WO2018035853A1 - 一种编码速率的调整方法及终端 - Google Patents

一种编码速率的调整方法及终端 Download PDF

Info

Publication number
WO2018035853A1
WO2018035853A1 PCT/CN2016/096945 CN2016096945W WO2018035853A1 WO 2018035853 A1 WO2018035853 A1 WO 2018035853A1 CN 2016096945 W CN2016096945 W CN 2016096945W WO 2018035853 A1 WO2018035853 A1 WO 2018035853A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
terminal
data communication
threshold
error
Prior art date
Application number
PCT/CN2016/096945
Other languages
English (en)
French (fr)
Inventor
沈丽
刘继武
周君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/327,970 priority Critical patent/US20190190652A1/en
Priority to PCT/CN2016/096945 priority patent/WO2018035853A1/zh
Priority to JP2019511601A priority patent/JP6821014B2/ja
Priority to CN201680080755.4A priority patent/CN108702237B/zh
Publication of WO2018035853A1 publication Critical patent/WO2018035853A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/353Adaptation to the channel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0014Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the source coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a terminal for adjusting a coding rate.
  • the terminal negotiates a higher coding rate with the other party for data communication.
  • the higher the coding rate the greater the amount of data generated in the communication.
  • the communication network in which the terminal in the high-speed mobile state is located tends to have poor coverage of the network signal, and cannot transmit the large amount of data generated by the high coding rate in time, resulting in abnormality of the data received by the communication partner, such as voice. Noise and jamming in communication reduce communication quality.
  • the present application provides a method and a terminal for adjusting a coding rate, and aims to solve the technical problem of poor communication quality when a terminal in high-speed mobile performs data communication.
  • a first aspect of the present application provides a method for adjusting a coding rate, including the following steps: the terminal determines whether the mobility rate exceeds a rate organization, and if the mobility rate exceeds a rate threshold, the terminal adjusts the first coding rate to be based on the last data of the terminal.
  • the second encoding rate determined by the encoding rate used in the communication. It can be seen that, before the data communication is performed, if the moving rate of the terminal is found to be higher than the preset rate threshold, the coding rate of the data communication may be determined according to the coding rate used in the last data communication, and the coding rate may be corrected in time. Avoid excessive coding rate for data communication to generate a large amount of data, such as data loss or error, and avoid too low coding rate to bring bad communication experience to users.
  • a second aspect of the present application provides a terminal, including: a memory and a processor that store an application and an application generated by the application, and the processor executes the application to determine whether the moving speed of the terminal exceeds a preset rate threshold, if the rate of movement of the terminal exceeds the rate threshold, adjusting the first coding rate to a second coding rate determined according to a coding rate used in the last data communication of the terminal. It can be seen that the terminal is in data communication. If the rate of movement of the terminal is found to be higher than the preset rate threshold, the coding rate of the current data communication can be determined according to the coding rate used in the last data communication, and the coding rate can be corrected in time to avoid excessive coding rate. Data communication generates a large amount of data, and data loss or error is abnormal, and too low coding rate is avoided to bring a bad communication experience to the user.
  • the second encoding rate is determined by determining whether the moving rate of the terminal in the last data communication exceeds a rate threshold. If the moving rate of the terminal in the last data communication does not exceed the rate threshold, the preset encoding rate is determined. Determined as the second coding rate, and if the moving rate of the terminal in the last data communication exceeds the rate threshold, the error rate of the last data communication is obtained, and then according to the difference between the error rate and the preset error threshold. Relationship to determine the second encoding rate.
  • the lower encoding rate of the budget is determined as the second encoding rate, and the encoding rate is lowered in time, so that the lower encoding rate is not generated.
  • the terminal can still transmit data to the other party in time, avoiding abnormal situations such as data loss or error, for example, avoiding cards such as voice communication.
  • the second coding rate is determined based on the error rate of the last data communication, preferably Timely correction of the coding rate, avoiding excessive coding rate for data communication to generate a large amount of data, occurrence of data loss or error, and the like, and avoiding a low coding rate to bring a bad communication experience to the user.
  • the preset error threshold includes a first error threshold and a second error threshold, where the first error threshold is greater than the second error threshold. Therefore, the error threshold is divided into two threshold levels, and then the bit error rate of the terminal in the last data communication is compared with the error threshold, and then the second coding rate is corrected in time, and the time correction is better.
  • the coding rate avoids excessive coding rate for data communication to generate a large amount of data, abnormality such as data loss or error, and avoiding a low communication rate to bring a bad communication experience to the user.
  • the terminal determines the second coding rate according to a relationship between a bit error rate and a preset error threshold, including: if the error rate is greater than the first error threshold, and the last data communication The encoding rate used in the encoding rate is the lowest encoding rate, and the encoding rate used in the last data communication is determined as the second encoding rate; or, if the error rate is greater than the first error threshold Value, and the encoding rate used in the last data communication is not the lowest encoding rate, then reducing the encoding rate used in the last data communication to the third encoding rate, and determining the third encoding rate as the second encoding rate; or, if If the bit error rate is less than the second error threshold, the coding rate used in the last data communication is increased to the fourth coding rate, and the fourth coding rate is determined as the second coding rate.
  • the second encoding rate is adjusted step by step based on the error rate of the terminal in the last data communication, so that the adjusted second encoding rate is more matched with the moving rate of the terminal, and the encoding rate is better corrected in time.
  • High coding rate for data communication produces a large amount of data, abnormalities such as data loss or error, and too low coding rate to bring a bad communication experience to the user.
  • FIG. 1 is a schematic diagram of communication negotiation between terminals
  • FIG. 2, FIG. 3 and FIG. 4 are flowcharts showing an implementation of a method for adjusting a coding rate according to Embodiment 1 of the present application;
  • FIG. 5 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of communication negotiation between terminals, taking the voice communication between the first terminal and the second terminal as an example, when the first terminal that moves at a high speed needs to perform data communication with the second terminal, according to the first
  • the voice coding rate supported by the terminal negotiates a coding rate with the second terminal, and then establishes voice communication based on the negotiated coding rate.
  • the Adaptive Multi-Rate-Wideband speech codec (AMR-WB) in the terminal has 9 rates: 6.6 kbps, 8.85 kbps, 12.65 kbps, 14.25 kbps, 15.85 kbps. , 18.25 kbps, 19.85 kbps, 23.05 kbps, 23.85 kbps, the terminal usually negotiates a coding rate of 23.85 kbps. Terminal coding The higher the rate, the larger the amount of voice data generated, whereby the communication quality of the higher coding rate is better in the same communication network.
  • the signal coverage capability of the communication network in which the terminal is in high-speed movement is usually poor, and the large amount of data generated by the excessive coding rate cannot be transmitted to the second terminal in time, so that the data received by the second terminal appears.
  • Abnormalities such as partial data loss or partial data mis-delivery, cause cardots or noise in voice communication, affecting communication quality.
  • FIG. 2 is a flowchart of an implementation of a method for adjusting a coding rate by using data communication of a terminal on a high-speed rail as an example in the embodiment of the present application.
  • the embodiment is applied to the first terminal or the first On the second terminal, to solve the technical problem of poor data communication quality of the high-speed mobile terminal, in FIG. 2, when the terminal is ready for data communication, the following steps are performed:
  • S201 It is judged whether it is in a state of high-speed movement. If the terminal is in a state of high-speed movement, S202 is executed, and if the terminal is not in a state of high-speed movement, S203 is executed.
  • the terminal can determine whether the terminal is in a high-speed state by using various methods to determine whether the terminal is in the state of riding the high-speed rail:
  • the terminal uses the content of the field highspeedflag in the system message fed back by the communication network system where the terminal is located to determine whether the terminal is in a high-speed moving state, and the field highspeedflag is used to indicate the mobile state of the terminal, for example, when the field highspeedflag is ture. , indicating that the terminal is in a state of high-speed movement, that is, in a state of riding on a high-speed rail private network.
  • the manner of determining whether the terminal is in the state of riding the high-speed rail may also be: the terminal uses the information collected by the internal sensor hub to determine whether the terminal is in a state of high-speed movement. For example, the terminal first uses a sensor hub to collect sensing parameters such as acceleration, tilt, and air pressure collected by various sensors such as an accelerometer, a gyroscope, and a barometer. After integrating the sensing parameters, for example, by classifying General algorithms such as controllers and decision trees are combined with specific implementations to obtain the state of the terminal, for example, stationary, walking, running, cycling, riding, etc., so that it can be determined whether it is in a high-speed moving state, that is, in a riding state of a high-speed rail private network.
  • sensing parameters such as acceleration, tilt, and air pressure collected by various sensors such as an accelerometer, a gyroscope, and a barometer.
  • S202 Determine whether the moving rate exceeds a preset rate threshold. If the moving rate exceeds the rate threshold, perform S204. If the moving rate does not exceed the rate threshold, perform S203.
  • the terminal can use the GPS and the Sensor hub to obtain the moving rate of the terminal, and then the terminal determines whether the moving rate of the terminal exceeds the rate threshold according to the obtained moving rate.
  • the terminal may calculate the moving rate of the terminal by using a corresponding algorithm when its own modem MODEM is in the link state, and then the terminal determines whether the moving rate exceeds the rate threshold.
  • the MODEM in the link state means that the terminal is in a data transmission state, such as a call state or a short message transmission state, and the MODEM is in a non-linked state, and the MODEM is in a non-linked state, that is, the terminal is in a standby state.
  • the rate threshold here can be, for example, 200 kilometers per hour.
  • S203 Perform data communication based on the current first coding rate.
  • S204 Adjust the current first coding rate of the terminal to a preset second coding rate, and execute S205.
  • S205 Perform data communication based on the adjusted second coding rate.
  • the second coding rate here is smaller than the first coding rate, and may be determined according to historical data or empirical data, and the second coding rate and the first coding rate are both coding rates supported by the codec of the terminal.
  • the first coding rate is 23.05 kbps.
  • the time is lowered.
  • the encoding rate of the terminal is 12.65 kbps or 14.25 kbps.
  • the coding rate of the terminal can be reduced, so that the terminal performs data communication based on the adjusted coding rate, so that Since the lower coding rate does not generate a larger amount of data, even in a communication network with poor network signal coverage capability, the terminal can still transmit data to the other party in time, thereby avoiding abnormal situations such as data loss or error. For example, it is possible to avoid the occurrence of jams and noises in voice communication, thereby improving the communication quality of data communication, and achieving the object of the present embodiment.
  • FIG. 3 is a flowchart of an implementation of another method for adjusting a coding rate in the embodiment.
  • the terminal may also adjust the corresponding role by determining the role of the terminal in the communication.
  • the communication mode achieves the purpose of improving communication quality.
  • the terminal in FIG. 1 implements the adjustment of the coding rate by performing the following steps in FIG. 3:
  • S301 Determine whether the moving rate exceeds the rate threshold. If the moving rate exceeds the rate threshold, perform S302. If the moving rate does not exceed the rate threshold, perform S303.
  • S302 Determine whether it is the initiator of the data communication. If the terminal is the initiator, execute S304. If the terminal is not the initiator, execute S305.
  • the terminal In data communication, there are the following communication characteristics: if the terminal is a calling party, the terminal can select an appropriate communication system for data communication, and if the terminal is the called party, the communication system of the terminal will be based on when the terminal receives the data communication request.
  • the communication network it is currently in is determined and cannot be changed or switched. Therefore, in this embodiment, the terminal first determines whether the terminal is the initiator or the receiver of the data communication.
  • the terminal determines whether it is the calling party or the called party in the voice communication.
  • S303 Perform data communication based on the current first coding rate.
  • S304 Determine whether the network signal value of the communication network where the terminal is located is less than a preset signal threshold. If the network signal value is less than the signal threshold, perform S306. If the network signal value is not less than the signal threshold, perform S305.
  • the network signal value herein refers to a parameter value capable of characterizing the network communication capability of the communication network, such as a data transmission rate value in a communication network or a signal strength value in a communication network, and the like. For example, when the network signal value is lower than the preset signal threshold, it indicates that the data transmission rate of the communication network is low at this time.
  • S306 Switch the communication system of the terminal, and execute S308.
  • the communication system can be switched by means of dual radio voice call continuity (SRVCC).
  • SSVCC dual radio voice call continuity
  • S307 Perform data communication based on the adjusted second coding rate.
  • S308 Perform data communication using the first coding rate in the switched communication system.
  • the terminal can judge the role played by the terminal in the communication. Whether the calling party or the called party adjusts the communication method to improve the communication quality.
  • the terminal may choose to switch the communication standard of the terminal to the 2G or 3G mode before performing data communication.
  • the terminal may choose to switch the communication standard of the terminal to the 2G or 3G mode before performing data communication.
  • the terminal may also be when the network signal value of the 4G network where it is currently located is not lower than the signal threshold, that is, when the data transmission rate is relatively high (the relatively high here is Refers to the case where the relative network signal value is lower than the signal threshold.) It is only necessary to reduce the encoding rate of the terminal, and the current communication system can still be used, thereby improving the communication quality.
  • the terminal may not directly perform the switching of the communication standard, but reduce the coding rate to a certain extent, and reduce the amount of data that needs to be transmitted, in the terminal.
  • data communication is performed in a state of high-speed movement, data transmission can be performed in time to improve the communication quality.
  • the communication quality is improved by the method of switching the communication system, and the communication quality is improved by reducing the coding rate, and the solution for improving the communication quality is satisfied.
  • User demand for communication quality is provided.
  • the terminal when the moving rate exceeds the rate threshold, the terminal adjusts the encoding rate used for data communication to a preset lower second encoding rate to improve the communication quality.
  • the second encoding rate may be inaccurate, such as the encoding rate is still relatively high or the encoding rate is adjusted too low. Therefore, the second encoding rate needs to be corrected.
  • FIG. 4 is a flowchart of another method for adjusting the coding rate provided by the embodiment of the present application.
  • the method is applicable to any terminal shown in FIG.
  • the terminal performs the correction of the second coding rate by performing the steps shown in FIG. 4, and the following steps may be included in FIG. 4:
  • S402 Determine whether the error rate is greater than a preset first error threshold. If the error rate is greater than the first error threshold, perform S403. If the error rate is not greater than the first error threshold, perform S404.
  • S403 Determine whether the second coding rate is the minimum coding rate supported by the terminal. If the second coding rate is the minimum coding rate supported by the terminal, perform S405 if the second coding rate is not the minimum coding rate supported by the terminal. , execute S406.
  • S404 Determine whether the error rate is less than a preset second error threshold, and the second error threshold is smaller than the first error threshold. If the error rate is less than the second error threshold, perform S407, if the error rate is not less than The second error threshold is executed in S405.
  • bit error rate mentioned in this paper can also be understood as the error ratio, that is, the ratio between the number of errors or missing codes and the total number of codes.
  • S405 Keep the second encoding rate unchanged. As the encoding rate of the next data communication of the terminal, perform S409.
  • S406 Decrease the second encoding rate, obtain the encoding rate of the next data communication by the terminal, and execute S409.
  • the lowering of the second encoding rate may be reduced to a rate lower than the current second encoding rate in the encoding rate supported by the terminal, where the rate file can be understood as the encoding rate level supported by the terminal.
  • the encoding rate level is used as a rate file.
  • the terminal supports the following encoding rates: 6.6 kbps, 8.85 kbps, 12.65 kbps, 14.25 kbps, 15.85 kbps, 18.25 kbps, 19.85 kbps, 23.05 kbps, 23.85 kbps.
  • the terminal lowering the second encoding rate may be a coding rate that reduces the encoding rate to a lower rate file of the current encoding rate:
  • the terminal reduces the second coding rate to 8.85 kbps; or the current second coding rate of the terminal is 19.85 kbps, if the error occurs. If the rate is greater than the first error threshold, the terminal decreases the second coding rate to 18.25kbps.
  • the terminal lowering the second encoding rate may be to reduce the encoding rate of the lower two rate files of the current encoding rate:
  • the terminal If the current second coding rate of the terminal is 23.05 kbps, if the error rate is greater than the first error threshold, the terminal reduces the second coding rate to 18.25 kbps; or the current second coding rate of the terminal is 6.6 kbps.
  • the rate is the minimum coding rate supported by the terminal. Even if the error rate is still greater than the first error threshold, the terminal does not reduce the second coding rate.
  • S407 Determine whether the second coding rate is the maximum coding rate supported by the terminal. If the second coding rate is the maximum coding rate supported by the terminal, perform S405 if the second coding rate is not the maximum coding rate supported by the terminal. , execute S408.
  • the encoding rate of the terminal in the last data communication is usually reduced.
  • the encoding rate to a certain extent is usually not the maximum encoding rate supported by the terminal. Therefore, in the actual application, S407 may be omitted, and when the error rate is less than the second error threshold, it is determined in S404. Go to S408.
  • S408 Increase the second coding rate, obtain the coding rate of the next data communication by the terminal, and execute S409.
  • the raised second coding rate may be a rate raised to at least one rate file higher than the current second coding rate in the coding rate supported by the terminal.
  • the terminal raising the second encoding rate may be increasing the encoding rate to a higher encoding rate of the current encoding rate:
  • the terminal raises the second coding rate to 14.25 kbps; or the current second coding rate of the terminal is 19.85 kbps. If the code rate is less than the second error threshold, the second coding rate is raised to 23.05 kbps.
  • the terminal raising the second encoding rate may be increasing the encoding rate of the two rate files of the current encoding rate:
  • the encoding rate of the higher first file of 23.05 kbps is already the maximum encoding rate supported by the terminal.
  • the terminal directly raises the second coding rate to the highest coding rate supported by the terminal, that is, 23.85 kbps; or the current second coding rate of the terminal is 23.85 kbps, where the coding rate is the maximum coding rate supported by the terminal. , the second encoding rate is no longer raised.
  • S409 Determine whether the moving rate exceeds the rate threshold. If the moving rate of the terminal exceeds the rate threshold, perform S410. If the moving rate of the terminal does not exceed the rate threshold, perform S411.
  • the terminal determines whether the moving rate exceeds the rate threshold, which is a step performed when the terminal is about to perform data communication, that is, the terminal judges whether the current moving rate exceeds the rate threshold before each data communication.
  • S410 Perform data communication using the processed second coding rate as the coding rate of the current data communication, such as the coding rate after S405, S406 or S408 processing.
  • S411 Perform data communication using the first coding rate.
  • the first error threshold and the second error threshold may be set according to communication quality requirements. For example, the first error threshold may be set to 5%, the second error threshold may be set to 1%, and when the error rate is greater than 5%, the coding rate of the terminal is low, and when the error rate is less than 1%, the terminal is characterized. The encoding rate is high, thereby adjusting the encoding rate accordingly.
  • the terminal judges whether the current moving rate exceeds the rate threshold before each data communication, and when the terminal determines that the current moving rate exceeds the rate threshold, the terminal uses the second encoding rate for data communication, where
  • the second encoding rate is the second encoding rate that has been corrected, and the correction scheme here depends on the bit error rate of the data communication that the terminal last time exceeded the rate threshold at the moving rate.
  • the terminal uses the second encoding rate for data communication as the first data communication of the terminal, and after the end of the first data communication, using the scheme shown in FIG. 4, the data communication that last time exceeds the rate threshold at the moving rate.
  • the second coding rate used is corrected according to the error rate. Specifically, the terminal obtains the error rate in the first data communication. If the error rate is greater than the first error threshold, the terminal reduces the first data communication use.
  • the encoding rate is a rate file, The coding rate of the second data communication is reached, and if the error rate is less than the second error threshold lower than the first error threshold, the terminal increases the coding rate used for the first data communication, and obtains the second time.
  • the encoding rate of data communication is a rate file, The coding rate of the second data communication is reached, and if the error rate is less than the second error threshold lower than the first error threshold, the terminal increases the coding rate used for the first data communication, and obtains the second time.
  • the terminal Before the second data communication is required, the terminal first determines whether its own moving rate exceeds the rate threshold. If the moving rate of the terminal exceeds the rate threshold, the terminal directly uses the encoding of the second data communication obtained in the foregoing. The second data communication is performed at the rate. If the moving rate of the terminal does not exceed the rate threshold, the terminal continues to use the original first encoding rate for the second data communication. If the terminal again appears that the moving rate exceeds the rate threshold, then The coding rate used for data communication of the terminal can be re-implemented in combination with the scheme shown in FIG. 2 or FIG. 3, and the coding rate at the time of adjustment uses the coding rate of the second data communication; after the end of the second data communication Using the scheme shown in FIG.
  • the second encoding rate used in the last data communication in which the moving rate exceeds the rate threshold is corrected according to the bit error rate, specifically, the terminal obtains its error in the second data communication.
  • Rate if the bit error rate is greater than the first error threshold, the terminal reduces the encoding used for the second data communication.
  • Rate a rate file to obtain a coding rate of the third data communication, and if the error rate is less than the second error threshold, the terminal increases the coding rate used by the second data communication to obtain the third data communication. Coding rate.
  • the terminal calibrates the encoding rate according to the bit error rate of the data communication, and uses the encoding rate used for data communication when the next moving rate exceeds the rate threshold, thereby adjusting the terminal at The most suitable coding rate for data communication during the movement in which the moving rate exceeds the threshold, so that the error rate is maintained between the first error threshold and the second error threshold, thereby improving the terminal in the movement in which the moving rate exceeds the threshold. Communication quality during data communication.
  • FIG. 5 is a schematic structural diagram of a terminal in FIG. 1, and the terminal in FIG. 5 may include the following structure:
  • the bus 501 is used to connect various components in the terminal.
  • the communication interface 502 and the antenna 503 are connected to the bus 501 via the communication interface 502.
  • the memory 504 is connected to the bus 501 for storing data generated by applications and application operations.
  • the processor 505 is configured to execute an application to implement a function: determining a moving speed of the terminal Whether the preset rate threshold is exceeded, if the moving rate of the terminal exceeds the rate threshold, adjusting the first encoding rate of the terminal to the second encoding rate, and determining the second encoding rate according to the encoding rate used in the last data communication of the terminal, the antenna 503 Data communication is performed using the second encoding rate.
  • FIG. 5 shows an implementation structure of the terminal.
  • the implementation functions of each structure in the terminal may be implemented in the foregoing, and are not described in detail herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本申请公开了一种编码速率的调整方法及终端,方法包括:判断终端的移动速率是否超过预设的速率阈值,如果终端的移动速率超过速率阈值,调整第一编码速率为根据终端上一次数据通信中使用的编码速率所确定的第二编码速率,由此,终端基于上一次数据通信使用的编码速率所确定的编码速率进行数据通信,适时进行编码速率的调整,不会因为预先设置的编码速率过高而产生较大量的数据量,进而即使在网络信号覆盖能力较差的通信网络中,终端仍然能够及时将数据传输到对方,避免出现数据丢失或传错等异常情况,例如,避免造成如语音通信中的卡顿和杂音等,由此来提高数据通信的通信质量。

Description

一种编码速率的调整方法及终端 技术领域
本申请涉及通信领域,尤其涉及一种编码速率的调整方法及终端。
背景技术
在移动通信中,终端会与对方协商一个较高的编码速率进行数据通信。编码速率越高,通信中所产生的数据量越大。
而处于高速移动状态的终端所处的通信网络往往网络信号覆盖能力较差,无法将高编码速率所产生的大数据量的数据及时传输出去,导致通信对方所接收到的数据出现异常,如语音通信中的杂音和卡顿,降低通信质量。
发明内容
本申请提供了一种编码速率的调整方法及终端,目的在于解决高速移动中的终端进行数据通信时通信质量较差的技术问题。
本申请的第一方面提供了一种编码速率的调整方法,其中包括以下步骤:终端判断移动速率是否超过速率组织,如果移动速率超过速率阈值,则终端调整第一编码速率为根据终端上一次数据通信中使用的编码速率所确定的第二编码速率。可见,在进行数据通信之前,如果发现终端的移动速率高于预设的速率阈值,则可以根据上一次进行数据通信时使用的编码速率确定本次进行数据通信的编码速率,及时矫正编码速率,避免过高的编码速率进行数据通信产生较大的数据量,出现数据丢失或传错等异常,也避免过低的编码速率带给用户不良的通信体验。
本申请的第二方面提供了一种终端,其中包括有以下结构:存储应用程序及应用程序运行所产生的数据的存储器及处理器,处理器通过执行应用程序,以判断终端的移动速率是否超过预设的速率阈值,如果终端的移动速率超过速率阈值,调整第一编码速率为根据所述终端上一次数据通信中使用的编码速率所确定的第二编码速率。可见,终端在进行数据通信之 前,如果发现终端的移动速率高于预设的速率阈值,则可以根据上一次进行数据通信时使用的编码速率确定本次进行数据通信的编码速率,及时矫正编码速率,避免过高的编码速率进行数据通信产生较大的数据量,出现数据丢失或传错等异常,也避免过低的编码速率带给用户不良的通信体验。
在一个实现方式中,第二编码速率通过判断上一次数据通信中终端的移动速率是否超过速率阈值来确定,如果上一次数据通信中终端的移动速率未超过速率阈值,则将预设的编码速率确定为第二编码速率,而如果上一次数据通信中终端的移动速率超过速率阈值,则获取上一次数据通信的误码率,再根据误码率与预设的误码阈值之间的带下关系来确定第二编码速率。由此,在上一次数据通信中终端的移动速率未超过速率阈值时,将预算的较低的编码速率确定为第二编码速率,及时降低编码速率,由此较低的编码速率不至于产生较大量的数据量,进而即使在网络信号覆盖能力较差的通信网络中,终端仍然能够及时将数据传输到对方,避免出现数据丢失或传错等异常情况,例如,避免造成如语音通信中的卡顿和杂音等,由此来提高数据通信的通信质量;而在上一次数据通信中终端的移动速率超过速率阈值时,基于上一次进行数据通信的误码率来确定第二编码速率,更好的及时矫正编码速率,避免过高的编码速率进行数据通信产生较大的数据量,出现数据丢失或传错等异常,也避免过低的编码速率带给用户不良的通信体验。
在一个实现方式中,预设的误码阈值包括第一误码阈值及第二误码阈值,第一误码阈值大于第二误码阈值。由此,将误码阈值分成两个阈值等级,再将上一次数据通信中终端的误码率与误码阈值进行大小关系的比较,进而及时对第二编码速率进行校正,更好的及时矫正编码速率,避免过高的编码速率进行数据通信产生较大的数据量,出现数据丢失或传错等异常,也避免过低的编码速率带给用户不良的通信体验。
在一个实现方式中,终端根据误码率与预设的误码阈值之间的大小关系,确定所述第二编码速率,包括:如果误码率大于第一误码阈值,且上一次数据通信中使用的编码速率为最低编码速率,则将上一次数据通信中使用的编码速率确定为第二编码速率;或者,如果误码率大于第一误码阈 值,且上一次数据通信中使用的编码速率不为最低编码速率,则降低上一次数据通信中使用的编码速率至第三编码速率,将第三编码速率确定为第二编码速率;或者,如果误码率小于第二误码阈值,则升高上一次数据通信中使用的编码速率至第四编码速率,将第四编码速率确定为第二编码速率。由此,基于上一次数据通信中终端的误码率来逐级调整第二编码速率,使得调整后的第二编码速率更加与终端的移动速率相匹配,更好的及时矫正编码速率,避免过高的编码速率进行数据通信产生较大的数据量,出现数据丢失或传错等异常,也避免过低的编码速率带给用户不良的通信体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为终端之间进行通信协商的示意图;
图2、图3及图4分别为本申请实施例一提供的一种编码速率的调整方法的实现流程图;
图5为本申请实施例中终端的结构示意图。
具体实施方式
图1所示为终端之间进行通信协商的示意图,以第一终端与第二终端之间的语音通信为例,高速移动的第一终端在需要与第二终端进行数据通信时,根据第一终端所支持的语音编码速率,与第二终端协商一个编码速率,再基于协商的编码速率建立语音通信。
例如,终端中的自适应可变速率多模式宽带语音编解码器(Adaptive Multi-Rate-Wideband speech codec,AMR-WB)有9种速率:6.6kbps,8.85kbps,12.65kbps,14.25kbps,15.85kbps,18.25kbps,19.85kbps,23.05kbps,23.85kbps,终端进行协商时通常采用23.85kbps的编码速率。终端的编码 速率越高,所产生的语音数据量越大,由此在相同的通信网络中,编码速率越高的终端的通信质量越好。
但在高速移动中的终端所处的通信网络的信号覆盖能力通常较差,造成过高的编码速率所产生的大数据量无法及时传输到第二终端,使得第二终端所接收到的数据出现异常,如部分数据丢失或部分数据误传等,造成语音通信中的卡顿或杂音,影响通信质量。
图2所示为本申请实施例中以高铁上终端的数据通信为例,所提供的一种编码速率的调整方法的实现流程图,本实施例应用在图1所示的第一终端或第二终端上,用以解决在高速移动的终端的数据通信质量较差的技术问题,图2中,终端在准备进行数据通信时,执行以下步骤:
S201:判断是否处于高速移动的状态,如果终端处于高速移动的状态,执行S202,如果终端没有处于高速移动的状态,执行S203。
以处于高速运行的高铁中的终端进行数据通信为例,终端可以利用多种方式判断是否处于高速移动的状态,以判断出终端是否处于乘坐高铁的状态:
例如:终端利用终端所在的通信网络系统所反馈的系统消息中的字段highspeedflag的内容来判断所述终端是否处于高速移动的状态,字段highspeedflag用以指示终端的移动状态,例如在字段highspeedflag为ture时,表明终端处于高速移动的状态,即处于高铁专网的乘车状态。
判断出终端是否处于乘坐高铁的状态的方式还可以为:终端利用内部的感测器中枢(sensor hub)所采集到的信息来判断终端是否处于高速移动的状态。例如,终端首先利用sensor hub来采集各种传感器如加速度传感器、陀螺仪及气压计等所采集到的传感参数,如加速度、倾斜度及气压等,在整合这些传感参数之后,通过例如分类器、决策树等通用算法结合具体实现来获得终端的状态,例如,静止、走路、跑步、骑车、乘车等,从而可以确定是否处于高速移动状态,即处于高铁专网的乘车状态。
其中,只有在S201中,判断出终端当前处于高速移动的状态后,才需要进一步执行S202,判断终端的移动速率是否超过速率阈值,而如果终端没有在高速移动的状态,则无需进行具体的移动速率的判断。
S202:判断移动速率是否超过预设的速率阈值,如果移动速率超过速率阈值,执行S204,如果移动速率没有超过速率阈值,执行S203。
本实施例中,终端可以利用GPS及Sensor hub来获得终端的移动速率,之后终端再根据所获得的移动速率,判定终端的移动速率是否超过速率阈值。
或者,终端可以在它自己的调制解调器MODEM处于链接状态下利用相应的算法计算获得终端的移动速率,之后,终端再判断移动速率是否超过速率阈值。
其中的MODEM处于链接状态是指终端处于数据传输状态,如通话状态或短消息传输状态等,区别于MODEM处于非链接状态,MODEM处于非链接状态是指终端处于待机状态。
这里的速率阈值例如可以为每小时200公里。
S203:基于当前的第一编码速率进行数据通信。
S204:调整终端当前的第一编码速率为预设的第二编码速率,执行S205。
S205:基于调整后的第二编码速率进行数据通信。
这里的第二编码速率小于第一编码速率,可以根据历史数据或经验数据确定,且第二编码速率与第一编码速率均为终端的编码解码器所能支持的编码速率。
例如,以终端中的编码解码器为AMR-WB为例,第一编码速率为23.05kbps,本实施例中,终端在判断出处于高速移动的状态,且车速超过200km/h时,此时降低终端的编码速率到12.65kbps或者14.25kbps等。
也就是说,本实施例中,终端在进行数据通信之前,如果在发现终端处于高速移动的乘车状态时,可以降低终端的编码速率,使得终端基于调整后的编码速率进行数据通信,这样,由于较低的编码速率不至于产生较大量的数据量,进而即使在网络信号覆盖能力较差的通信网络中,终端仍然能够及时将数据传输到对方,避免出现数据丢失或传错等异常情况,例如,避免造成如语音通信中的卡顿和杂音等,由此来提高数据通信的通信质量,实现本实施例目的。
图3所示,为本实施例中另一种编码速率的调整方法的实现流程图,在终端判断出移动速率超过速率阈值时,还可以通过判断终端在通信中的角色的不同,来调整相应的通信方式,实现改善通信质量的目的,图1中的终端通过执行图3中的以下步骤实现编码速率的调整:
S301:判断移动速率是否超过速率阈值,如果移动速率超过速率阈值,执行S302,如果移动速率没有超过速率阈值,执行S303。
本实施例中,终端判断移动速率是否超过速率阈值的实现可以参考图2中相关步骤内容,此处不再详述。
S302:判断是否为数据通信的发起方,如果终端是发起方,执行S304,如果终端不是发起方,执行S305。
在数据通信中,有以下通信特性:终端如果是主叫方,可以选择合适的通信制式进行数据通信,而终端如果是被叫方,则终端的通信制式会在终端接收到数据通信请求时根据其当前所处的通信网络确定,且无法进行更改或切换。因此,本实施例中,终端首先判断该终端是数据通信的发起方还是接收方。
以语音通信为例,终端判断自己是语音通信中的主叫方还是被叫方。
S303:基于当前的第一编码速率进行数据通信。
S304:判断终端所在通信网络的网络信号值是否小于预设的信号阈值,如果网络信号值小于信号阈值,执行S306,如果网络信号值不小于信号阈值,执行S305。
这里的网络信号值是指能够表征通信网络的网络通信能力的参数值,如通信网络中的数据传输速率值或通信网络中的信号强度值,等等。例如,在网络信号值低于预设的信号阈值时,表明此时通信网络的数据传输速率较低。
S305:调整终端当前的第一编码速率为预设的第二编码速率,执行S307。
S306:切换终端的通信制式,执行S308。
本实施例中可以通过双模单待无线语音呼叫连续性(Single Radio Voice Call Continuity,SRVCC)的方式进行通信制式的切换。
S307:基于调整后的第二编码速率进行数据通信。
S308:以切换后的通信制式,使用第一编码速率进行数据通信。
基于前文中的通信特性,以终端初始所处的通信网络为4G网络为例,本实施例中,终端在判断出它的移动速率超过速率阈值时,可以通过判断终端在通信中所扮演的角色是主叫方还是被叫方,来调整通信方式,从而改善通信质量。
例如,终端在它当前所处的4G网络的网络信号值低于信号阈值时,也就是数据传输速率相对较低的时候,可以选择将终端的通信制式切换到2G或3G模式后再进行数据通信,以改善数据通信的通信质量;
或者,结合本实施例前文中实现,终端还可以在它当前所处的4G网络的网络信号值不低于信号阈值时,也就是数据传输速率相对较高的时候(这里的相对较高,是指相对网络信号值低于信号阈值的情况),只需降低终端的编码速率即可,仍然可以使用当前的通信制式,进而改善通信质量。
本实施例中,终端在所处的通信网络的网络通信能相对较好时,可以不直接进行通信制式的切换,而是在一定程度上降低编码速率,减少需要进行传输的数据量,在终端处于高速移动的状态进行数据通信时,能够及时的进行数据传输,达到改善通信质量的目的。
由此,相对于现有技术中通过切换通信制式达到改善通信质量的目的的实现方案,本实施例中,通过降低编码速率的方式达到改善通信质量的目的,丰富改善通信质量的解决方案,满足用户对通信质量的需求。
图2或图3中,终端在它的移动速率超过速率阈值时,调整进行数据通信时所使用的编码速率到一个预设的较低的第二编码速率,达到改善通信质量的目的。
而在实际实现中,这个第二编码速率可能存在不准确的情况,如编码速率仍然比较高或者编码速率调整过低等,因此,需要对第二编码速率进行校正。
为实现对第二编码速率的校正,图4所示为本申请实施例提供的另一种编码速率的调整方法的流程图,本方法适用于图1所示的任一终端,终 端通过执行图4所示步骤,实现对第二编码速率的校正,图4中可以包括有以下步骤:
S401:在终端使用第二编码速率进行数据通信并且结束之后,获得使用第二编码速率进行数据通信的误码率。
S402:判断误码率是否大于预设的第一误码阈值,如果误码率大于第一误码阈值,执行S403,如果误码率不大于第一误码阈值,执行S404。
S403:判断第二编码速率是否为终端所支持的最小的编码速率,如果第二编码速率为终端所支持的最小的编码速率,执行S405,如果第二编码速率不是终端所支持的最小的编码速率,执行S406。
S404:判断误码率是否小于预设的第二误码阈值,第二误码阈值小于第一误码阈值,如果误码率小于第二误码阈值,执行S407,如果误码率不小于第二误码阈值,执行S405。
本文中所提到的误码率也可以理解为误码比例,即出现错误或丢失的码的数量与码的总数量之间的比例。
S405:保持第二编码速率不变,作为终端下一次进行数据通信的编码速率,执行S409。
S406:降低第二编码速率,得到终端下一次进行数据通信的编码速率,执行S409。
这里的降低第二编码速率,可以为降低到终端所支持的编码速率中低于当前的第二编码速率至少一个速率档的速率,这里的速率档可以理解为终端所支持的编码速率等级,每个编码速率等级作为一个速率档。
以终端的编码解码器AMR-WB为例,终端支持以下编码速率:6.6kbps,8.85kbps,12.65kbps,14.25kbps,15.85kbps,18.25kbps,19.85kbps,23.05kbps,23.85kbps。
在一种实现中,终端降低第二编码速率可以为降低编码速率到当前编码速率的低一个速率档的编码速率:
如终端当前的第二编码速率为12.65kbps,若误码率大于第一误码阈值,则终端降低第二编码速率为8.85kbps;或者,终端当前的第二编码速率为19.85kbps,若误码率大于第一误码阈值,则终端降低第二编码速率为 18.25kbps。
在另一种实现中,终端降低第二编码速率可以为降低编码速率为当前编码速率的低两个速率档的编码速率:
如终端当前的第二编码速率为23.05kbps,若误码率大于第一误码阈值,则终端降低第二编码速率为18.25kbps;或者,终端当前的第二编码速率为6.6kbps,此时编码速率为终端所支持的最小的编码速率,即使误码率仍然大于第一误码阈值,终端也不再对第二编码速率进行降低处理。
S407:判断第二编码速率是否为终端所支持的最大的编码速率,如果第二编码速率为终端所支持的最大的编码速率,执行S405,如果第二编码速率不是终端所支持的最大的编码速率,执行S408。
需要说明的是,在实际应用中,如果本次终端的移动速率超过速率阈值,且上一次数据通信中终端的移动速率也超过速率阈值,那么上一次数据通信中终端的编码速率通常是被降低到一定程度的编码速率,通常不会是终端所支持的最大编码速率,因此,本实施例在实际应用中,可以省略S407,而是在S404判断出误码率小于第二误码阈值时,执行S408。
S408:升高第二编码速率,得到终端下一次进行数据通信的编码速率,执行S409。
这里的升高第二编码速率,可以为升高到终端所支持的编码速率中高于当前的第二编码速率至少一个速率档的速率。
在一种实现中,终端升高第二编码速率可以为升高编码速率到当前编码速率的高一个速率档的编码速率:
如终端当前的第二编码速率为12.65kbps,若误码率小于第二误码阈值,则终端升高第二编码速率为14.25kbps;或者,终端当前的第二编码速率为19.85kbps,若误码率小于第二误码阈值,则升高第二编码速率为23.05kbps。
在另一种实现中,终端升高第二编码速率可以为升高编码速率为当前编码速率的高两个速率档的编码速率:
如终端当前的第二编码速率为23.05kbps,在误码率小于第二误码阈值时,而23.05kbps的高一档的编码速率已经是终端所支持的最大编码速率 了,则终端直接升高第二编码速率为终端所支持的最高编码速率,即23.85kbps;或者,终端当前的第二编码速率为23.85kbps,此时编码速率为终端所支持的最大的编码速率,则不再对第二编码速率进行升高处理。
S409:判断移动速率是否超过速率阈值,如果终端的移动速率超过速率阈值,执行S410,如果终端的移动速率没有超过速率阈值,执行S411。
这里终端判断移动速率是否超过速率阈值,是在终端即将进行数据通信时所执行的步骤,也就是说,终端在每次进行数据通信之前的都会对其当前移动速率是否超过速率阈值进行判断。
S410:使用经过处理后的第二编码速率作为本次进行数据通信的编码速率进行数据通信,如S405、S406或S408处理后的编码速率。
S411:使用第一编码速率进行数据通信。
第一误码阈值及第二误码阈值可以根据通信质量需求进行设置。例如,第一误码阈值可以设置为5%,第二误码阈值可以设置为1%,误码率大于5%时,表征终端的编码速率偏低,误码率小于1%时,表征终端的编码速率偏高,由此相应调整编码速率。
需要说明的是,图4所示流程为调整终端的编码速率为第二编码速率后,进行了数据通信,基于此次数据通信对终端编码速率进行校正,并将校正后的第二编码速率用做下一次数据通信的实现流程,这种方案适用于终端每次进行数据通信之前对编码速率进行校正的场景中。
也就是说,终端在每次进行数据通信之前的都会对其当前移动速率是否超过速率阈值进行判断,在终端判断出其当前移动速率超过速率阈值时,会使用第二编码速率进行数据通信,这里的第二编码速率是经过校正处理的第二编码速率,而这里的校正方案取决于终端最近一次在移动速率超过速率阈值的数据通信的误码率。
例如,将终端使用第二编码速率进行数据通信作为终端的第1次数据通信,在第1次数据通信结束之后,使用图4所示的方案,对最近一次在移动速率超过速率阈值的数据通信所使用的第二编码速率根据误码率进行校正,具体为,终端获得在第1次数据通信中的误码率,如果误码率大于第一误码阈值,终端降低第1次数据通信使用的编码速率一个速率档,得 到所述第2次数据通信的编码速率,而如果误码率小于低于第一误码阈值的第二误码阈值,终端则升高第1次数据通信使用的编码速率,得到第2次数据通信的编码速率。
而在需要进行第2次的数据通信之前,终端首先判断它自己的移动速率是否超过速率阈值,如果终端的移动速率超过速率阈值,终端则直接用前文中所得到的第2次数据通信的编码速率进行第2次数据通信,如果终端的移动速率没有超过速率阈值,终端则还是继续使用最原始的第一编码速率进行第2次数据通信,若终端再次出现移动速率超过速率阈值的情况,则可以结合图2或图3所示的方案再次实现对终端进行数据通信所使用的编码速率的调整,调整时的编码速率使用上述第2次数据通信的编码速率;在第2次数据通信结束之后,使用图4所示的方案,对最近一次在移动速率超过速率阈值的数据通信所使用的第二编码速率根据误码率进行矫正,具体为终端获得它在第2次数据通信中的误码率,如果误码率大于第一误码阈值,终端降低第2次数据通信使用的编码速率一个速率档,得到所述第3次数据通信的编码速率,而如果误码率小于第二误码阈值,终端则升高第2次数据通信使用的编码速率,得到第3次数据通信的编码速率。
以此类推,在每次数据通信结束之后,终端根据数据通信的误码率来校准编码速率,并用作下一次移动速率超过速率阈值时的数据通信所使用的编码速率,由此,调整终端在移动速率超过阈值的移动中进行数据通信时的最合适的编码速率,使得误码率保持在第一误码阈值及第二误码阈值之间,进而改善终端在移动速率超过阈值的移动中进行数据通信时的通信质量。
图5为图1中终端的结构示意图,图5中的终端可以包括以下结构:
总线501,用以连接终端中的各个部件。
通信接口502及天线503,天线503通过通信接口502连接在总线501上。
存储器504,连接在总线501上,用于存储应用程序及应用程序运行所产生的数据。
处理器505,用于执行应用程序,以实现功能:判断终端的移动速率 是否超过预设的速率阈值,如果终端的移动速率超过速率阈值,调整终端第一编码速率为第二编码速率,第二编码速率根据所述终端上一次数据通信中使用的编码速率确定,天线503使用第二编码速率进行数据通信。
图5所示为终端的一种实现结构,终端中各个结构的实现功能可以参考前文中实现,此处不再详述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。

Claims (8)

  1. 一种编码速率的调整方法,其特征在于,应用于终端,所述方法包括:
    判断所述终端的移动速率是否超过预设的速率阈值;
    如果所述终端的移动速率超过所述速率阈值,调整第一编码速率为第二编码速率,其中,所述第二编码速率根据所述终端上一次数据通信中使用的编码速率确定。
  2. 根据权利要求1所述的方法,其特征在于,所述第二编码速率的确定,包括:
    判断上一次数据通信中所述终端的移动速率是否超过所述速率阈值;
    如果所述上一次数据通信中所述终端的移动速率未超过所述速率阈值,则将预设的编码速率确定为所述第二编码速率;或者,
    如果所述上一次数据通信中所述终端的移动速率超过所述速率阈值,则获取所述上一次数据通信的误码率,并根据所述误码率与预设的误码阈值之间的大小关系,确定所述第二编码速率。
  3. 根据权利要求2所述的方法,其特征在于,所述预设的误码阈值包括第一误码阈值和第二误码阈值,所述第一误码阈值大于所述第二误码阈值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述误码率与预设的误码阈值之间的大小关系,确定所述第二编码速率,包括:
    如果所述误码率大于所述第一误码阈值,且所述上一次数据通信中使用的编码速率为最低编码速率,则将所述上一次数据通信中使用的编码速率确定为所述第二编码速率;或者,
    如果所述误码率大于所述第一误码阈值,且所述上一次数据通信中使用的编码速率不为最低编码速率,则降低所述上一次数据通信中使用的编码速率至第三编码速率,将所述第三编码速率确定为所述第二编码速率;或者,
    如果所述误码率小于所述第二误码阈值,则升高所述上一次数据通信中使用的编码速率至第四编码速率,将所述第四编码速率确定为所述第二 编码速率。
  5. 一种终端,其特征在于,所述方法包括存储器及处理器,其中:
    所述存储器,用于存储应用程序及应用程序运行所产生的数据;
    所述处理器,用于执行所述应用程序,以实现功能:判断所述终端的移动速率是否超过预设的速率阈值,如果所述终端的移动速率超过所述速率阈值,调整第一编码速率为第二编码速率,所述第二编码速率根据所述终端上一次数据通信中使用的编码速率确定。
  6. 根据权利要求5所述的终端,其特征在于,所述处理器确定所述第二编码速率,具体为:
    判断上一次数据通信中所述终端的移动速率是否超过所述速率阈值;
    如果所述上一次数据通信中所述终端的移动速率未超过所述速率阈值,则将预设的编码速率确定为所述第二编码速率;或者,
    如果所述上一次数据通信中所述终端的移动速率超过所述速率阈值,则获取所述上一次数据通信的误码率,并根据所述误码率与预设的误码阈值之间的大小关系,确定所述第二编码速率。
  7. 根据权利要求6所述的终端,其特征在于,所述预设的误码阈值包括第一误码阈值和第二误码阈值,所述第一误码阈值大于所述第二误码阈值。
  8. 根据权利要求6或7所述的终端,其特征在于,所述处理器根据所述误码率与预设的误码阈值之间的大小关系,确定所述第二编码速率,具体为:
    如果所述误码率大于所述第一误码阈值,且所述上一次数据通信中使用的编码速率为最低编码速率,则将所述上一次数据通信中使用的编码速率确定为所述第二编码速率;或者,
    如果所述误码率大于所述第一误码阈值,且所述上一次数据通信中使用的编码速率不为最低编码速率,则降低所述上一次数据通信中使用的编码速率至第三编码速率,将所述第三编码速率确定为所述第二编码速率;或者,
    如果所述误码率小于所述第二误码阈值,则升高所述上一次数据通信 中使用的编码速率至第四编码速率,将所述第四编码速率确定为所述第二编码速率。
PCT/CN2016/096945 2016-08-26 2016-08-26 一种编码速率的调整方法及终端 WO2018035853A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/327,970 US20190190652A1 (en) 2016-08-26 2016-08-26 Encoding Rate Adjustment Method and Terminal
PCT/CN2016/096945 WO2018035853A1 (zh) 2016-08-26 2016-08-26 一种编码速率的调整方法及终端
JP2019511601A JP6821014B2 (ja) 2016-08-26 2016-08-26 符号化レート調節方法および端末
CN201680080755.4A CN108702237B (zh) 2016-08-26 2016-08-26 一种编码速率的调整方法及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096945 WO2018035853A1 (zh) 2016-08-26 2016-08-26 一种编码速率的调整方法及终端

Publications (1)

Publication Number Publication Date
WO2018035853A1 true WO2018035853A1 (zh) 2018-03-01

Family

ID=61246712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096945 WO2018035853A1 (zh) 2016-08-26 2016-08-26 一种编码速率的调整方法及终端

Country Status (4)

Country Link
US (1) US20190190652A1 (zh)
JP (1) JP6821014B2 (zh)
CN (1) CN108702237B (zh)
WO (1) WO2018035853A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006282B2 (en) * 2018-04-12 2021-05-11 Phantom Auto Inc. Optimizing wireless networking using a virtual geographic information system overlay
CN110503965B (zh) * 2019-08-29 2021-09-14 珠海格力电器股份有限公司 一种调制解调器语音编解码器的选择方法和存储介质
CN115883009A (zh) * 2021-09-29 2023-03-31 元祚国际科技发展有限公司 卫星遥测数据传输方法及相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754289A (zh) * 2008-11-28 2010-06-23 中兴通讯股份有限公司 一种适用于多种用户状态的调制编码方式调度方法及系统
CN102104994A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中向用户发射数据的方法和基站
US20110194518A1 (en) * 2008-10-24 2011-08-11 Fujitsu Limited Transmission apparatus, reception apparatus, communication system and communication method using adaptive hybrid automatic retransmission request method
CN102377730A (zh) * 2010-08-11 2012-03-14 中国电信股份有限公司 音视频信号的处理方法及移动终端
CN104219539A (zh) * 2014-09-29 2014-12-17 公安部第一研究所 一种基于td-lte信道检测的视频编码与传输的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450729B2 (ja) * 1998-12-21 2003-09-29 日本電信電話株式会社 パケット通信装置
JP3565344B2 (ja) * 2002-02-21 2004-09-15 株式会社エヌ・ティ・ティ・ドコモ 干渉除去システム、及び、干渉除去方法
JP2003289380A (ja) * 2002-03-28 2003-10-10 Nec Corp 音声符号化方式の変更方法、通信システム、通信網および通信端末
JP3993469B2 (ja) * 2002-06-12 2007-10-17 三菱電機株式会社 移動通信システムおよび適応変調方法
JP4242606B2 (ja) * 2002-06-20 2009-03-25 株式会社エヌ・ティ・ティ・ドコモ 通信制御システム、通信制御方法、移動局及び基地局
US7359004B2 (en) * 2003-05-23 2008-04-15 Microsoft Corporation Bi-level and full-color video combination for video communication
EP1679895A1 (en) * 2003-10-16 2006-07-12 NEC Corporation Medium signal transmission method, reception method, transmission/reception method, and device
DE602004004376T2 (de) * 2004-05-28 2007-05-24 Alcatel Anpassungsverfahren für ein Mehrraten-Sprach-Codec
KR20060077928A (ko) * 2004-12-30 2006-07-05 엘지노텔 주식회사 레이트 어댑테이션을 사용하는 통신 시스템에서 전송데이터 레이트 결정 방법
US9781433B2 (en) * 2005-01-26 2017-10-03 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems, methods, and apparatus for real-time video encoding
US20080043643A1 (en) * 2006-07-25 2008-02-21 Thielman Jeffrey L Video encoder adjustment based on latency
CN101232347B (zh) * 2007-01-23 2011-01-12 联芯科技有限公司 语音传输的方法及amr系统
JP5493471B2 (ja) * 2009-05-27 2014-05-14 ソニー株式会社 情報処理装置および方法
CN102237971B (zh) * 2010-04-28 2015-09-16 中兴通讯股份有限公司 调整数据发送速率的方法和装置
CN102752037B (zh) * 2012-06-28 2015-01-28 东南大学 一种延时反馈下多天线中继预编码的鲁棒构造方法
US9826464B2 (en) * 2013-03-26 2017-11-21 Bandwidthx Inc. Systems and methods for establishing wireless connections based on access conditions
CN104348574A (zh) * 2013-07-25 2015-02-11 普天信息技术有限公司 调整调制编码方案的方法和装置
CN103560862B (zh) * 2013-10-18 2017-01-25 华为终端有限公司 移动终端及其编码速率控制方法
US10524179B2 (en) * 2015-04-10 2019-12-31 Qualcomm Incorporated Rate adaptation during handoffs
KR102515541B1 (ko) * 2016-07-19 2023-03-30 한국전자통신연구원 이동무선백홀 네트워크에서의 고속 이동체 단말 및 그의 제어정보 전송 방법과, 기지국의 제어정보 수신 방법
CN108289316B (zh) * 2017-01-10 2020-10-16 中国移动通信有限公司研究院 一种小区选择或重选方法、小区切换参数的设置方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194518A1 (en) * 2008-10-24 2011-08-11 Fujitsu Limited Transmission apparatus, reception apparatus, communication system and communication method using adaptive hybrid automatic retransmission request method
CN101754289A (zh) * 2008-11-28 2010-06-23 中兴通讯股份有限公司 一种适用于多种用户状态的调制编码方式调度方法及系统
CN102104994A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中向用户发射数据的方法和基站
CN102377730A (zh) * 2010-08-11 2012-03-14 中国电信股份有限公司 音视频信号的处理方法及移动终端
CN104219539A (zh) * 2014-09-29 2014-12-17 公安部第一研究所 一种基于td-lte信道检测的视频编码与传输的方法

Also Published As

Publication number Publication date
CN108702237B (zh) 2021-08-31
CN108702237A (zh) 2018-10-23
JP6821014B2 (ja) 2021-01-27
US20190190652A1 (en) 2019-06-20
JP2019531645A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US8964115B2 (en) Transmission capacity probing using adaptive redundancy adjustment
US5982766A (en) Power control method and system in a TDMA radio communication system
JP2968706B2 (ja) 移動無線機
CN109818874B (zh) 数据传输方法、设备及计算机存储介质
WO2018035853A1 (zh) 一种编码速率的调整方法及终端
US20200382596A1 (en) INTERMEDIATE DEVICE, IoT TERMINAL AND METHOD OF IoT TERMINAL ACCESSING IoT PLATFORM
KR20060110783A (ko) 송수신 시스템, 송신 장치, 송신 방법, 수신 장치, 수신방법, 및 프로그램
CN110149167B (zh) 动态调整编码的方法、装置、移动终端及存储介质
EP1519508B1 (en) Receiver apparatus and communication method
EP2544506A1 (en) Method, device and system for voice communication
KR20060121938A (ko) 무선 VoIP의 코덱 지원 용량 확장
JP2009010757A (ja) 無線端末及び無線通信方法
JPWO2007029618A1 (ja) 移動携帯端末およびその制御方法
US7328038B2 (en) Power control in mobile communication systems
CN104333728A (zh) 音视频传输调控方法、装置和系统
WO2002063899A9 (en) Method and apparatus for controlling an operative setting of a communications link
US8358637B2 (en) Load balancing method for mobile communication system, base station and terminal
WO2000047006A1 (en) Adaptation of codec operating modes in a telecommunication network
JPH11284569A (ja) 送信電力制御方式
JP2000244560A (ja) 通信サービス品質制御方法及び装置
WO2010000910A1 (en) Transmission capacity probing using adaptive redundancy adjustment
WO2014101212A1 (zh) 多速率语音业务的信道编码方法、信道译码方法和装置
JP2006222643A (ja) 情報伝送装置及び無線ユニット
CN110505658B (zh) 语音速率调整方法、终端以及VoLTE系统
CA2550451C (en) Information radio transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019511601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913875

Country of ref document: EP

Kind code of ref document: A1