WO2018033109A1 - 适用于光固化成型的3d打印陶瓷义齿的方法和装置 - Google Patents

适用于光固化成型的3d打印陶瓷义齿的方法和装置 Download PDF

Info

Publication number
WO2018033109A1
WO2018033109A1 PCT/CN2017/097796 CN2017097796W WO2018033109A1 WO 2018033109 A1 WO2018033109 A1 WO 2018033109A1 CN 2017097796 W CN2017097796 W CN 2017097796W WO 2018033109 A1 WO2018033109 A1 WO 2018033109A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
toner
base material
resin tank
printing
Prior art date
Application number
PCT/CN2017/097796
Other languages
English (en)
French (fr)
Inventor
万欣
刘震
于清晓
林锦睿
Original Assignee
上海联泰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海联泰科技股份有限公司 filed Critical 上海联泰科技股份有限公司
Priority to CN201780045788.XA priority Critical patent/CN109641385B/zh
Publication of WO2018033109A1 publication Critical patent/WO2018033109A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present application relates to the technical field of denture manufacturing, and particularly relates to a method and device for 3D printed ceramic dentures suitable for photocuring.
  • Stereolithography (SL) and DLP (Digital Light Procession) based light-cured projection 3D printing technology are stereoscopic curing techniques.
  • Stereolithography (including laser photocuring and DLP photocuring, collectively referred to as photocuring) has the following advantages: (1) high dimensional accuracy, tolerance range from ⁇ 0.03mm to ⁇ 0.1mm; (2) excellent surface Quality, compared with other 3D forming technologies such as FDM, the surface quality is good; (3) It is possible to make a complex model and a relatively fine model; (4) It can directly produce a vanishing type with a hollow structure for investment casting.
  • the stereocurable molding material is generally a photocurable resin. Compared with other cured materials, the photocurable resin has the advantages of fast curing speed, no heating, and energy saving.
  • DLP is the abbreviation of “Digital Light Procession”, which means digital light processing, which means that this technology first digitally processes the image signal and then projects the light. It is based on the digital micromirror component developed by TI (Texas Instruments, USA) - DMD (Digital Micromirror Device) to complete the display of visual digital information. To be specific, DLP projection technology uses digital micromirror wafers (DMDs) as the primary critical processing component to implement digital optical processing. 3D printing technology based on DLP projection, commonly known as surface exposure 3D printing technology.
  • DMDs digital micromirror wafers
  • a liquid photosensitive resin is used as a material, and a light source of a specific wavelength is used, and a corresponding pattern is projected by DLP technology, and the liquid photosensitive resin is selectively cured to realize printing.
  • DLP technology generally static DLP projection technology, ie DLP The projection is fixed on the pedestal, and the DLP projector does not move. When each layer is exposed, the corresponding image is projected, and the corresponding exposure time is maintained to complete the curing of each layer.
  • the preparation of ceramics has a long and mature traditional craftsmanship, advancing with the times, the emergence of new molding technology makes ceramic production and manufacturing follow the development of science and innovation.
  • 3D printing technology provides a new molding idea for the preparation of ceramics, which makes the preparation process from the original material reduction to the additive production, and changes the ceramic production preparation to require the cutting equipment such as mold and machining to produce.
  • Traditional molding process In 3D printing technology, SL and DLP have high molding precision and good surface quality, but the materials for printing are limited, mainly based on photosensitive resin.
  • the purpose of wearing dentures is to improve the chewing function of the patient while also improving the aesthetics of the oral teeth.
  • the manufacturing process of traditional dentures is as follows: (1) using silicone as a pre-mold, the thing made is called a tray, which is equivalent to molding the silicone with dentures in the mouth, and collecting the shape of the denture with silica gel; (2) model making, one The situation is that the gypsum is put into the tray, and the cutting and dividing line are more stable after 2 hours, and the special tooth to be repaired is repaired.
  • the plaster model is generally stable for 24 hours; the base of the denture is used, and there are two kinds of plastic base and gypsum base. The plastic base is better.
  • the tray is directly scanned and the computer is used to establish three-dimensional data. And finally print the model directly; (3)
  • the plaster gums should be removed, leaving the neckline; for the dentures to be treated, depending on the doctor, the gums are usually removed or the armpit is about 1mm.
  • the neck line requirements can be printed clearly; (4) the abutment, generally using a machined metal or zirconia abutment; (5) making a crown, generally A CNC machine, by cutting the multi-axis CNC machine; crown color is essential, with the ceramic powder (with a variety of colored) to the crown, the bake curing, the three second range.
  • the traditional denture processing adopts the CNC cutting method (reduced material manufacturing), the denture production process is relatively complicated, the material utilization is insufficient, there are many scraps, and the material consumption is more.
  • the traditional embedded casting method produces a denture with lower manufacturing precision, low production efficiency, and poor matching of the processed denture with the patient.
  • the purpose of the present application is to provide a method and a device suitable for photocuring 3D printed ceramic dentures, which solves the complicated manufacturing process and low production efficiency in the current denture manufacturing process. There are many consumables and poor production accuracy and poor matching.
  • the present application provides, in a first aspect, a method for photocuring a 3D printed ceramic denture, which is executed by a control system, and specifically includes the following steps: acquiring a slice pattern corresponding to layered image data in a 3D model of a tooth; Wherein, the 3D model is determined based on the tooth data conversion obtained by pre-scanning, the layered image data is obtained by previously cutting the 3D model of the tooth by data processing; before printing, the liquid liquid containing the base material The bit is replenished to a preset height and stirred, and the base material is proportioned by the photosensitive resin and the ceramic powder; the slice pattern is sequentially projected by bottom projection to complete the layer by layer; wherein, before each layer is printed, it is judged whether The rehydration is performed, and the liquid is agitated according to a preset agitation action activation condition.
  • the present application provides, in a second aspect, a tooth printing method, which is applied to a 3D printing device for layer-by-layer printing based on a bottom surface photo-curing technique, comprising: projecting a slice pattern toward a bottom of a resin groove by using a bottom projection method to cure a corresponding resin cavity a liquid of the graphics area; wherein the slice graphic is obtained based on the layered image data in the acquired 3D model of the tooth; the liquid comprises a base material, or a premixed mixture of the base material and the toner; Controlling the working platform for printing to adjust the printing position; repeating the steps of projection and adjustment to print the 3D print of the denture corresponding to the 3D model of the tooth; in the layer-by-layer printing process, based on the base material corresponding to the sliced image to be projected The liquid is replenished into the resin tank in proportion to the toner; and the liquid in the resin tank is stirred according to a preset stirring action starting condition.
  • the manner of refilling the resin tank according to the ratio of the base material and the toner ratio corresponding to the slice pattern to be projected comprises: detecting the liquid in the resin tank The height of the bit determines the amount of the base material and the toner remaining in the resin tank; the base material and/or the toner are replenished to the resin tank in accordance with the ratio of the base material to the toner corresponding to the slice pattern to be projected.
  • a device suitable for photocuring a 3D printed ceramic denture comprising a fixed frame and a resin tank mounted on the fixed frame for holding a liquid, a light source projection system for performing projection curing, Z-axis lifting system, stirring mechanism, rehydration device, working platform and control system; the light source projection system is located below the resin tank, the stirring portion of the stirring mechanism is probed into the cavity of the resin tank, and the liquid outlet of the rehydration device is connected to the resin tank,
  • the working platform is mounted on the Z-axis lifting system and can move up and down along the Z-axis; a liquid level sensor is arranged in the resin tank, and an electromagnetic valve or a driving pump is arranged at a liquid outlet of the liquid refilling device; a liquid level sensor, an electromagnetic valve or a driving pump,
  • the light source projection system, the Z-axis lifting system, the stirring mechanism, and the liquid replenishing device are respectively connected to the control system; wherein the resin tank is for holding the liquid containing the
  • the slice pattern is cured layer by layer; wherein, whether to perform rehydration before each layer printing, and stirring the liquid according to a preset agitation action start condition; wherein the 3D model is based on pre-scanned teeth Determined by data conversion, the layered image data is obtained by previously cutting a 3D model of the tooth by data processing.
  • the present application provides, in a fourth aspect, a device suitable for photocuring a 3D printed ceramic denture, comprising a fixed frame and a resin tank mounted on the fixed frame for holding a liquid, a light source projection system for performing projection curing, Z-axis lifting system, stirring mechanism, rehydration device, working platform and control system; the light source projection system is located below the resin tank, the Z-axis lifting system is disposed on the rear side of the resin tank, and the stirring mechanism is disposed on the left side of the resin tank, the stirring mechanism The stirring portion is probed into the cavity of the resin tank, and the liquid outlet of the liquid replacement device is connected to the resin tank.
  • the working platform is mounted on the Z-axis lifting system and can move up and down along the Z-axis; the liquid level sensor is arranged in the resin tank, and the liquid replacement is performed.
  • the liquid outlet of the device is provided with an electromagnetic valve or a driving pump; the liquid level sensor, the electromagnetic valve or the driving pump, the light source projection system, the Z-axis lifting system, the stirring mechanism and the liquid replenishing device are respectively connected with the control system; wherein the resin tank is used For containing a liquid containing a base material; the light source projection system is used to adopt a bottom Projecting the method of projecting a slice pattern to the bottom of the resin tank to cure the liquid of the corresponding pattern area in the resin tank; wherein the slice pattern is obtained based on the layered image data in the acquired tooth 3D model; the liquid containing base a premixed base material and a mixture of toners; the Z-axis lifting system drives the working platform to adjust a printing position; the stirring mechanism is used to agitate the liquid in the resin tank; Hold
  • the present application relates to a method for photocuring a 3D printed ceramic denture, which has the following beneficial effects: the printing molding process does not require a large amount of base material, and only a small amount of supplementary base material is required for printing, only the base is required.
  • the viscosity of the resin is very large, and the liquid is subjected to its own gravity in the bottom projection mode, and the base material formed by mixing the resin with low and medium viscosity can be naturally leveled, and the base material formed by mixing the resin with high viscosity is supported by the stirring mechanism.
  • the stirring action can also ensure the liquid leveling at the bottom of the resin tank to achieve normal printing; in order to ensure the obtained denture strength, the liquid base material mixes the photosensitive resin and the fine particle ceramic powder in a certain ratio to directly realize the 3D printing ceramic tooth.
  • the present application relates to a device suitable for photocuring molded 3D printed ceramic dentures, which has the following beneficial effects:
  • the denture processing has an industrialized device, a unique stirring mechanism, and can realize a high-viscosity base material. Fully mixed, and ensure uniform mixing, avoiding material precipitation at the bottom of the resin tank; unique toner configuration function, through the matching ratio of the colorant and the base material, the color of the mixed liquid material can be adjusted to achieve personalized color
  • the denture processing and the stirring mechanism can ensure the uniformity of the color adjustment; the height and the real-time monitoring and adjustment of the liquid level of the resin tank can be ensured, the smooth progress of the printing and molding process can be ensured, and the automation control efficiency can be improved.
  • the process of obtaining the denture by the method and device of the present application is compared with the traditional cutting method using the CNC cutting method, which is an additive manufacturing method, the material is fully utilized, there is basically no scrap, material saving, and three-dimensional scanning technology Combined with the simplified denture production process, digital dental production is realized, and the denture phase is made with the traditional embedded casting method. Compared with the obtained denture, the precision of the denture is higher and the production efficiency is higher.
  • the batch processing of the personalized denture can be realized, and the production efficiency of the personalized denture processing is greatly improved; in the customized denture processing, combined with the three-dimensional scanning technology Shorten the denture processing cycle, can realize the color matching, and even save the traditional manual porcelain connection, ensure the denture color and the natural tooth closeness; combined with the digital dental, avoid the traditional plaster mold, after the 3D printing processing
  • the denture can achieve a higher degree of matching with the patient, and the printed denture is subjected to secondary curing treatment to ensure sufficient curing, and isostatic pressing treatment is performed to ensure the density of the ceramic material, thereby fully ensuring the strength of the obtained denture.
  • FIG. 2 is a schematic view of the mechanism of the device for printing ceramic dentures according to the present application.
  • the figures are: 1 fixed frame, 2 resin tank, 3 working platform, 4 light source projection system, 51 motor one, 52 vertical transmission mechanism, 61 motor two, 62 stirring scraper, 7 liquid replacement device
  • the three axes of X, Y and Z are defined in the view of Fig. 2.
  • the three axes of X, Y and Z are perpendicular to each other in three dimensions, wherein the XY direction refers to the horizontal direction, the Z axis is in the vertical direction, the X axis is the left and right direction, and the Y axis is the front and rear direction. .
  • the data of the patient's teeth is acquired by three-dimensional scanning, and the condition of the patient's teeth is analyzed according to the scanned tooth data.
  • a 3D model of the tooth is obtained by designing the shape of the denture by dental design software.
  • the obtained 3D model of the tooth is cross-sectionally divided along the Z-axis direction (ie, along the height direction) by data processing, wherein the tooth is formed on the cross-sectional layer formed by each adjacent cross-sectional division
  • the outline of the 3D model outlines each layer of image data after the slice (ie, layered image data).
  • the cross-section layer is sufficiently thin.
  • the outlines are consistent and the corresponding figure of the outline is called a sliced figure.
  • the slice pattern may be described by image data or coordinate data used to construct a scan path vector.
  • the light source projection system is a surface exposure based projection system, such as a projection system including a DMD chip and a projection light source, the slice graphics being described by image data containing pixel points.
  • the light source projection system is a scan-based projection system, such as a projection system including a laser source and a scanning galvanometer, wherein the slice pattern is described by coordinate data on a spot scanning path, wherein the spot scanning path is used.
  • a scan-based projection system such as a projection system including a laser source and a scanning galvanometer, wherein the slice pattern is described by coordinate data on a spot scanning path, wherein the spot scanning path is used.
  • the color requirement is also set corresponding to the sliced graphic, the corresponding layered image, or the layered parameter corresponding to the number of layers, ie, the base material and Colorant ratio.
  • the base and toner ratios can be set layer by layer to provide a gradual color requirement.
  • the color of the gradation requires one to be set every N layers, where N is a natural number and N is not necessarily a fixed value.
  • each layer slice pattern including the obtained 3D model slice of the tooth is introduced into a 3D printing apparatus.
  • the present application provides a method suitable for photocuring a 3D printed ceramic denture.
  • the method is primarily performed by a control system of a 3D printing device.
  • the control system includes, but is not limited to, an industrial computer, an electronic device based on an embedded operating system, a computer device, and the like.
  • the control system connects the light source projection system, the Z-axis lifting system, the stirring mechanism, the rehydration device, the valve or the driving pump, the liquid level sensor, and the like in the 3D printing device through the data line, and performs the following steps on the light source projection system, the Z-axis
  • the lifting system, the stirring mechanism, the rehydration device, the valve, and the like are subjected to timing control to manufacture a denture 3D print corresponding to the 3D model of the tooth.
  • the slice pattern corresponding to the layered image data in the tooth 3D model is acquired.
  • a slice pattern corresponding to each layered image is obtained, which is a cross-sectional contour pattern of the 3D model in which the corresponding layered image is located.
  • the manner in which the control system acquires each layered image of the 3D model of the tooth may be manually imported or downloaded to the control system using the Internet.
  • Step (2) is also performed simultaneously or indiscriminately with step (1), that is, before the printing, the liquid level containing the base material is replenished to a predetermined height and stirred, and the base material is made of photosensitive resin and ceramic powder. Proportional.
  • the liquid level height of the liquid contained in the resin tank should be the minimum liquid level height that satisfies the printing requirement. Therefore, it is necessary to detect whether the liquid level of the liquid in the resin tank reaches a preset height (ie, the minimum liquid level) before printing. Before printing, the technician can manually detect or use the liquid level sensor to detect the liquid level of the liquid in the resin tank by the control system.
  • the liquid comprises a binder or further comprises a toner.
  • the base material is proportioned by a photosensitive resin and a ceramic powder.
  • the toner is used in conjunction with the manufacture of a denture 3D print with color requirements that can be added to the resin tank prior to printing. Obviously, whether or not to add a toner before printing is related to the color requirement of the print, for example, if the initial layer or layers of the 3D model of the tooth are marked with a base and a toner ratio, the toner and the base are adjusted during the refilling. The ratio of the material, on the contrary, only the base material can be added to the preset height.
  • control system can first detect the current liquid level height through the liquid level sensor. If it is detected that the liquid level height in the resin tank reaches the preset height, the step (2) can be directly performed without performing the step (3). ); conversely, the liquid level containing the binder is replenished to a preset height.
  • the control system agitates the mixed liquid in the resin tank according to a preset agitation action activation condition. After the preparation work before the printing is completed, the control system can start the printing process based on the received printing instruction or the detection data before the printing, that is, repeat the following steps (3) and (4) to print the corresponding tooth 3D model. Denture 3D prints.
  • the slice pattern is projected in a bottom projection manner.
  • the control system provides the slice pattern to the light source projection system in a printing order, and the light source projection system projects the slice pattern onto the bottom surface of the resin tank, so that the liquid located between the bottom surface of the resin tank and the work platform is solidified.
  • the light source projection system is a surface exposure based projection system
  • the projected slice graphic is an image described by pixels, and the corresponding light source projection system projects the slice graphic as a whole into the resin slot. bottom.
  • the light source projection system is a spot scanning based projection system
  • the projected slice graphic is an image described by coordinate data
  • the corresponding light source projection system is based on coordinate data in the slice graphic.
  • a scan path vector is generated and scanned in a two-dimensional plane at the bottom of the resin bath.
  • step (4) the work platform for printing is controlled to adjust the print position.
  • the control system controls the Z-axis lifting system to move upward to peel the solidified layer from the bottom surface of the resin tank after each projection of the slice pattern, and then controls the Z-axis lifting system to move downward to be stripped.
  • the solidified layer is higher from the bottom surface of the resin tank than the next solidified layer, and the liquid is filled in the corresponding gap by the movement of the Z-axis lifting system.
  • the control system monitors the remaining liquid in the resin tank according to the liquid level height provided by the liquid level sensor in the resin tank. When the liquid level height is lower than the preset height, it is determined to perform rehydration, when monitoring When the liquid level height is higher than or equal to the preset height, be sure to continue the printing step.
  • the timing of the liquid level height determination can be made at the end of each layer of printing. Specifically, after step (4) is performed, step (5) is performed: determining whether to perform rehydration based on the liquid level height, and if yes, performing step (6), otherwise returning to step (3) to perform projection of the next layer slice pattern process. For example, the control system compares the liquid level height data provided by the liquid level sensor with the preset height before each layer of printing, and if the liquid level height data is greater than the preset height, performs step (3), otherwise, executes Step (6).
  • the liquid is refilled until the liquid level in the resin tank is higher than the predetermined height.
  • the control system controls to open the liquid outlet of the fluid replacement device, such as opening a valve at the liquid outlet or pumping the pump to facilitate the flow of the supplemented liquid into the resin tank, and the liquid level after the liquid replacement is higher than the preset height.
  • control the liquid outlet of the rehydration device such as closing the corresponding valve or turning off the drive pump.
  • the liquid supplemented by the control system may be a binder and/or a toner.
  • control system controls the liquid replenished by the rehydration device and the remaining liquid component in the resin tank. Consistent. After the rehydration is completed, return to step (3) to continue the projection step of the next layer of the slice pattern until the printing is completed.
  • control system can include a monitoring module that separately monitors the level of the liquid level and a separate printing module that monitors the level of the liquid level provided by the level sensor, the printing module controlling the light source The projection system and the Z-axis lifting system perform layer-by-layer printing.
  • the monitoring module detects that the liquid level height is lower than the preset height, transmitting an instruction to interrupt the printing to the printing module of the control system, and the printing module performs the liquid filling operation of the foregoing step (6) before performing the next layer printing.
  • the control system also performs step (7) of agitating the liquid according to a preset agitation action activation condition.
  • the stirring action starting condition includes but is not limited to: 1) starting the stirring action at the stirring interval.
  • the stirring interval is set according to the time at which the uniformly stirred base material naturally precipitates out under static conditions, and the stirring action is started each time the stirring interval time is reached.
  • a stirring interval time T2 is preset, wherein T1>T2 (T1 and T2 are time periods instead of time points), after the previous stirring is completed. After the time interval of T2, the next stirring is performed. 2) Set the stirring start condition based on the rehydration operation.
  • the agitation starting condition may be set to agitate the liquid in the resin tank between each completion of the rehydration operation and the next projection.
  • the agitation starting condition may be adjusted according to the rehydration-based operation, for example, re-timing the agitation interval time based on the rehydration operation and controlling the execution of the agitation action according to the agitation interval time.
  • the print denture has a color requirement
  • the T3 duration (T2>T3) is performed, and the chromaticity does not match, the stirring operation is performed, and the T2 duration is judged. It is necessary to recalculate this stirring action after the T3 duration.
  • the printing action and the stirring action are each other's start-stopping condition, that is, when the preset stirring action starting condition is satisfied, if the printing action is performed, the stirring action is blocked, and it is necessary to wait for the printing action to be completed. After that, the stirring operation is performed, that is, the execution of the stirring operation is delayed. Similarly, when the stirring operation is performed, the printing operation is not performed even if a print command is input.
  • control system agitates the liquid in the resin tank by controlling the stirring mechanism and the Z-axis lifting system.
  • control system controls the Z-axis lifting system to drive the working platform and the printing member attached to the workpiece platform to rise to at least higher than the height of the stirring mechanism, hover, and then control the stirring mechanism for stirring; after the stirring is completed,
  • the Z-axis lifting system is controlled to descend to a distance between the print member and the bottom surface of the resin tank by a layer of solidified layer to perform the next layer of projection.
  • steps (6) and (7) can be performed simultaneously in a more time-saving manner when the execution conditions of steps (6) and (7) are simultaneously met. It will not be described in detail here.
  • the control system completes the printing process of the 3D print of the denture by performing the above steps, after the printing is completed, To improve the strength of the resulting denture, the technician also needs to perform a secondary curing treatment on the 3D printing member to ensure sufficient curing, and a sintering-isostatic pressing treatment is performed to ensure the density of the ceramic material.
  • the present application also analyzes the color requirements set in the 3D model during the printing process, and controls the 3D printing device.
  • the liquid ratio in the resin tank is adjusted based on the color requirement to print a denture 3D print that meets the color requirements.
  • the control system further performs the step (8): comparing the base material to the toner ratio P1 corresponding to the slice pattern to be projected and the resin tank in the resin tank without a necessary timing relationship with the step (5). Whether the base material and the toner ratio P2 match, if yes, step (5) may be performed, or step (3) may be performed to continue printing; if not, step (9) is performed.
  • the control system in order to determine the ratio P2, has an initial liquid mixing ratio P0 in the resin tank.
  • the ratio of the base to the toner in the initial liquid ratio is a:b mass ratio.
  • the liquid is replenished into the resin tank based on the ratio of the base material to the toner corresponding to the slice pattern to be projected.
  • control system determines the amount of the base material and the toner remaining in the resin tank based on detecting the liquid level height in the resin tank, according to the ratio of the base material to the toner corresponding to the slice pattern to be projected, The base material and/or the toner are replenished in the resin tank.
  • the control system uses the liquid level height h0 after each refill as one of the parameters of the adjustment ratio.
  • the liquid level height h1 in the current resin tank is detected, and according to the determined liquid level height difference (h0-h1), the current base material and the toner ratio P2 in the resin tank respectively The quality of the binder and the toner in the resin tank is determined.
  • the control system can determine the amount of the base material and/or the toner to be replenished into the resin tank according to the ratio P1 (which may be mass, or the flow rate calculated based on the mass of the outlet of the liquid replacement device unit time), and control the fluid replacement The device performs corresponding rehydration.
  • the control system calculates the current resin tank according to the liquid level height of the current resin tank and the toner mixture in the current resin tank.
  • the control system will calculate the amount of the toner to be added and control the completion of the addition. action.
  • Flow sensors are provided at the outlets of the base material and the toner, so that the control system can precisely control the amount of both of them.
  • liquid level-based rehydration operation and the ratio-based rehydration operation can be performed simultaneously, such as replenishing liquid according to the color requirement of the layer to be printed during rehydration and making the resin tank
  • the liquid reaches the preset height. That is, when the prepared denture has a color requirement, the toner is further added during the rehydration, so that the liquid level of the mixture of the base material and the toner reaches a preset height;
  • the ratio of the material to the toner is a preset ratio.
  • the above step (8) can be performed before each layer is printed.
  • the ratio of the base material to the toner corresponding to the chromaticity requirement of the layer to be printed is compared with the current mixture ratio of the base material and the toner; if the two ratios are inconsistent, according to the reception
  • the current liquid level of the base material and the colorant mixture calculate the amount of the base material and the colorant in the current mixed liquid, and combine the ratio of the base material to the colorant to be printed to control the base material and / or the amount of toner added.
  • control system performs the above step (8) when printing to the layer of the corresponding color requirement change according to the color requirement of every N layer set in the 3D model of the tooth. For example, after parsing the color requirement and the layer correspondence relationship, the control system counts the layers required by the same color, so that step (8) is performed when the corresponding layer number is reached.
  • the feed device and the toner may be separately contained in the feeding device.
  • the chamber for holding the liquid alone can separately feed the corresponding liquid into the resin tank; or the liquid outlet of each chamber is connected to the common liquid outlet, and the corresponding liquid is replenished to the resin tank through the common liquid outlet.
  • the control system controls the amount of the base material and the toner to be replenished according to a preset ratio during the rehydration process.
  • the feeding device provides two separate containers for the base and toner, and a valve is provided for the outlet of each chamber.
  • the on-off time of the valve of the corresponding base and/or the valve of the corresponding toner is individually controlled according to the determined amount of replenishment.
  • the cavity of the rehydration device is divided into a base cavity and a toner cavity; according to the amount of the base material in the resin tank, after the toner is added in a certain ratio, if the height of the preset liquid is not reached, the base material is The coloring agent will be added to the resin tank at the same time according to the ratio of the ratio until the preset liquid level height; in this case, the liquid replacement device is provided with a flow sensor corresponding to the liquid outlet of the base chamber and the lower end of the toner chamber.
  • the color can be controlled by the addition of the toner, and the base material and the colorant are controlled by controlling the amount of the toner added and the amount of the base added for the photocurable printing.
  • the ratio can control the color of the ceramic teeth.
  • the feeding device may further comprise a mixing container for holding the mixed liquid, and the base material and the toner are placed in the mixing container according to a preset ratio, and the base material is used in the liquid replacement process by the control system. After mixing with the toner in a predetermined ratio, it is added to the resin tank as a mixed liquid.
  • the control system controls the feeding device to perform proportional arrangement of the photosensitive resin, the ceramic powder, the toner, and the like, and prepares a material formula with different colors, and directly replenishes the material prepared by the color.
  • the advantage is good consistency, the disadvantage is that the same batch cannot change color.
  • the method further includes the step (10) while performing the step (9) or after performing (9).
  • the liquid in the resin tank is stirred.
  • the ratio of the mixed liquid to be added is different from the remaining ratio in the resin tank, in order to ensure the color of the 3D print, it is necessary to perform the stirring while rehydrating or after rehydration.
  • the agitation control process performed in this step is the same as or similar to the agitation control process of the step (7) and will not be described in detail herein.
  • the method further comprises: step after performing any one or more of (6), (7), (9), (10), or before performing step (3) (11), that is, a step of waiting for a preset time to ensure that the surface of the liquid is leveled before the sliced pattern is projected. For example, after the stirring is completed and waiting for a preset time, the slice pattern corresponding to the current layer image data is projected by the bottom projection method, and exposure curing is performed.
  • the addition of a waiting step not only ensures that the liquid surface is leveled, but also ensures that the bottom of the groove is sufficiently filled with liquid.
  • the steps of stirring, rehydrating, and waiting for the preset time mentioned in each of the above embodiments may be performed one or more times before the layer is cured.
  • one execution can have higher printing efficiency, and multiple executions can ensure rehydration accuracy and uniform mixing. Therefore, the waiting preset time (hereinafter referred to as waiting time) can be at least divided into the waiting time t1 and the waiting time t2 (t1>t2).
  • the data of the patient's teeth is obtained by three-dimensional scanning, the condition of the patient's teeth is analyzed according to the scanned tooth data, the shape of the denture is designed by the dental design software, and the 3D model of the denture is obtained; then, according to the acquired 3D model of the denture, the required condition is considered.
  • Denture color characteristics, the photosensitive resin, ceramic powder, and toner are proportioned to a mixed liquid (photosensitive resin and The ceramic powder is proportioned into a base material for 3D printing of ceramic teeth; finally, the printed ceramic teeth are sintered-isostatically pressed to improve the denture strength, and the obtained ceramic teeth are finally used in the diseased population through the dental department.
  • Special glue is fixed on the abutment.
  • the following is a method for applying a 3D printed ceramic denture for photocuring in the present application.
  • the detailed steps in obtaining the 3D model of the denture to complete the 3D printing of the ceramic denture are as follows:
  • the data information obtained by the foregoing processing may include color information of the denture to be made
  • the rehydration device includes a liquid level sensor disposed in the resin tank, and the liquid level sensor is connected to the control system) to make the liquid level of the base material in the resin tank reach a preset height, if If the denture has a color requirement, the adjusted liquid level height is the liquid level height of the mixed liquid obtained by mixing the base material and the toner; the control system determines the liquid level signal fed back by the feedback system according to the liquid level detection to determine whether it is necessary to continue. Rehydration is performed to ensure that the liquid level of the base material in the resin tank reaches the predetermined height.
  • the ratio of the base material and the toner flowing into the resin tank during the rehydration process is a preset ratio; the preset height of the liquid level controlled by the control system is the base material and the color agent. The level of the mixture after mixing.
  • control system determines whether to stir the liquid in the resin tank according to a preset stirring condition and controls the stirring.
  • the slice pattern corresponding to each layer of image data is successively projected by means of bottom projection, and the light source is exposed, the layering is completed layer by layer, and the control system is based on the liquid level before each layer printing.
  • the liquid level signal fed back by the feedback system is highly detected to determine whether rehydration is required to ensure that the liquid level of the base material in the resin tank is maintained at the preset height. If the denture has a color requirement, the ratio of the base material and the toner flowing into the resin tank during the rehydration process is a preset ratio; before each layer is printed, the preset height of the liquid level controlled by the control system is the base material and The liquid level of the mixed liquid after mixing the toner according to the ratio. And before each layer is printed, the control system determines whether to agitate the liquid in the resin tank and control the stirring according to the preset stirring conditions.
  • the preset stirring action starting conditions during printing can be as follows, but not limited to the following two cases.
  • System First, according to the uniformly stirred base material, the precipitation time T1 is naturally precipitated under static condition, and a stirring interval time T2 is preset, wherein T1>T2 (T1 and T2 are time periods instead of time points), before the previous time After the completion of the stirring, the next stirring is performed after the interval of T2; secondly, when the printing denture has the color requirement, whether the color chromaticity of the mixed material of the base material and the toner meets the color requirement of the current layer is determined whether it is necessary to carry out Stirring, and in this case, the above judgment method still exists, that is, calculating the starting point of the T2 duration, including the action of stirring due to the chromaticity discrepancy, for example, after the previous stirring, the T3 duration (T2>T3), When the stirring operation is performed because the chromaticity does not match, the judgment of the T2 time length needs to be recalculated
  • printing action and agitation action are each other's start-stopping condition", and it is understood that when the preset agitation action start condition is satisfied, if the printing action is performed, the stirring action is blocked, and it is necessary to wait for the printing operation to be completed.
  • the stirring action is performed, that is, the execution of the stirring action is delayed. Similarly, when the stirring operation is performed, the printing operation is not performed even if a print command is input.
  • the above-mentioned method for printing ceramic dentures has the beneficial effects that the printing molding process does not require a large amount of base material, and only a small amount of the base material can be used for printing, and only the base material can be used to flatten the XY space corresponding to the working platform to start printing;
  • layer thickness grading with a minimum layer thickness of 10 microns or less can be achieved, ensuring the accuracy of the printed denture;
  • the resin added with the ceramic powder has a high viscosity, and the liquid is subjected to its own gravity in the bottom projection mode,
  • the base material formed by mixing low- and medium-viscosity resins can be naturally leveled.
  • the stirring of the stirring mechanism can also ensure the liquid level at the bottom of the resin tank to achieve normal printing;
  • the liquid base material mixes the photosensitive resin and the ceramic powder of the fine particles in a certain ratio to directly realize the 3D printed ceramic teeth.
  • the above method makes the denture production process simplified, the production efficiency is improved, the consumables used are reduced, the precision of the denture is significantly improved, and the matching is better.
  • the liquid level height detection feedback system detects the liquid level in the resin tank in real time, and feeds the liquid level height to the control system; the control system makes a judgment based on the obtained liquid level height data, whether it is necessary to add liquid to the resin tank, if it is judged.
  • the control system sends a command to add a liquid to the rehydration device, and the liquid outlet of the rehydration device is opened to start rehydration until The liquid level height detection feedback system stops the rehydration after detecting that the liquid level height reaches the set height.
  • color grading is divided into two situations:
  • the toner is added and supplemented in a certain proportion and uniformly mixed.
  • the volume of the liquid replacement device is divided into a base cavity and a toner cavity;
  • the liquid replacement device is provided with a flow sensor corresponding to the liquid outlet of the base chamber and the lower end of the toner chamber, so as to realize the monitoring and adjustment of the amount of the base material and the toner discharge amount;
  • the base material and the toner are firstly arranged in a certain proportion and mixed well, and then loaded into the cavity of the rehydration device, and sent into the resin tank as a mixed liquid;
  • the color can be controlled by the addition of the toner, and the color of the ceramic tooth can be controlled by controlling the amount of the toner to be added and the amount of the base added for the photocurable printing, and controlling the ratio of the base and the toner. .
  • the advantage is that the color can be customized, the disadvantage is that the consistency is poor, and the control is relatively difficult.
  • the ratio of the photosensitive resin, the ceramic powder, the toner, and the like is arranged in advance, and a material formulation having a different color is prepared, and the material prepared by the color is directly replenished.
  • the advantage is good consistency, the disadvantage is that the same batch cannot change color.
  • the stirring mechanism stirs the mixed liquid of the resin tank to prevent the bottom of the resin tank from forming a precipitate and ensuring uniform mixing of the mixed liquid; after the stirring is completed, the stirring mechanism is returned to zero (ie, returns to the initial position).
  • the printing process is detailed by taking the color requirement of the denture as an example.
  • printing specifically includes the following steps:
  • step ii) Before the current layer is printed, the control system determines whether rehydration is needed. If rehydration is needed, rehydration is performed, and after rehydration, the process proceeds to step ii); if rehydration is not required, then directly proceeds to step ii);
  • the control system determines whether it is necessary to stir the liquid, and if stirring is required, controls the working platform for printing to move upward to stagger the stirring mechanism (to give room for the movement of the stirring mechanism), and control the stirring mechanism to the liquid After thorough mixing, after the stirring is completed, the stirring mechanism returns to the initial position (the stirring mechanism position returns to zero), the working platform returns to the printing position of the current layer (the working platform position returns to zero); if the stirring is not required, the working platform is directly driven. , so that the working platform reaches the printing position of the current layer;
  • control system drives the working platform and the resin tank to perform a relative deviation movement, so that the entire three-dimensional entity is separated from the liquid surface of the resin tank.
  • the basis for judging whether or not stirring is needed during the printing process is as follows: First, according to the time T1 at which the base material is naturally precipitated under static conditions, a stirring interval time T2 is preset, wherein T1>T2 (T1 and T2 are time periods). Instead of the time point), after the previous stirring is completed, the next stirring is performed after the interval of T2; secondly, the printed denture has a color requirement, according to whether the color of the mixture of the base material and the toner conforms to the current layer.
  • the "work platform and the stirring mechanism position returning to zero" in Fig. 1 means that the stirring mechanism returns to the initial position before the action, and the working platform returns to the current layer position to be printed.
  • the base material and the toner may be mixed into a mixed liquid according to the deepest color, uniformly added to the resin tank, and continuously flow to the cavity of the rehydration device as the printing progress (in this case, a cavity) Adding the base material, it is necessary to stir once every time the rehydration is performed. In other words, it is the condition of the rehydration action to determine whether the agitation is carried out, if the rehydration is performed.
  • the stirring will be carried out later; in another case, the cavity of the rehydration device is divided into the base cavity and the toner cavity, and the base material or the toner is added to the resin tank separately with the progress of printing, and the base material is continuously adjusted.
  • the color ratio of the toner (toner) is used to control the color of the mixture. For example, when the color needs to be deepened during the printing process, the color ratio can be increased by adding the toner alone, and the color needs to be reduced.
  • the base material may be separately added for dilution, and the action of replenishing the base material or the toner once is required to be stirred once.
  • the preset height corresponding to the liquid level of the mixture of the base material and the toner should be the minimum liquid level that meets the printing requirements.
  • the control system compares the base material and the toner ratio corresponding to the chromaticity requirement of the layer to be printed (previous data processing), and the remaining base material and toner in the current resin tank.
  • the comparison of the mixing ratios (the ratio corresponds to the ratio of the base material to the color of the printed layer chromaticity requirements, which is also obtained during the previous data processing, and the control system can directly retrieve it);
  • the matching ratio is inconsistent, and the control system calculates the amount of the base material and the toner in the current mixed liquid according to the current liquid material height of the current base material and the toner mixture, and combines the layer to be printed with the base material and the color agent.
  • the ratio of the content of the base material or the toner is controlled. Specifically, namely:
  • the control system calculates the current liquid mixture in the resin tank according to the liquid level of the base material and the toner mixture in the current resin tank.
  • the amount of the base material and the toner, combined with the ratio of the layer to be printed to the ratio of the base material to the toner, and calculating how much base material needs to be added to dilute the mixed liquid in the current resin tank, so that the base material and the colorant The ratio required for the layer to be printed is reached, thereby controlling the completion of the amount of the base material to be replenished.
  • control system compares and calculates the amount of the toner to be added, and controls the completion of the replenishment action.
  • Flow sensors are provided at the outlets of the base material and the toner, so that the control system can precisely control the amount of both of them.
  • the bottom projection printing method requires less resin in the base material (mixed from resin and ceramic), so it is easy to clean the residue in the resin tank after printing, to prevent the resin from solidifying in the groove, which affects printing. In the process of coloring, the calculation accuracy of the base material and the toner needs to be added.
  • the present application also provides an apparatus suitable for photocuring molded 3D printed ceramic dentures.
  • the device for 3D printed ceramic denture acquires a slice pattern corresponding to each layered image data in a 3D model of the tooth, and manufactures a 3D print member of the denture corresponding to the model by layer-by-layer curing.
  • the 3D model and each slice graphic thereof can be imported through pre-processing of other devices.
  • the data of the patient's teeth is obtained by three-dimensional scanning, the condition of the patient's teeth is analyzed according to the scanned tooth data, and the 3D model of the tooth is obtained by designing the shape of the denture through the dental design software.
  • the obtained 3D model of the tooth is cross-sectionally divided along the Z-axis direction (ie, along the height direction) by data processing, wherein the tooth is formed on the cross-sectional layer formed by each adjacent cross-sectional division
  • the outline of the 3D model outlines each layer of image data after the slice (ie, layered image data).
  • the cross-section layer is sufficiently thin, we determine the cross-sectional surface and the lower cross-sectional surface of the cross-sectional layer.
  • the outlines are consistent and the corresponding figure of the outline is called a sliced figure.
  • the slice graphic may be described by image data or coordinate data on a scan path.
  • the light source projection system is a surface exposure based projection system, such as a projection system including a DMD chip and a projection light source, the slice graphics being described by image data containing pixel points.
  • the light source projection system is a scan-based projection system, such as a projection system including a laser source and a scanning galvanometer, wherein the slice pattern is described by coordinate data on a spot scanning path, wherein the spot scanning path is used. Set to outline the outline of the sliced graphic and fill the sliced graphic body.
  • the color requirement in order to meet the color requirement of the denture, in the data processing stage, is also set corresponding to the sliced graphic, the corresponding layered image, or the layered parameter corresponding to the number of layers, ie, the base material and Colorant ratio.
  • the base and toner ratios can be set layer by layer to provide a gradual color requirement.
  • the gradation color requirement can be set every N-layer, where N is a natural number and N is not necessarily a fixed value.
  • the device for 3D printed ceramic denture described in the present application comprises: a light source projection system, a Z-axis lifting system, a working platform, a rehydration device, a stirring mechanism, a resin tank and a control system.
  • the resin tank is mounted on a stationary frame (shown in Figure 2) for holding a liquid containing a binder.
  • the resin tank may hold only the base material at the initial stage (such as before printing), and may also hold the base material and the toner mixture according to a preset ratio.
  • the base material is a suspension liquid comprising a photosensitive resin and a ceramic powder in a proportional arrangement.
  • the bottom surface of the resin tank is transparent, so that the light for curing is irradiated to the liquid through the bottom surface of the resin tank to achieve curing.
  • a liquid level sensor is further disposed in the resin tank to detect the liquid level of the liquid.
  • the light source projection system is located at the bottom of the resin tank and projects light energy toward the resin tank for successively projecting the slice pattern by bottom projection to solidify the liquid at the bottom of the resin tank.
  • the light source projection system may be a face exposure based projection system.
  • the light source projection system includes a light source, a DMD chip, a controller, and a memory module.
  • the slice module temporarily stores the slice pattern to be described by the pixel matrix.
  • the DMD chip After receiving the control signal from the controller, the DMD chip adjusts the mirror corner of each pixel on the corresponding slice pattern, so that the light energy of the corresponding pixel is irradiated to the bottom surface of the resin groove.
  • the appearance of the DMD chip looks like a small mirror, which is enclosed in a confined space composed of metal and glass. In fact, this mirror is composed of hundreds of thousands or even millions of micromirrors, each of which is micromirror.
  • the projected slice pattern is composed of these pixels.
  • the DMD chip can be simply described as a semiconductor optical switch and a microlens corresponding to a pixel, and the controller allows/disallows the light reflected by each microchip by controlling each optical switch in the DMD chip, thereby passing the corresponding slice pattern through the resin groove.
  • the transparent bottom is illuminated onto the liquid such that the liquid corresponding to the slice pattern is cured to obtain a patterned cured layer.
  • the light source projection system can also be a spot scanning based system.
  • the slice pattern is described by coordinate data on the spot scan path.
  • the light source projection system includes a laser emitter, a lens group on the exiting light path of the laser emitter, and a galvanometer group on the light exit side of the lens group.
  • the laser emitter is controlled to adjust the energy of the output laser beam.
  • the laser emitter is controlled to emit a laser beam of a predetermined power and to stop emitting the laser beam.
  • the laser emitter is controlled to increase the power of the laser beam and reduce the power of the laser beam.
  • the lens group is configured to adjust a focus position of the laser beam
  • the galvanometer group is configured to scan the laser beam in a two-dimensional space of the bottom surface of the resin groove according to a path vector generated by the coordinate data.
  • the liquid scanned by the beam is solidified into a corresponding patterned cured layer.
  • the light source projection system may include one or more of DLP (Digital Light Processing) technology, LCD (Liquid Crystal Display) technology, a projector, a laser combined galvanometer, and a laser combined rotating mirror. At least one of the arrays.
  • the projection system in the light source projection system can be selected as one or several of a DLP projector, an LED projector, an LCoS projector, an LCD projector, a UV projector, a laser combined galvanometer, and a laser combined rotating mirror.
  • Array DLP (Digital Light Processing) technology
  • LCD Liquid Crystal Display
  • the work platform is for attaching a patterned cured layer obtained after irradiation to form a 3D print through the patterned solidified layer.
  • the working platform is exemplified by a component board. The working platform initially starts with the bottom of the resin tank located in the resin tank, and accumulates the solidified layers solidified on the bottom of the resin bath layer layer by layer to obtain a corresponding 3D print.
  • the Z-axis lifting system is assembled with the working platform, and the working platform is driven to adjust the printing position.
  • the Z-axis lifting system drives the working platform to descend, usually, the workpiece platform or the patterned solidified layer attached to the workpiece platform is lowered to a distance higher than a solidified layer at the bottom of the resin groove, so as to be irradiated and filled. The liquid within the spacing.
  • the Z-axis lifting system drives the working platform to rise, it is usually to separate the pattern curing layer from the bottom of the resin tank.
  • the Z-axis lifting system includes a driving unit and a vertical moving unit, and the driving unit is configured to drive the vertical moving unit such that the vertical moving unit drives the component platform to move up and down.
  • the drive unit is a drive motor.
  • the drive unit is controlled by a control command.
  • the control command includes: a directional command for indicating the rise, fall, or stop of the component platform, and may even include parameters such as a speed/speed acceleration, or a torque/torque force. This is advantageous for accurately controlling the rising distance of the vertical moving unit to achieve precise adjustment of the Z-axis.
  • the vertical moving unit includes, for example, a fixing rod fixed to the member platform at one end, and a snap-type moving assembly fixed to the other end of the fixing rod, wherein the snap-on moving assembly is driven by the driving unit to drive
  • the fixed rod is vertically moved
  • the snap-on moving assembly is exemplified by a limit moving component that is engaged by a tooth structure, such as a rack or the like.
  • the vertical moving unit includes: a screw rod and a positioning moving structure screwing the screw rod, wherein both ends of the screw rod are screwed to the driving unit, and the extension end of the positioning moving structure is fixedly connected to
  • the positioning movement structure may include a nut-shaped structure of the ball and the clamp.
  • the Z-axis lifting system includes a vertical transmission mechanism 52.
  • the vertical transmission mechanism 52 includes a vertically disposed beam, a screw disposed on the beam and axially in a vertical direction, and a slider that cooperates with the screw.
  • the beam is located on the rear side of the resin tank 2, and the motor 51 is mounted on the beam to cooperate with one end of the screw.
  • a fixed connection is formed between the working platform 3 and the slider, and the reciprocating movement of the upper and lower lifting is realized under the driving of the motor 51 and the screw and the slider forming mechanism.
  • Z-axis lifting system is shown on the rear side of the resin tank in FIG. 2, but is not limited thereto.
  • Z axis lifting The system can be set at other positions relative to the resin tank according to the design of the 3D printing device without affecting the adhesion layer attached work platform.
  • the stirring mechanism is for agitating the liquid in the resin tank.
  • the agitating portion of the stirring mechanism is probed into the cavity of the resin tank, and the liquid in the resin tank is controlled to be stirred periodically or based on the rehydration operation, so that the base material in the resin tank or the mixture of the base material and the toner mixture is uniformly mixed.
  • the product characteristics such as hardness, pressure resistance, bacteriostasis, etc.
  • the stirring mechanism shown in Fig. 2 includes a motor two 61, a stirring blade 62, and a horizontal beam.
  • the horizontal beam is disposed on the left side of the resin tank 2 and extends in the front-rear direction.
  • a screw-slider transmission mechanism is disposed on the horizontal beam, and the motor 216 is fixed to the rear end of the horizontal beam to drive the screw-slider transmission mechanism.
  • the agitating portion of the agitation mechanism is a stirring blade 62, and the agitating blade 62 is coupled to the slider of the screw-slider transmission mechanism, and is reciprocally linearly movable in the front-rear direction.
  • the stirring blade 62 is introduced into the cavity of the resin tank 2, and the span radiates the entire lateral direction (X-axis direction) of the cavity of the resin tank 2. During each agitation, the agitating blade 62 can be reciprocated one or more times and returned to the initial position (i.e., the rear side of the cavity of the resin tank 2).
  • the stirring portion of the stirring mechanism is a spherical agitating body, and the spherical agitating body is probed into the cavity of the resin tank, and the outer diameter is substantially the same as the width (X direction) of the resin groove cavity.
  • the stirring mechanism may include the motor 2 and the support arm, and does not include the screw slider drive mechanism. Different from FIG. 2, the support arm is fixed to the fixed frame 1, and the free end extends above the cavity of the resin tank 2 and the spherical agitating body is mounted.
  • the motor 216 is mounted on the fixed frame 1 and is capable of driving the resin tank 2 to rotate the resin tank 2 in a horizontal plane, so that the rotary motion of the spherical agitating body relative to the resin tank 2 can be achieved, and the liquid in the resin tank 2 can be performed.
  • the spherical agitating body includes a blade that is rotated by the motor 2 to agitate the liquid in the resin tank.
  • the stirring mechanism shown in FIG. 2 is provided on the left side of the resin tank, but is not limited thereto. It should be understood by those skilled in the art that the position of the agitation mechanism is related to the position at which the agitating portion (such as the agitating blade) is left to rest, and can be disposed at other edges of the resin tank according to actual engineering needs.
  • the liquid replenishing device holds a base material and a toner for rehydrating the resin tank.
  • the liquid outlet of the fluid replacement device is connected to the resin tank.
  • the liquid refilling device may hold only the base or the toner.
  • the feeding device includes a separate Sheng Place the cavity of the base and toner.
  • the chamber for holding the liquid alone can separately feed the corresponding liquid into the resin tank; or the liquid outlet of each chamber is connected to the common liquid outlet, and the corresponding liquid is replenished to the resin tank through the common liquid outlet.
  • the feeding device may further comprise a mixing container for holding the mixed liquid, and the base material and the toner are placed in the mixing container in a predetermined ratio, and then controlled to the resin. In the slot.
  • the liquid outlet of the fluid replacement device is provided with a valve such as a solenoid valve, and the amount of liquid to be filled can be controlled by controlling the valve to be turned on and off.
  • the liquid outlet of the liquid replacement device 7 is connected to the resin tank 2.
  • a liquid level sensor is provided in the resin tank 2, and an electromagnetic valve is provided in the liquid outlet of the liquid replacement device 7.
  • the liquid outlet of the liquid replacement device can also be used to control the amount of liquid to be filled by driving the pump.
  • the control system is connected with a liquid level sensor, an electromagnetic valve, a light source projection system, a Z-axis lifting system, a stirring mechanism, and a fluid replacement device.
  • the control system is connected to the liquid level sensor, the electromagnetic valve, the light source projection system 4, the motor one 51, the motor two 61, and the liquid refilling device 7.
  • control system can perform various control timings by one computer device.
  • the control system is formed by a plurality of control module data connections.
  • the control module includes a projection module for controlling the light source projection system, a lifting module for controlling the Z-axis lifting system, a monitoring module for monitoring the liquid level, a rehydration module for controlling the rehydration of the rehydration device, and a stirring control method.
  • the agitation module of the mechanism, and the timing control module for coordinating the execution timing of each of the above modules.
  • the projection module can be integrated in a light source projection system or separately configured and data connected to a controlled device of the light source projection system.
  • the lifting module can be integrated in the Z-axis lifting system or can be separately configured and connected to the drive unit of the Z-axis lifting system.
  • the monitoring module is electrically connected to the liquid level sensor and can be integrated in the timing control module or separately configured and connected to the liquid level sensor.
  • the rehydration module is electrically connected to the valve and/or the rehydration device, and may be integrated in the timing control module or separately configured and dataly connected to the electrical connection valve and/or the rehydration device.
  • the agitation module is electrically connected to the agitation mechanism, and can be integrated in the timing control module or separately configured and connected to the data connection and electrically connected to the agitation mechanism.
  • each separately configured control module may be a control module integrated with the like, such as a industrial computer, a single chip microcomputer, etc.
  • the timing control module may include a storage unit, a processing unit, and an interface unit.
  • the storage unit includes, but is not limited to, a non-volatile memory and a volatile memory, and may also include a storage server connected through the Internet.
  • a program for timing control A program for timing control.
  • the processing unit includes a processor having numerical, data, and logic processing capabilities, such as at least one of a CPU, a programmable logic device (FPGA), and a multi-core processor.
  • the processing unit is coupled to the storage unit for invoking the program and reading the sliced graphic.
  • the interface unit is directly or indirectly connected to the liquid level sensor, the electromagnetic valve, the light source projection system, the Z-axis lifting system, the stirring mechanism and the refilling device.
  • the interface unit includes a plurality of interface terminals to facilitate data connection or electrical connection with various electronic devices.
  • the control system is configured to acquire a slice pattern corresponding to each layered image data in the 3D model of the tooth; before printing, the liquid level including the base material is added to a preset height and stirred, and the base material is photosensitive
  • the resin and the ceramic powder are arranged in proportion; the slice pattern is sequentially projected by bottom projection to complete the layer-by-layer curing; wherein, before each layer is printed, it is judged whether or not liquid refilling is performed, and the liquid is activated according to a preset stirring action condition. Stir.
  • the control system performs layer-by-layer printing of the 3D model of the tooth by executing the invoked program.
  • the program includes parallel, serializable, and recyclable program segments.
  • the specific implementation process can be determined by the following steps and in combination with the actual engineering design.
  • the slice pattern corresponding to the layered image data in the tooth 3D model is acquired.
  • a slice pattern corresponding to each layered image is obtained, which is a cross-sectional contour pattern of the 3D model in which the corresponding layered image is located.
  • the manner in which the control system acquires each layered image of the 3D model of the tooth may be manually imported or downloaded to the control system using the Internet.
  • Step (2) is also performed simultaneously or indiscriminately with step (1), that is, before the printing, the liquid level containing the base material is replenished to a predetermined height and stirred, and the base material is made of photosensitive resin and ceramic powder. Proportional.
  • the liquid level height of the liquid contained in the resin tank should be the minimum liquid level height that satisfies the printing requirement. Therefore, it is necessary to detect whether the liquid level of the liquid in the resin tank reaches a preset height (ie, the minimum liquid level) before printing. Before printing, the technician can manually detect or use the liquid level sensor to detect the liquid level of the liquid in the resin tank by the control system.
  • the liquid comprises a binder or further comprises a toner.
  • the base material is proportioned by a photosensitive resin and a ceramic powder.
  • the toner is used in conjunction with the manufacture of a denture 3D print with color requirements that can be added to the resin tank prior to printing. Obviously, whether or not to add a toner before printing is related to the color requirement of the print, for example, if the initial layer or layers of the 3D model of the tooth are marked with a base and a toner ratio, Then, the ratio of the toner to the base material is adjusted during the rehydration, and conversely, only the base material is added to the preset height.
  • control system can first detect the current liquid level height through the liquid level sensor. If it is detected that the liquid level height in the resin tank reaches the preset height, the step (2) can be directly performed without performing the step (3). ); conversely, the liquid level containing the binder is replenished to a preset height.
  • the control system agitates the mixed liquid in the resin tank according to a preset agitation action activation condition. After the preparation work before the printing is completed, the control system can start the printing process based on the received printing instruction or the detection data before the printing, that is, repeat the following steps (3) and (4) to print the corresponding tooth 3D model. Denture 3D prints.
  • the slice pattern is projected in a bottom projection manner.
  • the control system provides the slice pattern to the light source projection system in a printing order, and the light source projection system projects the slice pattern onto the bottom surface of the resin tank, so that the liquid located between the bottom surface of the resin tank and the work platform is solidified.
  • the light source projection system is a surface exposure based projection system
  • the projected slice graphic is an image described by pixels, and the corresponding light source projection system projects the slice graphic as a whole into the resin slot. bottom.
  • the light source projection system is a spot scanning based projection system
  • the projected slice graphic is an image described by coordinate data
  • the corresponding light source projection system is based on coordinate data in the slice graphic.
  • a scan path vector is generated and scanned in a two-dimensional plane at the bottom of the resin bath.
  • step (4) the work platform for printing is controlled to adjust the print position.
  • the control system controls the Z-axis lifting system to move upward to peel the solidified layer from the bottom surface of the resin tank after each projection of the slice pattern, and then controls the Z-axis lifting system to move downward to be stripped.
  • the solidified layer is higher from the bottom surface of the resin tank than the next solidified layer, and the liquid is filled in the corresponding gap by the movement of the Z-axis lifting system.
  • the control system monitors the remaining liquid in the resin tank according to the liquid level height provided by the liquid level sensor in the resin tank. When the liquid level height is lower than the preset height, it is determined to perform rehydration, when monitoring When the liquid level height is higher than or equal to the preset height, be sure to continue the printing step.
  • the timing of the liquid level height determination can be made at the end of each layer of printing. Specifically, after step (4) is performed, step (5) is performed: determining whether to perform rehydration based on the liquid level, and if so, performing steps (6), otherwise returning to step (3) to perform the projection process of the next layer of sliced graphics. For example, the control system compares the liquid level height data provided by the liquid level sensor with the preset height before each layer of printing, and if the liquid level height data is greater than the preset height, performs step (3), otherwise, executes Step (6).
  • the liquid is refilled until the liquid level in the resin tank is higher than the predetermined height.
  • the control system controls to open the liquid outlet of the fluid replacement device, such as opening a valve at the liquid outlet or pumping the pump to facilitate the flow of the supplemented liquid into the resin tank, and the liquid level after the liquid replacement is higher than the preset height.
  • control the liquid outlet of the rehydration device such as closing the corresponding valve or turning off the drive pump.
  • the liquid supplemented by the control system may be a binder and/or a toner.
  • control system controls the liquid replenished by the rehydration device and the remaining liquid component in the resin tank. Consistent. After the rehydration is completed, return to step (3) to continue the projection step of the next layer of the slice pattern until the printing is completed.
  • control system can include a monitoring module that separately monitors the level of the liquid level and a separate printing module that monitors the level of the liquid level provided by the level sensor, the printing module controlling the light source The projection system and the Z-axis lifting system perform layer-by-layer printing.
  • the monitoring module detects that the liquid level height is lower than the preset height, transmitting an instruction to interrupt the printing to the printing module of the control system, and the printing module performs the liquid filling operation of the foregoing step (6) before performing the next layer printing.
  • the control system further performs the step (7): according to the preset stirring action The starting conditions stir the liquid.
  • the stirring action starting condition includes but is not limited to: 1) starting the stirring action at the stirring interval.
  • the stirring interval is set according to the time at which the uniformly stirred base material naturally precipitates out under static conditions, and the stirring action is started each time the stirring interval time is reached.
  • a stirring interval time T2 is preset, wherein T1>T2 (T1 and T2 are time periods instead of time points), after the previous stirring is completed. After the time interval of T2, the next stirring is performed. 2) Set the stirring start condition based on the rehydration operation.
  • the agitation starting condition may be set to agitate the liquid in the resin tank between each completion of the rehydration operation and the next projection.
  • the agitation starting condition can be adjusted according to a rehydration operation, for example, based on a rehydration operation
  • the re-timing agitation interval is performed and the execution of the agitation action is controlled in accordance with the agitation interval.
  • the print denture has a color requirement
  • the T3 duration (T2>T3) is performed, and the chromaticity does not match, the stirring operation is performed, and the T2 duration is judged. It is necessary to recalculate this stirring action after the T3 duration.
  • the printing action and the stirring action are each other's start-stopping condition, that is, when the preset stirring action starting condition is satisfied, if the printing action is performed, the stirring action is blocked, and it is necessary to wait for the printing action to be completed. After that, the stirring operation is performed, that is, the execution of the stirring operation is delayed. Similarly, when the stirring operation is performed, the printing operation is not performed even if a print command is input.
  • control system agitates the liquid in the resin tank by controlling the stirring mechanism and the Z-axis lifting system.
  • control system controls the Z-axis lifting system to drive the working platform and the printing member attached to the workpiece platform to rise to at least higher than the height of the stirring mechanism, hover, and then control the stirring mechanism for stirring; after the stirring is completed,
  • the Z-axis lifting system is controlled to descend to a distance between the print member and the bottom surface of the resin tank by a layer of solidified layer to perform the next layer of projection.
  • steps (6) and (7) can be performed simultaneously in a more time-saving manner when the execution conditions of steps (6) and (7) are simultaneously met. It will not be described in detail here.
  • the control system completes the printing process of the 3D printing piece of the denture by performing the above steps. After the printing is completed, in order to improve the strength of the obtained denture, the technician needs to perform secondary curing treatment on the 3D printing piece to ensure sufficient curing. Sintering - isostatic pressing to ensure the density of the ceramic material.
  • the present application also analyzes the color requirements set in the 3D model during the printing process, and controls the 3D printing device.
  • the liquid ratio in the resin tank is adjusted based on the color requirement to print a denture 3D print that meets the color requirements.
  • the control system further performs the step (8): comparing the base material to the toner ratio P1 corresponding to the slice pattern to be projected and the resin tank in the resin tank without a necessary timing relationship with the step (5). Whether the base material and the toner ratio P2 match, if yes, step (5) may be performed, or step (3) may be performed to continue printing; if not, step (9) is performed.
  • the control system in order to determine the ratio P2, has an initial liquid mixing ratio P0 in the resin tank.
  • P0 early The ratio of the base material to the colorant in the initial liquid ratio is a:b mass ratio.
  • the liquid is replenished into the resin tank based on the ratio of the base material to the toner corresponding to the slice pattern to be projected.
  • control system determines the amount of the base material and the toner remaining in the resin tank based on detecting the liquid level height in the resin tank, according to the ratio of the base material to the toner corresponding to the slice pattern to be projected, The base material and/or the toner are replenished in the resin tank.
  • the control system uses the liquid level height h0 after each refill as one of the parameters of the adjustment ratio.
  • the liquid level height h1 in the current resin tank is detected, and according to the determined liquid level height difference (h0-h1), the current base material and the toner ratio P2 in the resin tank respectively The quality of the binder and the toner in the resin tank is determined.
  • the control system can determine the amount of the base material and/or the toner to be replenished into the resin tank according to the ratio P1 (which may be mass, or the flow rate calculated based on the mass of the outlet of the liquid replacement device unit time), and control the fluid replacement The device performs corresponding rehydration.
  • the control system calculates the current resin tank according to the liquid level height of the current resin tank and the toner mixture in the current resin tank.
  • control system compares and calculates the amount of the toner to be added, and controls the completion of the replenishment action.
  • Flow sensors are provided at the outlets of the base material and the toner, so that the control system can precisely control the amount of both of them.
  • liquid level-based rehydration operation and the ratio-based rehydration operation can be performed simultaneously, such as replenishing liquid according to the color requirement of the layer to be printed during rehydration and making the resin tank
  • the liquid reaches the preset height. That is, when the prepared denture has a color requirement, the toner is further added during the rehydration, so that the liquid level of the mixture of the base material and the toner reaches a preset height;
  • the ratio of the material to the toner is a preset ratio.
  • the above step (8) can be performed before each layer is printed.
  • the ratio of the base material to the toner corresponding to the chromaticity requirement of the layer to be printed is compared with the current mixture ratio of the base material and the toner; if the two ratios are inconsistent, according to the reception
  • the current liquid level of the base material and the toner mixture calculate the amount of the base material and the toner in the current mixed liquid, and combine
  • the printing layer requires a ratio of the binder to the toner to control the amount of the binder and/or the toner to be replenished.
  • control system performs the above step (8) when printing to the layer of the corresponding color requirement change according to the color requirement of every N layer set in the 3D model of the tooth. For example, after parsing the color requirement and the layer correspondence relationship, the control system counts the layers required by the same color, so that step (8) is performed when the corresponding layer number is reached.
  • the feed device and the toner may be separately contained in the feeding device.
  • the chamber for holding the liquid alone can separately feed the corresponding liquid into the resin tank; or the liquid outlet of each chamber is connected to the common liquid outlet, and the corresponding liquid is replenished to the resin tank through the common liquid outlet.
  • the control system controls the amount of the base material and the toner to be replenished according to a preset ratio during the rehydration process.
  • the feeding device provides two separate containers for the base and toner, and a valve is provided for the outlet of each chamber.
  • the on-off time of the valve of the corresponding base and/or the valve of the corresponding toner is individually controlled according to the determined amount of replenishment.
  • the cavity of the rehydration device is divided into a base cavity and a toner cavity; according to the amount of the base material in the resin tank, after the toner is added in a certain ratio, if the height of the preset liquid is not reached, the base material is The coloring agent will be added to the resin tank at the same time according to the ratio of the ratio until the preset liquid level height; in this case, the liquid replacement device is provided with a flow sensor corresponding to the liquid outlet of the base chamber and the lower end of the toner chamber.
  • the color can be controlled by the addition of the toner, and the base material and the colorant are controlled by controlling the amount of the toner added and the amount of the base added for the photocurable printing.
  • the ratio can control the color of the ceramic teeth.
  • the feeding device may further comprise a mixing container for holding the mixed liquid, and the base material and the toner are placed in the mixing container according to a preset ratio, and the base material is used in the liquid replacement process by the control system. After mixing with the toner in a predetermined ratio, it is added to the resin tank as a mixed liquid.
  • the control system controls the feeding device to perform proportional arrangement of the photosensitive resin, the ceramic powder, the toner, and the like, and prepares a material formula with different colors, and directly replenishes the material prepared by the color.
  • the advantage is good consistency, the disadvantage is that the same batch cannot change color.
  • the method further includes the step (10) while performing the step (9) or after performing (9).
  • the liquid in the resin tank is stirred.
  • the ratio of the mixed liquid to be added is different from the remaining ratio in the resin tank, in order to ensure the color of the 3D print, it is necessary to perform the stirring while rehydrating or after rehydration.
  • the agitation control process performed in this step is the same as or similar to the agitation control process of the step (7) and will not be described in detail herein.
  • the method further comprises: step after performing any one or more of (6), (7), (9), (10), or before performing step (3) (11), that is, a step of waiting for a preset time to ensure that the surface of the liquid is leveled before the sliced pattern is projected. For example, after the stirring is completed and waiting for a preset time, the slice pattern corresponding to the current layer image data is projected by the bottom projection method, and exposure curing is performed.
  • the addition of a waiting step not only ensures that the liquid surface is leveled, but also ensures that the bottom of the groove is sufficiently filled with liquid.
  • the steps of stirring, rehydrating, and waiting for the preset time mentioned in each of the above embodiments may be performed one or more times before the layer is cured.
  • one execution can have higher printing efficiency, and multiple executions can ensure rehydration accuracy and uniform mixing. Therefore, the waiting preset time (hereinafter referred to as waiting time) can be at least divided into the waiting time t1 and the waiting time t2 (t1>t2).
  • the apparatus for photocuring a 3D printed ceramic denture includes a fixing frame 1 and a resin tank mounted on the fixed frame 1, a light source projection system 3 for completing projection curing, and a Z-axis lifting. System, agitation mechanism, rehydration device 7 and control system.
  • the control system consists of a PLC (Programmable Logic Controller) or motion control card, driver, computer or embedded system.
  • the Z-axis lifting system includes a motor one 51 and a vertical transmission mechanism 52, and the stirring mechanism includes a motor two 61 and a stirring blade 62.
  • the light source projection system 4 is located below the resin tank 2.
  • the light source of the light source projection system 4 may be an array of one or several of DLP (Digital Light Processing) technology, LCD (Liquid Crystal Display) technology, projector, laser combined scanning galvanometer or laser combined rotating mirror.
  • the projection system in the light source projection system can be selected as one or several of a DLP projector, an LED projector, an LCoS projector, an LCD projector, a UV projector, a laser combined galvanometer, and a laser combined rotating mirror. Array.
  • the light source projection system 4 projects a slice pattern of the corresponding cross section from the bottom of the resin tank 2, and then the light source in the light source projection system 4 is exposed for a certain time, so that the exposure energy reaches or exceeds the minimum curing energy E of the material, and the layer is cured.
  • the vertical transmission mechanism 52 of the Z-axis lifting system includes a vertically disposed beam, a screw disposed on the beam and axially in a vertical direction, and a slider that cooperates with the screw.
  • the beam is located on the rear side of the resin tank 2, and the motor 51 is mounted on the beam to cooperate with one end of the screw.
  • a fixed connection is formed between the working platform 3 and the slider, and the reciprocating movement of the upper and lower lifting is realized under the driving of the motor 51 and the screw and the slider forming mechanism.
  • the stirring mechanism further includes a horizontal beam frame which is disposed on the left side of the resin tank 2 and extends in the front-rear direction.
  • a screw-slider transmission mechanism is disposed on the horizontal beam, and the motor 216 is fixed to the rear end of the horizontal beam to drive the screw-slider transmission mechanism.
  • the agitating portion of the agitation mechanism is a stirring blade 62, and the agitating blade 62 is coupled to the slider of the screw-slider transmission mechanism, and is reciprocally linearly movable in the front-rear direction.
  • the stirring blade 62 is introduced into the cavity of the resin tank 2, and the span radiates the entire lateral direction (X-axis direction) of the cavity of the resin tank 2. During each agitation, the agitating blade 62 can be reciprocated one or more times and returned to the initial position (i.e., the rear side of the cavity of the resin tank 2).
  • the stirring portion of the stirring mechanism is a spherical stirring body, and the spherical stirring body is probed into the cavity of the resin tank 2, and the outer diameter and the width of the cavity of the resin tank 2 (X direction) are basically Consistently, the agitation mechanism can include the motor 2 and the support arm at this time, and does not include the screw slider drive mechanism.
  • the support arm is fixed to the fixed frame 1, and the free end extends above the cavity of the resin tank 2 and the spherical agitating body is mounted.
  • the motor 216 is mounted on the fixed frame 1 and is capable of driving the resin tank 2 to rotate the resin tank 2 in a horizontal plane, so that the rotary motion of the spherical agitating body relative to the resin tank 2 can be achieved, and the liquid in the resin tank 2 can be performed.
  • the spherical agitating body includes a blade that is rotated by the motor 2 to agitate the liquid in the resin tank.
  • the liquid outlet of the liquid replacement device 7 is connected to the resin tank 2.
  • a liquid level sensor is disposed in the resin tank 2, and an electromagnetic valve is disposed at the liquid outlet of the liquid replacement device 7; the liquid level sensor, the electromagnetic valve, the light source projection system 4, the motor one 51, the motor two 61, and the liquid refilling device 7 are all connected to the control system.
  • the liquid outlet of the fluid replacement device can also control the amount of liquid to be filled by driving the pump.
  • the cavity of the rehydration device corresponds to the two cases A and B described in the above method, and is respectively set as a combined cavity form and a single cavity of the base cavity and the toner cavity. form.
  • the agitation mechanism returns to the initial position after completing a certain agitation action; the working platform first performs a zero return movement and returns to the initial position of the printing (specifically, the upper surface close to the bottom of the resin tank), also called Zero position.
  • the preparation action is completed.
  • the specific stirring process can be carried out as follows. First, the working platform 3 is raised, leaving a gap for the stirring squeegee 62 to move, and then the stirring squeegee 62 is linearly moved in the horizontal direction (may be One or more reciprocating motions, the liquid material is stirred, and the working platform returns to the current printing position after the stirring.
  • the working platform 3 moves upward, and is displaced from the stirring mechanism to allow the space for the stirring mechanism to move. At this time, the stirring mechanism moves to achieve sufficient agitation of the material in the tank, and the stirring is completed.
  • the stirring mechanism returns to the initial position, and the working platform returns to the printing position of the current layer. If no agitation is required, the work platform 3 is moved directly to the print position of the current layer.
  • the light source projection system 4 projects a slice pattern corresponding to the cross section under the resin tank 2, and then the light source therein is exposed for a certain time to cure the layer.
  • the present invention relates to a method and apparatus for 3D printed ceramic dentures suitable for photocuring, by means of bottom projection exposure, by means of a rehydration device 7 and a stirring mechanism, while using photosensitive resin, ceramic powder and / or a mixture of toners in a proportional arrangement to form a printing material to achieve 3D printing of ceramic dentures.
  • the utility model has the advantages of simple production process, high production efficiency, low consumables, high precision of the produced denture, good matching with the patient, convenient batch processing of the personalized denture, improved production efficiency and shortened processing period of the customized denture.

Abstract

一种适用于光固化成型的3D打印陶瓷义齿的方法和装置,属于义齿制作技术领域,在方法中将扫描获得的牙齿数据,经数据处理获得待打印数据模型切片后的每层图像的数据,并传送给控制系统,通过控制系统控制补液动作使基料的液位高度始终维持在预设高度,基料由光敏树脂和陶瓷粉按比例配置,补液后控制系统控制对补入液体完成搅拌,打印是采用底部投影的方式,逐次投影出每层图像的切片图形,并进行光源曝光而逐层完成固化。

Description

适用于光固化成型的3D打印陶瓷义齿的方法和装置 技术领域
本申请涉及义齿制作技术领域,特别涉及到的为一种适用于光固化成型的3D打印陶瓷义齿的方法及装置。
背景技术
目前常见的3D打印技术有:光固化快速成型(stereolithography,简称SL)、选择性激光烧结法(Selective Laser Sintering,SLS)、选择性激光熔融成型(Selective Laser Melting,SLM)、熔融沉积成型法(Fused Deposition Modeling,FDM)、三维印刷法(Three Dimensional Printing,3DP)等。光固化快速成型(Stereolithography,SL)和基于DLP(Digital Light Procession)光固化投影的3D打印技术都是立体光固化成型技术。
立体光固化成型法(包含激光光固化和DLP光固化,后统称为光固化)具有以下优势:(1)尺寸精度高,公差范围在±0.03mm~±0.1mm内;(2)优良的表面质量,跟FDM等其他3D成型技术相比表面质量好;(3)可以制作结构复杂的模型和尺寸比较精细模型;(4)可以直接制作面向熔模精密铸造的具有中空结构的消失型。立体光固化成型材料一般是光固化树脂,与其他固化材料相比,光固化树脂具有:固化速度快、不需要加热、节省能量等优点。
DLP是“Digital Light Procession”的缩写,即为数字光处理,也就是说这种技术要先把影像信号经过数字处理,然后再把光投影出来。它是基于TI(美国德州仪器)公司开发的数字微镜元件——DMD(Digital Micromirror Device)来完成可视数字信息显示的技术。说得具体点,就是DLP投影技术应用了数字微镜晶片(DMD)来作为主要关键处理元件以实现数字光学处理过程。基于DLP投影的3D打印技术,即通常所说的面曝光3D打印技术。具体来说,是采用液态光敏树脂为材料,使用特定波长的光源,利用DLP技术投影出相应图案,对液态光敏树脂进行选择性固化,实现打印。DLP技术,一般为静态DLP投影技术,即DLP 投影固定在基座上,DLP投影仪并不移动,在每层曝光时,投影出相应的图像,保持相应的曝光时间,完成每层的固化。
陶瓷的制备,有着悠久且成熟的传统工艺,与时俱进,新成型技术的出现使得陶瓷生产和制造紧跟着科技的发展而创新。3D打印技术的出现给陶瓷的制备提供了一种新的成型思路,使得制备过程由原来的减材制作变成了增材制作,改变了陶瓷生产制备需要模具和机加工等切削设备来生产的传统成型工艺。3D打印技术中,SL和DLP成型精度高、表面质量佳,但适用其打印的材料有限,主要以光敏树脂为主。
义齿制造的背景:佩戴假牙的目的就是在恢复患者咀嚼功能的同时也改善口腔牙齿美观度。传统义齿的制作流程有:(1)用硅胶做预模,做出来的东西叫托盘,相当于将硅胶按在口中的义齿进行成型,利用硅胶采集义齿的形状;(2)模型制作,一种情况是灌石膏进托盘,2小时较为稳定后切割、分割线,并针对要做的特定义齿进行修复,石膏模型一般24小时稳定;选用义齿的底座,有塑料底座和石膏底座两种较多,塑料底座更好,因为石膏底座热膨胀、收缩的过程,故有一定的变形影响,选用石膏种类时,要选择相对热膨胀系数小的石膏;另一种情况是直接扫描托盘,并利用电脑建立三维数据,并最后直接打印模型;(3)针对修补的义齿,需将石膏牙龈去掉,留下颈缘线;对于需要处理的义齿,根据医生的不同,一般会去掉牙龈或龈下1mm左右的部分,颈元线要求能打印清晰出来;(4)基台,一般采用切削加工金属或氧化锆基台;(5)制作牙冠,一般采用CNC机床,利用多轴数控机床的切削加工;牙冠上色是不可缺少的,用陶瓷粉(带颜色的多种配)上到牙冠后,烧结固化,二次到三次不等。
可见传统的义齿加工采用的是CNC切削方法(减材制造),义齿制作流程比较复杂,材料利用不充分,存在较多的边角料,材料耗用较多。传统的包埋铸造方法制作义齿,制造精度更低,生产效率低,加工的义齿与患者匹配度较差。
此外,还存在另一种是临时牙冠的制作方法,该方法中制作者,按照可能的尺寸,制作各种各样不同的临时牙冠。就像鞋店卖鞋的会有适应不同人群的尺码一样。病人需要临时牙冠时,从这些标模中进行一一试戴,选取适合尺寸的临时牙冠。其缺点是临时牙冠批量生产, 未定制化,尺寸上无法做到高精度,针对个性化病人时,匹配度不好,只适合短期半年内使用。
发明内容
针对目前义齿制作过程中存在的不足,本申请的目的在于提供一种适用于光固化成型的3D打印陶瓷义齿的方法和装置,来解决目前义齿制作过程中存在的制作流程复杂、制作效率低、耗材多以及制作精度差、匹配性差的问题。
为此,本申请在第一方面提供一种适用于光固化成型的3D打印陶瓷义齿的方法,由控制系统执行,具体包括以下步骤:获取牙齿3D模型中分层图像数据所对应的切片图形;其中,所述3D模型是基于预先扫描获得的牙齿数据转换而确定的,所述分层图像数据是预先通过数据处理方式将牙齿3D模型切片后得到的;打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置;采用底部投影的方式逐次投影所述切片图形以逐层完成固化;其中,在每层打印前判断是否进行补液,以及根据预设的搅拌动作启动条件对所述液体进行搅拌。
本申请在第二方面提供一种牙齿打印方法,应用于基于底面光固化技术进行逐层打印的3D打印设备,包括:采用底部投影的方式向树脂槽底投影切片图形,以固化树脂槽内对应图形区域的液体;其中,所述切片图形是基于所获取的牙齿3D模型中的分层图像数据得到的;所述液体包含基料、或经预先配比的基料与色剂的混合液;控制用于打印的工作平台调整打印位置;重复投影及调整的步骤以打印出对应所述牙齿3D模型的义齿的3D打印件;在逐层打印过程中,基于待投影切片图形所对应的基料与色剂配比,向树脂槽内进行补液;以及根据预设的搅拌动作启动条件对所述树脂槽内的液体进行搅拌。
在所述第二方面中的某些实施方式中,所述基于待投影切片图形所对应的基料与色剂配比向树脂槽内进行补液的方式包括:基于检测所述树脂槽内的液位高度,确定树脂槽中剩余的基料与色剂的量;按照对应待投影切片图形的基料与色剂配比,向所述树脂槽中补充基料和/或色剂。
本申请在第三方面提供一种适用于光固化成型的3D打印陶瓷义齿的装置,包括固定机架和安装在固定机架上用于盛放液体的树脂槽、完成投影固化的光源投影系统、Z轴升降系统、搅拌机构、补液装置、工作平台及控制系统;光源投影系统位于树脂槽的下方,搅拌机构的搅拌部探入树脂槽的槽腔,补液装置的出液口连通至树脂槽,所述工作平台安装在Z轴升降系统上能够沿Z轴升降移动;在树脂槽内设置液位传感器,补液装置的出液口设置电磁阀门或驱动泵;液位传感器、电磁阀门或驱动泵、光源投影系统、Z轴升降系统、搅拌机构、补液装置均分别与控制系统相连;其中,所述树脂槽用于盛放包含基料的液体;所述光源投影系统用于采用底部投影的方式逐次投影切片图形;其中,所述切片图形是对应于牙齿3D模型中的分层图像数据,所述3D模型是基于预先扫描获得的牙齿数据转换而确定的,所述分层图像数据是预先通过数据处理方式将牙齿3D模型切片后得到的;所述Z轴升降系统用带动所述工作平台调整打印位置;所述搅拌机构用于搅拌树脂槽中的液体;所述补液装置盛放基料和色剂,用于向所述树脂槽中进行补液;所述控制系统用于获取所述牙齿3D模型中各分层图像数据所对应的切片图形;打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置;采用底部投影的方式逐次投影所述切片图形以逐层完成固化;其中,在每层打印前判断是否进行补液,以及根据预设的搅拌动作启动条件对所述液体进行搅拌;其中,所述3D模型是基于预先扫描获得的牙齿数据转换而确定的,所述分层图像数据是预先通过数据处理方式将牙齿3D模型切片后得到的。
本申请在第四方面提供一种适用于光固化成型的3D打印陶瓷义齿的装置,包括固定机架和安装在固定机架上用于盛放液体的树脂槽、完成投影固化的光源投影系统、Z轴升降系统、搅拌机构、补液装置、工作平台及控制系统;光源投影系统位于树脂槽的下方,Z轴升降系统设置在树脂槽的后侧,搅拌机构设置在树脂槽的左侧,搅拌机构的搅拌部探入树脂槽的槽腔,补液装置的出液口连通至树脂槽,所述工作平台安装在Z轴升降系统上能够沿Z轴升降移动;在树脂槽内设置液位传感器,补液装置的出液口设置电磁阀门或驱动泵;液位传感器、电磁阀门或驱动泵、光源投影系统、Z轴升降系统、搅拌机构、补液装置均分别与控制系统相连;其中,所述树脂槽用于盛放包含基料的液体;所述光源投影系统用于采用底部 投影的方式向树脂槽底投影切片图形,以固化树脂槽内对应图形区域的液体;其中,所述切片图形是基于所获取的牙齿3D模型中的分层图像数据得到的;所述液体包含基料、或经预先配比的基料与色剂的混合液;所述Z轴升降系统用带动所述工作平台调整打印位置;所述搅拌机构用于搅拌树脂槽中的液体;所述补液装置盛放基料和色剂,用于向所述树脂槽中进行补液;所述控制系统用于控制光源投影系统和Z轴升降系统重复投影及调整过程以打印出对应所述牙齿3D模型的义齿的3D打印件,以及在逐层打印过程中,基于待投影切片图形所对应的基料与色剂配比,向树脂槽内进行补液;以及根据预设的搅拌动作启动条件对所述树脂槽内的液体进行搅拌。
如上所述本申请涉及到的一种适用于光固化成型的3D打印陶瓷义齿的方法,具有以下有益效果:打印成型过程无需大量基料,只需要少量补充基料即可进行打印,只需要基料能铺平工作平台所对应的XY空间即可开始打印;能够做到精细分层,可以实现最小分层厚度10微米甚至更小的层厚分级,保证了打印义齿的精度;添加有陶瓷粉的树脂粘度很大,在底部投影方式下液体受到自身重力作用,对于采用低、中粘度的树脂混合形成的基料可以自然流平,对于采用高粘度的树脂混合形成的基料,借助搅拌机构的搅拌作用也可以保证树脂槽底部液体流平,实现正常打印;为了保证所得义齿强度,液体基料将光敏树脂与微小颗粒的陶瓷粉按一定配比混合,直接实现3D打印陶瓷牙。
如上所述本申请涉及到的一种适用于光固化成型的3D打印陶瓷义齿的装置,具有以下有益效果:使得义齿加工具有业化装置,独有的搅拌机构,能实现高粘度基料材料的充分混合,且保证混合均匀,避免树脂槽的底部形成材料沉淀;独有的色剂配置功能,通过色剂与基料的搭配比例,能够调配混合所得液体材料的颜色,实现带个性化颜色的义齿加工,搅拌机构能够保证调色的均匀;能够对树脂槽液位的高度实时监控调节,保证打印成型过程的顺利进行,提高了自动化控制效率。
通过本申请所涉及之方法及装置获得义齿的过程,和传统的义齿加工采用CNC切削方法相比,该方法为增材制造方式,材料利用充分,基本不存在边角料,节省材料,与三维扫描技术结合后简化义齿制作流程,实现数字化齿科制作,与传统的包埋铸造方法制作义齿相 比,所得义齿的精度更高,制作效率更高,引入色剂调配过程后可以实现个性化义齿的批量加工,大大提高个性化义齿加工的生产效率;在定制化义齿加工上,结合三维扫描技术,缩短义齿加工周期,可以实现颜色的调配,甚至可以省掉传统的手工上瓷的环节,保证义齿颜色与自然牙齿的相近度;结合数字化齿科,避免使用传统石膏模,经过该3D打印加工的义齿,可以实现与患者更高的匹配度,对打印出来的义齿,进行二次固化处理来保证固化充分,进行等静压处理来保证陶瓷材料的致密度,从而全面保证所得义齿的强度。
附图说明
图1为本申请打印制备义齿的流程框图;
图2为本申请所涉及之打印陶瓷义齿的装置的机构示意图。
图中标号为:1固定机架,2树脂槽,3工作平台,4光源投影系统,51电机一,52垂直传动机构,61电机二,62搅拌刮板,7补液装置
具体实施方式
说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本申请可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本申请可实施的范畴。
以图2视图定义X、Y、Z三轴,X、Y、Z三轴在三维空间相互垂直,其中XY方向指水平面方向,Z轴沿垂直方向,X轴为左右方向,Y轴为前后方向。
为了能够使用3D打印设备制作义齿,首先需获取包含患者缺失牙齿的牙齿3D模型数据。首先,通过三维扫描获取病人牙齿的数据,根据扫描的牙齿数据,分析病人牙齿的状况, 通过牙科设计软件设计义齿的形状得到牙齿的3D模型。接着,通过数据处理方式将所得到的牙齿的3D模型沿Z轴方向(即沿高度方向)进行横截划分,其中,在每相邻横截划分所形成的横截面层上形成由所述牙齿的3D模型的轮廓勾勒出片后的每层图像数据(即分层图像数据),在所述横截面层足够薄的情况下,我们认定所述横截面层上横截表面和下横截表面的轮廓线是一致的且轮廓线所对应的图形称为切片图形。根据3D打印设备所使用的光源投影系统的类型,所述切片图形可由图像数据或用于构建扫描路径矢量的坐标数据所描述。例如,所述光源投影系统为基于面曝光的投影系统,如包含DMD芯片和投影光源的投影系统,则所述切片图形由包含像素点的图像数据描述。又如,所述光源投影系统为基于扫描的投影系统,如包含激光源和扫描振镜的投影系统,则所述切片图形由光斑扫描路径上的坐标数据描述,其中,所述光斑扫描路径用于勾勒切片图形轮廓和填充切片图形主体而设置。
在某些实施方式中,为了满足义齿的颜色需求,在所述数据处理阶段,还对应切片图形、对应分层图像、或对应分层层数等分层参数而设置颜色要求,即基料与色剂配比。所设置的基料与色剂配比可以逐层设置,以提供渐变的颜色要求。在一些实施方式中,渐变的颜色要求可每隔N层设置一种,其中,N为自然数,N也并非一定是固定值。接着,将包含所获得的所述牙齿的3D模型切片后的各层切片图形导入到3D打印设备中。
基于上述数据处理后,本申请提供一种适用于光固化成型的3D打印陶瓷义齿的方法。所述方法主要由3D打印设备的控制系统来执行。其中,所述控制系统包括但不限于:工控机、基于嵌入式操作系统的电子设备、计算机设备等。所述控制系统通过数据线连接3D打印设备中的光源投影系统、Z轴升降系统、搅拌机构、补液装置、阀门或驱动泵、液位传感器等等,通过执行以下步骤对光源投影系统、Z轴升降系统、搅拌机构、补液装置和阀门等进行时序控制,以制造对应所述牙齿的3D模型的义齿3D打印件。
在步骤(1)中,获取牙齿3D模型中分层图像数据所对应的切片图形。在此,所述控制系统在获取包含牙齿的3D模型的各分层图像时即得到对应各分层图像的切片图形,其为相应分层图像所在3D模型的横截面轮廓图形。其中,所述控制系统获取牙齿的3D模型的各分层图像的方式可以由人工导入,或利用互联网下载至控制系统。
与步骤(1)同时或不分先后顺序地还执行步骤(2),即打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置。
具体地,为实现制造义齿的3D打印件的个性化设计要求,在树脂槽内盛放的液体的所述液位高度应为满足打印要求的最小液位高度。因此,在打印前需检测树脂槽内液体的液位高度是否达到了预设高度(即最小液位高度)。在打印前,技术人员可采用人工方式检测或由控制系统利用液位传感器检测树脂槽内液体的液位高度。其中,所述液体包含基料、或者还包含色剂。其中,所述基料由光敏树脂和陶瓷粉按比例配置。所述色剂用于配合制造带有颜色要求的义齿3D打印件可在打印前被添加到树脂槽中。显然,在打印前是否添加色剂与打印件的颜色要求有关,例如,若牙齿的3D模型中初始一层或多层标记了基料和色剂配比,则在补液期间调整色剂和基料的配比,反之,则仅将基料补充到预设高度即可。
事实上,所述控制系统可通过液位传感器先对当前液位高度进行检测,若检测到树脂槽中的液位高度达到了预设高度,则可不执行步骤(2)而直接执行步骤(3);反之,将包含基料的液体液位补充至预设高度。
在此,本领域技术人员应该理解,当被补充到树脂槽的混合液与树脂槽内剩余的混合液组份一致,则无需进行搅拌。或者,所述控制系统根据预设的搅拌动作启动条件对树脂槽内的混合液进行搅拌。在完成打印前的准备工作后,控制系统可基于所接收的打印指令或通打印前的检测数据开始执行打印过程,即重复执行下述步骤(3)和(4)以打印出对应牙齿3D模型的义齿3D打印件。
在步骤(3)中,采用底部投影的方式投影所述切片图形。具体地,控制系统按照打印顺序将切片图形提供给光源投影系统,由光源投影系统将切片图形投射到树脂槽底面,使得位于树脂槽底面和工作平台之间的液体固化。在某些实施方式中,所述光源投影系统为基于面曝光的投影系统,则所投影的切片图形为由像素描述的图像,对应的所述光源投影系统将所述切片图形整体投射到树脂槽底部。在另一些实施方式中,所述光源投影系统为基于光斑扫描的投影系统,则所投影的切片图形为由坐标数据描述的图像,对应的所述光源投影系统根据所述切片图形中的坐标数据生成扫描路径矢量并在树脂槽底部二维平面内进行扫描。
在步骤(4)中,控制用于打印的工作平台调整打印位置。对于基于底面曝光的3D打印设备来说,控制系统在每次投影切片图形后,控制Z轴升降系统向上移动以将固化层从树脂槽底面剥离,再控制Z轴升降系统向下移动使得被剥离的固化层与树脂槽底面相距下一固化层层高,通过Z轴升降系统的移动,液体填充在相应间隙中。
在打印过程中,控制系统一方面根据树脂槽中液位传感器提供的液位高度对树脂槽中的剩余液体进行监测,当监测到液位高度低于预设高度时,确定进行补液,当监测到液位高度高于等于预设高度时,确定继续执行打印步骤。
在某些实施方式中,所述对液位高度判断的时机可在每层打印结束时进行。具体地,在执行完步骤(4)后,执行步骤(5):基于液位高度判断是否进行补液,若是,则执行步骤(6),反之返回步骤(3)执行下一层切片图形的投影过程。例如,所述控制系统在每层打印前将液位传感器所提供的液位高度数据与预设高度相比较,若液位高度数据大于预设高度,则执行步骤(3),反之,则执行步骤(6)。
在步骤(6)中,补液直至树脂槽中的液位高度高于所述预设高度。具体地,所述控制系统控制打开补液装置出液口,如打开出液口处的阀门或通过驱动泵抽取以便于让补充的液体流入树脂槽,当补液后的液位高度高于预设高度时,再控制关闭补液装置出液口,如关闭相应阀门或关闭驱动泵。在此,所述控制系统所补充的液体可以是基料和/或色剂。例如,若牙齿的3D模型中无基料和色剂配比,或当前待打印层的基料和色剂配比无变化,则控制系统控制补液装置所补充的液体与树脂槽内剩余液体成份一致。在补液完成后返回步骤(3)继续执行下一层切片图形的投影步骤,直至打印完毕。
在另一些实施方式中,所述控制系统可包含单独监测液位高度的监测模块和单独的打印模块,所述监测模块对液位传感器所提供的液位高度进行监测,所述打印模块控制光源投影系统和Z轴升降系统执行逐层打印。当所述监测模块检测到液位高度低于预设高度时,向控制系统的打印模块传递一中断打印的指令,所述打印模块在进行下一层打印前执行前述步骤(6)的补液操作。
由于基料是光敏树脂和陶瓷粉的混合液,故而陶瓷粉在打印期间会出现逐渐沉积的情 况,因此,在打印过程中,所述控制系统还执行步骤(7):根据预设的搅拌动作启动条件对所述液体进行搅拌。
在此,所述搅拌动作启动条件包括但不限于:1)按搅拌间隔启动搅拌动作。具体地,根据搅拌均匀的基料在静态下自然析出沉淀的时间设定搅拌间隔时间,并在每次搅拌间隔时间达到时启动搅拌动作。例如,根据搅拌均匀的基料在静态下自然析出沉淀的时间T1,预设一个搅拌间隔时间T2,其中T1>T2(T1和T2均为时间段而不是时间点),在前一次搅拌完成后,经过T2的时长间隔则进行下一次搅拌。2)基于补液操作设置搅拌启动条件。具体地,一方面,所述搅拌启动条件可设置为在每次补液操作完成和下次投影之间,对树脂槽中的液体进行搅拌。另一方面,所述搅拌启动条件可依据基于补液操作而调整,比如,基于补液操作重新计时搅拌间隔时间并按照搅拌间隔时间控制搅拌动作的执行。例如,在打印义齿具有颜色要求时,根据基料与色剂的混合液色度是否符合当前层的色度要求,判断是否需要进行搅拌,而且在此种情况下上述的判断方式仍然存在,即计算T2时长的起算点,包括因色度不符而进行搅拌的动作,例如在前一次搅拌后,经历T3时长(T2>T3),因色度不符而进行了一次搅拌动作,则T2时长的判断需要在T3时长后进行的这次搅拌动作重新计算。
需要说明的是,打印动作和搅拌动作互为对方的启动阻止条件,即:在满足预设的搅拌动作启动条件时,如果在进行打印动作,则搅拌动作被阻止,需等待该次打印动作完成后,才进行搅拌动作,即搅拌动作的执行被延后。同样地,在进行搅拌动作时,即便输入打印指令,打印动作也不会执行。
在此,所述控制系统通过控制搅拌机构和Z轴升降系统对树脂槽内液体进行搅拌。具体地,所述控制系统控制Z轴升降系统带动工作平台和附着在工件平台上的打印件上升至至少高于搅拌机构的高度,并悬停,再控制搅拌机构进行搅拌;在搅拌完成后,控制Z轴升降系统下降至打印件与树脂槽底面相隔一层固化层厚度的距离,以便执行下一层投影。
需要说明的是,当同时符合步骤(6)和(7)的执行条件时一种更节约时间的方式可以同时执行步骤(6)和(7)。在此不再详述。
控制系统通过执行上述各步骤完成一义齿的3D打印件的打印过程,在打印完成后,为 提高所得义齿的强度,技术人员还需对3D打印件进行了二次固化处理来保证固化充分,进行了烧结—等静压处理来保证陶瓷材料的致密度。
事实上,对于患者来说,更希望所安装的义齿与自己的牙齿在颜色上较无色差,故而,本申请在打印过程中还对3D模型中设置的颜色要求进行解析,并控制3D打印设备基于颜色要求调整树脂槽中的液体配比,以打印出符合颜色要求的义齿3D打印件。
具体地,在打印期间,与步骤(5)无必然时序关系地,所述控制系统还执行步骤(8):比较待投影切片图形所对应的基料与色剂配比P1与树脂槽内的基料与色剂配比P2是否相符,若是,则可执行步骤(5)、或执行步骤(3)以继续打印;若否,则执行步骤(9)。
其中,为了确定配比P2,所述控制系统具有树脂槽内初始液体混合配比P0。例如,初始液体配比中基料与色剂的配比比例为a:b质量比。所述控制系统在单纯基于液位补液时,所补充的混合液可按照初始配比P0进行补液控制,且在未改变树脂槽内配比的情况下进行补液时,P0=P2。
在步骤(9)中,基于待投影切片图形所对应的基料与色剂配比,向树脂槽内进行补液。
具体地,所述控制系统基于检测所述树脂槽内的液位高度,确定树脂槽中剩余的基料与色剂的量,按照对应待投影切片图形的基料与色剂配比,向所述树脂槽中补充基料和/或色剂。
在此,所述控制系统将每次补液后的液位高度h0作为调整配比的参数之一。当控制系统判断配比P1与P2不符时,检测当前树脂槽中的液位高度h1,并根据确定液位高度差(h0-h1)、树脂槽中当前基料与色剂的配比P2分别确定树脂槽内基料和色剂的质量。控制系统可根据配比P1确定待补充至树脂槽中的基料和/或色剂的量(可以是质量、或基于补液装置出液口单位时间流出的质量而计算的流量),并控制补液装置进行对应补液。例如,两个配比不一致且对比后得知色度应该减弱,那么此时所述控制系统根据接收反馈来的当前树脂槽内基料与色剂混合液的液位高度,计算出当前树脂槽内混合液中基料与色剂的质量,并结合待打印层对基料与色剂的配比要求,计算出需要补入多少基料才能够稀释当前树脂槽内的混合液,使基料和色剂达到待打印层要求的配比,从而控制完成所述基料的补入量。反之,若对比后得知色度应该加强,那么所述控制系统会对比计算待加入色剂的量,并控制完成补入 动作。在基料和色剂的出液口,分别设置了流量传感器,所以控制系统能够分别精确控制二者的补入量。
需要说明的是,本领域技术人员应该理解,基于液位高度的补液操作和基于配比的补液操作可同时进行,如在补液时根据待打印层的颜色要求进行补充液体并使树脂槽中的液体达到预设高度。即,当制作的义齿有颜色要求时,在所述补液时还补入色剂,使所述基料与所述色剂的混合液的液位高度达到预设高度;补入的所述基料与所述色剂的比例为预设配比。
上述步骤(8)可在每层打印前执行。例如,在每层打印前,将待打印层的色度要求所对应的基料与色剂配比与当前基料与色剂的混合配比进行比较;如两个配比不一致,根据接收到的当前基料与色剂混合液的液位高度,计算出当前混合液中基料与色剂的量,并结合待打印层对基料与色剂的配比要求,控制所述基料和/或色剂的补入量。
或者,控制系统根据牙齿的3D模型中设置的每隔N层的颜色要求,在打印至相应颜色要求变化的层时执行上述步骤(8)。例如,所述控制系统在解析了颜色要求与层对应关系后,对同一颜色要求的层进行计数,以便当达到相应层数时执行步骤(8)。
为了按照3D模型中的颜色要求调整树脂槽中基料与色剂的配比,所述补料装置中可单独盛放基料和色剂。单独盛放液体的腔可单独将相应液体送入树脂槽;或各腔的出液口均与公共出液口相连,并通过公共出液口将相应液体补充到树脂槽。控制系统在补液过程中,按照预设配比分别控制所述基料与所述色剂的补入量。例如,补料装置提供两个单独盛放基料和色剂的容器,且每个腔的出液口设置一阀门。当控制系统执行补液操作时,按照所确定的补入量单独控制对应基料的阀门和/或对应色剂的阀门的通断时间。又如,补液装置的容腔分为基料腔和色剂腔;根据树脂槽内基料的量,将色剂按一定比例进行添加后,如达不到预设液体的高度,则基料和色剂会按照配比要求同时补充加入到树脂槽内,直至预设的液位高度;在此种情况下,补液装置对应在基料腔和色剂腔下端出液口设置有流量传感器,以实现对基料和色剂排送量的监控调节;颜色可以由色剂的添加来控制,通过控制色剂添加的量以及光固化打印用的基料添加的量,控制基料以及色剂的比例即可以控制陶瓷牙的颜色。优点是颜色可定制化配置,缺点是一致性差,控制相对困难。
所述补料装置中还可以包含盛放混合液体的混合容器,将基料和色剂按预设配比盛放在该混合容器中,在由控制系统在补液过程中,将所述基料与色剂按预设配比混合后再以混合液的形式添加到树脂槽中。例如,所述控制系统事先控制补料装置进行光敏树脂、陶瓷粉、色剂等的比例配置,配制出颜色不同的材料配方,将调制好颜色的材料直接进行补液。优点是一致性好,缺点是同一批次不能改变颜色。
在执行步骤(9)的同时或执行(9)之后,所述方法还包括步骤(10)。
在步骤(10)中,对所述树脂槽内的液体进行搅拌。显然,当所补充的混合液配比与树脂槽中剩余配比不同时,为了确保3D打印件的颜色,需在补液的同时或补液后进行搅拌。本步骤所执行的搅拌控制过程与步骤(7)的搅拌控制过程相同或相似,在此不再详述。
在另一些实施方式中,无论在执行(6)、(7)、(9)、(10)中任一或多个步骤后,或者在执行步骤(3)之前,所述方法还包括:步骤(11),即在投影出切片图形前,执行等待预设时间以确保液体表面流平的步骤。例如,在搅拌完且等待预设时间后,采用底部投影方式投影出当前层图像数据所对应的切片图形,并且进行曝光固化。在此,对于底面曝光的打印设备来说,增加等待步骤不仅能确保液体表面流平,还能确保槽底充分补入液体。
需要说明的是,上述各实施方式中所提到的搅拌、补液和等待预设时间的步骤可在一层固化前执行一次或多次。其中,执行一次能具有较高的打印效率,而执行多次可确保补液精度和搅拌均匀。故而,所述等待预设时间(以下称等待时间)至少可以区分为等待时间t1和等待时间t2(t1>t2)。例如,补液后若不需要搅拌,则在补液后间隔一个等待时间t1;若不需要补液,同时又不需要搅拌的情况下,则即时间隔一个等待时间t2,而且可以使t2=0秒;补液后或不需要补液的情况下若需要搅拌,则在搅拌后间隔一个等待时间t1。
基于上述打印过程的描述,本申请提供的一种适用于光固化成型的3D打印陶瓷义齿的方法的一个具体工作过程举例如下:
首先,通过三维扫描获取病人牙齿的数据,根据扫描的牙齿数据,分析病人牙齿的状况,通过牙科设计软件设计义齿的形状,获取义齿的3D模型;然后根据获取的义齿的3D模型,考虑要求的义齿颜色特征,将光敏树脂、陶瓷粉、色剂按比例配置成混合液体(光敏树脂和 陶瓷粉按比例配置成基料),进行3D打印陶瓷牙;最后将打印出来的陶瓷牙进行烧结—等静压处理等,提高义齿强度,制得的陶瓷牙最终用于病人口中时通过齿科专用的胶水固定在基台上。
下面介绍本申请所提供的一种适用于光固化成型的3D打印陶瓷义齿的方法,在获取义齿的3D模型后至完成3D打印陶瓷义齿的过程中存在的详细步骤为:
1)将扫描获得的牙齿数据转换为待打印的牙齿3D模型,通过数据处理方式获得待打印的牙齿3D模型切片后的每层图像数据,并且将切片后的每层图像数据传送给控制系统;根据具体情况,前述处理获得的数据信息中可以包含待制作义齿的颜色信息;
2)补液/调色过程,首先调整补液装置(补液装置包括设在树脂槽内的液位传感器,液位传感器连接控制系统),使树脂槽内基料的液位高度达到预设高度,若制作义齿有颜色要求,则所调节的液位高度为基料与色剂混合后所得混合液的液位高度;所述控制系统根据液位高度检测反馈系统反馈的液位信号,判断是否需要继续进行补液,来保证树脂槽内基料的液位高度达到所述预设高度。若制作义齿有颜色要求,补液过程中控制流入树脂槽内基料与色剂的比例为预设配比;控制系统控制调节的液位的预设高度为所述基料与所述色剂按照配比混合后混合液的液位高度。
每层打印前,所述控制系统根据预设的搅拌条件来判断是否对树脂槽内的液体进行搅拌并且控制进行搅拌。
3)陶瓷义齿打印,采用底部投影的方式逐次投影出所述每层图像数据所对应的切片图形,并且进行光源曝光,逐层完成固化,并且在每层打印前,所述控制系统根据液位高度检测反馈系统反馈的液位信号,判断是否需要进行补液,来保证树脂槽内基料的液位高度维持在所述预设高度。若制作义齿有颜色要求,补液过程中控制流入树脂槽内基料与色剂的比例为预设配比;每层打印前,控制系统控制调节的液位的预设高度为所述基料与所述色剂按照配比混合后混合液的液位高度。以及在每层打印前,所述控制系统根据预设的搅拌条件来判断是否对树脂槽内的液体进行搅拌并且控制进行搅拌。
打印过程中预设的搅拌动作启动条件,可以为下述两种情况,但不受下述两种情况的限 制:其一,根据搅拌均匀的基料在静态下自然析出沉淀的时间T1,预设一个搅拌间隔时间T2,其中T1>T2(T1和T2均为时间段而不是时间点),在前一次搅拌完成后,经过T2的时长间隔则进行下一次搅拌;其二,在打印义齿具有颜色要求时,根据基料与色剂的混合液色度是否符合当前层的色度要求,判断是否需要进行搅拌,而且在此种情况下上述的判断方式仍然存在,即计算T2时长的起算点,包括因色度不符而进行搅拌的动作,例如在前一次搅拌后,经历T3时长(T2>T3),因色度不符而进行了一次搅拌动作,则T2时长的判断需要在T3时长后进行的这次搅拌动作重新计算。打印过程中打印动作和搅拌动作互为对方的启动阻止条件。
前述“打印动作和搅拌动作互为对方的启动阻止条件”,理解为:在满足预设的搅拌动作启动条件时,如果在进行打印动作,则搅拌动作被阻止,需等待该次打印动作完成后,才进行搅拌动作,即搅拌动作的执行被延后。同样地,在进行搅拌动作时,即便输入打印指令,打印动作也不会执行。
上述打印陶瓷义齿的方法有益效果为:打印成型过程无需大量基料,只需要少量补充基料即可进行打印,只需要基料能铺平工作平台所对应的XY空间即可开始打印;能够做到精细分层,可以实现最小分层厚度10微米甚至更小的层厚分级,保证了打印义齿的精度;添加有陶瓷粉的树脂粘度很大,在底部投影方式下液体受到自身重力作用,对于采用低、中粘度的树脂混合形成的基料可以自然流平,对于采用高粘度的树脂混合形成的基料,借助搅拌机构的搅拌作用也可以保证树脂槽底部液体流平,实现正常打印;为了保证所得义齿强度,液体基料将光敏树脂与微小颗粒的陶瓷粉按一定配比混合,直接实现3D打印陶瓷牙。
总之,上述方法使得义齿制作流程简化、制作效率提高,使用的耗材减少,制作义齿的精度显著提高、匹配性更好。
以制作义齿有颜色要求为例详述控制并调整补液的过程:
液位高度检测反馈系统实时检测树脂槽内的液位高度,并且将液位高度反馈给控制系统;控制系统根据获取的液位高度数据作出判断,是否需要往树脂槽内添加液体,如果判断需要,控制系统向补液装置发送添加液体的指令,使补液装置的出液口打开开始补液,直到 液位高度检测反馈系统检测到液位高度达到设定高度后停止补液。
在对制得义齿有颜色要求情况下,调色分为两种情形:即
A、根据检测到的树脂槽内的基料的量,将色剂按一定比例进行添加补充并均匀混合,这种情况下补液装置的容腔分为基料腔和色剂腔;根据树脂槽内基料的量,将色剂按一定比例进行添加后,如达不到预设液体的高度,则基料和色剂会按照配比要求同时补充加入到树脂槽内,直至预设的液位高度;在此种情况下,补液装置对应在基料腔和色剂腔下端出液口设置有流量传感器,以实现对基料和色剂排送量的监控调节;
B、预先将基料与色剂先按一定比例配置好并混合充分之后装入补液装置的容腔内,以混合液的形式送入树脂槽内;
在上述A情况下,颜色可以由色剂的添加来控制,通过控制色剂添加的量以及光固化打印用的基料添加的量,控制基料以及色剂的比例即可以控制陶瓷牙的颜色。优点是颜色可定制化配置,缺点是一致性差,控制相对困难。在上述B情况下,事先进行光敏树脂、陶瓷粉、色剂等的比例配置,配制出颜色不同的材料配方,将调制好颜色的材料直接进行补液。优点是一致性好,缺点是同一批次不能改变颜色。
打印前,完成补液后,搅拌机构对树脂槽的混合液体进行搅拌,防止树脂槽底部形成沉淀以及确保混合液混合的均匀;搅拌完毕后,搅拌机构位置归零(即回到初始位置)。
打印过程,以制作义齿有颜色要求为例详述打印过程。
如图1所示,在陶瓷义齿打印中,打印具体包括以下步骤:
i)当前层打印前,所述控制系统判断是否需要补液,若需要补液,则进行补液,补液完毕后进入步骤ii);若不需要补液,则直接进入步骤ii);
ii)所述控制系统判断是否需要对液体进行搅拌,若需要搅拌,则控制用于打印的工作平台向上运动以错开搅拌机构(给接下来搅拌机构的运动让出空间),控制搅拌机构对液体进行充分搅拌,搅拌完毕后,搅拌机构回到初始位置(搅拌机构位置回零),工作平台回到当前层的打印位置(工作平台位置回零);若不需要搅拌,则直接驱动工作平台运动,使工作平台到达当前层的打印位置;
iii)等待预设时间后,采用底部投影方式投影出当前层图像数据所对应的切片图形,并且进行曝光固化;
iv)判断后续是否还有待打印的切片图形,若存在待打印的切片图形,则工作平台垂直上升一个层厚的高度后,然后重复上述i)至iii)步骤,逐层进行打印;若不存在待打印的切片图形,则打印结束,完成陶瓷义齿的加工。
在最终形成义齿的三维实体后,控制系统驱动工作平台和树脂槽作相对背离运动,使整个三维实体脱离树脂槽液面。
打印过程中判断是否需要搅拌的依据为:其一,根据搅拌均匀的基料在静态下自然析出沉淀的时间T1,预设一个搅拌间隔时间T2,其中T1>T2(T1和T2均为时间段而不是时间点),在前一次搅拌完成后,经过T2的时长间隔则进行下一次搅拌;其二,打印的义齿具有颜色要求,根据基料与色剂的混合液色度是否符合当前层的色度要求,判断是否需要进行搅拌,而且在此种情况下上述的判断方式仍然存在,即计算T2时长的起算点,包括因色度不符而进行搅拌的动作,例如在前一次搅拌后,经历T3时长(T2>T3),因色度不符而进行了一次搅拌动作,则T2时长的判断需要在T3时长后进行的这次搅拌动作重新计算。
所述等待预设时间(等待预设时间以下称等待时间):等待时间,至少可以区分为等待时间t1和等待时间t2(t1大于t2),具体地:补液后若不需要搅拌,则在补液后间隔一个等待时间t1;若不需要补液,同时又不需要搅拌的情况下,则即时间隔一个等待时间t2,而且可以使t2=0秒;补液后或不需要补液的情况下若需要搅拌,则在搅拌后间隔一个等待时间t1。
图1中的“工作平台和搅拌机构位置回零”是指搅拌机构回到动作前的初始位置,工作平台回到待打印的当前层位置。
在待打印的3D义齿由颜色要求,且又要求个性化设计时,如要求打印出的义齿能够有分层颜色,比如根部比较黄,牙尖更白的情形,便需要调控基料与色剂的配比的变化。此时,一种情况下,可以按照最深颜色将基料与色剂混合成混合液,统一添加至树脂槽中,随着打印的进度不断向补液装置的容腔(此时为一个容腔)加入基料,此时每进行一次补液便需要搅拌一次,换言之,便是补液动作的有无为判断搅拌是否进行的一种条件,如果进行了补液 则后面便会进行搅拌;另一种情况下,补液装置的容腔被分成基料腔和色剂腔,随着打印的进度分别添加基料或者色剂到树脂槽内,而不断调整基料和色剂(色粉)的配比来控制混合液颜色的浓淡,比如在打印过程中需要加深颜色的时候,可以通过单独添加色剂来提高色剂的比例,加深颜色,需要减淡颜色的时候,可以单独添加基料来稀释,此时每进行一次补入基料或色剂的动作便需要搅拌一次。
为实现上述的个性化设计要求,前述之控制所述基料与色剂的混合液的液位所对应的预设高度应为满足打印要求的最小液位高度。此时,在每层打印前,所述控制系统将待打印层的色度要求所对应的基料与色剂配比(前期数据处理获得),与当前树脂槽内剩余的基料与色剂的混合配比进行比较(该配比对应的是已打印层色度要求对应下的基料与色剂配比,也是在前期数据处理时获得,控制系统直接调取便可);如两个配比不一致,所述控制系统根据接收反馈来的当前基料与色剂混合液液位高度,计算出当前混合液中基料与色剂的量,并结合待打印层对基料与色剂的配比要求,控制所述基料或者色剂的补入量。详述之,即:
两个配比不一致且对比后得知色度应该减弱,那么此时所述控制系统根据接收反馈来的当前树脂槽内基料与色剂混合液液位高度,计算出当前树脂槽内混合液中基料与色剂的量,并结合待打印层对基料与色剂的配比要求,计算出需要补入多少基料才能够稀释当前树脂槽内的混合液,使基料和色剂达到待打印层要求的配比,从而控制完成所述基料的补入量。反之,若对比后得知色度应该加强,那么所述控制系统会对比计算待加入色剂的量,并控制完成补入动作。在基料和色剂的出液口,分别设置了流量传感器,所以控制系统能够分别精确控制二者的补入量。
在这种齿色有变化要求的情况下,一般是打印N层后就需要进行一次调色的,所以存在基料与色剂同时补入和分别被补入的情形。
采用底部投影的打印方式,对基料(由树脂与陶瓷混合成)中树脂的使用量要求较少,所以在打印完结后容易清理树脂槽内残留,避免树脂在槽内固化干结,影响到打印过程中调色时需添加基料与色剂的计算准确性。
为提高所得义齿的强度,还进行了二次固化处理来保证固化充分,进行了烧结—等静压 处理来保证陶瓷材料的致密度。
本申请还提供一种适用于光固化成型的3D打印陶瓷义齿的装置。所述3D打印陶瓷义齿的装置获取牙齿的3D模型中各分层图像数据对应的切片图形,并通过逐层固化的方式制造对应模型的义齿的3D打印件。其中,所述3D模型及其各切片图形可通过其他设备的前期处理后导入得到的。在前期处理中,通过三维扫描获取病人牙齿的数据,根据扫描的牙齿数据,分析病人牙齿的状况,通过牙科设计软件设计义齿的形状得到牙齿的3D模型。接着,通过数据处理方式将所得到的牙齿的3D模型沿Z轴方向(即沿高度方向)进行横截划分,其中,在每相邻横截划分所形成的横截面层上形成由所述牙齿的3D模型的轮廓勾勒出片后的每层图像数据(即分层图像数据),在所述横截面层足够薄的情况下,我们认定所述横截面层上横截表面和下横截表面的轮廓线是一致的且轮廓线所对应的图形称为切片图形。根据3D打印设备所使用的光源投影系统的类型,所述切片图形可由图像数据或扫描路径上的坐标数据所描述。例如,所述光源投影系统为基于面曝光的投影系统,如包含DMD芯片和投影光源的投影系统,则所述切片图形由包含像素点的图像数据描述。又如,所述光源投影系统为基于扫描的投影系统,如包含激光源和扫描振镜的投影系统,则所述切片图形由光斑扫描路径上的坐标数据描述,其中,所述光斑扫描路径用于勾勒切片图形轮廓和填充切片图形主体而设置。
在某些实施方式中,为了满足义齿的颜色需求,在所述数据处理阶段,还对应切片图形、对应分层图像、或对应分层层数等分层参数而设置颜色要求,即基料与色剂配比。所设置的基料与色剂配比可以逐层设置,以提供渐变的颜色要求。在一些实施方式中,渐变的颜色要求可每隔N层设置,其中,N为自然数,N也并非一定是固定值。接着,将包含所获得的所述牙齿的3D模型切片后的各层切片图形导入到本申请所述的3D打印陶瓷义齿的装置中。
本申请所述的3D打印陶瓷义齿的装置包括:光源投影系统、Z轴升降系统、工作平台、补液装置、搅拌机构、树脂槽和控制系统。
所述树脂槽安装在固定机架上(如图2所示),用于盛放包含基料的液体。所述树脂槽中可在初始时(如打印前)仅盛放基料,还可以根据预设的配比盛放基料和色剂混合液。其 中,所述基料为包含光敏树脂和陶瓷粉按比例配置的悬混液。其中,所述树脂槽底面透明,以便于用于固化的光透过树脂槽底面照射到液体以实现固化。在一些实施方式中,所述树脂槽中还设有液位传感器,用以检测液体的液位高度。
所述光源投影系统位于树脂槽底部并面向树脂槽投射光能量,用于采用底部投影的方式逐次投影切片图形以固化位于树脂槽底部的液体。
在此,所述光源投影系统可以是基于面曝光的投影系统。例如,所述光源投影系统包括光源、DMD芯片、控制器和存储模块。其中,所述存储模块中暂存将由像素矩阵描述的切片图形。所述DMD芯片在接受到控制器的控制信号后调整对应切片图形上各像素的镜面转角,使得相应像素的光能照射到树脂槽底面。其中,DMD芯片外观看起来只是一小片镜子,被封装在金属与玻璃组成的密闭空间内,事实上,这面镜子是由数十万乃至上百万个微镜所组成的,每一个微镜代表一个像素,所投影切片图形就由这些像素所构成。DMD芯片可被简单描述成为对应像素点的半导体光开关和微镜片,所述控制器通过控制DMD芯片中各光开关来允许/禁止各微晶片反射光,由此将相应切片图形经过树脂槽的透明底部照射到液体上,使得对应切片图形的液体被固化,以得到图案化的固化层。
所述光源投影系统还可以是基于光斑扫描的系统。所述切片图形由光斑扫描路径上的坐标数据描述。例如,所述光源投影系统包括激光发射器、位于所述激光发射器射出光路上的透镜组和位于所述透镜组出光侧的振镜组。其中,所述激光发射器受控的调整输出激光束的能量。例如,所述激光发射器受控的发射预设功率的激光束以及停止发射该激光束。又如,所述激光发射器受控的提高激光束的功率以及降低激光束的功率。所述透镜组用以调整激光束的聚焦位置,所述振镜组用以受控地按照坐标数据所生成的路径矢量将激光束在所述树脂槽底面的二维空间内扫描,经所述光束扫描的液体被固化成对应的图案固化层。
除上述各示例为,所述光源投影系统可以包含DLP(数字光处理,Digital light processing)技术、LCD(液晶显示)技术、投影仪、激光结合振镜、激光结合转镜中的一个或几个的阵列中至少一种。对应地,所述光源投影系统中的投影系统可以选择为DLP投影仪、LED投影仪、LCoS投影仪、LCD投影仪、UV投影仪、激光结合振镜、激光结合转镜中的一个或几个 的阵列。
所述工作平台用于附着经照射后得到的图案固化层,以便经由所述图案固化层积累形成3D打印件。具体地,所述工作平台举例为构件板。所述工作平台初始时以位于树脂槽内的树脂槽底部为起始位置,逐层累积在所述打树脂槽底部上固化的各固化层,以得到相应的3D打印件。
所述Z轴升降系统与工作平台装配在一起,用带动所述工作平台调整打印位置。当所述Z轴升降系统带动工作平台下降时,通常是为了将所述工件平台或附着在工件平台上的图案化固化层下降到相距树脂槽底部一固化层层高的间距,以便照射填充在所述间距内的液体。当所述Z轴升降系统带动工作平台上升时,通常是为了将图案固化层自树脂槽底部分离。
所述Z轴升降系统包括驱动单元和竖直移动单元,所述驱动单元用于驱动所述竖直移动单元,以便所述竖直移动单元带动构件平台升降移动。例如,所述驱动单元为驱动电机。所述驱动单元受控制指令控制。其中,所述控制指令包括:用于表示构件平台上升、下降或停止的方向性指令,甚至还可以包含转速/转速加速度、或扭矩/扭力等参数。如此有利于精确控制竖直移动单元的上升的距离,以实现Z轴的精准调节。在此,所述竖直移动单元举例包括一端固定在所述构件平台上的固定杆、与固定杆的另一端固定的咬合式移动组件,其中,所述咬合式移动组件受驱动单元驱动以带动固定杆竖直移动,所述咬合式移动组件举例为由齿状结构咬合的限位移动组件,如齿条等。又如,所述竖直移动单元包括:丝杆和旋接所述丝杆的定位移动结构,其中所述丝杆的两端旋接于驱动单元,所述定位移动结构的外延端固定连接到构件平台上,该定位移动结构可包含滚珠和夹持件的螺母形结构。
在如图2所示的示例中,Z轴升降系统包括:垂直传动机构52。具体地,所述垂直传动机构52包括垂直设置的梁架、设置在梁架上且轴向沿垂直方向的螺杆及与螺杆配合的滑块。梁架位于树脂槽2的后侧,电机一51安装在梁架上与螺杆的一端配合。工作平台3与滑块之间形成固定连接,在电机一51及丝杠、滑块组成机构的驱动下,实现上下升降的往复移动。
需要说明的是,图2中示出Z轴升降系统设置在树脂槽的后侧,但不限于此。Z轴升降 系统在不影响固化层附着工作平台的基础上可根据3D打印装置的设计选择设置在相对于树脂槽的其他位置。
所述搅拌机构用于搅拌树脂槽中的液体。所述搅拌机构的搅拌部探入树脂槽的槽腔,并受控地定期或基于补液操作搅拌树脂槽内的液体,以便于树脂槽内的基料、或基料和色剂混合液混合均匀,以达到义齿的3D打印件的产品特性(如坚硬度、耐压度、抑菌度等)、甚至颜色要求。
如图2所示的搅拌机构包括电机二61、搅拌刮板62、和水平梁架。水平梁架设置在树脂槽2的左侧,并沿前后方向延伸。在水平梁架上设置丝杠滑块传动机构,电机二61固定在水平梁架的后端驱动丝杠滑块传动机构动作。搅拌机构的搅拌部为搅拌刮板62,搅拌刮板62与丝杠滑块传动机构的滑块配合连接,能够沿前后方向往复直线移动。搅拌刮板62探入到树脂槽2的槽腔,跨度辐射树脂槽2槽腔的整个横向(X轴方向)。在每一次的搅拌过程中,搅拌刮板62可以往复一次或者多次后,回到初始位置(即树脂槽2的槽腔后侧位置)。
作为另一种搅拌方式,所述搅拌机构的搅拌部为球型搅拌体,该球型搅拌体探入树脂槽的槽腔内,外径与树脂槽槽腔的宽度(X向)基本一致,此时搅拌机构可包括电机二和支撑臂,不在包括丝杠滑块传动机构。与图2不同的是,支撑臂固定在固定机架1上,自由端延伸至树脂槽2槽腔的上方并安装上球型搅拌体。电机二61安装在固定机架1上,能够驱动树脂槽2使树脂槽2在水平面内旋转,这样便能够实现球型搅拌体相对树脂槽2的旋转运动,而对树脂槽2内的液体进行搅拌。例如,所述球形搅拌体包含叶片,所述叶片在电机二的带动下旋转,以便对树脂槽内的液体进行搅拌。
需要说明的是,图2中所示出的搅拌机构设置在树脂槽的左侧,但不限于此。本领域技术人员应该理解,搅拌机构所设置的位置与搅拌部(如搅拌刮刀)静置时的位置相关,并可根据实际工程需要设置在树脂槽的其他边缘。
所述补液装置盛放基料和色剂,用于向所述树脂槽中进行补液。补液装置的出液口连通至树脂槽。
所述补液装置中可仅盛放基料或色剂。在一些实施方式中,所述补料装置中包含单独盛 放基料和色剂的腔。单独盛放液体的腔可单独将相应液体送入树脂槽;或各腔的出液口均与公共出液口相连,并通过公共出液口将相应液体补充到树脂槽。在有一些实施方式中,所述补料装置中还可以包含盛放混合液体的混合容器,将基料和色剂按预设配比盛放在该混合容器中,再受控地补充到树脂槽中。所述补液装置的出液口设有如电磁阀的阀门,可通过控制阀门通断控制液体的补入量。例如,如图2所示,补液装置7的出液口连通至树脂槽2。在树脂槽2内设置液位传感器,补液装置7的出液口设置电磁阀门,于另一实施方式中,补液装置的出液口设置还可以通过驱动泵进行控制液体的补入量。
所述控制系统连接液位传感器、电磁阀门、光源投影系统、Z轴升降系统、搅拌机构、补液装置。例如,如图2所示,控制系统与液位传感器、电磁阀门、光源投影系统4、电机一51、电机二61、补液装置7均相连。
在此,所述控制系统可由一个计算机设备执行各控制时序。或者,控制系统由多个控制模块数据连接而成。所述控制模块包含用于控制光源投影系统的投影模块、用于控制Z轴升降系统的升降模块、用于监测液位高度的监测模块、用于控制补液装置补液的补液模块、用于控制搅拌机构的搅拌模块、以及用于统筹上述各模块执行时序的时序控制模块等。所述投影模块可集成在光源投影系统中,或单独配置并数据连接光源投影系统的受控器件。所述升降模块可集成在Z轴升降系统中或单独配置并与Z轴升降系统的驱动单元相连。所述监测模块电连接液位传感器,可集成在时序控制模块中或单独配置并数据连接液位传感器。所述补液模块电连接阀门和/或补液装置,可集成在时序控制模块中或单独配置并数据连接电连接阀门和/或补液装置。所述搅拌模块电连接搅拌机构,可集成在时序控制模块中或单独配置并数据连接电连接搅拌机构。
在此,各单独配置的控制模块可如工控机、单片机等,被集成在一起的控制模块,如所述时序控制模块可包含存储单元、处理单元和接口单元。其中,所述存储单元包括但不限于:非易失性存储器和易失性存储器,还可以包含通过互联网连接的存储服务器。其存储所获取的牙齿的3D模型及其各分层图像对应的切片图形、对应各切片图形的颜色要求、以及用于对电磁阀门、光源投影系统、Z轴升降系统、搅拌机构、补液装置等进行时序控制的程序。
所述处理单元包含具有数值、数据和逻辑处理能力的处理器,如CPU、可编程逻辑器件(FPGA)、和多核处理器中的至少一种。所述处理单元与存储单元相连用于调用程序,以及读取切片图形。
所述接口单元分别直接或间接连接液位传感器、电磁阀门、光源投影系统、Z轴升降系统、搅拌机构和补液装置。为此,所述接口单元包含多个接口端以便于与各电子器件进行数据连接或电连接。
所述控制系统用于获取所述牙齿3D模型中各分层图像数据所对应的切片图形;打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置;采用底部投影的方式逐次投影所述切片图形以逐层完成固化;其中,在每层打印前判断是否进行补液,以及根据预设的搅拌动作启动条件对所述液体进行搅拌。具体地,所述控制系统通过执行所调用的程序对牙齿的3D模型进行逐层打印。其中,所述程序中包含可并行、可串行、可循环的程序段。具体执行过程可通过如下步骤的描述并结合实际工程设计而定。
在步骤(1)中,获取牙齿3D模型中分层图像数据所对应的切片图形。在此,所述控制系统在获取牙齿的3D模型的各分层图像时即得到对应各分层图像的切片图形,其为相应分层图像所在3D模型的横截面轮廓图形。其中,所述控制系统获取牙齿的3D模型的各分层图像的方式可以由人工导入,或利用互联网下载至控制系统。
与步骤(1)同时或不分先后顺序地还执行步骤(2),即打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置。
具体地,为实现制造义齿的3D打印件的个性化设计要求,在树脂槽内盛放的液体的所述液位高度应为满足打印要求的最小液位高度。因此,在打印前需检测树脂槽内液体的液位高度是否达到了预设高度(即最小液位高度)。在打印前,技术人员可采用人工方式检测或由控制系统利用液位传感器检测树脂槽内液体的液位高度。其中,所述液体包含基料、或者还包含色剂。其中,所述基料由光敏树脂和陶瓷粉按比例配置。所述色剂用于配合制造带有颜色要求的义齿3D打印件可在打印前被添加到树脂槽中。显然,在打印前是否添加色剂与打印件的颜色要求有关,例如,若牙齿的3D模型中初始一层或多层标记了基料和色剂配比, 则在补液期间调整色剂和基料的配比,反之,则仅将基料补充到预设高度即可。
事实上,所述控制系统可通过液位传感器先对当前液位高度进行检测,若检测到树脂槽中的液位高度达到了预设高度,则可不执行步骤(2)而直接执行步骤(3);反之,将包含基料的液体液位补充至预设高度。
在此,本领域技术人员应该理解,当被补充到树脂槽的混合液与树脂槽内剩余的混合液组份一致,则无需进行搅拌。或者,所述控制系统根据预设的搅拌动作启动条件对树脂槽内的混合液进行搅拌。在完成打印前的准备工作后,控制系统可基于所接收的打印指令或通打印前的检测数据开始执行打印过程,即重复执行下述步骤(3)和(4)以打印出对应牙齿3D模型的义齿3D打印件。
在步骤(3)中,采用底部投影的方式投影所述切片图形。具体地,控制系统按照打印顺序将切片图形提供给光源投影系统,由光源投影系统将切片图形投射到树脂槽底面,使得位于树脂槽底面和工作平台之间的液体固化。在某些实施方式中,所述光源投影系统为基于面曝光的投影系统,则所投影的切片图形为由像素描述的图像,对应的所述光源投影系统将所述切片图形整体投射到树脂槽底部。在另一些实施方式中,所述光源投影系统为基于光斑扫描的投影系统,则所投影的切片图形为由坐标数据描述的图像,对应的所述光源投影系统根据所述切片图形中的坐标数据生成扫描路径矢量并在树脂槽底部二维平面内进行扫描。
在步骤(4)中,控制用于打印的工作平台调整打印位置。对于基于底面曝光的3D打印设备来说,控制系统在每次投影切片图形后,控制Z轴升降系统向上移动以将固化层从树脂槽底面剥离,再控制Z轴升降系统向下移动使得被剥离的固化层与树脂槽底面相距下一固化层层高,通过Z轴升降系统的移动,液体填充在相应间隙中。
在打印过程中,控制系统一方面根据树脂槽中液位传感器提供的液位高度对树脂槽中的剩余液体进行监测,当监测到液位高度低于预设高度时,确定进行补液,当监测到液位高度高于等于预设高度时,确定继续执行打印步骤。
在某些实施方式中,所述对液位高度判断的时机可在每层打印结束时进行。具体地,在执行完步骤(4)后,执行步骤(5):基于液位高度判断是否进行补液,若是,则执行步骤 (6),反之返回步骤(3)执行下一层切片图形的投影过程。例如,所述控制系统在每层打印前将液位传感器所提供的液位高度数据与预设高度相比较,若液位高度数据大于预设高度,则执行步骤(3),反之,则执行步骤(6)。
在步骤(6)中,补液直至树脂槽中的液位高度高于所述预设高度。具体地,所述控制系统控制打开补液装置出液口,如打开出液口处的阀门或通过驱动泵抽取以便于让补充的液体流入树脂槽,当补液后的液位高度高于预设高度时,再控制关闭补液装置出液口,如关闭相应阀门或关闭驱动泵。在此,所述控制系统所补充的液体可以是基料和/或色剂。例如,若牙齿的3D模型中无基料和色剂配比,或当前待打印层的基料和色剂配比无变化,则控制系统控制补液装置所补充的液体与树脂槽内剩余液体成份一致。在补液完成后返回步骤(3)继续执行下一层切片图形的投影步骤,直至打印完毕。
在另一些实施方式中,所述控制系统可包含单独监测液位高度的监测模块和单独的打印模块,所述监测模块对液位传感器所提供的液位高度进行监测,所述打印模块控制光源投影系统和Z轴升降系统执行逐层打印。当所述监测模块检测到液位高度低于预设高度时,向控制系统的打印模块传递一中断打印的指令,所述打印模块在进行下一层打印前执行前述步骤(6)的补液操作。
由于基料是光敏树脂和陶瓷粉的混合液,故而陶瓷粉在打印期间会出现逐渐沉积的情况,因此,在打印过程中,所述控制系统还执行步骤(7):根据预设的搅拌动作启动条件对所述液体进行搅拌。
在此,所述搅拌动作启动条件包括但不限于:1)按搅拌间隔启动搅拌动作。具体地,根据搅拌均匀的基料在静态下自然析出沉淀的时间设定搅拌间隔时间,并在每次搅拌间隔时间达到时启动搅拌动作。例如,根据搅拌均匀的基料在静态下自然析出沉淀的时间T1,预设一个搅拌间隔时间T2,其中T1>T2(T1和T2均为时间段而不是时间点),在前一次搅拌完成后,经过T2的时长间隔则进行下一次搅拌。2)基于补液操作设置搅拌启动条件。具体地,一方面,所述搅拌启动条件可设置为在每次补液操作完成和下次投影之间,对树脂槽中的液体进行搅拌。另一方面,所述搅拌启动条件可依据基于补液操作而调整,比如,基于补液操 作重新计时搅拌间隔时间并按照搅拌间隔时间控制搅拌动作的执行。例如,在打印义齿具有颜色要求时,根据基料与色剂的混合液色度是否符合当前层的色度要求,判断是否需要进行搅拌,而且在此种情况下上述的判断方式仍然存在,即计算T2时长的起算点,包括因色度不符而进行搅拌的动作,例如在前一次搅拌后,经历T3时长(T2>T3),因色度不符而进行了一次搅拌动作,则T2时长的判断需要在T3时长后进行的这次搅拌动作重新计算。
需要说明的是,打印动作和搅拌动作互为对方的启动阻止条件,即:在满足预设的搅拌动作启动条件时,如果在进行打印动作,则搅拌动作被阻止,需等待该次打印动作完成后,才进行搅拌动作,即搅拌动作的执行被延后。同样地,在进行搅拌动作时,即便输入打印指令,打印动作也不会执行。
在此,所述控制系统通过控制搅拌机构和Z轴升降系统对树脂槽内液体进行搅拌。具体地,所述控制系统控制Z轴升降系统带动工作平台和附着在工件平台上的打印件上升至至少高于搅拌机构的高度,并悬停,再控制搅拌机构进行搅拌;在搅拌完成后,控制Z轴升降系统下降至打印件与树脂槽底面相隔一层固化层厚度的距离,以便执行下一层投影。
需要说明的是,当同时符合步骤(6)和(7)的执行条件时一种更节约时间的方式可以同时执行步骤(6)和(7)。在此不再详述。
控制系统通过执行上述各步骤完成一义齿的3D打印件的打印过程,在打印完成后,为提高所得义齿的强度,技术人员还需对3D打印件进行了二次固化处理来保证固化充分,进行了烧结—等静压处理来保证陶瓷材料的致密度。
事实上,对于患者来说,更希望所安装的义齿与自己的牙齿在颜色上较无色差,故而,本申请在打印过程中还对3D模型中设置的颜色要求进行解析,并控制3D打印设备基于颜色要求调整树脂槽中的液体配比,以打印出符合颜色要求的义齿3D打印件。
具体地,在打印期间,与步骤(5)无必然时序关系地,所述控制系统还执行步骤(8):比较待投影切片图形所对应的基料与色剂配比P1与树脂槽内的基料与色剂配比P2是否相符,若是,则可执行步骤(5)、或执行步骤(3)以继续打印;若否,则执行步骤(9)。
其中,为了确定配比P2,所述控制系统具有树脂槽内初始液体混合配比P0。例如,初 始液体配比中基料与色剂的配比比例为a:b质量比。所述控制系统在单纯基于液位补液时,所补充的混合液可按照初始配比P0进行补液控制,且在未改变树脂槽内配比的情况下进行补液时,P0=P2。
在步骤(9)中,基于待投影切片图形所对应的基料与色剂配比,向树脂槽内进行补液。
具体地,所述控制系统基于检测所述树脂槽内的液位高度,确定树脂槽中剩余的基料与色剂的量,按照对应待投影切片图形的基料与色剂配比,向所述树脂槽中补充基料和/或色剂。
在此,所述控制系统将每次补液后的液位高度h0作为调整配比的参数之一。当控制系统判断配比P1与P2不符时,检测当前树脂槽中的液位高度h1,并根据确定液位高度差(h0-h1)、树脂槽中当前基料与色剂的配比P2分别确定树脂槽内基料和色剂的质量。控制系统可根据配比P1确定待补充至树脂槽中的基料和/或色剂的量(可以是质量、或基于补液装置出液口单位时间流出的质量而计算的流量),并控制补液装置进行对应补液。例如,两个配比不一致且对比后得知色度应该减弱,那么此时所述控制系统根据接收反馈来的当前树脂槽内基料与色剂混合液的液位高度,计算出当前树脂槽内混合液中基料与色剂的质量,并结合待打印层对基料与色剂的配比要求,计算出需要补入多少基料才能够稀释当前树脂槽内的混合液,使基料和色剂达到待打印层要求的配比,从而控制完成所述基料的补入量。反之,若对比后得知色度应该加强,那么所述控制系统会对比计算待加入色剂的量,并控制完成补入动作。在基料和色剂的出液口,分别设置了流量传感器,所以控制系统能够分别精确控制二者的补入量。
需要说明的是,本领域技术人员应该理解,基于液位高度的补液操作和基于配比的补液操作可同时进行,如在补液时根据待打印层的颜色要求进行补充液体并使树脂槽中的液体达到预设高度。即,当制作的义齿有颜色要求时,在所述补液时还补入色剂,使所述基料与所述色剂的混合液的液位高度达到预设高度;补入的所述基料与所述色剂的比例为预设配比。
上述步骤(8)可在每层打印前执行。例如,在每层打印前,将待打印层的色度要求所对应的基料与色剂配比与当前基料与色剂的混合配比进行比较;如两个配比不一致,根据接收到的当前基料与色剂混合液的液位高度,计算出当前混合液中基料与色剂的量,并结合待 打印层对基料与色剂的配比要求,控制所述基料和/或色剂的补入量。
或者,控制系统根据牙齿的3D模型中设置的每隔N层的颜色要求,在打印至相应颜色要求变化的层时执行上述步骤(8)。例如,所述控制系统在解析了颜色要求与层对应关系后,对同一颜色要求的层进行计数,以便当达到相应层数时执行步骤(8)。
为了按照3D模型中的颜色要求调整树脂槽中基料与色剂的配比,所述补料装置中可单独盛放基料和色剂。单独盛放液体的腔可单独将相应液体送入树脂槽;或各腔的出液口均与公共出液口相连,并通过公共出液口将相应液体补充到树脂槽。控制系统在补液过程中,按照预设配比分别控制所述基料与所述色剂的补入量。例如,补料装置提供两个单独盛放基料和色剂的容器,且每个腔的出液口设置一阀门。当控制系统执行补液操作时,按照所确定的补入量单独控制对应基料的阀门和/或对应色剂的阀门的通断时间。又如,补液装置的容腔分为基料腔和色剂腔;根据树脂槽内基料的量,将色剂按一定比例进行添加后,如达不到预设液体的高度,则基料和色剂会按照配比要求同时补充加入到树脂槽内,直至预设的液位高度;在此种情况下,补液装置对应在基料腔和色剂腔下端出液口设置有流量传感器,以实现对基料和色剂排送量的监控调节;颜色可以由色剂的添加来控制,通过控制色剂添加的量以及光固化打印用的基料添加的量,控制基料以及色剂的比例即可以控制陶瓷牙的颜色。优点是颜色可定制化配置,缺点是一致性差,控制相对困难。
所述补料装置中还可以包含盛放混合液体的混合容器,将基料和色剂按预设配比盛放在该混合容器中,在由控制系统在补液过程中,将所述基料与色剂按预设配比混合后再以混合液的形式添加到树脂槽中。例如,所述控制系统事先控制补料装置进行光敏树脂、陶瓷粉、色剂等的比例配置,配制出颜色不同的材料配方,将调制好颜色的材料直接进行补液。优点是一致性好,缺点是同一批次不能改变颜色。
在执行步骤(9)的同时或执行(9)之后,所述方法还包括步骤(10)。
在步骤(10)中,对所述树脂槽内的液体进行搅拌。显然,当所补充的混合液配比与树脂槽中剩余配比不同时,为了确保3D打印件的颜色,需在补液的同时或补液后进行搅拌。本步骤所执行的搅拌控制过程与步骤(7)的搅拌控制过程相同或相似,在此不再详述。
在另一些实施方式中,无论在执行(6)、(7)、(9)、(10)中任一或多个步骤后,或者在执行步骤(3)之前,所述方法还包括:步骤(11),即在投影出切片图形前,执行等待预设时间以确保液体表面流平的步骤。例如,在搅拌完且等待预设时间后,采用底部投影方式投影出当前层图像数据所对应的切片图形,并且进行曝光固化。在此,对于底面曝光的打印设备来说,增加等待步骤不仅能确保液体表面流平,还能确保槽底充分补入液体。
需要说明的是,上述各实施方式中所提到的搅拌、补液和等待预设时间的步骤可在一层固化前执行一次或多次。其中,执行一次能具有较高的打印效率,而执行多次可确保补液精度和搅拌均匀。故而,所述等待预设时间(以下称等待时间)至少可以区分为等待时间t1和等待时间t2(t1>t2)。例如,补液后若不需要搅拌,则在补液后间隔一个等待时间t1;若不需要补液,同时又不需要搅拌的情况下,则即时间隔一个等待时间t2,而且可以使t2=0秒;补液后或不需要补液的情况下若需要搅拌,则在搅拌后间隔一个等待时间t1。
通过对上述3D打印的装置的结构和工作过程的描述,现基于图2所示的适用于光固化成型的3D打印陶瓷义齿的装置,描述打印装置在一具体示例中所包含的结构及工作过程。
如图2所示,所述适用于光固化成型的3D打印陶瓷义齿的装置包括固定机架1和安装在固定机架1上的树脂槽2、完成投影固化的光源投影系统3、Z轴升降系统、搅拌机构、补液装置7及控制系统。
所述控制系统由PLC(可编程逻辑控制器)或运动控制卡、驱动器,计算机或嵌入式系统构成。
所述Z轴升降系统包括电机一51和垂直传动机构52,所述搅拌机构包括电机二61和搅拌刮板62。
光源投影系统4位于树脂槽2的下方。所述光源投影系统4的光源可以为DLP(数字光处理,Digital light processing)技术、LCD(液晶显示)技术、投影仪、激光结合扫描振镜或者激光结合转镜的一个或者几个的阵列。对应地,所述光源投影系统中的投影系统可以选择为DLP投影仪、LED投影仪、LCoS投影仪、LCD投影仪、UV投影仪、激光结合振镜、激光结合转镜中的一个或几个的阵列。
光源投影系统4由树脂槽2的底部投影出对应截面的切片图形,接着光源投影系统4内的光源曝光一定时间,使曝光能量达到或超过该材料最小固化能量E,完成该层固化。
Z轴升降系统的垂直传动机构52包括垂直设置的梁架、设置在梁架上且轴向沿垂直方向的螺杆及与螺杆配合的滑块。梁架位于树脂槽2的后侧,电机一51安装在梁架上与螺杆的一端配合。工作平台3与滑块之间形成固定连接,在电机一51及丝杠、滑块组成机构的驱动下,实现上下升降的往复移动。
所述搅拌机构还包括水平梁架,水平梁架设置在树脂槽2的左侧,并沿前后方向延伸。在水平梁架上设置丝杠滑块传动机构,电机二61固定在水平梁架的后端驱动丝杠滑块传动机构动作。搅拌机构的搅拌部为搅拌刮板62,搅拌刮板62与丝杠滑块传动机构的滑块配合连接,能够沿前后方向往复直线移动。搅拌刮板62探入到树脂槽2的槽腔,跨度辐射树脂槽2槽腔的整个横向(X轴方向)。在每一次的搅拌过程中,搅拌刮板62可以往复一次或者多次后,回到初始位置(即树脂槽2的槽腔后侧位置)。
作为另一种搅拌方式,所述搅拌机构的搅拌部为球型搅拌体,该球型搅拌体探入树脂槽2的槽腔内,外径与树脂槽2槽腔的宽度(X向)基本一致,此时搅拌机构可包括电机二和支撑臂,不在包括丝杠滑块传动机构。支撑臂固定在固定机架1上,自由端延伸至树脂槽2槽腔的上方并安装上球型搅拌体。电机二61安装在固定机架1上,能够驱动树脂槽2使树脂槽2在水平面内旋转,这样便能够实现球型搅拌体相对树脂槽2的旋转运动,而对树脂槽2内的液体进行搅拌。例如,所述球形搅拌体包含叶片,所述叶片在电机二的带动下旋转,以便对树脂槽内的液体进行搅拌。
补液装置7的出液口连通至树脂槽2。在树脂槽2内设置液位传感器,补液装置7的出液口设置电磁阀门;液位传感器、电磁阀门、光源投影系统4、电机一51、电机二61、补液装置7均与控制系统相连。于另一实施方式中,补液装置的出液口设置还可以通过驱动泵进行控制液体的补入量。
在制作义齿有颜色要求的情况下,所述补液装置的容腔对应上述方法中介绍的A、B两种情形,分别设置为基料容腔与色剂容腔的组合腔形式和单一容腔形式。
下面以制作义齿有颜色要求为例来详述装置的动作过程:
补液/调色过程中,搅拌机构在完成一定的搅拌动作后,回到初始位置;工作平台首先进行回零运动,回到打印的初始位置(具体是贴近树脂槽底部的上表面),也称为零位。准备动作完成。
搅拌机构若是图中所示的刮板方案,具体搅拌过程可以按如下步骤实施,首先工作平台3上升,留出搅拌刮板62移动的间隙,接着搅拌刮板62沿水平方向直线运动(可以是一次或多次往复运动),对液体材料进行搅拌,搅拌完毕后工作平台回到当前打印位置。在判断当前层是否需要搅拌时,若需要搅拌则工作平台3向上运动,与搅拌机构错开,让出搅拌机构运动的空间,此时,搅拌机构动作,实现对槽内材料的充分搅拌,搅拌完成后,搅拌机构回到初始位置,工作平台回到当前层的打印位置。若不需要搅拌则工作平台3直接移动至当前层的打印位置。经过等待时间后,光源投影系统4在树脂槽2下方投影出对应截面的切片图形,然后其内的光源曝光一定时间,对该层实现固化。
综上所述,本申请所涉及的一种适用于光固化成型的3D打印陶瓷义齿的方法和装置,通过底部投影曝光的方式,借助补液装置7及搅拌机构,同时利用光敏树脂、陶瓷粉和/或色剂按比例配置呈成的混合液体作为打印材质,实现陶瓷义齿制作的3D打印成型。具有制作流程简单、制作效率高、耗材少、制作所得义齿精度高、与患者的匹配性好以及方便实现个性化义齿的批量加工并提高生产效率、缩短定制化义齿加工周期的优点。
上述实施方式仅例示性说明本申请的原理及其功效,而非用于限制本申请。本申请还有许多方面可以在不违背总体思想的前提下进行改进,对于熟悉此技术的人士皆可在不违背本申请的精神及范畴下,可对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。

Claims (27)

  1. 一种适用于光固化成型的3D打印陶瓷义齿的方法,由控制系统执行,具体包括以下步骤:
    获取牙齿3D模型中分层图像数据所对应的切片图形;其中,所述3D模型是基于预先扫描获得的牙齿数据转换而确定的,所述分层图像数据是预先通过数据处理方式将牙齿3D模型切片后得到的;
    打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置;
    采用底部投影的方式逐次投影所述切片图形以逐层完成固化;其中,在每层打印前判断是否进行补液,以及根据预设的搅拌动作启动条件对所述液体进行搅拌。
  2. 根据权利要求1所述的适用于光固化成型的3D打印陶瓷义齿的方法,其特征在于,当制作的义齿有颜色要求时,在所述补液时还补入色剂,使所述基料与所述色剂的混合液的液位高度达到预设高度;补入的所述基料与所述色剂的比例为预设配比。
  3. 根据权利要求2所述的适用于光固化成型的3D打印陶瓷义齿的方法,其特征在于,在所述的补液过程中,按照预设配比分别控制所述基料与所述色剂的补入量。
  4. 根据权利要求3所述的适用于光固化成型的3D打印陶瓷义齿的方法,其特征在于,在每层打印前,将待打印层的色度要求所对应的基料与色剂配比与当前基料与色剂的混合配比进行比较;如两个配比不一致,根据接收到的当前基料与色剂混合液的液位高度,计算出当前混合液中基料与色剂的量,并结合待打印层对基料与色剂的配比要求,控制所述基料和/或色剂的补入量。
  5. 根据权利要求2所述的适用于光固化成型的3D打印陶瓷义齿的方法,其特征在于,在所述的补液过程中,将所述基料与所述色剂按预设配比混合后再以混合液的形式添加。
  6. 根据权利要求1所述的适用于光固化成型的3D打印陶瓷义齿的方法,其特征在于,在投影出切片图形前,还执行等待预设时间以确保液体表面流平的步骤。
  7. 根据权利要求1所述的适用于光固化成型的3D打印陶瓷义齿的方法,其特征在于,所述在每层打印前判断是否进行补液,以及根据预设的搅拌动作启动条件来判断是否对所述 液体进行搅拌的方式包括以下步骤:
    i)当前层打印前,判断是否需要补液,若需要补液,则进行补液,补液后进入步骤ii);若不需要补液,则直接进入步骤ii);
    ii)判断是否需要对液体进行搅拌,若需要搅拌,则控制用于打印的工作平台向上运动以错开搅拌机构,并控制搅拌机构对液体进行充分搅拌,搅拌完毕后,搅拌机构回到初始位置,工作平台回到当前层的打印位置;若不需要搅拌,则直接驱动工作平台运动,使工作平台到达当前层的打印位置。
  8. 一种牙齿打印方法,应用于基于底面光固化技术进行逐层打印的3D打印设备,其特征在于,包括:
    采用底部投影的方式向树脂槽底投影切片图形,以固化树脂槽内对应图形区域的液体;其中,所述切片图形是基于所获取的牙齿3D模型中的分层图像数据得到的;所述液体包含基料、或经预先配比的基料与色剂的混合液;
    控制用于打印的工作平台调整打印位置;重复投影及调整的步骤以打印出对应所述牙齿3D模型的义齿的3D打印件;
    在逐层打印过程中,基于待投影切片图形所对应的基料与色剂配比,向树脂槽内进行补液;以及根据预设的搅拌动作启动条件对所述树脂槽内的液体进行搅拌。
  9. 根据权利要求8中所述的牙齿打印方法,其特征在于,所述基于待投影切片图形所对应的基料与色剂配比向树脂槽内进行补液的方式包括:
    基于检测所述树脂槽内的液位高度,确定树脂槽中剩余的基料与色剂的量;
    按照对应待投影切片图形的基料与色剂配比,向所述树脂槽中补充基料和/或色剂。
  10. 根据权利要求8中所述的牙齿打印方法,其特征在于,还包括限制所述树脂槽内液位高度的步骤。
  11. 根据权利要求8中所述的牙齿打印方法,其特征在于,还包括在每层打印前,判断是否进行补液的步骤,其中,若确定进行补液,则按照对应待投影切片图形的基料与色剂配比,向树脂槽内进行补液。
  12. 根据权利要求8中所述的牙齿打印方法,其特征在于,还包括:等待预设时间以确保液体表面流平的步骤。
  13. 一种适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,包括固定机架和安装在固定机架上用于盛放液体的树脂槽、完成投影固化的光源投影系统、Z轴升降系统、搅拌机构、补液装置、工作平台及控制系统;光源投影系统位于树脂槽的下方,搅拌机构的搅拌部探入树脂槽的槽腔,补液装置的出液口连通至树脂槽,所述工作平台安装在Z轴升降系统上能够沿Z轴升降移动;在树脂槽内设置液位传感器,补液装置的出液口设置电磁阀门或驱动泵;液位传感器、电磁阀门或驱动泵、光源投影系统、Z轴升降系统、搅拌机构、补液装置均分别与控制系统相连;
    其中,所述树脂槽用于盛放包含基料的液体;
    所述光源投影系统用于采用底部投影的方式逐次投影切片图形;其中,所述切片图形是对应于牙齿3D模型中的分层图像数据,所述3D模型是基于预先扫描获得的牙齿数据转换而确定的,所述分层图像数据是预先通过数据处理方式将牙齿3D模型切片后得到的;
    所述Z轴升降系统用带动所述工作平台调整打印位置;
    所述搅拌机构用于搅拌树脂槽中的液体;
    所述补液装置盛放基料和色剂,用于向所述树脂槽中进行补液;
    所述控制系统用于获取所述牙齿3D模型中各分层图像数据所对应的切片图形;打印前,将包含基料的液体液位补充至预设高度并予以搅拌,所述基料由光敏树脂和陶瓷粉按比例配置;采用底部投影的方式逐次投影所述切片图形以逐层完成固化;其中,在每层打印前判断是否进行补液,以及根据预设的搅拌动作启动条件对所述液体进行搅拌;其中,所述3D模型是基于预先扫描获得的牙齿数据转换而确定的,所述分层图像数据是预先通过数据处理方式将牙齿3D模型切片后得到的。
  14. 根据权利要求13所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述搅拌机构的搅拌部为搅拌刮板,搅拌刮板在水平面内相对树脂槽作直线往复移动。
  15. 根据权利要求13所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于, 所述搅拌机构的搅拌部为球型搅拌体,球型搅拌体相对树脂槽作旋转运动。
  16. 根据权利要求13所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述补液装置包括基料容腔和色剂容腔,对应所述基料容腔和色剂容腔的出液口分别设置电磁阀门。
  17. 根据权利要求13所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统进一步用于当制作的义齿有颜色要求时,在所述补液时还补入色剂,使所述基料与所述色剂的混合液的液位高度达到预设高度;补入的所述基料与所述色剂的比例为预设配比。
  18. 根据权利要求17所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,在所述的补液过程中,所述控制系统按照预设配比分别控制所述基料与所述色剂的补入量。
  19. 根据权利要求18所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,在每层打印前,所述控制系统将待打印层的色度要求所对应的基料与色剂配比与当前基料与色剂的混合配比进行比较,如两个配比不一致,根据接收到的当前基料与色剂混合液的液位高度,计算出当前混合液中基料与色剂的量,并结合待打印层对基料与色剂的配比要求,控制所述基料和/或色剂的补入量。
  20. 根据权利要求17所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,在所述的补液过程中,所述控制系统将所述基料与所述色剂按预设配比混合后再以混合液的形式添加。
  21. 根据权利要求13所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统还在等待预设时间后控制光学投影系统投影切片图形。
  22. 根据权利要求13所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统判断补液和搅拌的方式具体包括以下步骤:
    i)当前层打印前,判断是否需要补液,若需要补液,则进行补液,补液后进入步骤ii);若不需要补液,则直接进入步骤ii);
    ii)判断是否需要对液体进行搅拌,若需要搅拌,则控制用于打印的工作平台向上运动 以错开搅拌机构,并控制搅拌机构对液体进行充分搅拌,搅拌完毕后,搅拌机构回到初始位置,工作平台回到当前层的打印位置;若不需要搅拌,则直接驱动工作平台运动,使工作平台到达当前层的打印位置。
  23. 一种适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,包括固定机架和安装在固定机架上用于盛放液体的树脂槽、完成投影固化的光源投影系统、Z轴升降系统、搅拌机构、补液装置、工作平台及控制系统;光源投影系统位于树脂槽的下方,搅拌机构的搅拌部探入树脂槽的槽腔,补液装置的出液口连通至树脂槽,所述工作平台安装在Z轴升降系统上能够沿Z轴升降移动;在树脂槽内设置液位传感器,补液装置的出液口设置电磁阀门或驱动泵;液位传感器、电磁阀门或驱动泵、光源投影系统、Z轴升降系统、搅拌机构、补液装置均分别与控制系统相连;
    其中,所述树脂槽用于盛放包含基料的液体;
    所述光源投影系统用于采用底部投影的方式向树脂槽底投影切片图形,以固化树脂槽内对应图形区域的液体;其中,所述切片图形是基于所获取的牙齿3D模型中的分层图像数据得到的;所述液体包含基料、或经预先配比的基料与色剂的混合液;
    所述Z轴升降系统用带动所述工作平台调整打印位置;
    所述搅拌机构用于搅拌树脂槽中的液体;
    所述补液装置盛放基料和色剂,用于向所述树脂槽中进行补液;
    所述控制系统用于控制光源投影系统和Z轴升降系统重复投影及调整过程以打印出对应所述牙齿3D模型的义齿的3D打印件,以及在逐层打印过程中,基于待投影切片图形所对应的基料与色剂配比,向树脂槽内进行补液;以及根据预设的搅拌动作启动条件对所述树脂槽内的液体进行搅拌。
  24. 根据权利要求23所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统基于待投影切片图形所对应的基料与色剂配比向树脂槽内进行补液的方式包括:
    基于检测所述树脂槽内的液位高度,确定树脂槽中剩余的基料与色剂的量;
    按照对应待投影切片图形的基料与色剂配比,向所述树脂槽中补充基料和/或色剂。
  25. 根据权利要求23所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统还用于基于液位传感器提供的液位高度限制所述树脂槽内液位高度。
  26. 根据权利要求23所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统还用于在每层打印前,判断是否进行补液的步骤,其中,若确定进行补液,则按照对应待投影切片图形的基料与色剂配比,向树脂槽内进行补液。
  27. 根据权利要求23所述的适用于光固化成型的3D打印陶瓷义齿的装置,其特征在于,所述控制系统还用于在等待预设时间,再控制光学投影系统投影切片图形。
PCT/CN2017/097796 2016-08-19 2017-08-17 适用于光固化成型的3d打印陶瓷义齿的方法和装置 WO2018033109A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780045788.XA CN109641385B (zh) 2016-08-19 2017-08-17 适用于光固化成型的3d打印陶瓷义齿的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610695268.0 2016-08-19
CN201610695268.0A CN106217882B (zh) 2016-08-19 2016-08-19 适用于光固化成型的3d打印陶瓷义齿的方法和装置

Publications (1)

Publication Number Publication Date
WO2018033109A1 true WO2018033109A1 (zh) 2018-02-22

Family

ID=57552633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097796 WO2018033109A1 (zh) 2016-08-19 2017-08-17 适用于光固化成型的3d打印陶瓷义齿的方法和装置

Country Status (2)

Country Link
CN (2) CN106217882B (zh)
WO (1) WO2018033109A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108656308A (zh) * 2018-06-28 2018-10-16 清紫生物科技(深圳)有限公司 应用于高固相陶瓷浆料的3d打印机
CN109482822A (zh) * 2018-12-29 2019-03-19 宁夏共享机床辅机有限公司 一种应用于3d打印机的液料供应系统
EP3530438A1 (en) * 2018-02-23 2019-08-28 XYZprinting, Inc. Three-dimensional printer
EP3620290A1 (en) * 2018-09-04 2020-03-11 XYZprinting, Inc. 3d printing method of improving effectiveness of pouring materials
CN112757621A (zh) * 2021-01-30 2021-05-07 山西增材制造研究院有限公司 基于dlp打印的3d打印材料及3d打印产品以及打印方法
CN115214146A (zh) * 2022-06-23 2022-10-21 先临三维科技股份有限公司 3d打印控制方法、装置、电子设备及介质
CN115592946A (zh) * 2022-10-19 2023-01-13 深圳锐沣科技有限公司(Cn) 一种光固化三维打印机
WO2023221332A1 (zh) * 2022-05-14 2023-11-23 苏州大学 陶瓷器件 3d 动态成型优化设计方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106217882B (zh) * 2016-08-19 2019-03-15 上海联泰科技股份有限公司 适用于光固化成型的3d打印陶瓷义齿的方法和装置
CN108215173A (zh) * 2016-12-15 2018-06-29 上海普利生机电科技有限公司 能够自动连续打印的光固化型三维打印设备、方法及系统
CN106738869A (zh) * 2017-02-19 2017-05-31 荆门米丰信息科技有限公司 一种高精度彩色三维打印机及其成型方法
CN106863782A (zh) * 2017-03-30 2017-06-20 深圳市家鸿口腔医疗股份有限公司 一种义齿蜡型dlp光固化3d打印方法
CN106897574A (zh) * 2017-03-30 2017-06-27 深圳市家鸿口腔医疗股份有限公司 一种基于3d打印的牙种植导板即刻种植修复方法
CN107150439B (zh) * 2017-05-15 2020-06-30 上海联泰科技股份有限公司 数据处理方法、3d打印方法及设备
CN107139456B (zh) * 2017-05-17 2019-08-20 上海联泰科技股份有限公司 三维物体数据的分层方法、3d打印方法及设备
CN107471399B (zh) * 2017-09-15 2023-04-07 武汉因泰莱激光科技有限公司 一种打印陶瓷材料的新型激光3d打印机及控制方法
CN107669490B (zh) * 2017-09-26 2020-08-04 深圳市源华鑫科技有限公司 一种陶齿3d打印在齿科修复行业的生产方法
CN108175529A (zh) * 2017-12-25 2018-06-19 深圳市盛世智能装备有限公司 一种快速制备氧化锆义齿的装置及方法
WO2020014871A1 (zh) * 2018-07-17 2020-01-23 深圳摩方新材科技有限公司 一种改善打印层纹的双引发固化体系及其制备方法
WO2020037732A1 (zh) * 2018-08-24 2020-02-27 苏州中瑞智创三维科技股份有限公司 一种用高粘度材料进行三维打印的随形制作方法
CN109394365B (zh) * 2018-12-17 2021-03-26 东莞理工学院 一种陶瓷牙下曝式光固化制备方法
EP3708369B1 (en) * 2019-03-11 2023-03-22 DENTSPLY SIRONA Inc. Stereolithography apparatus having a detection unit for optical adjustment and image modification
CN113306145B (zh) * 2019-08-01 2023-01-24 苏州铼赛智能科技有限公司 制造方法、系统、3d打印设备及图像处理方法
CN111483141A (zh) * 2020-03-05 2020-08-04 上海莘临科技发展有限公司 一种3d打印技术中的自适应调节涂覆系统及方法
KR102539486B1 (ko) * 2020-06-29 2023-06-05 에이온 주식회사 3d 프린팅 시스템에서 소성 공정을 고려한 3d 모델 데이터를 결정하기 방법 및 장치
CN112477114A (zh) * 2020-10-09 2021-03-12 广州黑格智造信息科技有限公司 一种3d打印的自动加液方法
WO2022110256A1 (zh) * 2020-11-29 2022-06-02 苏州铼赛智能科技有限公司 底面曝光的3d打印设备、控制方法及控制系统
CN112654490B (zh) * 2020-11-29 2022-06-21 苏州铼赛智能科技有限公司 底面曝光的3d打印设备、控制方法及控制系统
CN112519203A (zh) * 2020-12-02 2021-03-19 哈尔滨工业大学 一种基于灰度曝光的面投影光固化3d打印高效无损伤支撑方法
TWI759992B (zh) * 2020-12-07 2022-04-01 法藍瓷股份有限公司 陶瓷牙冠之三維積層暨成色設備及其方法
CN112810143B (zh) * 2020-12-31 2022-03-18 深圳新致美精密齿研有限公司 一种感光树脂义齿的3d打印工艺及3d打印机
CN112618075B (zh) * 2021-01-09 2022-07-29 云南家红齿科技术股份有限公司 一种义齿用高钯复合基材成型装置
CN114833355B (zh) * 2022-05-27 2023-06-30 浙江机电职业技术学院 一种具有自动补粉功能的金属3d打印设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997643A (zh) * 2015-07-19 2015-10-28 谢宝军 一种用于全瓷口腔修复体制作的原料及其快速成型方法
CN105216330A (zh) * 2015-11-04 2016-01-06 上海联泰科技有限公司 基于投影式的3d打印方法以及3d打印装置
CN106217882A (zh) * 2016-08-19 2016-12-14 上海联泰科技股份有限公司 适用于光固化成型的3d 打印陶瓷义齿的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2792224T3 (es) * 2013-04-18 2020-11-10 Dentca Inc Composiciones de resina fotocurable y método de utilización de las mismas en impresión tridimensional para fabricar dientes artificiales y base de dentadura postiza
TWI508771B (zh) * 2014-03-25 2015-11-21 三緯國際立體列印科技股份有限公司 攪拌機構及三維印表機
CN204183908U (zh) * 2014-10-08 2015-03-04 上海联泰三维科技有限公司 底投影式光固化快速成型装置及其自动补液装置
KR20160081354A (ko) * 2014-12-31 2016-07-08 주식회사 캐리마 광경화 3d프린터 및 이의 광량편차 측정방법 및 보정방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997643A (zh) * 2015-07-19 2015-10-28 谢宝军 一种用于全瓷口腔修复体制作的原料及其快速成型方法
CN105216330A (zh) * 2015-11-04 2016-01-06 上海联泰科技有限公司 基于投影式的3d打印方法以及3d打印装置
CN106217882A (zh) * 2016-08-19 2016-12-14 上海联泰科技股份有限公司 适用于光固化成型的3d 打印陶瓷义齿的方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530438A1 (en) * 2018-02-23 2019-08-28 XYZprinting, Inc. Three-dimensional printer
CN108656308A (zh) * 2018-06-28 2018-10-16 清紫生物科技(深圳)有限公司 应用于高固相陶瓷浆料的3d打印机
EP3620290A1 (en) * 2018-09-04 2020-03-11 XYZprinting, Inc. 3d printing method of improving effectiveness of pouring materials
CN109482822A (zh) * 2018-12-29 2019-03-19 宁夏共享机床辅机有限公司 一种应用于3d打印机的液料供应系统
CN112757621A (zh) * 2021-01-30 2021-05-07 山西增材制造研究院有限公司 基于dlp打印的3d打印材料及3d打印产品以及打印方法
WO2023221332A1 (zh) * 2022-05-14 2023-11-23 苏州大学 陶瓷器件 3d 动态成型优化设计方法
CN115214146A (zh) * 2022-06-23 2022-10-21 先临三维科技股份有限公司 3d打印控制方法、装置、电子设备及介质
CN115592946A (zh) * 2022-10-19 2023-01-13 深圳锐沣科技有限公司(Cn) 一种光固化三维打印机

Also Published As

Publication number Publication date
CN109641385B (zh) 2021-03-23
CN106217882A (zh) 2016-12-14
CN109641385A (zh) 2019-04-16
CN106217882B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2018033109A1 (zh) 适用于光固化成型的3d打印陶瓷义齿的方法和装置
US11577453B2 (en) Additive manufacturing system and a method of additive manufacturing
CN107150439B (zh) 数据处理方法、3d打印方法及设备
US9192456B2 (en) Denture and method and apparatus of making same
CN107139456B (zh) 三维物体数据的分层方法、3d打印方法及设备
CN113306145B (zh) 制造方法、系统、3d打印设备及图像处理方法
US20140308624A1 (en) Method and apparatus for preparing removable dental prosthesis
CN108289725B (zh) 用于建造牙科用物体的方法和系统
EP3493764B1 (en) Device and method for progressively building up an object from a light hardenable material
KR101934782B1 (ko) 지르코니아 치아보철물의 제조시스템
US9610145B2 (en) Precision-milled denture teeth and method and devices for making same
CN207273889U (zh) 3d打印设备及用于3d打印设备的容器
KR102102566B1 (ko) 치과용 보철물을 제조하기 위한 방법 및 시스템
CN117137662A (zh) 一种3d打印可摘戴美白牙套及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841081

Country of ref document: EP

Kind code of ref document: A1