WO2018035937A1 - 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法 - Google Patents

采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法 Download PDF

Info

Publication number
WO2018035937A1
WO2018035937A1 PCT/CN2016/101742 CN2016101742W WO2018035937A1 WO 2018035937 A1 WO2018035937 A1 WO 2018035937A1 CN 2016101742 W CN2016101742 W CN 2016101742W WO 2018035937 A1 WO2018035937 A1 WO 2018035937A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
pulse
picosecond
sample
output
Prior art date
Application number
PCT/CN2016/101742
Other languages
English (en)
French (fr)
Inventor
孙辉
樊仲维
Original Assignee
中国科学院光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院光电研究院 filed Critical 中国科学院光电研究院
Priority to JP2017566139A priority Critical patent/JP6616432B2/ja
Priority to EP16913957.3A priority patent/EP3505912B1/en
Priority to US16/309,556 priority patent/US10712281B2/en
Publication of WO2018035937A1 publication Critical patent/WO2018035937A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the invention belongs to the field of component detection of steel samples, and relates to a method for detecting composition of steel samples by using a multi-pulse laser-induced plasma spectrometry device, in particular, using multi-pulse laser-induced plasma spectroscopy equipment including picosecond and nanosecond laser pulse width detection.
  • the method of steel sample composition, as well as the laser-induced light source pulse width for real-time on-line detection of steel sample components, includes two-pulse laser-induced plasma spectroscopy equipment in nanosecond and picosecond specifications.
  • the current dual-pulse LIBS technology uses two lasers to achieve double-pulse excitation by means of power supply control delay, which increases the cost of the system, and separately focuses on the two lasers, it is difficult to ensure the same focus on the sample to be tested. At one point, double pulse plasma excitation with maximum efficiency cannot be achieved.
  • LIBS Laser Induced Breakdown Spectroscopy
  • This method can be used for a few micrograms in the measurement process. Measurement; elemental analysis of any physical state material can be realized without sample pretreatment, making LIBS technology widely used; LIBS technology is an optical technology application, which can measure and analyze samples up to several tens of meters, and its remote analysis capability is It is very attractive in dangerous, high-temperature environments or hostile environments; the composition analysis using LIBS technology takes only about ten seconds, and the real-time and rapidity are very good; LIBS technology can perform traces on substances in calibration. Quantitative analysis, and the detection limit and accuracy fully meet the application requirements.
  • LIBS technology Compared with traditional detection technology, LIBS technology has incomparable technical advantages for online in-situ detection, but the sensitivity of single-pulse LIBS technology is not high, which restricts the application in the field of trace element detection.
  • LIBS is based on the interaction of high-power laser with matter, generates transient plasma, and studies the emission spectrum of plasma to achieve qualitative analysis and quantitative analysis of sample components.
  • the plasma temperature and density of single-pulse LIBS excitation are low, and the intensity of the emitted emission spectrum is limited, so the analytical sensitivity is relatively low.
  • the dual-pulse LIBS technique uses a first laser pulse to illuminate the surface of the sample to generate a plasma, and a second laser pulse illuminates the plasma to enhance spectral line emission, achieving a two-stage distribution of material ablation and plasma excitation.
  • Optimized thus the dual-pulse LIBS technology can effectively improve the signal-to-noise ratio and improve the sensitivity of analysis.
  • the current dual-pulse LIBS technology uses two nanosecond lasers to achieve double pulse excitation by means of power supply control delay, which increases the cost of the system and separates the two lasers, making it difficult to focus on the sample to be tested. The same point, can not achieve the most High efficiency double pulse plasma excitation.
  • a pulsed laser can be used to generate two pulsed lasers.
  • the first pulsed laser is a nanosecond laser
  • the second pulse The laser is a picosecond laser
  • the two pulsed lasers are focused on the same position on the sample to be tested, and the first nanosecond laser pulse is used to illuminate the surface of the sample to generate plasma, and then the second beam of picosecond laser pulse is irradiated to the plasma.
  • Enhancing the spectral line emission the distribution optimization of the two stages of material ablation and plasma excitation is realized, so that the signal-to-noise ratio can be effectively improved and the analysis sensitivity can be improved.
  • the current dual-pulse LIBS technology uses two nanosecond lasers to achieve double pulse excitation by means of power supply control delay, which increases the cost of the system and separates the two lasers, making it difficult to focus on the sample to be tested. At the same point, double pulse plasma excitation with maximum efficiency cannot be achieved.
  • the invention utilizes the existing all-solid-state regenerative amplifying picosecond laser as a light source of a laser-induced plasma spectroscopic analysis device, realizes a laser-induced light source output of a picosecond pulse width by using a regenerative amplification technique, and realizes a nanosecond pulse width by a Q-switching method.
  • the laser-induced light source output realizes a laser-induced plasma spectroscopy device with laser pulse width including picosecond and nanosecond.
  • a comparison with conventional double-pulse laser is found through experiments. The effect of the two-pulse laser-induced plasma spectroscopy including the first nanosecond laser and the second beam picosecond laser is better.
  • the invention has the advantages that a double pulse laser induced plasma spectroscopic device with a laser pulse width including picosecond and nanosecond can be realized, and two pulse lasers can be generated by one pulse laser, and the first pulse laser is nano
  • the second laser, the second pulsed laser is a picosecond laser.
  • the plasma is generated, and a second beam of picosecond laser pulse is irradiated to the plasma to enhance the spectral line emission, thereby realizing the optimization of the two stages of material ablation and plasma excitation, thereby effectively improving the signal-to-noise ratio and improving the analysis.
  • the all-solid-regeneration magnified picosecond laser is used as an induction source for the laser-induced plasma spectroscopic analysis device, and the laser-induced light source output of the picosecond pulse width is realized by using the regenerative amplification technique, and the Q-switching method is adopted.
  • a laser-induced light source output that achieves a nanosecond pulse width, thereby realizing a laser-induced plasma spectroscopy device with laser pulse widths including both picosecond and nanosecond specifications, which can be guaranteed and made through the same output and focused optical path. Pulse The laser is focused on the same position on the sample to be tested.
  • the present application can be applied to a practical detection device for molten steel components based on laser induced plasma spectroscopy for a vacuum induction furnace.
  • FIG. 1 is a schematic view showing the structure of a laser apparatus of the present invention.
  • Figure 2 is a schematic diagram of the laser of the present invention.
  • Figure 3 is a physical diagram of the laser of the present invention.
  • Figure 4 is a graph showing the resulting single pulsed laser ablated steel sample and observed by laser induced plasma using the method described in the present invention.
  • Figure 5 is a graph of the resulting single pulse femtosecond laser ablated steel sample and observed by laser induced plasma using the method illustrated by the present invention.
  • 1 is a picosecond laser oscillator, which produces a picosecond laser pulse width of 10 picoseconds, a repetition rate of 90 MHz, and an average power of 90 mW; 2 is a magneto-optical isolator; 3 is a photoelectric switch; and 4 is a regenerative amplifier compressor.
  • a laser induced plasma spectroscopic analysis apparatus i.e., a multi-pulse laser induced plasma spectroscopic apparatus
  • a laser i.e., a multi-pulse laser induced plasma spectroscopic apparatus
  • the spectral derivation and collection system comprises a spectral derivation subsystem and a spectral collection subsystem
  • the laser and the spectral receiving system are controlled by a same pulse generator transmitting command
  • the laser emitting laser is focused to the sample by a laser introduction system Forming a plasma on the surface of the sample, generating a laser-induced spectrum and deriving the generated fluorescence to a spectral collection subsystem through a spectral derivation subsystem, by calculating, processing, and analyzing the collected spectra to characterize the elements contained in the sample And quantitative testing, wherein the laser is an all-solid-state regenerative amp
  • the laser pulse width of the laser-induced plasma spectroscopy apparatus to include both picosecond and nanosecond specifications (eg, pulse widths of 8-12 nanoseconds, and 8-12 picoseconds, such as 10 nanoseconds and 10 picoseconds). .
  • the regenerative amplification technique means that the beam of the picosecond seed source 1 is injected into the regenerative amplifier through the magneto-optical isolator 2,
  • the laser beam reciprocates back and forth in the regenerative amplifier (for example, 60-200 times, preferably 80-150 times, such as about 100 times), the single-pulse energy is sequentially amplified to a maximum value, and then the regenerative amplifier is emitted through the magneto-optical isolator 2 to realize picosecond pulse.
  • Wide laser output ie, laser output with picosecond pulse width achieved by using regenerative amplification techniques).
  • the Q-switching mode refers to: blocking the seed light through the mechanical shutter, and letting the photoelectric switch 3 operate in the Q-switching mode, and realizing the laser output of the nanosecond pulse width by the Q-switching mode.
  • the laser focus of the laser introduction system is an adjustable focal length mode
  • the spectral collection subsystem is designed as an adjustable focal length system.
  • a method of detecting a steel sample component using the apparatus according to the first embodiment above comprising the steps of:
  • the laser realizes a laser-induced light source output of a nanosecond pulse width by using a Q-switching method, and the output nanosecond laser pulse is focused to a sample through a laser introduction system to form a plasma on the surface of the sample, 2) then The laser realizes the output of the picosecond pulse width of the laser-induced light source by the regenerative amplification technique, so that the output picosecond laser pulse is also focused to the sample through the laser introduction system, so that the plasma formed by the nanosecond laser pulse is irradiated.
  • Enhance line emission generate line-enhanced laser-induced spectroscopy, 2) generate induced spectra to derive fluorescence generated by the spectral derivation subsystem to the spectral collection subsystem; and, 3) calculate and process the collected spectra And analysis, complete qualitative and quantitative testing of the elements contained in the sample.
  • the apparatus comprises a laser, a laser introduction system, a spectral derivation and collection system, a spectroscopic system, and a spectral receiving system, wherein the spectral derivation and collection system comprises a spectral derivation subsystem and a spectral collection subsystem, and wherein The laser and the spectral receiving system are controlled by the same pulse generator sending command.
  • the laser emitting laser is focused to the sample through the laser introduction system to form a plasma on the surface of the sample, generate a laser induced spectrum and export the generated fluorescence through the spectral derivation subsystem to A spectral collection subsystem that performs qualitative and quantitative verification of the elements contained in the sample by calculation, processing, and analysis of the collected spectra, wherein the laser is an all-solid-state regeneratively amplified picosecond laser, and is subjected to regenerative amplification techniques and Q-switching Switching between modes uses a regenerative amplification technique to achieve a laser-induced light source output of a picosecond pulse width or a laser-induced light source output of a nanosecond pulse width by using a Q-switched mode.
  • a method of detecting a composition of a steel sample using a laser induced plasma spectroscopic apparatus comprising a laser, a laser introduction system, a spectral derivation and collection system, a spectroscopic system, and a spectral reception
  • the spectral derivation and collection system comprises a spectral derivation subsystem and a spectral collection subsystem
  • the laser and the spectral receiving system are controlled by a same pulse generator sending instruction
  • the laser emitting laser is focused to the sample through the laser introduction system to form a sample surface Plasma, generate laser induced spectra and export the generated fluorescence to the spectral collection subsystem through the spectral derivation subsystem, by calculating, processing and analyzing the collected spectra to match
  • the elements contained in the product are qualitatively and quantitatively tested, wherein the laser is an all-solid-state regenerative amplifying picosecond laser, and the picosecond pulse width is realized
  • the laser realizes a laser-induced light source output of a nanosecond pulse width by using a Q-switching method, and the output nanosecond laser pulse is focused to a sample through a laser introduction system to form a plasma on the surface of the sample, 2) then The laser realizes the output of the picosecond pulse width of the laser-induced light source by the regenerative amplification technique, so that the output picosecond laser pulse is also focused to the sample through the laser introduction system, so that the plasma formed by the nanosecond laser pulse is irradiated.
  • Enhance line emission generate line-enhanced laser-induced spectroscopy, 2) generate induced spectra to derive fluorescence generated by the spectral derivation subsystem to the spectral collection subsystem; and, 3) calculate and process the collected spectra And analysis, complete qualitative and quantitative testing of the elements contained in the sample.
  • the regenerative amplification technique means that the beam of the picosecond seed source is injected into the regenerative amplifier through the magneto-optical isolator, and the laser beam reciprocates back and forth in the regenerative amplifier (for example, 60-200 times, for example, about 100 times).
  • the single pulse energy is sequentially amplified to the maximum value, and then the regenerative amplifier is emitted through the magneto-optical isolator to realize the picosecond pulse width laser output (that is, the laser output of the picosecond pulse width is realized by using the regenerative amplification technique).
  • the Q-switching mode means that the seed light is blocked by the mechanical shutter, and the photoelectric switch is operated in the Q-switching mode, and the nano-pulse width laser output is realized by the Q-switching mode.
  • the laser focus of the laser introduction system is an adjustable focal length mode
  • the spectral collection subsystem is designed as an adjustable focal length system.
  • both the output nanosecond laser pulse and the output picosecond laser pulse pass through the same output and focus path, which ensures that the two pulsed lasers are focused on the same position on the sample to be tested.
  • the laser realizes switching between the regenerative amplification technology and the Q-switching mode by using an electronic control system including: a main control unit, an LD driving unit, a temperature control unit, a radio frequency control unit, and outer space Unit (refers to external control, usually a computer).
  • an electronic control system including: a main control unit, an LD driving unit, a temperature control unit, a radio frequency control unit, and outer space Unit (refers to external control, usually a computer).
  • the regeneratively amplified all solid picosecond laser works by: the seed source beam is injected into the regenerative amplifier through the magneto-optical isolator, the laser beam reciprocates back and forth in the regenerative amplifier, the single pulse energy is sequentially amplified to a maximum value, and then passed through the magneto-optical isolator.
  • the regenerative amplifier is emitted, and the laser output of the picosecond pulse width is realized by using the regenerative amplification technology, and the seed light is blocked by the mechanical shutter, and the electro-optic switch is operated in the Q-switching mode, and the nanosecond pulse width laser output is realized by the Q-switching mode. , resulting in laser pulse widths of both picosecond and nanosecond specifications.
  • the electronic control unit of the laser has an external trigger control function, a protection circuit, and a temperature warning function.
  • a laser-induced plasma spectroscopy apparatus mainly has six parts: a laser, a laser introduction system, a spectrum derivation and collection system, a spectroscopic system, and a spectrum receiving system, wherein the laser and the spectrum receiving system are transmitted by the same pulse generator. Instruction control.
  • the laser emitting laser is focused to the sample through the introduction system to form a plasma on the surface of the sample, generate a laser induced spectrum and derive the fluorescence generated by the derivation system to the spectral collection system, which is included in the sample by calculation, processing and analysis of the collected spectrum.
  • the elements are qualitatively and quantitatively tested.
  • the main components of LIPS developed are pulsed lasers, laser focusing and signal light collection systems, spectrometer systems and computer systems.
  • the laser focusing and signal light collecting systems are designed as adjustable focal length systems to achieve accurate measurement.
  • computer software is needed to realize rapid analysis of LIPS spectra and obtain real-time component information of the measured steel.
  • the overall schematic of the system is shown in Figure
  • the inventors of the present application have developed a set of regeneratively amplified all solid picosecond lasers.
  • the picosecond seed source is a commercial product from the Austrian HIGH Q company, producing a picosecond laser pulse width of 10 picoseconds, a repetition rate of 90 MHz, and an average power of 90 mW.
  • the seed source beam is injected into the regenerative amplifier through a magneto-optical isolator.
  • the laser beam reciprocates back and forth in the regenerative amplifier (for example, 60-200 times, preferably 80-150 times, such as about 100 times), the single-pulse energy is sequentially amplified to a maximum value, and then the regenerative amplifier is emitted through a magneto-optical isolator.
  • a picosecond pulse width laser output is achieved by using a regenerative amplification technique. It is also possible to block the seed light through the mechanical shutter, and let the electro-optic switch operate in the Q-switching mode, and realize the nanosecond pulse width laser output by the Q-switching mode, thereby realizing a laser pulse width including both picosecond and nanosecond specifications. Laser induced plasma spectroscopic analysis equipment.
  • the electronic control unit has external trigger control function, protection circuit, temperature warning and other functions.
  • the main internal control unit, LD drive unit, temperature control unit, radio frequency control unit and outer space unit (external control, generally computer), etc. also includes: laser pump power supply and control system, need to display working current, voltage With the function of protection lock; Q-switching power supply, used to control the output pulse width, perform pulse laser output control, and realize the control of the output laser mode, ensuring the laser-induced light source of picosecond pulse width by using regenerative amplification technology. Output, through the Q-switching method to achieve nanosecond pulse width laser induced light source output.
  • the electronic control system has the advantages of high integration, simple operation, reliable performance, etc., and has functions of overcurrent, overvoltage and overheat protection.
  • the invention relates to an all-solid regenerative picosecond laser as an inducing light source of a laser-induced plasma spectroscopic analysis device, which realizes a laser-induced light source output of a picosecond pulse width by using a regenerative amplification technique, and realizes a nanosecond pulse width by a Q-switching method.
  • the laser-induced light source output realizes a laser-induced light source with a laser pulse width including picosecond and nanosecond. It can generate two pulsed lasers with a pulsed laser.
  • the first pulsed laser is a nanosecond laser
  • the second The pulsed laser is a picosecond laser.
  • the two pulsed lasers are focused on the same position on the sample to be tested, and the first nanosecond laser pulse is used to illuminate the surface of the sample to generate plasma.
  • the second beam of picosecond laser pulse illuminates the plasma to enhance the spectral line emission, two steps of material ablation and plasma excitation are realized.
  • the distribution of the segments is optimized, so that the signal-to-noise ratio can be effectively improved and the sensitivity of the analysis can be improved.
  • the present application proposes a new laser induced plasma spectroscopic analysis device for observing steel sample components. It is characterized by a laser-induced light source that produces a pulse laser that is not a common 10 to 20 nanoseconds, but a laser source that contains nanosecond (eg, 10 nanoseconds) and picosecond (eg, 10 picosecond) ultrashort pulses. It is possible to generate two pulsed lasers with a pulsed laser.
  • the first pulsed laser is a nanosecond laser
  • the second pulsed laser is a picosecond laser.
  • the two pulsed lasers are focused on The same position on the sample to be tested, the first beam of nanosecond laser pulse is used to illuminate the surface of the sample to generate plasma, and then the second beam of picosecond laser pulse is irradiated to the plasma to enhance the spectral line emission, thereby achieving material ablation and plasma excitation.
  • the two-stage distribution optimization can effectively improve the signal-to-noise ratio and improve the sensitivity of analysis.
  • the resulting single pulse femtosecond laser ablated steel samples were obtained by the method described in the present invention and the resulting spectra were observed by laser induced plasma. The results are shown in FIG.
  • a new laser-induced plasma spectroscopy device for observing the composition of steel samples. It is characterized by a laser-induced light source that produces a single-pulse laser that is not a common 10 to 20 nanoseconds, but a laser source that contains ultra-short pulses of 10 nanoseconds and 10 picoseconds. It can generate two pulsed lasers using a pulsed laser.
  • the first pulsed laser is a nanosecond laser
  • the second pulsed laser is a picosecond laser
  • the two pulsed lasers are focused on the same position on the sample to be tested, and the first nanosecond laser pulse is used to illuminate the surface of the sample to generate a plasma.
  • a second beam of picosecond laser pulse illuminates the plasma to enhance the spectral line emission, which optimizes the distribution of the two stages of material ablation and plasma excitation, thereby effectively improving the signal-to-noise ratio and improving the sensitivity of the analysis.
  • Figure 4 is a graph showing the generated single pulsed laser ablated steel sample and observed by laser induced plasma using the method described in the present invention, which can be seen to correspond to a laser induced light source with a single pulse width of 10 nanoseconds and The two pulse widths are spectral contrasts of 10 nanoseconds and 10 picoseconds, respectively, and the effect of spectral line enhancement is very obvious, so it is more conducive to measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Lasers (AREA)

Abstract

采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法,尤其是采用包括皮秒和纳秒激光脉宽的多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法,激光诱导光源(10)是包含纳秒级和皮秒级超短脉冲的激光光源,能够用一个脉冲激光器产生两个脉冲激光即纳秒激光和皮秒激光,通过同样的输出和聚焦光路使得这两个脉冲激光聚焦在待测样品上相同位置,利用第一束纳秒激光脉冲照射样品表面产生等离子体,稍后第二束皮秒激光脉冲照射等离子体以增强谱线发射。

Description

采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法 技术领域
本发明属于钢铁样品成分检测领域,涉及采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法,尤其是采用包括皮秒和纳秒激光脉宽的多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法,以及用于对钢铁样品成分的实时在线检测的激光诱导光源脉宽包含纳秒和皮秒两种规格的双脉冲激光诱导等离子体光谱分析设备。
背景技术
目前的双脉冲LIBS技术都是采用两台激光器,通过电源控制延迟的方法实现双脉冲激发,这样增加了系统的成本,并且分别对两路激光聚焦,很难保证聚焦在待测样品上的同一点,不能实现最大效率的双脉冲等离子体激发。
激光诱导击穿光谱技术(Laser Induced Breakdown Spectroscopy,LIBS)是基于激光和材料相互作用产生的发射光谱的一种定量分析技术,该方法在测量过程中只需几微克即可,故可实现非破坏测量;无需样品预处理即可实现对任何物理状态物质的元素分析,使LIBS技术应用范围非常广泛;LIBS技术是光学技术应用,可测量分析远达几十米处的样品,其远程分析能力对危险、高温环境或敌对环境中有非常大的吸引力;使用LIBS技术进行成份分析,整个过程只需十秒左右,实时性和快速性非常良好;LIBS技术可通过定标对物质中痕量进行定量分析,且检测限和精度完全满足应用需求。
与传统检测技术相比,LIBS技术对于在线原位检测具有不可比拟的技术优势,但由于单脉冲LIBS技术的分析灵敏度并不高,因而制约了在痕量元素检测领域中的应用。LIBS是基于高功率激光与物质相互作用,产生瞬态等离子体,对等离子体的发射光谱进行研究,从而实现对样品成分的定性分析与定量分析。但是单脉冲LIBS激发的等离子体温度和密度均较低,形成的发射光谱强度有限,因而分析灵敏度相对较低。
双脉冲LIBS技术是利用第一束激光脉冲照射样品表面产生等离子体,稍后第二束激光脉冲照射等离子体以增强谱线发射,实现了对材料烧蚀与等离子体激发的两个阶段的分布优化,因而双脉冲LIBS技术可以有效提高信噪比,提高分析灵敏度。目前的双脉冲LIBS技术都是采用两台纳秒激光器,通过电源控制延迟的方法实现双脉冲激发,这样增加了系统的成本,并且分别对两路激光聚焦,很难保证聚焦在待测样品上的同一点,不能实现最 大效率的双脉冲等离子体激发。
通过探索不同脉宽的超短脉冲激光对钢铁样品检测结果及双脉冲LIBS技术的分析,我们发现能够采用一个脉冲激光器产生两个脉冲激光,第一个脉冲激光为纳秒激光,第二个脉冲激光为皮秒激光,并使得这两个脉冲激光聚焦在待测样品上相同位置,利用第一束纳秒激光脉冲照射样品表面产生等离子体,稍后第二束皮秒激光脉冲照射等离子体以增强谱线发射,实现了对材料烧蚀与等离子体激发的两个阶段的分布优化,因而可以有效提高信噪比,提高分析灵敏度。我们研发了一款激光脉宽包括皮秒和纳秒两者规格的双脉冲激光诱导等离子体光谱分析设备。
发明内容
目前的双脉冲LIBS技术都是采用两台纳秒激光器,通过电源控制延迟的方法实现双脉冲激发,这样增加了系统的成本,并且分别对两路激光聚焦,很难保证聚焦在待测样品上的同一点,不能实现最大效率的双脉冲等离子体激发。
由于现有的测量方法有以上的不足之处,我们这里提出一种新的观测钢铁样品成分的双脉冲激光诱导等离子体光谱分析设备。本发明利用现有全固态再生放大皮秒激光器作为激光诱导等离子体光谱分析设备的光源,通过使用再生放大技术来实现皮秒脉宽的激光诱导光源输出,通过调Q方式来实现纳秒脉宽的激光诱导光源输出,从而实现一款激光脉宽包括皮秒和纳秒两者规格的激光诱导等离子体光谱分析设备,在对钢铁样品的测量中,通过实验发现了一种比传统双脉冲激光诱导等离子体光谱分析设备效果更好的包含第一束纳秒激光和第二束皮秒激光的双脉冲激光诱导等离子体光谱分析设备效。
发明的有益效果
本发明的益处在于可以实现一款激光脉宽包括皮秒和纳秒两者规格的双脉冲激光诱导等离子体光谱分析设备,能够用一个脉冲激光器产生两个脉冲激光,第一个脉冲激光为纳秒激光,第二个脉冲激光为皮秒激光,通过同样的输出和聚焦光路,可以保证并使得这两个脉冲激光聚焦在待测样品上相同位置,利用第一束纳秒激光脉冲照射样品表面产生等离子体,稍后第二束皮秒激光脉冲照射等离子体以增强谱线发射,实现了对材料烧蚀与等离子体激发的两个阶段的分布优化,因而可以有效提高信噪比,提高分析灵敏度。能产生这样益处的原因就在于把全固体再生放大皮秒激光器作为激光诱导等离子体光谱分析设备的诱导光源,通过使用再生放大技术来实现皮秒脉宽的激光诱导光源输出,通过调Q方式来实现纳秒脉宽的激光诱导光源输出,从而实现一款激光脉宽包括皮秒和纳秒两者规格的激光诱导等离子体光谱分析设备,通过同一个输出和聚焦光路,可以保证并使得这两个脉冲 激光聚焦在待测样品上相同位置。本申请可以应用于针对真空感应炉的基于激光诱导等离子体光谱技术的钢水成分实用检测设备。
附图说明
图1是本发明激光设备结构示意图。
图2是本发明激光器原理图。
图3是本发明激光器实物图。
图4所示为利用本发明所阐述的方法实现的产生的单脉冲激光烧蚀钢铁样品并利用激光诱导等离子体观察得到的光谱。
图5是利用本发明所阐述的方法实现的产生的单脉冲飞秒激光烧蚀钢铁样品并利用激光诱导等离子体观察得到的光谱。
在图1中:
10为激光诱导光源;20为中阶梯光栅光谱仪;30为聚焦系统;11为激光器;12为中阶光栅光谱仪;13为积分延迟探测系统;14为检测点距离动态监测系统;15为反馈调节控制系统;16为光束质量监测调节系统;17为光束折转系统;18为样品。
在图2中:
1为皮秒激光振荡器,产生的皮秒激光脉宽10皮秒,重复频率90MHz,平均功率90mW;2为磁光隔离器;3为光电开关;4为再生放大器压缩器。
具体实施方式
根据本发明的第一实施方案,提供一种激光诱导等离子体光谱分析设备(即,多脉冲激光诱导等离子体光谱分析设备),该设备包括激光器、激光导入系统、光谱导出及收集系统、分光系统和光谱接收系统,其中,光谱导出及收集系统包括光谱导出子系统及光谱收集子系统,和,其中激光器和光谱接收系统由同一脉冲发生器发送指令控制,激光器发射激光通过激光导入系统聚焦至样品处,使样品表面形成等离子体、生成激光诱导光谱并通过光谱导出子系统将所产生的荧光导出至光谱收集子系统,通过对收集光谱的计算、处理和分析以便对样品中所含元素进行定性和定量检验,其中所述激光器是全固态再生放大皮秒激光器,并且通过在再生放大技术与调Q方式之间的切换,分别使用再生放大技术来实现皮秒脉宽的激光诱导光源输出或通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出。这使得激光诱导等离子体光谱分析设备的激光脉宽同时包括皮秒和纳秒两者规格(例如脉宽为8-12纳秒,和8-12皮秒,如10纳秒和10皮秒)。
一般,再生放大技术是指:皮秒种子源1的光束通过磁光隔离器2注入再生放大器中, 激光束在再生放大器里来回往复(例如60-200次、优选80-150次,如约100次),单脉冲能量逐次放大到最大值,然后通过磁光隔离器2射出再生放大器,实现皮秒脉宽的激光输出(即,通过使用再生放大技术来实现皮秒脉宽的激光输出)。
一般,调Q方式是指:通过机械快门阻挡种子光,同时让光电开关3工作在调Q模式,通过调Q方式来实现纳秒脉宽的激光输出。
优选,激光导入系统的激光聚焦为可调焦距方式,和光谱收集子系统设计为可调焦距系统。
根据本发明的第二个实施方案,提供使用以上根据第一个实施方案的设备来检测钢铁样品成分的方法,所述方法包括以下步骤:
1)所述激光器通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出,让输出的纳秒激光脉冲通过激光导入系统被聚焦至样品处,使样品表面形成等离子体,2)然后,所述激光器通过在再生放大技术实现皮秒脉宽的激光诱导光源输出,让输出的皮秒激光脉冲也通过激光导入系统被聚焦至样品处,使得因为纳秒激光脉冲照射所形成的等离子体而增强谱线发射,生成谱线增强的激光诱导光谱,2)所生成的诱导光谱通过光谱导出子系统将产生的荧光导出至光谱收集子系统;和,3)通过对所收集光谱的计算、处理和分析,完成对样品中所含元素进行定性和定量检验。
一般,在上述方法中,该设备包括激光器、激光导入系统、光谱导出及收集系统、分光系统和光谱接收系统,其中,光谱导出及收集系统包括光谱导出子系统及光谱收集子系统,和,其中激光器和光谱接收系统由同一脉冲发生器发送指令控制,激光器发射激光通过激光导入系统聚焦至样品处,使样品表面形成等离子体、生成激光诱导光谱并通过光谱导出子系统将所产生的荧光导出至光谱收集子系统,通过对收集光谱的计算、处理和分析以便对样品中所含元素进行定性和定量检验,其中所述激光器是全固态再生放大皮秒激光器,并且通过在再生放大技术与调Q方式之间的切换,分别使用再生放大技术来实现皮秒脉宽的激光诱导光源输出或通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出。
根据本发明的第三个实施方案,提供使用一种激光诱导等离子体光谱分析设备来检测钢铁样品成分的方法,其中该设备包括激光器、激光导入系统、光谱导出及收集系统、分光系统和光谱接收系统,其中,光谱导出及收集系统包括光谱导出子系统及光谱收集子系统,激光器和光谱接收系统由同一脉冲发生器发送指令控制,激光器发射激光通过激光导入系统聚焦至样品处,使样品表面形成等离子体、生成激光诱导光谱并通过光谱导出子系统将所产生的荧光导出至光谱收集子系统,通过对收集光谱的计算、处理和分析以便对样 品中所含元素进行定性和定量检验,其中所述激光器是全固态再生放大皮秒激光器,并且通过在再生放大技术与调Q方式之间的切换,分别使用再生放大技术来实现皮秒脉宽的激光诱导光源输出或通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出,所述方法包括以下步骤:
1)所述激光器通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出,让输出的纳秒激光脉冲通过激光导入系统被聚焦至样品处,使样品表面形成等离子体,2)然后,所述激光器通过在再生放大技术实现皮秒脉宽的激光诱导光源输出,让输出的皮秒激光脉冲也通过激光导入系统被聚焦至样品处,使得因为纳秒激光脉冲照射所形成的等离子体而增强谱线发射,生成谱线增强的激光诱导光谱,2)所生成的诱导光谱通过光谱导出子系统将产生的荧光导出至光谱收集子系统;和,3)通过对所收集光谱的计算、处理和分析,完成对样品中所含元素进行定性和定量检验。
在本申请中,优选的是,再生放大技术是指:皮秒种子源的光束通过磁光隔离器注入再生放大器中,激光束在再生放大器里来回往复(例如60-200次,如约100次),单脉冲能量逐次放大到最大值,然后通过磁光隔离器射出再生放大器,实现皮秒脉宽的激光输出(即,通过使用再生放大技术来实现皮秒脉宽的激光输出)。
优选,调Q方式是指:通过机械快门阻挡种子光,同时让光电开关工作在调Q模式,通过调Q方式来实现纳秒脉宽的激光输出。
优选,激光导入系统的激光聚焦为可调焦距方式,和光谱收集子系统设计为可调焦距系统。
优选,输出的纳秒激光脉冲和输出的皮秒激光脉冲都通过同样的输出和聚焦光路,可以保证并使得这两个脉冲激光聚焦在待测样品上相同位置。
优选,激光器通过使用一种电控系统来实现在再生放大技术与调Q方式之间的切换,所述电控系统包括:主控单元、LD驱动单元、温度控制单元、射频控制单元和外空单元(指外部控制,一般是计算机)。
优选,再生放大全固体皮秒激光器的工作方式是:种子源光束通过磁光隔离器注入再生放大器,激光束在再生放大器里来回往复,单脉冲能量逐次放大到最大值,然后通过磁光隔离器射出再生放大器,通过使用再生放大技术来实现皮秒脉宽的激光输出,另外通过机械快门阻挡种子光,同时让电光开关工作在调Q模式,通过调Q方式来实现纳秒脉宽的激光输出,从而产生皮秒和纳秒两种规格的激光脉宽。
一般,激光器的电控单元具备外触发控制功能、保护电路、温度预警功能。
更具体地说,一种激光诱导等离子体光谱分析设备主要有激光器、激光导入系统、光谱导出及收集系统、分光系统和光谱接收系统六个部分,其中激光器和光谱接收系统由同一脉冲发生器发送指令控制。激光器发射激光通过导入系统聚焦至样品处,使样品表面形成等离子体、生成激光诱导光谱并通过导出系统将产生荧光导出至光谱收集系统,通过对收集光谱的计算、处理和分析对样品中所含元素进行定性和定量检验。研制的LIPS主要组成部分为脉冲激光器、激光聚焦和信号光收集系统、光谱仪系统和计算机系统。其中激光聚焦和信号光收集系统均设计为可调焦距系统,以实现精确测量,同时需研发计算机软件,实现LIPS光谱的快速分析,得到所测钢铁的实时成分信息。系统整体示意图如图1所示。
本申请的发明人研发了一套再生放大全固体皮秒激光器。皮秒种子源是商用产品,来自于奥地利HIGH Q公司,产生的皮秒激光脉宽10皮秒,重复频率90MHz,平均功率90mW。种子源光束通过磁光隔离器注入再生放大器。激光束在再生放大器里来回往复(例如60-200次、优选80-150次,如约100次),单脉冲能量逐次放大到最大值,然后通过磁光隔离器射出再生放大器。通过使用再生放大技术来实现皮秒脉宽的激光输出。也可以通过机械快门阻挡种子光,同时让电光开关工作在调Q模式,通过调Q方式来实现纳秒脉宽的激光输出,从而实现一款激光脉宽包括皮秒和纳秒两者规格的激光诱导等离子体光谱分析设备。
电控单元具备外触发控制功能、保护电路、温度预警等功能。其内部主要有主控单元、LD驱动单元、温度控制单元、射频控制单元和外空单元(外部控制,一般是计算机)等,还包括:激光器泵浦电源和控制系统,需要显示工作电流、电压、附带保护锁等功能;Q开关电源,用来控制输出脉冲宽度,进行脉冲激光输出控制,同时可以实现对输出激光模式的控制,保证通过使用再生放大技术来实现皮秒脉宽的激光诱导光源输出,通过调Q方式来实现纳秒脉宽的激光诱导光源输出。电控系统具有集成度高、操作简单、性能可靠等优点,同时具有过流、过压和过热保护等功能。
本发明是把全固体再生放大皮秒激光器作为激光诱导等离子体光谱分析设备的诱导光源,通过使用再生放大技术来实现皮秒脉宽的激光诱导光源输出,通过调Q方式来实现纳秒脉宽的激光诱导光源输出,从而实现一款激光脉宽包括皮秒和纳秒两者规格的激光诱导光源,能够用一个脉冲激光器产生两个脉冲激光,第一个脉冲激光为纳秒激光,第二个脉冲激光为皮秒激光,通过同样的输出和聚焦光路,可以保证并使得这两个脉冲激光聚焦在待测样品上相同位置,利用第一束纳秒激光脉冲照射样品表面产生等离子体,稍后第二束皮秒激光脉冲照射等离子体以增强谱线发射,实现了对材料烧蚀与等离子体激发的两个阶 段的分布优化,因而可以有效提高信噪比,提高分析灵敏度。
本申请提出一种新的观测钢铁样品成分的激光诱导等离子体光谱分析设备。其特点是激光诱导光源所产生的不是常见的10到20纳秒的脉冲激光,而是包含纳秒级(例如10纳秒)和皮秒级(例如10皮秒)超短脉冲的激光光源,能够用一个脉冲激光器产生两个脉冲激光,第一个脉冲激光为纳秒激光,第二个脉冲激光为皮秒激光,通过同样的输出和聚焦光路,可以保证并使得这两个脉冲激光聚焦在待测样品上相同位置,利用第一束纳秒激光脉冲照射样品表面产生等离子体,稍后第二束皮秒激光脉冲照射等离子体以增强谱线发射,实现了对材料烧蚀与等离子体激发的两个阶段的分布优化,因而可以有效提高信噪比,提高分析灵敏度。利用本发明所阐述的方法实现的产生的单脉冲飞秒激光烧蚀钢铁样品并利用激光诱导等离子体观察得到的光谱,结果如图5所示。
我们根据本发明搭建了实验装置进行了实验验证,实验验证结果如图1所示。我们这里提出一种新的观测钢铁样品成分的激光诱导等离子体光谱分析设备。其特点是激光诱导光源所产生的不是常见的10到20纳秒的单脉冲激光,而是包含10纳秒和10皮秒超短脉冲的激光光源,能够采用一个脉冲激光器产生两个脉冲激光,第一个脉冲激光为纳秒激光,第二个脉冲激光为皮秒激光,并使得这两个脉冲激光聚焦在待测样品上相同位置,利用第一束纳秒激光脉冲照射样品表面产生等离子体,稍后第二束皮秒激光脉冲照射等离子体以增强谱线发射,实现了对材料烧蚀与等离子体激发的两个阶段的分布优化,因而可以有效提高信噪比,提高分析灵敏度。图4所示为利用本发明所阐述的方法实现的产生的单脉冲激光烧蚀钢铁样品并利用激光诱导等离子体观察得到的光谱,可以看到对应于激光诱导光源为单个脉宽10纳秒和两个脉宽分别为10纳秒和10皮秒的光谱对比,谱线增强的效果十分明显,因此更有利于测量。

Claims (8)

  1. 使用一种激光诱导等离子体光谱分析设备来检测钢铁样品成分的方法,其中该设备包括激光器、激光导入系统、光谱导出及收集系统、分光系统和光谱接收系统,其中,光谱导出及收集系统包括光谱导出子系统及光谱收集子系统,激光器和光谱接收系统由同一脉冲发生器发送指令控制,激光器发射激光通过激光导入系统聚焦至样品处,使样品表面形成等离子体、生成激光诱导光谱并通过光谱导出子系统将所产生的荧光导出至光谱收集子系统,通过对收集光谱的计算、处理和分析以便对样品中所含元素进行定性和定量检验,其中所述激光器是全固态再生放大皮秒激光器,并且通过在再生放大技术与调Q方式之间的切换,分别使用再生放大技术来实现皮秒脉宽的激光诱导光源输出或通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出,所述方法包括以下步骤:
    1)所述激光器通过使用调Q方式来实现纳秒脉宽的激光诱导光源输出,让输出的纳秒激光脉冲通过激光导入系统被聚焦至样品处,使样品表面形成等离子体,2)然后,所述激光器通过在再生放大技术实现皮秒脉宽的激光诱导光源输出,让输出的皮秒激光脉冲也通过激光导入系统被聚焦至样品处,使得因为纳秒激光脉冲照射所形成的等离子体而增强谱线发射,生成谱线增强的激光诱导光谱,2)所生成的诱导光谱通过光谱导出子系统将产生的荧光导出至光谱收集子系统;和,3)通过对所收集光谱的计算、处理和分析,完成对样品中所含元素进行定性和定量检验。
  2. 根据权利要求1所述的方法,其中再生放大技术是指:皮秒种子源的光束通过磁光隔离器注入再生放大器中,激光束在再生放大器里来回往复,单脉冲能量逐次放大到最大值,然后通过磁光隔离器射出再生放大器,实现皮秒脉宽的激光输出。
  3. 根据权利要求1或2所述的方法,其中调Q方式是指:通过机械快门阻挡种子光,同时让光电开关工作在调Q模式,通过调Q方式来实现纳秒脉宽的激光输出。
  4. 根据权利要求1-3中任何一项的方法,其中激光导入系统的激光聚焦为可调焦距方式,和光谱收集子系统设计为可调焦距系统。
  5. 根据权利要求1-3中任何一项的方法,其中输出的纳秒激光脉冲和输出的皮秒激光脉冲都通过同样的输出和聚焦光路,可以保证并使得这两个脉冲激光聚焦在待测样品上相同位置。
  6. 根据权利要求1-5中任何一项的方法,其中激光器通过使用一种电控系统来实现在再生放大技术与调Q方式之间的切换,所述电控系统包括:主控单元、LD驱动单元、温度控制单元、射频控制单元和外空单元。
  7. 根据权利要求1-6中任何一项的方法,其中再生放大全固体皮秒激光器的工作方式是:种子源光束通过磁光隔离器注入再生放大器,激光束在再生放大器里来回往复,单脉冲能量逐次放大到最大值,然后通过磁光隔离器射出再生放大器,通过使用再生放大技术来实现皮秒脉宽的激光输出,另外通过机械快门阻挡种子光,同时让电光开关工作在调Q模式,通过调Q方式来实现纳秒脉宽的激光输出,从而产生皮秒和纳秒两种规格的激光脉宽。
  8. 根据权利要求6所述的方法,其中,激光器的电控单元具备外触发控制功能、保护电路、温度预警功能。
PCT/CN2016/101742 2016-08-24 2016-10-11 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法 WO2018035937A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017566139A JP6616432B2 (ja) 2016-08-24 2016-10-11 マルチパルスレーザー誘起プラズマスペクトル分析機器を採用して鉄鋼サンプル成分を検出する方法
EP16913957.3A EP3505912B1 (en) 2016-08-24 2016-10-11 Method for detecting composition of steel sample by using multi-pulse laser-induced plasma spectrometer
US16/309,556 US10712281B2 (en) 2016-08-24 2016-10-11 Method for detecting composition of steel sample by using multi-pulse laser-induced plasma spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610717184.2A CN107782715B (zh) 2016-08-24 2016-08-24 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法
CN201610717184.2 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018035937A1 true WO2018035937A1 (zh) 2018-03-01

Family

ID=61245939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101742 WO2018035937A1 (zh) 2016-08-24 2016-10-11 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法

Country Status (5)

Country Link
US (1) US10712281B2 (zh)
EP (1) EP3505912B1 (zh)
JP (1) JP6616432B2 (zh)
CN (1) CN107782715B (zh)
WO (1) WO2018035937A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945936A (zh) * 2021-01-28 2021-06-11 西安电子科技大学 基于激光等离子体自约束的液体样品光谱测量方法与装置
CN113960015A (zh) * 2021-09-30 2022-01-21 华东师范大学重庆研究院 一种基于飞秒等离子体光栅的多脉冲诱导光谱方法以及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106568762B (zh) * 2016-11-07 2019-08-06 中国科学院光电研究院 扫描式激光诱导光谱面范围分析检测系统
CN108445073A (zh) * 2018-03-16 2018-08-24 常州英诺激光科技有限公司 解决常压敞开式激光质谱仪中待测等离子体寿命短的方法及质谱仪
CN108760635B (zh) * 2018-06-11 2020-12-01 长春理工大学 高灵敏度的土壤重金属元素探测装置与探测方法
CN109239055B (zh) * 2018-10-16 2020-12-25 山西大学 共心多径腔增强激光诱导击穿光谱高灵敏检测装置及方法
CN111912836B (zh) * 2020-08-31 2023-06-20 中北大学 一种同轴环形双脉冲libs系统
KR102595202B1 (ko) * 2020-11-27 2023-10-30 한국생산기술연구원 반사형 렌즈를 이용한 레이저 유도붕괴 분광분석 시스템
CN113009102B (zh) * 2021-02-26 2022-10-21 柳州钢铁股份有限公司 测定废钢成分的方法和废钢成分样品检测的加工设备
CN113540938A (zh) * 2021-07-02 2021-10-22 西安电子科技大学 一种用于libs测量的高峰值功率微型纳秒无制冷激光器
CN114047174B (zh) * 2021-09-29 2024-05-10 云南华谱量子材料有限公司 一种二维等离子体点阵光栅增强激光诱导击穿光谱检测灵敏度装置
CN114486772A (zh) * 2021-12-29 2022-05-13 中国烟草总公司郑州烟草研究院 卷烟产品的重金属检测设备及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709801A (zh) * 2012-06-04 2012-10-03 中国科学院半导体研究所 一种同时输出纳秒和皮秒脉冲的激光器
US8310671B1 (en) * 2010-09-29 2012-11-13 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Interference-free optical detection for Raman spectroscopy
CN102841075A (zh) * 2011-11-15 2012-12-26 中国科学院光电研究院 激光光谱诱导成分检测系统
CN203385665U (zh) * 2013-06-21 2014-01-08 中国科学院上海技术物理研究所 一种基于双脉冲散焦预烧蚀的激光诱导击穿光谱探测系统
CN104181146A (zh) * 2013-05-22 2014-12-03 中国科学院光电研究院 一种多脉冲激光诱导击穿光谱在线检测系统
CN105762633A (zh) * 2016-05-19 2016-07-13 中国科学院光电研究院 一种皮秒激光器及抑制皮秒激光器中的首脉冲的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875651A (ja) * 1994-09-06 1996-03-22 Sumitomo Metal Ind Ltd レーザ発光分光分析方法
JP3559635B2 (ja) * 1995-12-28 2004-09-02 株式会社東芝 エアロゾル分析装置
JP3453260B2 (ja) * 1996-11-08 2003-10-06 三菱重工業株式会社 レーザ波長設定装置
JP3377706B2 (ja) * 1996-11-20 2003-02-17 三菱重工業株式会社 三次元温度・濃度計測装置
JP3618198B2 (ja) * 1997-06-11 2005-02-09 株式会社東芝 元素分析方法
JP2002122543A (ja) * 2000-01-20 2002-04-26 Tokyo Electric Power Co Inc:The 元素分析装置および元素分析方法
JP2004226252A (ja) * 2003-01-23 2004-08-12 Toshiba Corp 元素濃度測定装置
US7068688B2 (en) * 2003-11-04 2006-06-27 Boston Applied Technologies, Incorporated Electro-optic Q-switch
US7251022B2 (en) * 2005-09-30 2007-07-31 Ut-Battelle, Llc Dual fiber microprobe for mapping elemental distributions in biological cells
JP2008256440A (ja) * 2007-04-03 2008-10-23 Toshiba Corp 分析装置
CN201262616Y (zh) * 2007-12-10 2009-06-24 华中科技大学 钢液成分监测与分析装置
US8319964B2 (en) * 2009-07-10 2012-11-27 University Of Florida Research Foundation, Inc. Method and apparatus to laser ablation—laser induced breakdown spectroscopy
US20120253333A1 (en) * 2011-04-01 2012-10-04 Garden Jerome M Combination Laser Treatment of Skin Conditions
US20120314214A1 (en) * 2011-06-07 2012-12-13 Alexander Dennis R Laser Induced Breakdown Spectroscopy Having Enhanced Signal-to-Noise Ratio
CN102359953B (zh) * 2011-09-21 2013-05-22 冶金自动化研究设计院 基于激光诱导击穿光谱的普通黄铜全元素分析方法
CN202351175U (zh) * 2011-11-07 2012-07-25 大连理工大学 红外紫外双脉冲激光诱导击穿光谱在线原位检测装置
CN104297218B (zh) * 2013-07-15 2016-09-14 中国科学院沈阳自动化研究所 远距离冶金液态金属成分的原位、在线检测装置及方法
CN107107122B (zh) * 2014-06-23 2019-07-23 Tsi公司 利用libs光谱的快速材料分析
CN206074453U (zh) * 2015-07-20 2017-04-05 赛默科技便携式分析仪器有限公司 激光诱导击穿系统
US9958395B2 (en) * 2016-02-12 2018-05-01 Bwt Property, Inc. Laser induced breakdown spectroscopy (LIBS) apparatus for the detection of mineral and metal contamination in liquid samples

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310671B1 (en) * 2010-09-29 2012-11-13 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Interference-free optical detection for Raman spectroscopy
CN102841075A (zh) * 2011-11-15 2012-12-26 中国科学院光电研究院 激光光谱诱导成分检测系统
CN102709801A (zh) * 2012-06-04 2012-10-03 中国科学院半导体研究所 一种同时输出纳秒和皮秒脉冲的激光器
CN104181146A (zh) * 2013-05-22 2014-12-03 中国科学院光电研究院 一种多脉冲激光诱导击穿光谱在线检测系统
CN203385665U (zh) * 2013-06-21 2014-01-08 中国科学院上海技术物理研究所 一种基于双脉冲散焦预烧蚀的激光诱导击穿光谱探测系统
CN105762633A (zh) * 2016-05-19 2016-07-13 中国科学院光电研究院 一种皮秒激光器及抑制皮秒激光器中的首脉冲的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505912A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112945936A (zh) * 2021-01-28 2021-06-11 西安电子科技大学 基于激光等离子体自约束的液体样品光谱测量方法与装置
CN112945936B (zh) * 2021-01-28 2023-02-03 西安电子科技大学 基于激光等离子体自约束的液体样品光谱测量方法与装置
CN113960015A (zh) * 2021-09-30 2022-01-21 华东师范大学重庆研究院 一种基于飞秒等离子体光栅的多脉冲诱导光谱方法以及装置

Also Published As

Publication number Publication date
JP2018530736A (ja) 2018-10-18
US10712281B2 (en) 2020-07-14
CN107782715B (zh) 2020-11-06
EP3505912A1 (en) 2019-07-03
US20190219511A1 (en) 2019-07-18
JP6616432B2 (ja) 2019-12-04
CN107782715A (zh) 2018-03-09
EP3505912B1 (en) 2022-02-09
EP3505912A4 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2018035937A1 (zh) 采用多脉冲激光诱导等离子体光谱分析设备检测钢铁样品成分的方法
CN101620183B (zh) 光电双脉冲激光诱导击穿光谱仪及光谱分析方法
CN107907530B (zh) 一种激光烧蚀辅助共振激光诱导击穿光谱检测方法及装置
Gravel et al. Sensing of halocarbons using femtosecond laser-induced fluorescence
CN103529000A (zh) 单光源双波长激光诱导击穿光谱测量装置及方法
Anoop et al. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma
US20160169805A1 (en) Combined raman spectroscopy and laser-induced breakdown spectroscopy
CN104849244B (zh) 一种多脉冲激光诱导击穿光谱测量方法及系统
CN103323435A (zh) 基于双脉冲散焦预烧蚀的激光诱导击穿光谱探测系统
Wang et al. Signal improvement using circular polarization for focused femtosecond laser-induced breakdown spectroscopy
CN203385665U (zh) 一种基于双脉冲散焦预烧蚀的激光诱导击穿光谱探测系统
TW201314199A (zh) 雷射誘發崩解光譜系統及分析方法
Sun et al. Determination of the limits of detection for aluminum-based alloys by spatially resolved single-and double-pulse laser-induced breakdown spectroscopy
CN201449373U (zh) 光电双脉冲激光诱导击穿光谱仪
Schiffern et al. Optimization of collinear double-pulse femtosecond laser-induced breakdown spectroscopy of silicon
Wang et al. Re-heating effect on the enhancement of plasma emission generated from Fe under femtosecond double-pulse laser irradiation
CN203606283U (zh) 单光源双波长激光诱导击穿光谱测量装置
Wang et al. Influence of spark discharge on Al (i) and alo spectra in femtosecond laser-induced aluminum plasmas
Cleveland et al. Quantitative analysis by resonant laser ablation with optical emission detection: Resonant laser-induced breakdown spectroscopy
Luo et al. Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses
CN204718958U (zh) 一种多脉冲激光诱导击穿光谱测量系统
Wang et al. Temperature dependence of emission intensity in femtosecond laser-induced Ge plasma
Merten et al. Optimizing gated detection in high-jitter kilohertz powerchip laser-induced breakdown spectroscopy
CN107782713A (zh) 一种可实现激光脉宽从飞秒到皮秒连续变化的激光诱导等离子体光谱分析设备
CN108072635A (zh) 一种利用激光诱导等离子体光谱分析设备实时在线测量玻璃生产过程中成分的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017566139

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016913957

Country of ref document: EP

Effective date: 20190325