WO2018032983A1 - 确定距离变化的方法、位置提示方法及其装置和系统 - Google Patents
确定距离变化的方法、位置提示方法及其装置和系统 Download PDFInfo
- Publication number
- WO2018032983A1 WO2018032983A1 PCT/CN2017/095920 CN2017095920W WO2018032983A1 WO 2018032983 A1 WO2018032983 A1 WO 2018032983A1 CN 2017095920 W CN2017095920 W CN 2017095920W WO 2018032983 A1 WO2018032983 A1 WO 2018032983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receiving end
- change
- distance
- sound wave
- wave signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/14—Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/06—Systems determining the position data of a target
- G01S15/08—Systems for measuring distance only
- G01S15/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S15/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/802—Systems for determining direction or deviation from predetermined direction
- G01S3/808—Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
- G01S3/8083—Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/22—Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/30—Determining absolute distances from a plurality of spaced points of known location
Definitions
- the present application relates to the field of positioning technologies, and in particular, to a method for determining a distance change, a position prompting method, and an apparatus and system thereof.
- positioning technology is widely used in the lives of users. For example, users install a position tracker in a car. When the car is stolen, the user can know the specific position of the car according to the location tracker. The user makes a lookup, and so on.
- GPS positioning mainly relies on satellite navigation system to locate targets; LBS positioning is mainly for mobile phone users, through telecommunication, mobile operators' radio communication networks (such as GSM network, CDMA network), or positioning of mobile terminal users by means of GPS positioning or the like.
- the error of obtaining the position information of the target user by using GPS positioning is about 4 to 5 meters; when using LBS positioning, if the positioning by means of GPS is performed, the error of the position information of the target user obtained is also about 4 to 5 meters; Instead of turning on the GPS function, the radio communication network of the telecommunication and mobile operators (base stations) is used, and the obtained positional information of the target user has an error of about 100 meters. Therefore, when the distance between the two positioning users is small, With the existing positioning technology, it is sometimes impossible to accurately obtain the distance change between two positioning users. For example, two users located in different floors of the same building may have the same location information measured by GPS positioning or LBS positioning. Obviously, at this time, the two users cannot obtain relative position information between each other by using existing positioning technologies, and sometimes they cannot even find each other.
- the embodiments of the present application provide a method for determining a distance change, a location prompting method, and a device and a system thereof, which are used to solve the problem that when the distance between two positioning users is small, the user cannot determine each other by using the existing positioning technology.
- the problem of the distance between the changes is a problem that when the distance between two positioning users is small, the user cannot determine each other by using the existing positioning technology.
- the present invention provides a method of determining a change in distance, the method comprising:
- the receiving end collects the sound wave signal of the preset frequency sent by the transmitting end
- a change in the distance between the transmitting end and the receiving end is determined according to the collected acoustic wave signal.
- the determining, according to the collected acoustic wave signal, a change in the distance between the transmitting end and the receiving end including:
- a change in the distance between the transmitting end and the receiving end is determined according to the change of the sound wave.
- the determining the change of the sound wave according to the collected sound wave signal comprises:
- Determining, according to the change of the sound wave, a change in the distance between the transmitting end and the receiving end including:
- a change in the distance between the transmitting end and the receiving end is determined according to the change in the acoustic energy.
- the determining the acoustic energy variation according to the collected acoustic signal comprises:
- Determining a change in the distance between the transmitting end and the receiving end according to the change of the acoustic energy including:
- the determining method of the preset frequency comprises:
- the receiving end Before the receiving end collects the sound wave signal of the preset frequency sent by the transmitting end, the receiving end and the transmitting end agree on the frequency of the sound wave signal, and use the frequency as the preset frequency; or
- the server connected to the receiving end and the transmitting end allocates a frequency segment of the sound wave to the receiving end and the transmitting end, and the preset frequency Within the frequency segment.
- the method further includes:
- the transmitting end selects an acoustic wave of one frequency as the acoustic wave signal of the preset frequency in the sound wave corresponding to the one frequency segment;
- the transmitting end selects one frequency of sound waves in two or more sound waves corresponding to the frequency segments respectively
- the superposition is performed, and the superposed sound wave is used as the acoustic wave signal of the preset frequency.
- the method further includes:
- the determining, by the LBS or the GPS positioning, whether the distance between the receiving end and the transmitting end is within a preset distance range, the frequency segment for allocating sound waves to the receiving end and the transmitting end specifically includes:
- the server After determining that the distance between the receiving end and the transmitting end is within a preset distance range, the server allocates a frequency segment of the sound wave to the receiving end and the transmitting end.
- the method further includes:
- the prompt information is generated according to the distance change, and the prompt information is used to prompt a change in the distance between the receiving end and the transmitting end.
- the method further includes:
- the receiving end sends the prompt information to the sending end to prompt a change in the distance between the receiving end and the sending end.
- the method further includes:
- the receiving end sends the prompt information to a server connected to the receiving end and the sending end, and the prompt information is sent by the server to the sending end, so as to prompt between the receiving end and the sending end.
- the distance changes.
- the manner of prompting the change between the sending end and the receiving end comprises at least one of the following:
- the distance between the transmitting end and the receiving end is changed in a vibrating manner.
- the method further includes: before the receiving end generates the prompting information according to the distance change, the method further includes:
- the method further includes:
- a pairing relationship is established between the receiving end and the transmitting end.
- the pairing relationship is established between the receiving end and the sending end, and specifically includes:
- the receiving end sends a request for pairing with the sending end to a server connected to the receiving end and the sending end, and the server sends the request to the sending end, and the sending end accepts the request After the connection
- the receiving end and the transmitting end complete the establishment of the pairing relationship.
- the present invention also provides a method of determining a change in distance, the method comprising:
- the transmitting end sends the sound wave signal of the preset frequency to the receiving end;
- determining a change in the distance between the receiving end and the transmitting end according to the information of the acoustic wave signal including:
- a change in the distance between the receiving end and the transmitting end is determined according to the change of the sound wave.
- the determining the change of the sound wave according to the information of the sound wave signal comprises:
- Determining a change in the distance between the receiving end and the transmitting end according to the change of the sound wave including:
- a change in the distance between the transmitting end and the receiving end is determined according to the change in the acoustic energy.
- the sending end receives the information of the sound wave signal returned by the receiving end, including:
- the transmitting end receives the sound wave energy corresponding to the sound wave signal sent by the receiving end;
- the transmitting end After the receiving end sends the received sound wave energy corresponding to the sound wave signal to the server connected to the receiving end and the transmitting end, the transmitting end receives the sound wave energy corresponding to the sound wave signal sent by the server. .
- the method further includes:
- the prompt information is generated according to the distance change, and the prompt information is used to prompt a change in the distance between the receiving end and the transmitting end.
- the application also provides a location prompting method, the method comprising:
- the receiving end collects the sound wave signal of the preset frequency sent by the transmitting end
- the prompt information is generated according to the distance change, and the prompt information is used to prompt a change in the distance between the receiving end and the transmitting end.
- the determining, according to the collected acoustic wave signal, a change in the distance between the transmitting end and the receiving end including:
- a change in the distance between the transmitting end and the receiving end is determined according to the change of the sound wave.
- the determining the change of the sound wave according to the collected sound wave signal comprises:
- Determining, according to the change of the sound wave, a change in the distance between the transmitting end and the receiving end including:
- a change in the distance between the transmitting end and the receiving end is determined according to the change in the acoustic energy.
- the present application further provides a device for determining a change in distance, the device being located in the receiving end, comprising:
- the first collecting unit collects a sound wave signal of a preset frequency sent by the sending end;
- the first determining unit determines a distance change between the transmitting end and the receiving end according to the collected acoustic wave signal.
- the application also provides a device for determining a change in distance, the device being located in the transmitting end, comprising:
- the sending unit sends an acoustic wave signal of a preset frequency to the receiving end;
- the second determining unit determines a change in the distance between the receiving end and the transmitting end according to the information of the acoustic wave signal.
- the present application also provides a device for determining a change in distance, the device being located in a receiving end, the device comprising:
- the second collecting unit collects a sound wave signal of a preset frequency sent by the transmitting end;
- the third determining unit determines a distance change between the transmitting end and the receiving end according to the collected acoustic wave signal
- the third generating unit generates prompt information according to the distance change, where the prompt information is used to prompt a change in distance between the receiving end and the transmitting end.
- the application also provides a system for determining a change in distance, the system comprising:
- the receiving end and the transmitting end After the server establishes a pairing relationship between the receiving end and the sending end, the receiving end and the transmitting end allocate a frequency segment of the sound wave; and the receiving end collects the preset sent by the sending end. After receiving the sound wave signal of the frequency, receiving information of the sound wave signal of the preset frequency sent by the receiving end, the preset frequency is within the frequency segment; and transmitting information of the sound wave signal to the transmitting end;
- the transmitting end sends an acoustic wave signal of a preset frequency to the receiving end; after the receiving end sends the collected information of the acoustic wave signal to the server, receiving information of the acoustic wave signal sent by the server And determining a change in the distance between the receiving end and the transmitting end according to the information of the acoustic wave signal.
- the method provided by the present application mainly relies on transmitting and receiving acoustic signals between the transmitting end and the receiving end, and determines the change of the distance between the transmitting end and the receiving end according to the received acoustic wave signal, compared to the prior art positioning method.
- the method for determining the change of the distance provided by the present application can also determine the change of the distance between the two ends when the positioning distance between the transmitting end and the receiving end is relatively small.
- the application can also generate corresponding prompt information according to the change of the distance between the two ends, the prompt information is used to prompt the user to change the distance between the two ends, and guide the user to move in the direction of decreasing distance between the two ends, compared to the existing The positioning technique, when the distance between two users positioned is small, the probability of finding each other is increased by applying the method provided by the present application.
- FIG. 1 is a schematic flowchart of a method for determining a distance change according to an embodiment of the present application
- FIG. 2 is a schematic diagram of a sound wave signal transmitted by a receiving end and a transmitting end according to an embodiment of the present disclosure
- FIG. 3 is a schematic flowchart of a client pairing method according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a client pairing method according to an embodiment of the present application.
- FIG. 5 is a schematic diagram of a sound wave sent by a sending end to a receiving end according to an embodiment of the present disclosure
- FIG. 6 is a schematic flowchart diagram of a location prompting method according to an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram of a positioning method provided by the prior art.
- FIG. 8 is a schematic structural diagram of an apparatus for determining a distance change according to an embodiment of the present disclosure
- FIG. 9 is a schematic structural diagram of an apparatus for determining a distance change according to an embodiment of the present disclosure.
- FIG. 10 is a schematic structural diagram of a location prompting apparatus according to an embodiment of the present disclosure.
- FIG. 11 is a schematic structural diagram of a system for determining a distance change according to an embodiment of the present application.
- the error is usually 4 to 5 meters.
- the satellite ephemeris error causes the position information of the target to be inaccurate; because the GPS positioning technology is used to locate the target, it needs to be calculated.
- the position information of several satellites participating in GPS positioning then it is necessary to know the orbit parameters of GPS satellites at a certain moment, and these parameters are provided by each type of ephemeris, but no matter which type of ephemeris is used.
- the position information of the satellites will be different from the real position information of these satellites.
- the position information of the target acquired by GPS positioning will also be inaccurate; for example, there will be a clock between the satellite and the standard time.
- Error usually, the time on the satellite is faster than the time on the surface, which makes the position information of the acquired target have errors; it may also be the error caused by the signal propagation path, because the signal propagates from the satellite to the surface
- the medium of propagation is not uniform, and even the type of the medium changes. Therefore, the propagation speed of the signal is not fixed.
- the problem is usually ignored, and the default signal is The speed of transmission is the same, even if this problem is taken into consideration, it is only to minimize the mistake caused by this problem. , Does not completely eliminate the error; of course, there are other factors that lead to errors in the GPS positioning, it is not described in detail herein.
- LBS positioning it is usually preferred to use GPS to locate the position information of the target, and then locate the target according to the position information.
- the error of the target position information measured is also 4 to 5 meters; but if GPS is not used Positioning, but through the radio communication network of telecommunications and mobile operators (base stations), the error of obtaining the location information of the target is up to about 100 meters.
- the density of the base station or the degree of interference of the signal will affect the accuracy of LBS positioning.
- the position information of the measured target is usually the position information in the latitude and longitude coordinate system. Therefore, if the two positioning users are located on different floors in the same building, and the two floors are at the same latitude At this time, the location information of the two users measured by the existing positioning technology may be the same. Obviously, the two users cannot find each other through the existing positioning technology.
- the present application provides a method for determining a change in distance, a method for prompting a position, and an apparatus and system therefor.
- the technical solutions of the present application will be clearly and completely described in the following with reference to the specific embodiments of the present application and the corresponding drawings. It is apparent that the described embodiments are only a part of the embodiments of the present application, and not all of them. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present application without departing from the inventive scope are the scope of the present application.
- the embodiment of the present application provides a method for determining a change in distance, which is used to solve the problem that when the distance between two positioning users is small, the user cannot determine the distance change between each other by using the existing positioning technology.
- the schematic diagram of the process of the method is shown in FIG. 1 , and the method specifically includes the following steps:
- Step 11 The receiving end collects the sound wave signal of the preset frequency sent by the transmitting end.
- the frequency of the sound wave signal sent by the transmitting end is a preset frequency
- the frequency may be: when the transmitting end receives the request for transmitting the sound wave signal, the request includes the information of the receiving end, and the system is the transmitting end and the receiving end.
- the frequency of the assignment Alternatively, after the sender and the receiver establish a pairing relationship, a predetermined frequency is pre-agreed. For a service of the same sender and receiver, once the frequency of the sound wave signal is determined, before the end of the service, the sender will send an acoustic signal that matches the preset frequency, and the receiver only collects the preset frequency.
- the sound wave signal, or the receiving end only analyzes the sound wave signal in the collected sound wave signal that meets the preset frequency.
- the request for sending the acoustic wave signal by the transmitting end may be triggered by the user of the transmitting end on the transmitting end, or may be triggered by the sending end receiving the instruction of the receiving end.
- receiving, at the receiving end receiving After the user of the terminal triggers, the corresponding instruction is sent to the sender.
- the receiving end can trigger the instruction that it has been authorized by the transmitting end.
- the receiving end collects the sound wave signal of the preset frequency sent by the sending end.
- the receiving end needs the receiving end (client end) and the transmitting end (client end) before collecting the sound wave signal of the preset frequency sent by the transmitting end. ) Establish a pairing relationship between them.
- the server can allocate the frequency segment of the sound wave to the paired clients. After the server allocates the frequency segment of the sound wave for the two clients, the sender sends the voice signal of the preset frequency. To the receiving end.
- the transmitting end can transmit the acoustic wave signal to the receiving end at a fixed period, for example, sending the acoustic wave signal to the receiving end once every 1 minute, or transmitting the acoustic wave signal every 5 seconds, etc.; the transmitting end can also transmit the sound wave without a fixed cycle.
- the signal for example, can be transmitted 10 times or 5 times in one minute, and the like; the manner in which the transmitting end transmits the acoustic signal is not specifically limited.
- Step 12 Determine a change in the distance between the transmitting end and the receiving end according to the collected acoustic wave signal.
- the receiving end determines the change of the distance between the transmitting end and the receiving end according to the collected acoustic wave signal, which may be: first determining the change of the acoustic wave according to the collected acoustic wave signal, and then, according to the acoustic wave Change, determine the change in distance between the sender and the receiver.
- the change of the sound wave may mean that the receiving end transmits the sound wave signal according to the two adjacent acquisitions to the transmitting end, and determines the change of the frequency, the wavelength, the amplitude or the energy of the two received sound waves, and the like.
- the distance between the transmitting end and the receiving end is determined according to the change of the acoustic energy corresponding to the received acoustic signal.
- the principle applied here is: when the wave source emits sound waves, the sound waves propagate in all directions, usually in the form of a spherical surface. As shown in Fig. 2, the transmitting end transmits a sound wave signal to the receiving end as the wave source O, and the sound wave signal is spherical. The form of the sound spreads from near to far. It is assumed that in the ideal case, that is, without energy loss, the energy of the sound wave is constant when the sound wave reaches the point A, point B, and point C.
- the spherical radius of the propagation is getting larger and larger, the corresponding spherical area will be larger and larger, so that the energy distributed per unit area will become smaller and smaller, that is, between the transmitting end and the receiving end.
- the energy collected by the receiving end is getting smaller and smaller.
- the energy of the received sound wave signal is increasingly The smaller.
- sound waves are usually not propagated under ideal conditions, that is, there are cases of energy loss.
- the sound wave when a sound wave encounters an obstacle, sometimes the sound wave does not bypass the obstacle, but spreads in the obstacle.
- the sound wave as a vibration of the mechanical wave will rub against the molecules in the obstacle, transforming part of the sound energy.
- thermal energy for example, usually there are solid particles, suspended particles, etc. in the air, these substances will interact with sound waves, also consume a part of the sound energy, etc.; and, between the receiving end and the transmitting end
- the receiving end determines the distance change between the transmitting end and the receiving end according to the change of the acoustic energy corresponding to the continuously collected acoustic wave signal.
- the specific process is: the receiving end sends the acoustic signal sent by the transmitting end adjacent to the two acquisitions. Corresponding energy is compared. If the energy of the sound signal collected in the latter time is larger than the energy of the sound wave signal collected in the previous time, according to the sound wave transmission principle described above, the distance between the receiving end and the receiving end is reduced. It is correct to indicate that the receiving end and the transmitting end are looking for each other's route.
- the energy of the acoustic signal collected at the receiving end is smaller than the energy of the previously collected acoustic signal, then it can be determined that the distance between the receiving end and the transmitting end is increased, indicating that the receiving end and the transmitting end look for each other. The route may be wrong.
- Step 13 Generate prompt information according to the distance change, where the prompt information is used to prompt a change in distance between the receiving end and the sending end.
- the receiving end may further generate corresponding prompt information according to the distance change, and the prompt information is used for reminding
- the distance between the user receiving end and the transmitting end changes, for example, when the receiving end determines that the distance from the transmitting end decreases A prompt message prompting the user that the current location is closer to the location of the target user, and so on.
- the prompt information may remind the user of the change of the distance between the receiving end and the transmitting end in the form of sound, text, animation, vibration, etc., or a combination of these forms, for example,
- the prompt information may be sound plus oscillation, or sound plus animation, and the like.
- the sound energy corresponding to the sound wave signal may be associated with the strength of the prompt sound, for example, When the distance between the receiving end and the transmitting end is getting larger and larger, the prompt tone will become stronger and stronger, reminding the user that the direction of the search target may be wrong, and the user can promptly according to the prompt information. Adjust the direction.
- the receiver there are many methods for the receiver to associate the magnitude of the sound energy with the strength of the tone. For example, in the above example, the farther the distance between the two clients is, the stronger the tone is, or it may be The closer the distance between the two clients is, the stronger the prompt tone is, and so on, which is not specifically limited herein.
- the user holding the receiving end searches for the location of the sending end according to the generated prompt information. For example, when the user is in the process of searching for the sending end, the prompt information of the receiving end reminds the user that the distance from the sending end is decreasing, the user can follow the current search. The direction continues to find the sender, which improves the efficiency of the search.
- step 11 there are many ways to establish a pairing relationship between the receiving end and the transmitting end.
- An exemplary embodiment is described below:
- Step 31 User A sends a request for pairing with the sender to the server through the receiving end;
- Step 32 After receiving the request, the server sends the request to the sending end held by the user B.
- Step 33 After user B accepts the pairing request, the receiving end and the sending end successfully pair.
- the receiving end and the transmitting end are paired.
- the sending end held by the user B displays: receiving or rejecting the receiving end. Pairing request, when user B chooses to receive the pairing request, the pairing relationship is successfully established between the receiving end and the sending end.
- the sending end may also send the pairing result to the server (step 34), so that when the server knows that the receiving end and the transmitting end are successfully paired, the frequency segment of the sound wave is allocated to the two clients.
- the server may also feed back the pairing result to the receiving end (step 35).
- the client may have a unique identifier of each other.
- the identifier of the pairing object is also sent to the service.
- the server establishes a pairing relationship between the two parties that require the pairing, where the unique identifier may be the login account of the software, or may also be the identifier of the device used by the pairing parties, and the like.
- the server allocates a frequency segment of the sound wave for the receiving end and the transmitting end, where the server allocates the frequency band of the sound wave for the two clients instead of a fixed frequency, because the sound wave is propagating In the process, the frequency is not fixed, it will be affected by many factors, for example, the sound wave will be affected by the propagation medium, weather, obstacles and so on. Therefore, when the receiving end transmits a sound wave of a fixed frequency, the frequency at which the transmitting end receives the sound wave usually changes. Therefore, the server allocates the frequency segment of the sound wave for the two clients, for example, the frequency of the sound wave allocated by the server.
- the segment is 20000HZ ⁇ 20005HZ, and so on.
- the frequency segment of the sound waves allocated by the server in this step can be selected in a frequency segment that is inaudible to the human ear.
- the frequency of sound waves that can be heard by the human ear is 20HZ ⁇ 20000HZ, and the sound waves of less than 20HZ or more than 20000HZ are not available to the human ear. Therefore, a frequency range less than 20HZ can be selected, or a frequency range greater than 20000HZ can be selected, however,
- the transmitting end selects a sound wave with a small frequency to be transmitted, the receiving end does not necessarily receive it. Even if it is received, the frequency of the sound wave has been seriously affected by the outside.
- the transmitting end After the server allocates the frequency segment of the sound wave to the receiving end and the transmitting end, the transmitting end transmits a sound wave signal of a preset frequency to the receiving end, and the preset frequency is within the frequency segment allocated by the server, and then the receiving end collects and transmits.
- the sound wave signal of the preset frequency sent by the terminal.
- the server should allocate different frequency segments for each pair of matching clients in a small range, which ensures that the sound waves received by the client are indeed sent by the pairing client.
- the reason for the emphasis on "small range” is that because the frequency range of available sound waves is usually limited, and the number of client pairs that send sound waves at the same time can be very large, the server cannot be such a large number of customers.
- the end pairs are all assigned a different frequency segment, so the server can allocate different frequency segments for each pair of matching clients in a small range. Above this range, the server can allocate the same frequency segment to other paired clients at the same time.
- the server can determine whether the two clients are within the preset range.
- the location information of the two clients can be obtained by using LBS positioning or GPS positioning, and the server determines whether the client is preset according to the location information.
- the server determines whether the client is preset according to the location information.
- the server can default the distance between the two clients to be relatively close, that is, Both clients will be considered to be within the preset range.
- the server can only allocate frequency segments for the paired clients that are "queued" first.
- the server can assign the frequency segment to other clients that are "queuing".
- the receiving end simultaneously collects the sound wave signals of many frequencies, and the receiving end only “focuses” on the sound waves in the frequency segment allocated by the server, but in the foregoing content It is mentioned that the frequency of the acoustic signal changes during the transmission process and will be interfered by other acoustic signals. In this case, the receiving end of the receiving signal may be troubled, and it is uncertain whether the collected acoustic wave is sent by the transmitting end. of.
- the sound wave signal when the transmitting end sends the sound wave signal to the receiving end, the sound wave signal may include the unique identification information of the transmitting end, and when the receiving end collects a large number of sound wave signals, the identification information in the sound wave signals may be Identification is performed to find out the acoustic signal sent by the paired sender.
- the server can allocate two or more frequency segments for the two clients, and the transmitting end can select sound waves of one frequency in the two or more frequency segments to superimpose to obtain a new sound wave.
- the signal is used as the sound wave signal of the preset frequency; thus, when the receiving end acquires the superimposed sound wave, the condition for verifying whether the sound wave is sent by the transmitting end is correspondingly increased. For example, if the sound wave collected by the receiving end is a sound wave superimposed by two frequencies, it is checked whether the sound wave satisfies two preset frequencies at the same time. Obviously, the receiving end is superimposed on the collected sound wave compared to the sound wave of one frequency. In the case of the subsequent sound waves, it is possible to more accurately determine whether the object transmitting the sound wave is the paired transmitting end.
- the transmitting end may transmit the sound wave of the frequency A to the receiving end, or may transmit the sound wave of the frequency B to the receiving end, and may also transmit the sound wave of the frequency A and the sound wave of the frequency B to the receiving end. Sound waves.
- the method for determining the "preset frequency" by the transmitting end has a plurality of methods in addition to selecting a fixed frequency as the "predetermined frequency" among the frequency segments allocated from the server described in the above, for example, sending the transmitting end to the receiving end. Before the sound wave signal of the preset frequency, the receiving end and the transmitting end agree on the frequency of the transmitted sound wave signal in advance, and use the frequency as the "preset frequency".
- the transmitting end "informs" the receiving end of the frequency of the sound wave signal to be sent, where the transmitting end directly transmits the frequency of the sound wave signal to be transmitted to the receiving end, or the frequency of the sound wave signal to be sent by the transmitting end is first sent to the transmitting end.
- the server then the server sends the frequency to the receiver, and so on.
- the receiving end determines the distance change between the receiving end and the transmitting end according to the change of the received sound wave energy, and can also determine whether the transmitting end is in the vicinity of the receiving end according to the received sound wave energy.
- a sound energy threshold is determined, and the threshold of the energy is determined by various methods. For example, the minimum value of the acoustic energy that can be received by the two clients in a preset range can be obtained through multiple tests. The minimum value is used as the energy threshold. If the energy collected by the receiving end is less than the energy threshold, the distance between the two clients is considered to be out of the preset range. That is, the transmitting end is not near the receiving end; When the energy of the collected sound wave is greater than the energy threshold, it is considered that the transmitting end is near the receiving end, and so on.
- the receiving end may search for the sending end according to the prompt information, and at the same time, the sending end may also search for the receiving end according to the prompt information.
- the prompt information is directly sent to the sending end, thereby reminding the user of the transmitting end of the change between the transmitting end and the receiving end.
- the prompt information is first sent to the server, and then the server sends the prompt information to the sending end.
- the transmitting end can also generate the prompt information according to the energy of the sound wave signal.
- the specific method is: after the receiving end collects the sound wave signal sent by the transmitting end, the transmitting end receives the sound wave signal returned by the receiving end.
- Information which may be the frequency, wavelength, energy or amplitude of the acoustic signal. The following is still taking "energy” as an example to illustrate the process of generating prompt information on the sending end. The specific process is shown in Figure 6:
- Step 61 After the receiving end collects the sound wave signal of the preset frequency sent by the transmitting end, the sound wave energy corresponding to the sound wave signal is obtained by analyzing, and then the receiving end sends the sound wave energy corresponding to the sound wave signal to the server.
- Step 62 The server sends the sound wave energy of the sound wave signal to the transmitting end.
- Step 63 The transmitting end determines a distance change from the receiving end according to the received energy change of the acoustic wave signal.
- the specific determination method and the receiving end determine the distance between the transmitting end and the receiving end according to the energy change of the acoustic wave signal, and the method is the same or similar, and will not be repeated here.
- Step 64 According to the distance change, the prompt information is used to remind the user B to change the distance between the user B and the user A. For example, the prompt information indicates that “the receiving end is closer to you”, then the user B knows Your own direction to find user A is correct, you can continue to find user A in that direction.
- the receiving end determines the change in the distance from the receiving end according to the energy change of the received acoustic wave signal (step 65), and finally, the receiving end generates the prompt information according to the distance change ( Step Step 66), the prompt information is used to remind the user to change the distance between the user A and the user B.
- the prompt information indicates that “the sending end is closer to you”, and the user A knows that the direction of the user B is correct. You can continue to find user B in that direction.
- the receiving end performs the sequence of steps 65 and 61, and executes according to the order in which it actually occurs. For example, in order to make the receiving end and the transmitting end synchronize as much as possible to obtain the prompt information, the receiving end may first perform step 61 and then perform step 65; or may perform step 61 and step 65 simultaneously;
- the receiving end After receiving the sound wave signal of the preset frequency sent by the transmitting end, the receiving end obtains the sound wave energy corresponding to the sound wave signal by analyzing, and directly transmits the sound wave energy to the transmitting end. Secondly, the transmitting end determines the change of the distance between the receiving end and the transmitting end according to the change of the received sound wave energy. Finally, the transmitting end generates the prompting information according to the change of the distance, and searches for the receiving end according to the prompting information.
- the transmitting end searches for the receiving end according to the prompt information generated by the receiving end, and in the third mode and the fourth mode.
- the transmitting end analyzes the sound energy sent by the receiving end, and finally generates prompt information, and then searches for the receiving end according to the prompt information. It can be seen that in the first mode and the second mode, the transmitting end does not need to analyze the acoustic energy, and the resource consumption of the client is reduced compared to the third mode and the fourth mode.
- the sending end needs to wait until the receiving end generates the prompting information, and then the prompting information is obtained, so that the prompting information obtained by the transmitting end is longer than the prompting information obtained by the receiving end. Time lag, sometimes causing trouble for the two users who are positioned.
- the receiving end may first transmit the energy of the acoustic wave to the transmitting end, and then the receiving end and the transmitting end may synchronously perform the energy of the acoustic signal. Analysis, so that the receiving end and the transmitting end obtain the prompt information as much as possible, but in the third mode and the fourth mode, because the transmitting end needs to analyze the sound wave signal, compared with the first mode and the fourth mode The way the client consumes more resources.
- the two clients that are located may be one client as the transmitting end of the sound signal, and the other client as the receiving end of the sound signal, or may be positioned.
- Each of the two clients is both a transmitting end of the sound signal and a receiving end of the sound signal.
- the two clients send a sound signal of a preset frequency to each other, and then the two clients respectively analyze the energy of the received sound signal to determine a change in the distance between each other, and according to the distance
- the change generates the prompt information
- each client obtains the prompt information according to the energy of the received sound wave signal.
- the method is the same as the foregoing method. To avoid repetition, the specific process is not described in detail herein.
- the method provided by the present application mainly relies on transmitting and receiving acoustic signals between the transmitting end and the receiving end, and determining the change of the distance between the transmitting end and the receiving end according to the change of the received acoustic wave signal, compared with the prior art.
- the positioning method, the method for determining the distance change provided by the present application can determine the distance between the two ends even if the distance between the transmitting end and the receiving end is relatively small.
- the application can also generate corresponding prompt information according to the change of the distance between the two ends, the prompt information is used to prompt the user to change the distance between the two ends, and guide the user to move in the direction of decreasing distance between the two ends, compared to the existing The positioning technique, when the distance between two users positioned is small, the probability of finding each other is increased by applying the method provided by the present application.
- the existing positioning technology can only guide the two users within a small distance range, but the two users do not see each other because they have not met each other. It's too clear about each other's appearance, so that even within a small distance, it is sometimes difficult to find each other immediately.
- the sound energy transmitted between the corresponding two clients becomes very large, and the user can easily follow the prompt information generated by the client. Locking the objects you want to meet increases the user experience.
- the existing positioning technology has an ultrasonic positioning method in addition to LBS positioning and GPS positioning.
- the positioning method is specifically as shown in FIG. 7: when the transmitting end is located at the A position, an ultrasonic signal is transmitted to the receiving end, when When the ultrasonic signal propagates to the receiving end, signal reflection occurs, and the signal is reflected into the transmitting end, assuming that the transmitting end is at the B position.
- the distance between the receiving end and the transmitting end can be calculated based on the speed at which the ultrasonic signal propagates and the time taken by the transmitting end to receive the ultrasonic signal.
- the position prompting method provided by the present application is that one client transmits an acoustic wave signal, and another client receives an acoustic wave signal
- the above existing ultrasonic positioning method is that the same client transmits and receives an ultrasonic signal.
- the user may obtain the location information of the target more quickly by using the method provided by the present application, because the existing ultrasonic positioning method needs to transmit the ultrasonic wave, and wait until the ultrasonic wave is reflected to the transmitting end for analysis to obtain the target.
- Position information, and the method of the present application only needs to transmit the sound wave signal, and when the receiving end collects the sound wave information, it can immediately analyze and obtain the position information of the target. Therefore, the position prompting method provided by the present application may be more efficient. Help users find their goals.
- the method provided by the present application can be used together with the existing LBS positioning technology.
- the LBS positioning method is used to reflect the distance change between the two
- the sound wave localization method is used to reflect the change of the distance between the two.
- the network environment is poor, the user can be more efficiently helped to find the target.
- Embodiment 1 provides a method for determining a change in distance.
- the present application further provides a device for determining a change in distance, which is also used to solve the problem that when the distance between two positioning users is small, the user cannot use the existing positioning technology. Identify the problem of distance changes between each other.
- the device is located in the receiving end, and the specific structure is as shown in FIG. 8 and includes the following units:
- the first collecting unit 81 and the first determining unit 82 wherein:
- the first collecting unit 81 collects a sound wave signal of a preset frequency sent by the transmitting end;
- the first determining unit 82 determines a distance change between the transmitting end and the receiving end according to the collected acoustic wave signal.
- the specific working process of the device is: first, the first collecting unit 81 collects the sound wave signal of the preset frequency sent by the transmitting end, and secondly, the first determining unit 82 determines the transmitting end and the receiving end according to the collected sound wave signal. The distance between the changes.
- the present application also provides a device for determining the change of the distance, which is also used to solve the problem that the user cannot determine the change of the distance between each other by using the existing positioning technology when the distance between the two positioning users is small.
- the device is located in the transmitting end, and the specific structure is as shown in FIG. 9, and includes the following units:
- the transmitting unit 91, the receiving unit 92 and the second determining unit 93 wherein:
- the sending unit 91 sends an acoustic signal of a preset frequency to the receiving end;
- the receiving unit 92 receives information of the sound wave signal returned by the receiving end after collecting the sound wave signal
- the second determining unit 93 determines a change in the distance between the receiving end and the transmitting end according to the information of the acoustic wave signal.
- the specific working process of the device is: first, the sending unit 91 sends a sound wave signal of a preset frequency to the receiving end, and secondly, after the receiving end collects the sound wave signal, the receiving unit 92 receives the sound wave returned by the receiving end. The information of the signal, finally, the second determining unit 93 determines the change in the distance between the receiving end and the transmitting end based on the information of the acoustic wave signal.
- the embodiment of the present application further provides a location prompting device, which is used to solve the problem that the two users cannot find each other by using the existing positioning technology when the distance between the two positioning users is small.
- the device is located in the receiving end, and the specific structure is as shown in FIG. 10, and includes the following units:
- the second collection unit 101, the third determination unit 102, and the third generation unit 103 wherein:
- the second collecting unit 101 collects a sound wave signal of a preset frequency sent by the transmitting end;
- the third determining unit 102 determines, between the transmitting end and the receiving end, according to the collected acoustic wave signal. Distance change
- the third generating unit 103 generates prompt information according to the distance change, where the prompt information is used to prompt a change in the distance between the receiving end and the transmitting end.
- the specific working process of the device is: first, the second collecting unit 101 collects the sound wave signal of the preset frequency sent by the transmitting end, and secondly, the third determining unit 102 determines the transmitting end and the receiving end according to the collected sound wave signal. In the end, the third generation unit 103 generates prompt information according to the distance change, and the prompt information is used to prompt the distance between the receiving end and the transmitting end to change.
- the present application also provides a system for determining the change of the distance, which is also used to solve the problem that the user cannot determine the change of the distance between each other by using the existing positioning technology when the distance between the two positioning users is small.
- the structure of the system is shown in Figure 11, which specifically includes:
- the server 111 the receiving end 112 and the transmitting end 113, wherein:
- the server 111 after the receiving end establishes a pairing relationship with the transmitting end, allocates a frequency segment of the sound wave to the receiving end and the transmitting end; and collects the pre-sent sent by the sending end at the receiving end After the sound wave signal of the frequency is set, receiving information of the sound wave signal of the preset frequency sent by the receiving end, the preset frequency is within the frequency segment; and transmitting information of the sound wave signal to the transmitting end ;
- the receiving end 112 collects an acoustic wave signal of a preset frequency sent by the transmitting end, and determines a distance change between the transmitting end and the receiving end according to the collected acoustic wave signal;
- the transmitting end 113 sends an acoustic wave signal of a preset frequency to the receiving end; after the receiving end sends the collected information of the acoustic wave signal to the server, receiving the acoustic wave signal sent by the server And determining, according to the information of the acoustic wave signal, a change in the distance between the receiving end and the transmitting end.
- the specific working process of the embodiment of the system is: in the first step, after the pairing relationship is established between the receiving end and the transmitting end, the server 111 allocates a frequency segment of the sound wave to the receiving end 112 and the transmitting end 113, and the second step, the sending end 113, the sound wave signal of the preset frequency is sent to the receiving end 112.
- the receiving end 112 collects the sound wave signal of the preset frequency sent by the transmitting end 113, and determines the relationship between the transmitting end 113 and the receiving end 112 according to the collected sound wave signal. The distance changes.
- the receiving end 112 also transmits the information of the received acoustic wave signal to the server 111, the server 111 transmits the information of the acoustic wave signal to the transmitting end 113, and the transmitting end 113 receives the signal of the acoustic wave signal sent by the server 111. And determining a change in the distance between the receiving end 112 and the transmitting end 113 according to the information of the acoustic wave signal.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
- a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
- processors CPUs
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
- RAM random access memory
- ROM read only memory
- Memory is an example of a computer readable medium.
- Computer readable media includes both permanent and non-persistent, removable and non-removable media.
- Information storage can be implemented by any method or technology.
- the information can be computer readable instructions, data structures, modules of programs, or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
- computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Acoustics & Sound (AREA)
- Telephone Function (AREA)
- Mobile Radio Communication Systems (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- User Interface Of Digital Computer (AREA)
- Telephonic Communication Services (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
一种确定距离变化的方法、位置提示方法及其装置和系统。该确定距离变化的方法包括:接收端(112)采集发送端(113)发送的预设频率的声波信号(步骤11);根据采集到的声波信号,确定发送端(113)与接收端(112)之间的距离变化(步骤12);提供的确定距离变化的方法,在发送端(113)和接收端(112)之间的定位距离相对较小时,也可以确定出两端之间的距离变化。此方法还可以根据两端距离变化生成相应的提示信息,该提示信息用于提示用户这两端之间的距离变化,指引用户向着两端之间距离减小的方向移动,当定位的两用户之间的距离较小时,提供的方法找到彼此的几率增大。
Description
本申请要求2016年08月17日递交的申请号为201610682482.2、发明名称为“确定距离变化的方法、位置提示方法及其装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及定位技术领域,尤其涉及一种确定距离变化的方法、位置提示方法及其装置和系统。
随着科技的蓬勃发展,定位技术被广泛地应用在用户的生活中,例如,用户在汽车中安装定位跟踪器,当该汽车被盗时,用户可以根据定位跟踪器获知汽车的具体位置,便于用户进行查找,等等。
目前,常用的定位方式有GPS定位和LBS定位,其中,GPS定位主要依靠卫星导航系统对目标进行定位;LBS定位主要是针对手机用户,通过电信、移动运营商的无线电通讯网络(如GSM网、CDMA网),或者借助GPS定位等对移动终端用户进行定位。
通常,采用GPS定位获得目标用户的位置信息的误差约为4~5米;在采用LBS定位时,如果借助GPS定位,获得的目标用户的位置信息的误差也约为4~5米;如果用户没有开启GPS功能,而是采用电信、移动运营商(基站)的无线电通讯网络,获得的目标用户的位置信息的误差却达到了百米左右,因此,当两定位用户之间的距离较小时,采用现有的定位技术有时无法精确地获取两定位用户之间的距离变化,例如,位于同一建筑不同楼层里的两名用户,采用GPS定位或LBS定位测得的两人位置信息可能是相同的,显然,此时这两用户采用现有的定位技术无法获取彼此之间的相对位置信息,有时甚至无法找到彼此。
发明内容
鉴于上述问题,本申请实施例提供了一种确定距离变化的方法、位置提示方法及其装置和系统,用于解决当两定位用户的距离较小时,采用现有的定位技术用户无法确定彼此之间的距离变化的问题。
本发明提供了一种确定距离变化的方法,该方法包括:
接收端采集发送端发送的预设频率的声波信号;
根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
优选地,所述根据采集到的声波信号,确定所述发送端与接收端之间的距离变化,包括:
根据采集到的声波信号,确定所述声波的变化;
根据所述声波的变化,确定所述发送端与接收端之间的距离变化。
优选地,所述根据采集到的声波信号,确定所述声波的变化,包括:
根据采集到的声波信号,确定所述声波能量变化;
所述根据所述声波的变化,确定所述发送端与接收端之间的距离变化,包括:
根据所述声波能量变化,确定所述发送端与接收端之间的距离变化。
优选地,所述根据采集到的声波信号,确定声波能量变化,包括:
对所述接收端相邻两次采集到的所述声波信号对应的声波能量进行比较,如果后一次采集到的所述声波信号的声波能量比前一次采集到的所述声波信号的能量大,则确定该所述声波信号能量变大;如果后一次采集到的所述声波信号的声波能量比前一次采集到的所述声波信号的能量小,则确定该所述声波信号能量变小;
所述根据所述声波能量变化,确定所述发送端与接收端之间的距离变化,包括:
当确定该所述声波信号能量变大时,则确定所述发送端与接收端之间的距离减小;或
当确定该所述声波信号能量变小时,则确定所述发送端与接收端之间的距离增大。
优选地,所述预设频率的确定方法包括:
在所述接收端采集所述发送端发送的预设频率的声波信号之前,所述接收端和发送端约定所述声波信号的频率,将所述频率作为所述预设频率;或,
在所述接收端采集所述发送端发送的预设频率的声波信号之前,与所述接收端和发送端连接的服务器为所述接收端和发送端分配声波的频率段,所述预设频率在所述频率段之内。
优选地,在与所述接收端和发送端连接的服务器为所述接收端和发送端分配声波的频率段之后,所述方法还包括:
所述发送端在一个所述频率段对应的声波中选取一个频率的声波作为所述预设频率的声波信号;
所述发送端在两个或两个以上的所述频率段对应的声波中分别选取一个频率的声波
进行叠加,将叠加后的声波作为所述预设频率的声波信号。
优选地,在与所述接收端和发送端连接的服务器为所述接收端和发送端分配声波的频率段之前,所述方法还包括:
所述服务器通过LBS或GPS定位判断所述接收端与发送端之间的距离是否在预设的距离范围之内,则为所述接收端和发送端分配声波的频率段具体包括:
当确定所述接收端和发送端之间的距离在预设的距离范围之内后,所述服务器为所述接收端和发送端分配声波的频率段。
优选地,在确定所述发送端与接收端之间的距离变化之后,所述方法还包括:
根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
优选地,在根据所述距离变化生成提示信息之后,所述方法还包括:
所述接收端将所述提示信息发送给所述发送端,以便提示所述接收端与发送端之间的距离变化。
优选地,在根据所述距离变化生成提示信息之后,所述方法还包括:
所述接收端将所述提示信息发送给与所述接收端和发送端连接的服务器,由所述服务器将所述提示信息发送给所述发送端,以便提示所述接收端与发送端之间的距离变化。
优选地,所述提示所述发送端与接收端之间距离变化的方式包括以下至少一种:
以声音的方式提示所述发送端与接收端之间的距离变化;
以图片的方式提示所述发送端与接收端之间的距离变化;
以动画的方式提示所述发送端与接收端之间的距离变化;
以振动的方式提示所述发送端与接收端之间的距离变化。
优选地,当所述提示信息以声音的方式提示所述发送端与接收端之间的距离变化时,在所述接收端根据所述距离变化生成提示信息之前,所述方法还包括:
将声波信号对应的声波能量的大小与所述提示信息声音的强弱建立对应关系。
优选地,在所述接收端收集所述发送端发送的预设频率的声波信号之前,所述方法还包括:
所述接收端与发送端之间建立配对关系。
优选地,所述接收端与发送端之间建立配对关系,具体包括:
所述接收端向与所述接收端和发送端连接的服务器发送与所述发送端配对的请求,由所述服务器将所述请求发送给所述发送端,待所述发送端接受所述请求后,则所述接
收端与发送端完成所述配对关系的建立。
本发明还提供了一种确定距离变化的方法,该方法包括:
发送端向接收端发送预设频率的声波信号;
接收所述接收端在采集到所述声波信号后回传的所述声波信号的信息;
根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
优选地,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化,包括:
根据所述声波信号的信息,确定所述声波的变化;
根据所述声波的变化,确定所述接收端与发送端之间的距离变化。
优选地,所述根据所述声波信号的信息,确定所述声波的变化,包括:
根据所述声波信息的能量,确定所述声波能量的变化;
所述根据所述声波的变化,确定所述接收端与发送端之间的距离变化,包括:
根据所述声波能量变化,确定所述发送端与接收端之间的距离变化。
优选地,所述发送端接收所述接收端回传的所述声波信号的信息,包括:
所述发送端接收所述接收端发送的所述声波信号对应的声波能量;或,
待所述接收端将接收到的所述声波信号对应的声波能量发送给与所述接收端和发送端连接的服务器后,所述发送端接收所述服务器发送的所述声波信号对应的声波能量。
优选地,在确定所述接收端与发送端之间的距离变化之后,所述方法还包括:
根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
本申请还提供了一种位置提示方法,该方法包括:
接收端采集发送端发送的预设频率的声波信号;
根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;
根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
优选地,所述根据采集到的声波信号,确定所述发送端与接收端之间的距离变化,包括:
根据采集到的声波信号,确定所述声波的变化;
根据所述声波的变化,确定所述发送端与接收端之间的距离变化。
优选地,所述根据采集到的声波信号,确定所述声波的变化,包括:
根据采集到的声波信号,确定所述声波能量变化;
所述根据所述声波的变化,确定所述发送端与接收端之间的距离变化,包括:
根据所述声波能量变化,确定所述发送端与接收端之间的距离变化。
相应地,本申请还提供了一种确定距离变化的装置,该装置位于接收端中,包括:
第一采集单元和第一确定单元,其中:
所述第一采集单元,采集所述发送端发送的预设频率的声波信号;
所述第一确定单元,根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
本申请还提供了一种确定距离变化的装置,该装置位于发送端中,包括:
发送单元、接收单元和第二确定单元,其中:
所述发送单元,向所述接收端发送预设频率的声波信号;
所述接收单元,接收所述接收端在采集到所述声波信号后回传的所述声波信号的信息;
第二确定单元,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
本申请还提供了一种确定距离变化的装置,该装置位于接收端中,该装置包括:
第二采集单元、第三确定单元和第三生成单元,其中:
所述第二采集单元,采集发送端发送的预设频率的声波信号;
所述第三确定单元,根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;
所述第三生成单元,根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
本申请还提供了一种确定距离变化的系统,该系统包括:
服务器、接收端和发送端,其中:
所述服务器,待所述接收端与所述发送端之间建立配对关系后,为所述接收端和发送端分配声波的频率段;在所述接收端采集到所述发送端发送的预设频率的声波信号后,接收所述接收端发送的该预设频率的声波信号的信息,所述预设频率在所述频率段之内;将所述声波信号的信息发送给所述发送端;
所述接收端,采集所述发送端发送的预设频率的声波信号;根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;
所述发送端,向所述接收端发送预设频率的声波信号;待所述接收端将采集到的所述声波信号的信息发送给服务器后,接收所述服务器发送的所述声波信号的信息,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
本申请提供的方法主要依靠发送端和接收端之间的发送、接收声波信号,根据接收到的声波信号,确定发送端和接收端之间的距离的变化,相比于现有技术的定位方法,本申请提供的确定距离变化的方法,在发送端和接收端之间的定位距离相对较小时,也可以确定出两端之间的距离变化。本申请还可以根据两端距离变化生成相应的提示信息,该提示信息用于提示用户这两端之间的距离变化,指引用户向着两端之间距离减小的方向移动,相比于现有的定位技术,当定位的两用户之间的距离较小时,应用本申请提供的方法找到彼此的几率增大。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种确定距离变化的方法的流程示意图;
图2为本申请实施例提供的一种接收端和发送端传输声波信号的示意图;
图3为本申请实施例提供的一种客户端配对方法的流程示意图;
图4为本申请实施例提供的一种客户端配对方法的示意图;
图5为本申请实施例提供的一种发送端向接收端发送的声波的示意图;
图6为本申请实施例提供的一种位置提示方法的流程示意图;
图7为现有技术提供的一种定位方法的示意图;
图8为本申请实施例提供的一种确定距离变化的装置的结构示意图;
图9为本申请实施例提供的一种确定距离变化的装置的结构示意图;
图10为本申请实施例提供的一种位置提示装置的结构示意图;
图11为本申请实施例提供的一种确定距离变化的系统的结构示意图。
在背景技术已经提到,目前,常用的定位方式有GPS定位和LBS定位,对于GPS定位来说,误差通常为4~5米。导致误差的原因有很多种,例如,卫星星历误差导致获得目标的位置信息出现误差;因为在采用GPS定位技术对目标进行定位时,需要计算出
参与GPS定位的几个卫星的位置信息,这时就需要获知某时刻GPS卫星对应轨道参数,且这些参数均是由各类型的星历提供的,但无论是通过哪种类型的星历计算出来的卫星的位置信息,都会与这些卫星的真实位置信息有所差异,这样,导致通过GPS定位获取的目标的位置信息也会出现误差;再例如,卫星上的时钟和标准时间之间也会存在误差,通常,在卫星上的时间要比地表上的时间要快,这样使得获取的目标的位置信息存在误差;还可能是由于信号传播路径导致的误差,因为信号从卫星传播到地表的过程中,传播的介质并不是均匀的,甚至介质的种类也会发生变化,所以信号的传播速度并不是固定不变的,而在计算目标的位置信息时,通常会忽略掉这个问题,会默认信号的传播速度是相同的,即使考虑到这个问题,也只是尽量减少这个问题导致的误差,并不能完全消除该误差;当然,还有其他因素导致在GPS定位时产生误差,这里就不再详细说明。
对于LBS定位来说,通常优先采用GPS定位测取目标的位置信息,再根据位置信息对该目标进行定位,这时测取的目标位置信息的误差也为4~5米;但如果不借助GPS定位,而是通过电信、移动运营商(基站)的无线电通讯网络,获取目标的位置信息的误差达却达到了百米左右。LBS定位产生误差的原因同样也有很多种,例如,基站的密度或者信号的干扰程度等,都会影响LBS定位的精确度。
由上述可知,当定位的两用户之间的距离很远时,用户可以根据目前的GPS定位或LBS定位技术获知彼此的位置信息,但当定位的两用户之间的距离相对较小时,由于GPS定位或LBS的测量误差,有时使得定位的两用户无法获知彼此的相对位置信息。而且,无论是GPS定位还是LBS定位,通常测得的目标的位置信息是在经纬坐标系下的位置信息,因此,如果两定位用户位于同一建筑里的不同楼层,且这两楼层位于同一纬度上,这时通过现有的定位技术测得的这两用户的位置信息可能是相同的,显然,这时这两用户通过现有的定位技术是无法找到彼此的。
鉴于上述问题,本申请提供了一种确定距离变化的方法、位置提示方法及其装置和系统。为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
实施例1
本申请实施例提供了一种确定距离变化的方法,用于解决当两定位用户的距离较小时,采用现有的定位技术用户无法确定彼此之间的距离变化的问题。该方法的流程示意图如图1所示,该方法具体包括以下步骤:
步骤11:接收端采集发送端发送的预设频率的声波信号。
在步骤中,发送端发送的声波信号的频率是预设频率,该频率可以是:发送端在接收到发送声波信号的请求时,该请求中包含接收端的信息,系统为该发送端和接收端分配的频率。也可以是,发送端与接收端先建立配对关系后,预先约定好的频率。对于同一发送端和接收端的一次服务,一旦确定好声波信号的频率后,在此次服务结束之前,发送端都将发送符合该预设频率的声波信号,接收端也只采集符合该预设频率的声波信号,或者接收端只对采集到的声波信号中符合该预设频率的声波信号进行分析。
其中,发送端发送声波信号的请求可以是在发送端上由发送端的用户触发的;也可以是发送端接收所述接收端的指令触发的,这种情形下,在所述接收端上,由接收端的用户触发后发送对应的指令给发送端。接收端可以触发指令是已经经过发送端授权的,
接收端采集发送端发送的预设频率的声波信号,在一种实施方式中,接收端在采集发送端发送的预设频率的声波信号之前,需要接收端(客户端)与发送端(客户端)之间建立配对关系。
在发送端和接收端建立配对关系后,服务器才可以为配对的两客户端分配声波的频率段,服务器在为这两客户端分配声波的频率段后,发送端将预设频率的声波信号发送给接收端。
这里发送端可以以固定的周期向接收端发送声波信号,例如,每1分钟向接收端发送一次声波信号,或者每5秒发射一次声波信号,等等;发送端还可以不以固定周期发送声波信号,例如,只要一分钟发够10次或者5次即可,等等;这里不对发送端发送声波信号的方式作具体限定。
步骤12:根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
在本步骤中,接收端根据采集到的声波信号,确定发送端与接收端之间的距离变化的方法可以是:先根据采集到的声波信号,确定该声波的变化,然后,根据该声波的变化,确定发送端与接收端之间的距离变化。
这里声波的变化可以是指:接收端根据相邻两次采集到发送端发送声波信号,确定这两次接收到的声波的频率、波长、振幅或能量的变化,等等。
为了清楚地说明本申请,下面以确定“声波能量的变化”为例,说明本申请实施例,
但也仅仅是示例性的说明,并不对本申请构成限定。
当接收端采集到声波信号后,根据接收到的声波信号对应的声波能量的变化,确定该发送端与接收端之间的距离变化。这里应用的原理是:当波源发出声波后,声波向四面八方传播,通常以球面的形式传播,如图2所示,发送端作为波源O向接收端发送一个声波信号,这时该声波信号以球面的形式由近到远的向四周扩散出去,假设在理想的情况下,即没有能量损耗的情况下,声波在传到A点、B点、C点时,声波的能量是恒定不变的,但因为传播的球面半径越来越大,所以对应的传播球面积也会越来越大,这样,单位面积上分布的能量会越来越小,也就是说,发送端与接收端之间的距离越来越大时,接收端收集到声波的能量越来越小,如图2所示,当接收端依次位于A点、B点、C点时,接收到的声波信号的能量是越来越小的。
而且,声波通常并不是在理想的情况下进行传播的,即存在能量损耗的情况。例如,当声波遇到障碍物时,有时声波并不会绕开障碍物,而是在障碍物中传播,这时声波作为振动的机械波会与障碍物中的分子进行摩擦,将一部分声波能量转化为热能;再例如,通常空气中还存在固体颗粒、悬浮颗粒等物质,这些物质都会与声波进行相互作用,也耗费了一部分的声波能量,等等;而且,当接收端与发送端之间的距离越大,能耗损耗的越严重,因此,两客户端之间的距离越小,接收端接收的声波对应的能量就越大,反之,接收端接收的声波对应的能量就越小。
接收端根据连续采集到的声波信号对应的声波能量的变化,确定该发送端与接收端之间的距离变化,具体的过程是:接收端将相邻两次采集到的发送端发送的声波信号对应的能量进行比较,如果后一次采集的声波信号的能量比前一次采集到的声波信号的能量要大,根据上述的声波传输原理可知:接收端与接收端之间的距离减小了,这时说明接收端和发送端寻找彼此的路线是正确的。
如果接收端后一次采集的声波信号的能量比前一次采集到的声波信号的能量要小,则这时可以确定接收端与发送端之间的距离增大了,说明接收端和发送端寻找彼此的路线可能是错误的。
步骤13:根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
在本申请实施例中,接收端在根据接收到声波的变化,确定出发送端与接收端之间的距离变化后,还可以根据该距离变化,生成相应的提示信息,该提示信息用于提醒用户接收端和发送端之间的距离变化,例如,当接收端确定与发送端的距离减少时,生成
提示信息,该提示信息提示用户目前处于的位置与目标用户的位置越来越近,等等。
提示信息的表现形式有很多种,例如,该提示信息可以是以声音、文字、动画、振动等形式提醒用户接收端和发送端之间的距离变化,或者是这几种形式的组合,例如,该提示信息可以是声音加振荡,或者是声音加动画,等等。
如果提示信息以声音的方式提醒用户发送端与接收端之间的距离变化时,在生成提示信息前,还可以将声波信号对应的声波能量的大小与提示声音的强弱建立对应关系,例如,当接收端与发送端之间的距离越来越大时,这时提示音会变得越来越强,提醒用户当时的查找目标的方向可能是错误的,这时用户就可以根据提示信息及时地调整方向。
接收端将声波能量的大小与提示音的强弱建立对应关系的方法有很多种,可以是像上述例子中当两客户端之间的距离越远,提示音越强,或者,还可以是当两客户端之间的距离越近,提示音越强,等等,这里不作具体限定。
持有接收端的用户根据生成的提示信息查找发送端的位置,例如,当该用户在查找发送端的过程中,接收端的提示信息提醒用户与发送端的距离正在减小时,该用户就可以再依照目前的查找方向继续查找发送端,提高了查找效率。
为了更清楚地说明本申请实施例,下面对上述步骤进行详细说明:
在步骤11中,实现建立接收端与发送端之间的配对关系的方式有很多种,下面示例性的说明一种实施方式:
如图3所示,如果接收端想要与发送端之间建立配对关系,具体的配对步骤如下:
步骤31:用户A通过接收端向服务器发送与发送端配对的请求;
步骤32:服务器在接收到该请求后,将该请求发送给用户B持有的发送端;
步骤33:用户B接受该配对请求后,这时接收端与发送端成功配对。
如图4所示为接收端和发送端配对的示意图,当用户A通过接收端向服务器发送与发送端的配对请求后,这时,用户B持有的发送端中显示:接收或拒绝与接收端的配对请求,当用户B选择接收该配对请求后,接收端和发送端之间就成功建立了配对关系。
当接收端和发送端成功配对后,发送端还可以将配对结果发送给服务器(步骤34),这样,当服务器获知接收端和发送端配对成功后,为这两客户端分配声波的频率段。
服务器在接收到发送端发送的配对结果后,服务器还可以将配对结果反馈给接收端(步骤35)。
客户端向服务器发送配对请求的方法也有很多种,例如,可以是彼此之间拥有对方的唯一标识,在向服务器发送配对请求的过程中,将想要配对对象的标识也发送给服务
器,服务器根据该配对请求,将要求配对的双方建立配对关系,这里的唯一标识可以是软件的登录账号,或者还可以是配对双方使用设备的标识,等等。
当接收端和发送端建立配对关系后,服务器为该接收端和发送端分配声波的频率段,这里服务器为两客户端分配的是声波的频率频段而不是一个固定频率,原因是:声波在传播的过程中,频率并不是固定不变的,它会受到很多因素的影响,例如,声波会受到传播介质、天气、障碍物等的影响。因此,当接收端发射一个固定频率的声波后,发送端在接收到声波的频率通常会发生变化,因此,这里服务器为两客户端分配的是声波的频率段,例如,服务器分配的声波的频率段为20000HZ~20005HZ,等等。
为了避免两客户端在发送声波的过程产生噪音,本步骤中服务器分配的声波的频率段可以选在人耳听不到的频率段中。人耳通常可以听到的声波的频率是在20HZ~20000HZ,小于20HZ或大于20000HZ的声波是人耳不到的,因此,可以选择小于20HZ的频率段,或者选择大于20000HZ的频率段,但是,发送端选择频率较小的声波发送时,接收端不一定会接收到,即使接收到,声波的频率也已经被外界严重影响。
待服务器将声波的频率段分配给接收端和发送端后,该发送端向该接收端发射预设频率的声波信号,该预设频率在服务器分配的频率段之内,这时接收端收集发送端发送的该预设频率的声波信号。
在实际应用中,同一时刻通常会有很多客户端完成配对,也就是说,会有很多对客户端在同一时刻中进行声波的传输,因此,为了避免声波信号的干扰,
服务器在小范围内应为每对配对客户端分配不同的频率段,这样可以确保客户端接收到的声波的确是配对客户端发送的。
上述强调“小范围”的原因是:因为可用的声波的频率段通常是有限的,而且同一时间发送声波的客户端对的数量可能会很庞大,这时,服务器不可能为数量这么庞大的客户端对都分配一个不同的频率段,所以服务器可以在小范围内为每对配对客户端分配不同的频率段,超过该范围,服务器可以同时为其他配对客户端分配相同的频率段。
这里服务器判断两客户端是否在自己预设的范围之内的方法有很多种,例如,可以采用LBS定位或GPS定位获取两客户端的位置信息,服务器根据该位置信息判断该客户端是否在预设的范围之内。当两客户端之间的距离相对较小时,会出现背景技术里提到的由于现有技术的定位误差导致测出的两客户端的位置信息可能是相同的情形,但这也不影响服务器判断这两客户端是否在预设的范围内,当通过LBS定位或GPS定位获知两客户端的位置信息相同时,服务器可以默认这两客户端之间的距离相对较近,即这
两客户端会被认为在预设的范围之内。
当一个小范围内的配对客户端的数量达到分配频率段的数量的上限时,频率段会出现不够分的情况,这时,服务器只能先为“排队”靠前的配对客户端分配频率段,当一对客户端使用完频率段时,服务器可以将该频率段分配给正在“排队”的其他对客户端使用。
另外,在接收端采集发送端发送的声波的过程中,接收端同时会采集到很多频率的声波信号,而接收端只会“关注”服务器分配的频率段中的声波,但是,在前述内容已经提到,声波信号在传输的过程中频率会发生变化,以及会受到其他声波信号的干扰,这样,有时会对接收信号的接收端造成困扰,不确定采集到的声波是否是配对的发送端发送的。
针对该问题,本申请提供的解决方法有两种,具体如下:
第一种,发送端将声波信号发送给接收端时,该声波信号中可以包含有发送端的唯一标识信息,当接收端收集到数量较多的声波信号时,可以对这些声波信号中的标识信息进行识别,从中找出配对发送端发送的声波信号。
第二种,服务器可以为两客户端分配两个或两个以上的频率段,发送端可以在这两个或两个以上的频率段中分别选取一个频率的声波进行叠加,获得一个新的声波信号,并将该声波信号作为预设频率的声波信号;这样,当接收端采集到叠加后的声波后,验证是否是发送端发送的声波的条件就相应地增多。例如,如果接收端采集到的声波是两个频率叠加后的声波时,就会检验这个声波是否同时满足两个预设的频率,显然,相比于一个频率的声波,接收端在采集到叠加后的声波时,可以更加准确地判断出发送声波的对象是否是配对发送端。
如图5所示的声波图,发送端可以向接收端可以发送频率A的声波,也可以向接收端发送频率B的声波,还可以向接收端发送频率A的声波和频率B声波叠加后的声波。
发送端确定“预设频率”的方法除了上述内容中记载的从服务器分配的频率段中选择固定的频率作为“预设频率”以外,还有很多种方法,例如,在发送端向接收端发送预设频率的声波信号之前,接收端和发送端提前约定传输的声波信号的频率,并将该频率作为“预设频率”。
具体地,发送端将要发送的声波信号的频率“告知”接收端,这里可以是发送端直接将要发送的声波信号的频率发送给接收端,或者,发送端将要发送的声波信号的频率先发送给服务器,然后,服务器将该频率发送给接收端,等等。
在步骤12中,接收端除了根据接收的声波能量的变化确定接收端与发送端之间的距离变化以外,还可以根据接收到的声波能量,判断发送端是否在接收端的附近。具体地,首先,需要确定一个声波能量阈值,该能量的阈值的确定方法有很多种,例如,可以经过多次测试获得两客户端在预设范围可以接收到的声波能量的最小值,将该最小值作为能量阈值,如果接收端收集到声波的能量小于该能量阈值,就认为两客户端之间的距离不在预设范围之内,也就是说,发送端并不在接收端的附近;如果接收端收集到声波的能量大于该能量阈值,就认为发送端就在接收端的附近,等等。
在步骤13中,接收端可以根据提示信息查找发送端,同时,发送端也可以根据提示信息查找接收端。
发送端根据提示信息查找接收端的方式也有很多种,下面示例性地说明四中实施方式:
在第一种实施方式中,在接收端生成提示信息后,将该提示信息直接发送给发送端,从而提醒持有发送端的用户发送端与接收端之间的距离变化。
在第二种实施方式中,在接收端生成提示信息后,将该提示信息先发送给服务器,然后,服务器将该提示信息发送该发送端。
在第三实施方式中,发送端同样可以根据声波信号的能量生成提示信息,具体的方法是:待接收端采集到发送端发送的声波信号后,发送端接收接收端回传的该声波信号的信息,该信息可以是声波信号的频率、波长、能量或振幅等。下面仍以“能量”为例,说明发送端生成提示信息的过程,具体过程如图6所示:
步骤61:当接收端收集到发送端发送的预设频率的声波信号后,通过分析获得该声波信号对应的声波能量,这时接收端向服务器发送该声波信号对应的声波能量。
步骤62:服务器将该声波信号的声波能量发送给发送端。
步骤63:发送端根据接收到的该声波信号的能量变化确定与接收端的距离变化。
具体的确定方法与接收端根据声波信号的能量变化,确定与发送端之间的距离的方法相同或类似,这里就不再赘述。
步骤64:根据该距离变化成成提示信息,该提示信息用于提醒用户B与用户A之间的距离变化,例如,提示信息显示“接收端离您更近了哦”,这时用户B知道自己的查找用户A的方向是正确的,可以继续沿着该方向查找用户A。
在前述内容已经记载,如图6所示,接收端根据接收到的声波信号的能量变化确定与接收端之间的距离的变化(步骤65),最后,接收端根据该距离变化生成提示信息(步
骤66),该提示信息用于提醒用户A与用户B之间的距离变化,例如,提示信息显示“发送端离您更近了哦”,这时用户A知道自己的查找用户B方向是正确的,可以继续沿着该方向查找用户B。
这里需要说明的是:接收端执行步骤65和步骤61的顺序,根据实际发生的顺序执行。例如,为了使得接收端和发送端尽量同步获得提示信息,接收端可以先执行步骤61,再执行步骤65;或者可以同时执行步骤61和步骤65;等等。
在第四种实施方式中,首先,接收端在根据收集到发送端发送的预设频率的声波信号后,通过分析获得该声波信号对应的声波能量,并直接将该声波能量发送给发送端,其次,发送端根据接收的声波能量的变化,确定接收端和发送端之间的距离变化,最后,发送端根据该距离的变化生成提示信息,并根据该提示信息查找接收端。
上述记载的四种发送端根据提示信接收端的方式,在第一种方式和第二种方式中,发送端均是根据接收端生成的提示信息查找接收端,而在第三种方式和第四种方式中,发送端根据对接收端发送的声波能量进行分析,最终生成提示信息,进而根据该提示信息查找接收端。由此可知:在第一种方式和第二种方式中,发送端无需对声波能量进行分析,相比于第三种方式和第四种方式,减少了客户端的资源消耗。
但是,在第一种方式和第二方式中,发送端需要等到接收端生成提示信息后,才将获得该提示信息,这样,导致发送端获得的提示信息的时间比接收端获得的提示信息的时间滞后,有时会为定位的两用户带来困扰。而第三种方式和第四种方式中,接收端在获得声波信号的能量后,可以先将该声波的能量发送给发送端,然后,接收端和发送端可以同步对该声波信号的能量进行分析,使得接收端和发送端尽可能地同时获得该提示信息,但在第三种方式和第四种方式中,因为发送端需要对声波信号进行分析,相比于第一种方式和第四种方式客户端耗费的资源更多。
需要说明的是:在本申请提供的位置提示方法中,定位的两客户端中可以是一个客户端作为声音信号的发送端,另一个客户端作为该声音信号的接收端,还可以是定位的两客户端中的每个客户端,既是声音信号的发送端,又是声音信号的接收端。
具体地,两个客户端互相向对方发送一个预设频率的声音信号,然后,这两客户端分别对接收到的声音信号的能量进行分析,确定彼此之间的距离的变化,并根据该距离变化生成提示信息,每个客户端根据接收到的声波信号的能量,获得提示信息的方法与前述方法相同,为避免重复,这里就不对具体的过程进行详细说明。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本申请提供的方法主要依靠发送端和接收端之间的发送、接收声波信号,根据接收到的声波信号的变化,确定发送端和接收端之间的距离的变化,相比于现有技术的定位方法,本申请提供的确定距离变化的方法,即使发送端和接收端之间的距离相对较小时,也可以确定出两端之间的距离。本申请还可以根据两端距离变化生成相应的提示信息,该提示信息用于提示用户这两端之间的距离变化,指引用户向着两端之间距离减小的方向移动,相比于现有的定位技术,当定位的两用户之间的距离较小时,应用本申请提供的方法找到彼此的几率增大。
而且,当两个素未谋面的用户想要见面时,现有的定位的技术只能将这两个用户引导在一个较小的距离范围内,但这两用户因为没有见过面,彼此不太清楚彼此的长相,这样,即使处于一个距离较小的范围内,有时也很难立刻找到彼此。而应用本申请实施例,在两个陌生用户距离很近时,相应的两个客户端之间传输的声波能量就会变得很大,这时用户根据客户端生成的提示信息,很容易就锁定要见面的对象,提高了用户的体验。
另外,现有的定位技术除了LBS定位和GPS定位以外,还有一种超声波定位方方法,该定位方法具体如图7所示:当发送端位于A位置时,向接收端发射一个超声波信号,当该超声波信号传播到接收端时,发生信号反射,该信号将反射到发送端中,假设此时的发送端处于B位置。根据超声波信号传播的速度和发送端接收到的超声波信号所用的时间,便可计算出接收端与发送端之间的距离。
由上述现有的超声波定位方法可知,本申请提供的位置提示方法是一个客户端发射声波信号,另一个客户端接收声波信号,而上述现有的超声波定位方法是同一客户端发射和接收超声波信号。由此可知,用户使用本申请提供的方法可能会更快地获取目标的位置信息,因为现有的超声波定位方法需要将超声波发射出去,并等到该超声波反射到发送端再进行分析,才能获取目标的位置信息,而本申请的方法只要将声波信号发射出去,当接收端收集到该声波信息就可以立即分析,获取目标的位置信息,因此,本申请提供的位置提示方法可能会更加有效率地帮助用户找到目标。
在实际应用中,本申请提供的方法可以结合现有的LBS定位技术一起使用,当两个终端距离比较远时,采用LBS定位方式反映两者之间的距离变化,当两个终端距离在预设范围内时,则采用声波定位方式反映两者之间的距离变化,在网络环境差时,也可以更加有效率地帮助用户找到目标。
实施例2
实施例1提供了一种确定距离变化的方法,相应地,本申请还提供了一种确定距离变化的装置,同样用于解决当两定位用户的距离较小时,采用现有的定位技术用户无法确定彼此之间的距离变化的问题。该装置位于接收端中,具体结构如图8所示,包括以下单元:
第一采集单元81和第一确定单元82,其中:
所述第一采集单元81,采集发送端发送的预设频率的声波信;
所述第一确定单元82,根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
该装置的具体工作流程是:首先,第一采集单元81采集该发送端发送的预设频率的声波信号,其次,第一确定单元82根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
本申请还提供了一种确定距离变化的装置,同样用于解决当两定位用户的距离较小时,采用现有的定位技术用户无法确定彼此之间的距离变化的问题。该装置位于发送端中,具体结构如图9所示,包括以下单元:
发送单元91、接收单元92和第二确定单元93,其中:
所述发送单元91,向所述接收端发送预设频率的声波信号;
所述接收单元92,接收所述接收端在采集到所述声波信号后回传的所述声波信号的信息;
第二确定单元93,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
该装置的具体工作流程是:首先,发送单元91向该接收端发送预设频率的声波信号,其次,待该接收端收集到该声波信号后,接收单元92接收该接收端回传的该声波信号的信息,最后,第二确定单元93根据该声波信号的信息,确定接收端与发送端之间的距离变化。
相应地,本申请实施例还提供了一种位置提示装置,用于解决当两定位用户的距离较小时,这两用户采用现有的定位技术有时无法找到彼此的问题。该装置位于接收端中,具体结构如图10所示,包括以下单元:
第二采集单元101、第三确定单元102和第三生成单元103,其中:
所述第二采集单元101,采集发送端发送的预设频率的声波信号;
所述第三确定单元102,根据采集到的声波信号,确定所述发送端与接收端之间的
距离变化;
所述第三生成单元103,根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
该装置的具体工作流程是:首先,第二采集单元101采集发送端发送的预设频率的声波信号,其次,第三确定单元102根据采集到的声波信号,确定所述发送端与接收端之间的距离变化,最后,第三生成单元103根据该距离变化生成提示信息,该提示信息用于提示接收端与发送端之间的距离变化。
应用本申请提供的装置实施例获得的有益效果与应用前述方法实施例获得的有益效果相同或相似,为避免重复,在此不再赘述。
实施例3
相应地,本申请还提供了一种确定距离变化的系统,同样用于解决当两定位用户的距离较小时,采用现有的定位技术用户无法确定彼此之间的距离变化的问题。该系统的结构示意图如图11所示,具体包括:
服务器111、接收端112和发送端113,其中:
所述服务器111,待所述接收端与所述发送端之间建立配对关系后,为所述接收端和发送端分配声波的频率段;在所述接收端采集到所述发送端发送的预设频率的声波信号后,接收所述接收端发送的该预设频率的声波信号的信息,所述预设频率在所述频率段之内;将所述声波信号的信息发送给所述发送端;
所述接收端112,采集所述发送端发送的预设频率的声波信号;根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;
所述发送端113,向所述接收端发送预设频率的声波信号;待所述接收端将采集到的所述声波信号的信息发送给服务器后,接收所述服务器发送的所述声波信号的信息,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
该系统实施例的具体工作流程是:第一步,待接收端与发送端之间建立配对关系后,服务器111为接收端112和发送端113分配声波的频率段,第二步,该发送端113向接收端112发送预设频率的声波信号,第三步,接收端112采集发送端113发送的预设频率的声波信号,根据采集到的声波信号,确定发送端113与接收端112之间的距离变化。
另外,接收端112还将接收到的声波信号的信息发送给服务器111,服务器111将该声波信号的信息发送给发送端113,发送端113接收服务器111发送的声波信号的信
息,根据该声波信号的信息确定接收端112与发送端113之间的距离变化。
应用本申请提供的系统实施例获得的有益效果与应用前述方法实施例获得的有益效果相同或相似,为避免重复,在此不再赘述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。
计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (26)
- 一种确定距离变化的方法,其特征在于,该方法包括:接收端采集发送端发送的预设频率的声波信号;根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
- 根据权利要求1所述的方法,其特征在于,所述根据采集到的声波信号,确定所述发送端与接收端之间的距离变化,包括:根据采集到的声波信号,确定所述声波的变化;根据所述声波的变化,确定所述发送端与接收端之间的距离变化。
- 根据权利要求2所述的方法,其特征在于,所述根据采集到的声波信号,确定所述声波的变化,包括:根据采集到的声波信号,确定所述声波能量变化;所述根据所述声波的变化,确定所述发送端与接收端之间的距离变化,包括:根据所述声波能量变化,确定所述发送端与接收端之间的距离变化。
- 根据权利要求3所述的方法,其特征在于,所述根据采集到的声波信号,确定声波能量变化,包括:对所述接收端相邻两次采集到的所述声波信号对应的声波能量进行比较,如果后一次采集到的所述声波信号的声波能量比前一次采集到的所述声波信号的能量大,则确定该所述声波信号能量变大;如果后一次采集到的所述声波信号的声波能量比前一次采集到的所述声波信号的能量小,则确定该所述声波信号能量变小;所述根据所述声波能量变化,确定所述发送端与接收端之间的距离变化,包括:当确定该所述声波信号能量变大时,则确定所述发送端与接收端之间的距离减小;或当确定该所述声波信号能量变小时,则确定所述发送端与接收端之间的距离增大。
- 根据权利要求1所述的方法,其特征在于,所述预设频率的确定方法包括:在所述接收端采集所述发送端发送的预设频率的声波信号之前,所述接收端和发送端约定所述声波信号的频率,将所述频率作为所述预设频率;或,在所述接收端采集所述发送端发送的预设频率的声波信号之前,与所述接收端和发送端连接的服务器为所述接收端和发送端分配声波的频率段,所述预设频率在所述频率段之内。
- 根据权利要求5所述的方法,其特征在于,在与所述接收端和发送端连接的服务 器为所述接收端和发送端分配声波的频率段之后,所述方法还包括:所述发送端在一个所述频率段对应的声波中选取一个频率的声波作为所述预设频率的声波信号;所述发送端在两个或两个以上的所述频率段对应的声波中分别选取一个频率的声波进行叠加,将叠加后的声波作为所述预设频率的声波信号。
- 根据权利要求5所述的方法,其特征在于,在与所述接收端和发送端连接的服务器为所述接收端和发送端分配声波的频率段之前,所述方法还包括:所述服务器通过LBS或GPS定位判断所述接收端与发送端之间的距离是否在预设的距离范围之内,则为所述接收端和发送端分配声波的频率段具体包括:当确定所述接收端和发送端之间的距离在预设的距离范围之内后,所述服务器为所述接收端和发送端分配声波的频率段。
- 根据权利要求1所述的方法,其特征在于,在确定所述发送端与接收端之间的距离变化之后,所述方法还包括:根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
- 根据权利要求8所述的方法,其特征在于,在根据所述距离变化生成提示信息之后,所述方法还包括:所述接收端将所述提示信息发送给所述发送端,以便提示所述接收端与发送端之间的距离变化。
- 根据权利要求8所述的方法,其特征在于,在根据所述距离变化生成提示信息之后,所述方法还包括:所述接收端将所述提示信息发送给与所述接收端和发送端连接的服务器,由所述服务器将所述提示信息发送给所述发送端,以便提示所述接收端与发送端之间的距离变化。
- 根据权利要求9或10所述的方法,其特征在于,所述提示所述发送端与接收端之间距离变化的方式包括以下至少一种:以声音的方式提示所述发送端与接收端之间的距离变化;以图片的方式提示所述发送端与接收端之间的距离变化;以动画的方式提示所述发送端与接收端之间的距离变化;以振动的方式提示所述发送端与接收端之间的距离变化。
- 根据权利要求11所述的方法,其特征在于,当所述提示信息以声音的方式提示所述发送端与接收端之间的距离变化时,在所述接收端根据所述距离变化生成提示信息之前,所述方法还包括:将声波信号对应的声波能量的大小与所述提示信息声音的强弱建立对应关系。
- 根据权利要求1所述的方法,其特征在于,在所述接收端收集所述发送端发送的预设频率的声波信号之前,所述方法还包括:所述接收端与发送端之间建立配对关系。
- 根据权利要求13所述的方法,其特征在于,所述接收端与发送端之间建立配对关系,具体包括:所述接收端向与所述接收端和发送端连接的服务器发送与所述发送端配对的请求,由所述服务器将所述请求发送给所述发送端,待所述发送端接受所述请求后,则所述接收端与发送端完成所述配对关系的建立。
- 一种确定距离变化的方法,其特征在于,该方法包括:发送端向接收端发送预设频率的声波信号;接收所述接收端在采集到所述声波信号后回传的所述声波信号的信息;根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
- 根据权利要求15所述的方法,其特征在于,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化,包括:根据所述声波信号的信息,确定所述声波的变化;根据所述声波的变化,确定所述接收端与发送端之间的距离变化。
- 根据权利要求16所述的方法,其特征在于,所述根据所述声波信号的信息,确定所述声波的变化,包括:根据所述声波信息的能量,确定所述声波能量的变化;所述根据所述声波的变化,确定所述接收端与发送端之间的距离变化,包括:根据所述声波能量变化,确定所述发送端与接收端之间的距离变化。
- 根据权利要求17所述的方法,其特征在于,所述发送端接收所述接收端回传的所述声波信号的信息,包括:所述发送端接收所述接收端发送的所述声波信号对应的声波能量;或,待所述接收端将接收到的所述声波信号对应的声波能量发送给与所述接收端和发送端连接的服务器后,所述发送端接收所述服务器发送的所述声波信号对应的声波能 量。
- 根据权利要求15所述的方法,其特征在于,在确定所述接收端与发送端之间的距离变化之后,所述方法还包括:根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
- 一种位置提示方法,其特征在于,该方法包括:接收端采集发送端发送的预设频率的声波信号;根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
- 根据权利要求20所述的方法,其特征在于,所述根据采集到的声波信号,确定所述发送端与接收端之间的距离变化,包括:根据采集到的声波信号,确定所述声波的变化;根据所述声波的变化,确定所述发送端与接收端之间的距离变化。
- 根据权利要求21所述的方法,其特征在于,所述根据采集到的声波信号,确定所述声波的变化,包括:根据采集到的声波信号,确定所述声波能量变化;所述根据所述声波的变化,确定所述发送端与接收端之间的距离变化,包括:根据所述声波能量变化,确定所述发送端与接收端之间的距离变化。
- 一种确定距离变化的装置,其特征在于,该装置位于接收端中,包括:第一采集单元和第一确定单元,其中:所述第一采集单元,采集发送端发送的预设频率的声波信号;所述第一确定单元,根据采集到的声波信号,确定所述发送端与接收端之间的距离变化。
- 一种确定距离变化的装置,其特征在于,该装置位于发送端中,包括:发送单元、接收单元和第二确定单元,其中:所述发送单元,向所述接收端发送预设频率的声波信号;所述接收单元,接收所述接收端在采集到所述声波信号后回传的所述声波信号的信息;第二确定单元,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变 化。
- 一种位置提示装置,其特征在于,该装置位于接收端中,该装置包括:第二采集单元、第三确定单元和第三生成单元,其中:所述第二采集单元,采集发送端发送的预设频率的声波信号;所述第三确定单元,根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;所述第三生成单元,根据所述距离变化生成提示信息,所述提示信息用于提示所述接收端与发送端之间的距离变化。
- 一种确定距离变化的系统,其特征在于,该系统包括:服务器、接收端和发送端,其中:所述服务器,待所述接收端与所述发送端之间建立配对关系后,为所述接收端和发送端分配声波的频率段;在所述接收端采集到所述发送端发送的预设频率的声波信号后,接收所述接收端发送的该预设频率的声波信号的信息,所述预设频率在所述频率段之内;将所述声波信号的信息发送给所述发送端;所述接收端,采集所述发送端发送的预设频率的声波信号;根据采集到的声波信号,确定所述发送端与接收端之间的距离变化;所述发送端,向所述接收端发送预设频率的声波信号;待所述接收端将采集到的所述声波信号的信息发送给服务器后,接收所述服务器发送的所述声波信号的信息,根据所述声波信号的信息,确定所述接收端与发送端之间的距离变化。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201901312UA SG11201901312UA (en) | 2016-08-17 | 2017-08-04 | Method for determining change in distance, location prompting method and apparatus and system thereof |
MYPI2019000799A MY193940A (en) | 2016-08-17 | 2017-08-04 | Method for Determining Change In Distance, Location Prompting Method and Apparatus and System Thereof |
US16/274,450 US11047966B2 (en) | 2016-08-17 | 2019-02-13 | Method for determining change in distance, location prompting method and apparatus and system thereof |
PH12019500347A PH12019500347A1 (en) | 2016-08-17 | 2019-02-18 | Method for determining change in distance, location prompting method and apparatus and system thereof |
US17/344,476 US11366209B2 (en) | 2016-08-17 | 2021-06-10 | Method for determining change in distance, location prompting method and apparatus and system thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610682482.2 | 2016-08-17 | ||
CN201610682482.2A CN106896356B (zh) | 2016-08-17 | 2016-08-17 | 确定距离变化的方法、位置提示方法及其装置和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/274,450 Continuation US11047966B2 (en) | 2016-08-17 | 2019-02-13 | Method for determining change in distance, location prompting method and apparatus and system thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018032983A1 true WO2018032983A1 (zh) | 2018-02-22 |
Family
ID=59191611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/095920 WO2018032983A1 (zh) | 2016-08-17 | 2017-08-04 | 确定距离变化的方法、位置提示方法及其装置和系统 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11047966B2 (zh) |
CN (1) | CN106896356B (zh) |
MY (1) | MY193940A (zh) |
PH (1) | PH12019500347A1 (zh) |
SG (1) | SG11201901312UA (zh) |
TW (1) | TWI669523B (zh) |
WO (1) | WO2018032983A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106896356B (zh) * | 2016-08-17 | 2019-11-19 | 阿里巴巴集团控股有限公司 | 确定距离变化的方法、位置提示方法及其装置和系统 |
CN107526072B (zh) * | 2017-08-31 | 2021-09-21 | 努比亚技术有限公司 | 基于超声波的位移计算方法、装置及计算机可读存储介质 |
CN107402387A (zh) * | 2017-08-31 | 2017-11-28 | 努比亚技术有限公司 | 基于超声波的运动趋势确定方法、装置及可读存储介质 |
CN108040174B (zh) * | 2017-11-30 | 2021-07-23 | 努比亚技术有限公司 | 来电提示音音量调整方法、移动终端及存储介质 |
CN108366361A (zh) * | 2018-01-23 | 2018-08-03 | 阿里巴巴集团控股有限公司 | 通信方法及装置和电子设备 |
CN108845324B (zh) * | 2018-06-26 | 2022-09-23 | 北京小米移动软件有限公司 | 障碍物识别方法、装置、设备及存储介质 |
CN109286977B (zh) * | 2018-10-11 | 2020-11-06 | 西安电子科技大学 | 基于距离信息的无锚点定位方法 |
CN109901173A (zh) * | 2019-03-28 | 2019-06-18 | 如皋忠广电子技术有限公司 | 基于占空比调节的超声波测距方法、装置及电子设备 |
CN109901172A (zh) * | 2019-03-28 | 2019-06-18 | 如皋忠广电子技术有限公司 | 基于频率调节的超声波测距方法、装置及电子设备 |
CN110045379B (zh) * | 2019-04-11 | 2023-03-31 | 花瓣云科技有限公司 | 一种距离测量方法、相关设备及系统 |
CN111751786B (zh) * | 2020-07-01 | 2023-06-30 | 北京小米移动软件有限公司 | 声波测量方法、装置、设备及存储介质 |
CN112633091B (zh) * | 2020-12-09 | 2021-11-16 | 北京博瑞彤芸科技股份有限公司 | 一种验证真实会面的方法和系统 |
CN112816941B (zh) * | 2021-01-05 | 2024-09-17 | 南京中兴力维软件有限公司 | 声纹定位方法、装置、设备及存储介质 |
FR3127357B1 (fr) * | 2021-09-21 | 2024-08-09 | Orange | Procédé de localisation d’un appareil |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6298008B1 (en) * | 1998-10-21 | 2001-10-02 | Siemens Milltronics Process Instruments Inc. | Pulse-echo system for mediums having varying densities |
CN1651930A (zh) * | 2004-02-02 | 2005-08-10 | 李世雄 | 可自动检测归零的倒车雷达 |
CN101918753A (zh) * | 2007-11-12 | 2010-12-15 | 建兴电子科技股份有限公司 | 照明系统控制方法 |
CN105530016A (zh) * | 2014-09-30 | 2016-04-27 | 联想(北京)有限公司 | 信号处理方法及装置 |
CN105738972A (zh) * | 2016-04-15 | 2016-07-06 | 清华大学深圳研究生院 | 一种水下探测系统及水下探测方法 |
CN106896356A (zh) * | 2016-08-17 | 2017-06-27 | 阿里巴巴集团控股有限公司 | 确定距离变化的方法、位置提示方法及其装置和系统 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2415095A (en) * | 1938-01-17 | 1947-02-04 | Board | Radio measurement of distances and velocities |
US4333170A (en) * | 1977-11-21 | 1982-06-01 | Northrop Corporation | Acoustical detection and tracking system |
US5075863A (en) | 1988-02-09 | 1991-12-24 | Nkk Corporation | Distance measuring method and apparatus therefor |
US5343863A (en) | 1988-05-11 | 1994-09-06 | Lunar Corporation | Ultrasonic densitometer device and method |
US5627800A (en) * | 1994-01-28 | 1997-05-06 | Kotler; Seymour R. | Method and apparatus for determining position of a moving object in a tank |
US6266623B1 (en) * | 1994-11-21 | 2001-07-24 | Phatrat Technology, Inc. | Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height |
US5742379A (en) | 1995-11-29 | 1998-04-21 | Reifer; Michael H. | Device and method for electronically measuring distances |
US5959568A (en) | 1996-06-26 | 1999-09-28 | Par Goverment Systems Corporation | Measuring distance |
US5889490A (en) | 1996-08-05 | 1999-03-30 | Wachter; Eric A. | Method and apparatus for improved ranging |
GB2332052B (en) | 1997-12-04 | 2002-01-16 | Olivetti Res Ltd | Detection system for determining orientation information about objects |
WO1999028763A1 (en) * | 1997-12-04 | 1999-06-10 | Olivetti Research Limited | Detection system for determining positional information about objects |
JP4178627B2 (ja) * | 1998-11-16 | 2008-11-12 | ソニー株式会社 | 演算回路及び3相信号最大振幅検出方法 |
DE19957536C2 (de) | 1999-11-30 | 2003-04-03 | Siemens Ag | Diebstahlschutzsystem für ein Kraftfahrzeug und Verfahren zum Betreiben eines Diebstahlschutzsystems |
JP2002136522A (ja) * | 2000-11-02 | 2002-05-14 | Japan Science & Technology Corp | 超音波測定装置 |
EP1532462A4 (en) * | 2002-06-06 | 2005-12-21 | Roadeye Flr General Partnershi | FORWARD RADAR SYSTEM |
US6963301B2 (en) | 2002-08-19 | 2005-11-08 | G-Track Corporation | System and method for near-field electromagnetic ranging |
WO2005008271A2 (en) | 2002-11-26 | 2005-01-27 | Munro James F | An apparatus for high accuracy distance and velocity measurement and methods thereof |
US7822424B2 (en) | 2003-02-24 | 2010-10-26 | Invisitrack, Inc. | Method and system for rangefinding using RFID and virtual triangulation |
US7787886B2 (en) | 2003-02-24 | 2010-08-31 | Invisitrack, Inc. | System and method for locating a target using RFID |
GB0325622D0 (en) | 2003-11-03 | 2003-12-10 | Cambridge Consultants | System for determining positional information |
DE102004046589A1 (de) | 2004-08-05 | 2006-02-23 | Volkswagen Ag | Vorrichtung für ein Kraftfahrzeug |
WO2006051119A1 (de) | 2004-11-15 | 2006-05-18 | Nanotron Technologies Gmbh | Symmetrisches mehrwegverfahren zur bestimmung des abstandes zweier senderempfänger |
US20100226210A1 (en) * | 2005-12-13 | 2010-09-09 | Kordis Thomas F | Vigilante acoustic detection, location and response system |
US20080201490A1 (en) * | 2007-01-25 | 2008-08-21 | Schuyler Quackenbush | Frequency domain data mixing method and apparatus |
DE602007004185D1 (de) * | 2007-02-02 | 2010-02-25 | Harman Becker Automotive Sys | System und Verfahren zur Sprachsteuerung |
US8725883B2 (en) * | 2007-05-11 | 2014-05-13 | Nokia Corporation | Method for the establishing of peer-to-peer multimedia sessions in a communication system |
US8461978B2 (en) * | 2007-06-01 | 2013-06-11 | Koninklijke Philips Electronics N.V. | Wireless ultrasound probe asset tracking |
US7936271B2 (en) | 2007-11-26 | 2011-05-03 | Roundtrip Llc | Anti-tamper cargo container locator system |
US8693286B1 (en) * | 2009-10-16 | 2014-04-08 | Snap-On Incorporated | Position measurement for collision repair systems |
US8159385B2 (en) * | 2010-02-04 | 2012-04-17 | Sensis Corporation | Conductive line communication apparatus and conductive line radar system and method |
US20120158238A1 (en) * | 2010-07-14 | 2012-06-21 | Marcus Isaac Daley | Location based automobile inspection |
WO2012149869A1 (zh) | 2011-05-03 | 2012-11-08 | 国民技术股份有限公司 | 一种通信方法、通信装置及通信系统 |
CN202019454U (zh) * | 2011-05-04 | 2011-10-26 | 陈卓菲 | 一种手机定位系统 |
WO2012162890A1 (en) * | 2011-06-02 | 2012-12-06 | Renesas Mobile Corporation | An apparatus and a method for device-to-device communication route establishment in a mobile communication system |
EP2634594A1 (de) * | 2012-03-01 | 2013-09-04 | Leica Geosystems AG | Verfahren zum Bestimmen einer Entfernungsänderung mittels Interferometrie |
EP2637038B1 (de) | 2012-03-07 | 2017-01-18 | Vectronix AG | Entfernungsmesser |
US9291697B2 (en) * | 2012-04-13 | 2016-03-22 | Qualcomm Incorporated | Systems, methods, and apparatus for spatially directive filtering |
US20140156319A1 (en) * | 2012-12-05 | 2014-06-05 | Khaled Deeb | Wireless communication systems and processes for hospitality services |
DE112012007258T5 (de) * | 2012-12-26 | 2015-09-24 | Toyota Jidosha Kabushiki Kaisha | Schallerfassungsvorrichtung und Schallerfassungsverfahren |
CN104569956B (zh) * | 2013-10-12 | 2018-05-04 | 中兴通讯股份有限公司 | 一种测距方法及设备 |
JP6160447B2 (ja) * | 2013-10-31 | 2017-07-12 | ヤマハ株式会社 | 端末装置及びプログラム |
US20150373615A1 (en) * | 2014-06-18 | 2015-12-24 | Qualcomm Incorporated | Base station sharing air interface resources between access and backhaul |
US20160014805A1 (en) * | 2014-07-10 | 2016-01-14 | Qualcomm Incorporated | Methods and apparatus for ranging and timing offset for scheduling multi-user uplink frames |
JP2016050847A (ja) * | 2014-08-29 | 2016-04-11 | 株式会社東芝 | 推定システムおよび受信ノード |
US9820146B2 (en) * | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
CN105372646A (zh) * | 2015-11-18 | 2016-03-02 | 广东欧珀移动通信有限公司 | 一种定位方法、定位系统、信号检测装置及主控装置 |
US10972168B2 (en) * | 2016-02-03 | 2021-04-06 | Ntt Docomo, Inc. | User equipment and method for wireless communication |
CN105792355A (zh) * | 2016-04-22 | 2016-07-20 | 广东小天才科技有限公司 | 一种基于wifi热点的距离提醒方法及系统 |
US10334435B2 (en) * | 2016-04-27 | 2019-06-25 | Qualcomm Incorporated | Enhanced non-access stratum security |
WO2018160832A1 (en) * | 2017-03-03 | 2018-09-07 | Driving Management Systems, Inc. | Sonar data communication and localization |
-
2016
- 2016-08-17 CN CN201610682482.2A patent/CN106896356B/zh active Active
-
2017
- 2017-06-13 TW TW106119673A patent/TWI669523B/zh active
- 2017-08-04 WO PCT/CN2017/095920 patent/WO2018032983A1/zh active Application Filing
- 2017-08-04 SG SG11201901312UA patent/SG11201901312UA/en unknown
- 2017-08-04 MY MYPI2019000799A patent/MY193940A/en unknown
-
2019
- 2019-02-13 US US16/274,450 patent/US11047966B2/en active Active
- 2019-02-18 PH PH12019500347A patent/PH12019500347A1/en unknown
-
2021
- 2021-06-10 US US17/344,476 patent/US11366209B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6298008B1 (en) * | 1998-10-21 | 2001-10-02 | Siemens Milltronics Process Instruments Inc. | Pulse-echo system for mediums having varying densities |
CN1651930A (zh) * | 2004-02-02 | 2005-08-10 | 李世雄 | 可自动检测归零的倒车雷达 |
CN101918753A (zh) * | 2007-11-12 | 2010-12-15 | 建兴电子科技股份有限公司 | 照明系统控制方法 |
CN105530016A (zh) * | 2014-09-30 | 2016-04-27 | 联想(北京)有限公司 | 信号处理方法及装置 |
CN105738972A (zh) * | 2016-04-15 | 2016-07-06 | 清华大学深圳研究生院 | 一种水下探测系统及水下探测方法 |
CN106896356A (zh) * | 2016-08-17 | 2017-06-27 | 阿里巴巴集团控股有限公司 | 确定距离变化的方法、位置提示方法及其装置和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN106896356B (zh) | 2019-11-19 |
TW201807430A (zh) | 2018-03-01 |
US20210302556A1 (en) | 2021-09-30 |
CN106896356A (zh) | 2017-06-27 |
TWI669523B (zh) | 2019-08-21 |
US11047966B2 (en) | 2021-06-29 |
US11366209B2 (en) | 2022-06-21 |
SG11201901312UA (en) | 2019-03-28 |
MY193940A (en) | 2022-11-02 |
PH12019500347A1 (en) | 2020-01-20 |
US20190187264A1 (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018032983A1 (zh) | 确定距离变化的方法、位置提示方法及其装置和系统 | |
US12009870B2 (en) | Method and system for ultrasonic proximity service | |
US9907008B2 (en) | Cloud-coordinated location system using ultrasonic pulses and radio signals | |
Liu et al. | Accurate WiFi based localization for smartphones using peer assistance | |
JP6468840B2 (ja) | 音波ベースの位置特定 | |
Mandal et al. | Beep: 3D indoor positioning using audible sound | |
US7738884B2 (en) | Positioning service utilizing existing radio base stations | |
US8867313B1 (en) | Audio based localization | |
US20160291124A1 (en) | Determining a location of a transmitter device | |
WO2018000968A1 (zh) | 终端定位方法及装置,和终端 | |
WO2021257829A1 (en) | Crowdsourced contact tracing | |
KR20230107218A (ko) | 거리 측정 방법, 장치, 시스템, 스마트설비와 컴퓨터 판독 가능한 저장 매체 | |
JP2023517246A (ja) | 基地局支援によるサイドリンクビーム取得 | |
Emokpae et al. | Surface-reflection-based communication and localization in underwater sensor networks | |
Hii et al. | Improving location accuracy by combining WLAN positioning and sensor technology | |
Comuniello et al. | Ultrasound time of flight based positioning using the bluetooth low energy protocol | |
Fotouhi | Toward an Accurate Acoustic Localization System | |
Sandve | Indoor Positioning System Using BLE Beacons | |
Ferry et al. | A Context-Aware Mobility Indoor Positioning System | |
SE536714C2 (sv) | Metoder, noder och datorprogram för positionering av en anordning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17840958 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17840958 Country of ref document: EP Kind code of ref document: A1 |