及制备方法、半固态双离子电池正极浆料、半固态双离子电池
CN114804219A (zh) * 2022-04-04 2022-07-29 渤海大学 一种二维多孔纳米片组装的花状过渡金属氧化物及其制备方法、应用

Also Published As

Publication number Publication date
CN106315695B (zh) 2018-10-30
CN106315695A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2018036001A1 (fr) Nanomatériau d'oxyde de cobalt et de nickel en forme sous forme de cire et son procédé de préparation
Quan et al. Construction of hierarchical nickel cobalt selenide complex hollow spheres for pseudocapacitors with enhanced performance
Dai et al. MOF-derived Co3O4 nanosheets rich in oxygen vacancies for efficient all-solid-state symmetric supercapacitors
Dang et al. Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage
Hong et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor
Qiu et al. MXenes nanocomposites for energy storage and conversion
Zhang et al. Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials
Su et al. Mesocrystal Co 3 O 4 nanoplatelets as high capacity anode materials for Li-ion batteries
Li et al. Hierarchically nanostructured Ni (OH) 2–MnO2@ C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors
Wang et al. A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors
CN110272035B (zh) 一种以金属离子催化有机配体制备碳纳米笼的方法及其制备的碳纳米笼和应用
Chen et al. Nanoporous materials derived from metal-organic framework for supercapacitor application
CN108773859B (zh) 一种硫化纳米材料及其制备方法和应用
Shi et al. Carbonate-assisted hydrothermal synthesis of porous hierarchical Co3O4/CuO composites as high capacity anodes for lithium-ion batteries
KR20120045411A (ko) 스피넬형 리튬 티타늄 산화물/그래핀 복합체 및 그 제조방법
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Sun et al. Ni 3+ doped cobalt–nickel layered double hydroxides as high-performance electrode materials for supercapacitors
CN107685150B (zh) 一种氮掺杂碳包覆的Ni&MoO2超细纳米线及其制备方法和应用
Jokar et al. Growth control of cobalt oxide nanoparticles on reduced graphene oxide for enhancement of electrochemical capacitance
WO2017036069A1 (fr) Bille de fil micronique creuse de v2o5 avec structure d'enroulement tridimensionnelle de nanofil et son procédé de préparation ainsi que son utilisation
CN107633952A (zh) 一种镍锰复合氧化物纳米片薄膜材料及其制备方法和应用
Wang et al. Construction of flower-like ZnCo 2 S 4/ZnCo 2 O 4 arrays on Ni foam for high-performance asymmetric supercapacitors
CN111916288A (zh) 一种纳米管状NiCo2S4@碳化钛复合材料及其制备方法和应用
Nie et al. Synthesis of nano-Ni (OH) 2/porous carbon composite as superior cathode materials for alkaline power batteries
Mehraeen et al. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914021

Country of ref document: EP

Kind code of ref document: A1