WO2018032728A1 - 一种顶发射woled显示器 - Google Patents

一种顶发射woled显示器 Download PDF

Info

Publication number
WO2018032728A1
WO2018032728A1 PCT/CN2017/072028 CN2017072028W WO2018032728A1 WO 2018032728 A1 WO2018032728 A1 WO 2018032728A1 CN 2017072028 W CN2017072028 W CN 2017072028W WO 2018032728 A1 WO2018032728 A1 WO 2018032728A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
woled
emitting
optical modulation
light
Prior art date
Application number
PCT/CN2017/072028
Other languages
English (en)
French (fr)
Inventor
李先杰
彭其明
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/500,298 priority Critical patent/US10446798B2/en
Publication of WO2018032728A1 publication Critical patent/WO2018032728A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to a top-emitting WOLED display.
  • AMOLED displays More and more mobile phones are currently using AMOLED displays.
  • the mass-produced AMOLED display uses a precision metal mask (Fine Metal Mask, FMM for short) to prepare three sub-pixels with red, green and blue.
  • FMM Fe Metal Mask
  • FMM a precision metal mask
  • the market demand for screen resolution is getting higher and higher, and the accuracy of FMM is limited, this technical route is becoming more and more difficult.
  • the combination of a top-emitting white OLED and a color filter (CF) is more suitable for preparing a high-resolution AMOLED display.
  • OLED has the advantages of light weight, thin thickness, high brightness, fast reaction speed, large viewing angle, no need for backlight, low manufacturing cost, and flexibility.
  • White OLEDs are made up of a combination of a variety of fluorescent materials or phosphorescent materials that emit different colors to emit white light.
  • the problem is that the top-emitting white OLED has a strong microcavity effect, and it is difficult to simultaneously emit white light having three peaks of red, green and blue, so that the red, green and blue primary colors obtained by CF are inferior in purity.
  • the conventional method is to increase the anode thickness of the three sub-pixels of blue, green and red in order to adjust the cavity length requirements of different light colors, as shown in FIG.
  • the structural process is complicated.
  • the present application proposes a top emission WOLED display with a simple process.
  • the optical modulation layer 3 is added between the anode layer 51 and the reflective metal layer 2 of the RGB three sub-pixels of the display.
  • the thickness of the anode layer of the three sub-pixels of RGB is equal
  • the optical modulation layer 3 is a transparent material having a refractive index n > 1.7.
  • the optical modulation layer 3 has a thickness between 100 nm and 500 nm.
  • the optical modulation layer 3 is two or more layers that are superimposed on each other.
  • the film is provided with an oxide intercalation layer between two adjacent transparent films.
  • the transparent film is one of an ITO film, an IZO film, and an AZO film.
  • the display comprises a substrate with a TFT array 1, a reflective metal layer 2, an optical modulation layer 3, a WOLED layer 5, a package adhesive layer 6, a color filter 7, and a sealant frame 4. And cover glass 8;
  • the reflective metal layer 2 is formed on the substrate of the TFT array, the optical modulation layer 3 is formed on the reflective metal layer 2, the WOLED layer 5 is formed on the optical modulation layer 3, and the encapsulant layer 6 is formed on the WOLED layer 5, the cover glass 8 is located above the package rubber, the color filter 7 is attached to the inside of the cover glass 8, and the cover glass 8 and the substrate 1 with the TFT array are fixed by the sealant frame 4.
  • the material of the reflective metal layer 2 is aluminum, an aluminum alloy, a silver or a silver alloy, and the thickness of the reflective metal layer 2 is between 80 nm and 300 nm.
  • the substrate 1 with the TFT array is a glass substrate, a plastic substrate or a metal substrate.
  • the WOLED layer 5 comprises an anode layer 51, a light emitting unit and a translucent cathode layer;
  • a translucent cathode layer is formed on the luminescent layer, on the anode layer 51 of the illuminating unit.
  • the translucent cathode layer is made of a low work function metal material, and a single low work function metal material or a combination of plural kinds may be used, and the film thickness of the translucent cathode layer is between 10 nm and 30 nm. .
  • the illustrated light-emitting unit includes a functional layer, a light-emitting layer and a connection layer, and the number of the functional layer and the light-emitting layer is increased or decreased by the connection layer according to functional requirements and combined.
  • the light-emitting layer is a light-emitting layer of various colors, and the number of light-emitting layers of various colors is increased or decreased according to functional requirements and arranged in combination.
  • the functional layer is a combination of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, and the number of layers can be increased or decreased according to functions.
  • the anode layer 51 is an ITO film and/or an IZO film, and the anode layer 51 has a thickness of between 10 nm and 100 nm.
  • the white light OLED display of the present embodiment can increase the WOLED layer to the reflective metal by the arrangement of the optical modulation layer because an optical modulation layer of uniform thickness is disposed between the reflective metal layer and the anode layer of the WOLED layer.
  • the distance between the layers is such that the energy coupling of the light emitted by the WOLED layer is coupled into the surface plasmon state, thereby increasing the light efficiency and increasing the optical equivalent thickness. Because the optical modulation layer is provided, the total cavity length of the white OLED is increased, and the micro-cavity effect of the top emission WOLED is overcome, so that the blue, green and red sub-pixels are not required to be yang.
  • the thickness of the poles is increased sequentially, and it is only necessary to set the anode layers of R, G, and B to be equal in thickness, or an equal thickness of the anode layer, to realize white light having three peaks of red, green and blue.
  • This process is simple.
  • the invention is very suitable for preparing high resolution, wide color gamut AMOLED displays.
  • FIG. 1 is a schematic diagram of a conventional top-emitting WOLED display.
  • FIG. 2 is a schematic diagram of the principle of a top-emitting WOLED display with an optical modulation layer of the present invention.
  • FIG. 3 is a schematic diagram showing the principle of an optical modulation layer in the present invention.
  • FIG. 4 is a schematic diagram showing the principle of a WOLED layer of two light emitting units in the present invention.
  • FIG. 5 is a schematic diagram of the principle of a WOLED layer of three light emitting units in the present invention.
  • FIG. 6 is a schematic diagram of a white light curve of three peaks of red, green and blue emitted by the top-emitting WOLED display shown in FIG. 2.
  • FIG. 6 is a schematic diagram of a white light curve of three peaks of red, green and blue emitted by the top-emitting WOLED display shown in FIG. 2.
  • the present invention is based on the following findings:
  • a conventional top-emitting WOLED display includes a substrate with a TFT array, a reflective metal layer, a WOLED layer, a package adhesive layer, a color filter, a sealant frame, and a cover glass;
  • the reflective metal layer is formed on the substrate of the TFT array, the WOLED layer is formed on the reflective metal layer, the package adhesive layer is formed on the WOLED layer, the cover glass is located above the package adhesive, and the color filter is attached to the inside of the cover glass. , the cover glass and the substrate with the TFT array are fixed by a sealant frame;
  • the anode of the WOLED layer includes an R anode layer, a G anode layer, and B.
  • the thicknesses of the R anode layer, the G anode layer, and the B anode layer are sequentially increased to adjust different light color to the cavity. Long requirements increase the difficulty of the production process.
  • the present invention aims to provide a top emission WOLED display with a simple process.
  • a top-emitting WOLED display in which an optical modulation layer 3 of uniform thickness is added between an anode layer 51 and a reflective metal layer 2 of RGB three sub-pixels of the display, and an anode layer 51 of three sub-pixels of RGB is equal in thickness.
  • the white light OLED display has a uniform thickness of the optical modulation layer disposed between the reflective metal layer and the anode layer of the WOLED layer, and the distance of the WOLED layer to the reflective metal layer can be increased by the arrangement of the optical modulation layer to reduce The energy of the light emitted by the WOLED layer is coupled into the surface plasmonic state, thereby increasing the light efficiency and increasing the optical equivalent thickness. Because the optical modulation layer is provided, the total cavity length of the white OLED is increased, and the micro-cavity effect of the top emission WOLED is overcome, so that the anode thickness of the three sub-pixels of blue, green and red is not required to be sequentially increased, and only R, G, and B are needed.
  • the anode layer is respectively provided with a layer of equal thickness or an equal thickness of the anode layer, and white light having three peaks of red, green and blue can be realized.
  • This process is simple.
  • the invention is very suitable for preparing high resolution, wide color gamut AMOLED displays.
  • the top-emitting WOLED display has an optical modulation layer 3 added to the existing top-emitting WOLED display, and specifically includes: a substrate with a TFT array, a reflective metal layer 2, and an optical modulation layer 3.
  • the reflective metal layer 2 is formed on the substrate of the TFT array, the optical modulation layer 3 is formed on the reflective metal layer 2, the WOLED layer 5 is formed on the optical modulation layer 3, and the encapsulant layer 6 is formed on the WOLED layer 5, the cover glass 8 is located above the package rubber, the color filter 7 is attached to the inside of the cover glass 8, and the cover glass 8 and the substrate 1 with the TFT array are fixed by the sealant frame 4;
  • the white light OLED display of the present embodiment can increase the WOLED layer 5 to the reflective metal layer by the arrangement of the optical modulation layer 3 because the optical modulation layer 3 of uniform thickness is disposed between the reflective metal layer 2 and the anode layer 51 of the WOLED layer 5.
  • the distance of 2 is to reduce the energy coupling of the light emitted by the WOLED layer 5 into the surface plasmon state, thereby improving the light efficiency and increasing the optical equivalent thickness.
  • the sealant frame 4 can prevent the outside water vapor and oxygen from entering and protect the internal components.
  • the encapsulant layer 6 and the cover glass 8 serve to block the erosion of the WOLED layer by water and oxygen.
  • the optical modulation layer 3 is a transparent material having a refractive index n > 1.7.
  • the optical modulation layer 3 has a thickness of 100 to 500 nm.
  • the organic equivalent thickness of an organic light-emitting component is between about 100 nm and 300 nm, which is about the same wavelength distance as destructive interference or constructive interference.
  • the wavelength difference between the three primary colors of red, green and blue is also 100 nm. Therefore, the resonant cavity of the well-known organic light emitting diode is easy to produce a certain primary color and weaken a certain primary color. The problem. Furthermore, even if an organic light-emitting diode capable of constructive interference conforming to the three primary colors of white light is designed, at a large viewing angle, a blue shift of the resonant wavelength occurs, and the color shifts.
  • the optical modulation layer 3 uses a transparent material having a high refractive index n>1.7, which can increase the total cavity length of the white OLED, so that the optical equivalent thickness is greatly thickened, and is between 100-500 nm;
  • the wavelength distance between destructive interference or constructive interference can be much smaller than the wavelength difference between the three primary colors of red, green and blue, which can densely and uniformly enhance the peak value of the overall light output, improve the color shift phenomenon on the side, and relax the optical design.
  • the thickness of the optical modulation layer 3 of the present embodiment is 285 nm, the effect is optimal.
  • the optical modulation layer 3 is a two-layer or two-layer transparent film superposed on each other.
  • the transparent film may be an ITO film, or an IZO film, or an AZO film.
  • an oxide insertion layer insertion layer may be added between the adjacent two transparent films, and the insertion layer is effective to suppress the crystal state with the increase of the thickness of the transparent film, thereby reducing the sheet resistance and not affecting the optical modulation.
  • the ITO film (Indium Tin Oxide, tin-doped indium oxide), as a nano-indium tin metal oxide, has good electrical conductivity and transparency, and can cut off electron radiation, ultraviolet rays, and far infrared rays harmful to the human body.
  • the ITO film has a semiconductor conductive property.
  • ITO is a wide band film material with a band gap of 3.5-4.3 ev.
  • the excitation threshold of the forbidden band in the ultraviolet region is 3.75 ev, which is equivalent to the wavelength of 330 nm, so the light transmittance of the ITO film in the ultraviolet region is extremely low.
  • the near-infrared region is reflected by the plasma vibration phenomenon of the carrier, so the light transmittance of the ITO film in the near-infrared region is also very low, but the transmittance of the ITO film in the visible light region is very good, due to the specificity of the material itself. Physicochemical properties, ITO film has good conductivity and high light transmittance in the visible region.
  • IZO film Indium Zinc Oxide, indium zinc oxide
  • adjustable composition multiple physical and chemical properties, suitable for low temperature preparation, good plasticity, high mobility; high work function: can reduce hole potential barrier, improve empty Hole injection efficiency.
  • AZO film (aluminum-doped zinc oxide), doped with Al in ZnO system to obtain ZnO, that is, AZO film, the conductivity of the film is greatly improved after doping, the resistivity is low, and the transparent conductive film AZO film is in hydrogen plasma.
  • the stability is better than ITO, and it has the photoelectric properties comparable to that of ITO, and the AZO film is easy to prepare, the element resources are richer than the In element, and it is non-toxic.
  • the optical modulation layer 3 is prepared by depositing a first ITO film on the metal layer 2 by magnetron sputtering, and depositing an IZO film on the first ITO film 3-1 as the interposer 3-2, and then A second ITO film 3-3 is deposited on the interposer 3-2.
  • the material of the reflective metal layer 2 is aluminum, an aluminum alloy, silver or a silver alloy, and the thickness of the reflective metal layer 2 is between 80 nm and 300 nm.
  • the thickness is 100 nm, and the effect is optimal.
  • the substrate 1 with the TFT array is a glass substrate, a plastic substrate or a metal substrate.
  • the WOLED layer 5 comprises an anode layer 51, a light emitting unit 52 and a translucent cathode layer 53;
  • a translucent cathode layer is formed on the light emitting unit, and a light emitting unit is formed on the anode layer 51.
  • the translucent cathode is a low work function metal material, and a single low work function metal material or a combination of a plurality of layers having a film thickness of between 10 nm and 30 nm may be employed.
  • the semi-transparent cathode layer may be a commonly used low work function metal material such as Li, Mg, Ca, Sr, La, Ce, Eu, Yb, Al, Cs, Rb or an alloy of these metals.
  • the materials may be used singly or in combination of two or more.
  • the translucent cathode layer of the present embodiment is formed into a film by a vacuum evaporation method.
  • the anode layer 51 of the present embodiment uses ITO and/or IZO, and/or an alloy of a high work function metal or a high work function metal, all of which are transparent materials such as Au, Pt, Ag, and also include a semi-transparent cathode, thereby reducing The disadvantage of color deviation from different perspectives.
  • the light-emitting unit 52 includes a functional layer, a connection layer 54 and a light-emitting layer 523; the number of functional layers and light-emitting layers is increased or decreased by the connection layer 54 and combined in accordance with functional requirements.
  • the light-emitting layer 523 is a light-emitting layer of various colors, and the number of light-emitting layers of various colors can be increased or decreased according to functional requirements and arranged in any combination.
  • the light-emitting layer 523 may also be a fluorescent material having a lower luminous efficiency due to the arrangement of the optical modulation layer 3.
  • the thickness of the light-emitting layer ranges from 0.01 nm to 10 nm.
  • the functional layer is a combination of a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, and the number of layers can be increased or decreased depending on the function.
  • the anode layer 51 is an ITO film and/or an IZO film, and the anode layer 51 has a thickness of between 10 nm and 100 nm.
  • the anode layer 51 of the present embodiment is an ITO thin film and has a thickness of 15 nm, the effect is optimal.
  • Embodiment 1 of WOLED layer 5 Embodiment 1 of WOLED layer 5:
  • the WOLED layer 5 of the present embodiment includes an anode layer 51, two light emitting units 52, a connecting layer 54 and a cathode layer 53;
  • the light emitting unit 52 includes a hole injection layer 525, a hole transport layer 524 formed on the hole injection layer 525, a light emitting layer 523 formed on the hole transport layer 524, and an electron transport layer 522 formed on the light emitting layer 523, An electron injection layer 521 formed on the electron transport layer 522;
  • the light-emitting layer 523 is between the electron transport layer 522 and the hole transport layer 524 instead of the conventional host-doped guest dye;
  • the cathode layer 53 is formed on the electron injection layer 521 of the first light emitting unit, and the first light emitting unit and the second light emitting unit are connected by a connection layer, and the hole injection layer 525 of the second light emitting unit is formed on the anode layer, as shown in the figure. 4 is shown.
  • the material of the light emitting layer of the first light emitting unit is a phosphorescent material that emits yellow light
  • the material of the light emitting layer of the second light emitting unit is a phosphorescent material that emits blue light
  • the optical modulation layer 3 of the present embodiment has a thickness of between 100 and 500 nm, and preferably 285 nm, and a refractive index of about 1.8; whereby the optical modulation layer is disposed to increase the light-emitting layer and the reflective metal of the first light-emitting unit.
  • the resonant cavity distance between the layers thereby reducing the energy coupling of the light emitted by the light-emitting layer of the first light-emitting unit, and improving the light-emitting efficiency.
  • Embodiment 2 of WOLED layer 5 Embodiment 2 of WOLED layer 5:
  • the WOLED layer 5 of the present embodiment includes an anode layer 51, three light emitting units 52, two connecting layers 54 and a cathode layer 53.
  • the structure of the light emitting unit is the same as that of the first embodiment, and the first light emitting unit and the second light emitting unit pass through
  • the connection layer is connected, and the second illumination unit and the third illumination unit are connected by another connection layer, as shown in FIG. 5.
  • the material of the light emitting layer of the first light emitting unit is a fluorescent material that emits red light
  • the material of the light emitting layer of the second light emitting unit is a fluorescent material that emits green light
  • the light emitting layer of the third light emitting unit The material is a fluorescent material capable of emitting blue light; after the red light of the first light-emitting layer unit, the green light of the second light-emitting unit, and the blue light of the third light-emitting unit are mixed, white light can be emitted.
  • the optical modulation layer 3 of the present embodiment has a thickness of between 100 and 500 nm, and preferably 285 nm, and a refractive index of about 1.8; whereby the optical modulation layer is disposed to increase the light-emitting layer and the reflective metal of the first light-emitting unit.
  • the resonant cavity distance between the layers thereby reducing the energy coupling of the light emitted by the light-emitting layer of the first light-emitting unit, and improving the light-emitting efficiency.
  • the material of the electron transport layer 522 in the present embodiment is Alq3, BPhen, BAlq, BCP, TmPyPB or TPBi.
  • the material of the hole transport layer 524 is mCP, TAPC, TCTA, NPB or MADN.
  • the top-emitting WOLED having the optical modulation layer can effectively emit white light of three peaks of red, green and blue.
  • the color filter CF can be passed to produce red, green and blue primary colors of high color purity.

Abstract

提供一种顶发射WOLED显示器。显示器的RGB三个子像素的阳极层(51)和反射金属层(2)之间加入均匀厚度的光学调制层(3)。通过光学调制层(3)的设置,可增加WOLED层(5)至反射金属层(2)的距离,增加了白光OLED的总腔长,克服顶发射WOLED微腔效应,适合制备高分辨率、广色域的AMOLED显示器。

Description

一种顶发射WOLED显示器
本申请要求享有2016年8月18日提交的名称为“一种顶发射WOLED显示器”的中国专利申请CN201610685005.1的优先权,其全部内容通过引用并入本文中。
技术领域
本发明属于显示技术领域,具体涉及一种顶发射WOLED显示器。
背景技术
目前越来越多的手机采用AMOLED显示屏。目前量产的AMOLED显示屏使用了精密金属掩膜板(Fine Metal Mask,简称FMM)制备具有红绿蓝三个子像素。但是随着市场对屏幕分辨率要求越来越高,受到FMM精度限制,这种技术路线也显得越来越力不从心。顶发射白光OLED和彩色滤光片(color filter,简称CF)结合,更适合制备高分辨率AMOLED显示器。
OLED具有:重量轻、厚度薄、亮度高、反应速度快、视角大、不需要背光源、制造成本低、及可弯曲等优势。白光OLED是由合并使用多种可发出不同颜色的荧光材料或磷光材料,以使其发出白光。但是问题在于顶发射白光OLED有较强的微腔效应,难以同时出射具有红绿蓝三个峰的白光,以至于通过CF后得到的红绿蓝三原色色纯度较差。为克服顶发射白光OLED(WOLED)微腔效应,传统的做法是将蓝绿红三个子像素中阳极厚度依次增加,来调节不同光色对腔长的要求,如图1所示,但这种结构工艺复杂。
发明内容
针对上述现有技术中的问题,本申请提出了一种工艺简单的顶发射WOLED显示器。
本发明的一种顶发射WOLED显示器,所述显示器的RGB三个子像素的阳极层51和反射金属层2之间加入光学调制层3。
根据本发明的优选实施方式,所述RGB三个子像素的阳极层等厚度
根据本发明的优选实施方式,所述光学调制层3为折射率n>1.7的透明材料。
根据本发明的优选实施方式,所述光学调制层3的厚度在100nm-500nm之间。
根据本发明的优选实施方式,所述光学调制层3为相互叠加的两层或两层以上的透明 薄膜,相邻的两层透明薄膜之间设有一层氧化物插入层。
根据本发明的优选实施方式,所述透明薄膜为ITO薄膜、IZO薄膜和AZO薄膜中的一种。
根据本发明的优选实施方式,所述显示器包括带有TFT阵列的基板1、反射金属层2、光学调制层3、WOLED层5、封装胶材层6、彩色滤光片7、密封胶框4和盖板玻璃8;
反射金属层2形成于TFT阵列的基板上,光学调制层3形成于反射金属层2上,WOLED层5形成于光学调制层3上,封装胶材层6形成于WOLED层5上,盖板玻璃8位于封装胶材上方,彩色滤光片7贴合在盖板玻璃8内侧,盖板玻璃8与带有TFT阵列的基板1之间通过密封胶框4固定。
根据本发明的优选实施方式,所述反射金属层2的材料为铝、铝合金、银或银合金,反射金属层2的厚度在80nm到300nm之间。
根据本发明的优选实施方式,带有TFT阵列的基板1为玻璃基板、塑料基板或金属基板。
根据本发明的优选实施方式,所述WOLED层5包括阳极层51、发光单元和半透明阴极层;
根据本发明的优选实施方式,半透明阴极层形成于发光层上,发光单元阳极层51上。
根据本发明的优选实施方式,所述半透明阴极层采用低功函金属材料,可以采用单一低功函金属材料或多种的组合,所述半透明阴极层的膜厚在10nm到30nm之间。
根据本发明的优选实施方式,所示发光单元包括功能层、发光层和连接层,依照功能需要,通过连接层,增减功能层和发光层数量及进行组合排列。
根据本发明的优选实施方式,所述发光层为各种颜色发光层,依照功能需要,增减各种颜色发光层数量及进行组合排列。
根据本发明的优选实施方式,所述功能层为空穴注入层、空穴传输层、电子注入层和电子传输层组合排列,依照功能可以增减膜层数量。
根据本发明的优选实施方式,所述阳极层51为ITO薄膜和/或IZO薄膜,阳极层51厚度在10nm到100nm之间。
本发明的有益效果在于,本实施方式的白光OLED显示器因为在反射金属层和WOLED层的阳极层之间设置了均匀厚度的光学调制层,通过光学调制层的设置,可增加WOLED层至反射金属层的距离,以降低WOLED层所发出的光的能量耦合进入表面等离子体态,进而提升出光效率,增加光学等效厚度。因为设置了光学调制层,增加了白光OLED的总腔长,克服顶发射WOLED微腔效应,这样就不需要将蓝绿红三个子像素中阳 极厚度依次增加,只需将R、G、B的阳极层分别设置层等厚的,或者一个等厚的阳极层,可以实现具有红绿蓝三个峰的白光。这样工艺就简单了。本发明非常适合制备高分辨率,广色域的AMOLED显示器。
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能够达到本发明的目的。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1为现有顶发射WOLED显示器的原理示意图。
图2为本发明带有光学调制层的顶发射WOLED显示器的原理示意图。
图3为本发明中光学调制层的原理示意图。
图4为本发明中两个发光单元的WOLED层原理示意图。
图5为本发明中三个发光单元的WOLED层原理示意图。
图6为图2所示的顶发射WOLED显示器出射红绿蓝三个峰的白光曲线示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
本发明基于如下发现:
如图1所示,现有的顶发射WOLED显示器,包括带有TFT阵列的基板、反射金属层、WOLED层、封装胶材层、彩色滤光片、密封胶框和盖板玻璃;
反射金属层形成于TFT阵列的基板上,WOLED层形成于反射金属层上,封装胶材层形成于WOLED层上,盖板玻璃位于封装胶材上方,彩色滤光片贴合在盖板玻璃内侧,盖板玻璃与带有TFT阵列的基板之间通过密封胶框固定;
WOLED层的阳极包括R阳极层、G阳极层和B为克服顶发射白光OLED(WOLED)微腔效应,将R阳极层、G阳极层和B阳极层厚度依次增加,来调节不同光色对腔长的要求,增加了制作工艺的难度。
基于上述问题,本发明旨在提供一种工艺简单的顶发射WOLED显示器。
一种顶发射WOLED显示器,所述显示器的RGB三个子像素的阳极层51和反射金属层2之间加入均匀厚度的光学调制层3,且RGB三个子像素的阳极层51等厚度。
在本实例中,白光OLED显示器因为在反射金属层和WOLED层的阳极层之间设置了均匀厚度的光学调制层,通过光学调制层的设置,可增加WOLED层至反射金属层的距离,以降低WOLED层所发出的光的能量耦合进入表面等离子体态,进而提升出光效率,增加光学等效厚度。因为设置了光学调制层,增加了白光OLED的总腔长,克服顶发射WOLED微腔效应,这样就不需要将蓝绿红三个子像素中阳极厚度依次增加,只需将R、G、B的阳极层分别设置层等厚的,或者一个等厚的阳极层,可以实现具有红绿蓝三个峰的白光。这样工艺就简单了。本发明非常适合制备高分辨率,广色域的AMOLED显示器。在优选的实施例中,顶发射WOLED显示器,在现有的顶发射WOLED显示器基础上增加了光学调制层3,具体包括:带有TFT阵列的基板1、反射金属层2、光学调制层3、WOLED层5、封装胶材层6、彩色滤光片7、密封胶框4和盖板玻璃8;
反射金属层2形成于TFT阵列的基板上,光学调制层3形成于反射金属层2上,WOLED层5形成于光学调制层3上,封装胶材层6形成于WOLED层5上,盖板玻璃8位于封装胶材上方,彩色滤光片7贴合在盖板玻璃8内侧,盖板玻璃8与带有TFT阵列的基板1之间通过密封胶框4固定;
本实施方式的白光OLED显示器因为在反射金属层2和WOLED层5的阳极层51之间设置了均匀厚度的光学调制层3,通过光学调制层3的设置,可增加WOLED层5至反射金属层2的距离,以降低WOLED层5所发出的光的能量耦合进入表面等离子体态,进而提升出光效率,增加光学等效厚度。
采用密封胶框4能够防止外界的水汽、氧气进入,保护内部元件。
封装胶材层6和盖板玻璃8用于阻隔水和氧对WOLED层的侵蚀。
在优选的实施例中,所述光学调制层3为折射率n>1.7的透明材料。
进一步地,所述光学调制层3的厚度为100-500nm。
公知有机发光组件的光学等效厚度约在100nm至300nm之间,其与破坏性干涉或建设性干涉的波长距离约略相同。此外,目前已知红绿蓝三原色彼此之间的波长差值亦在100nm,故公知结构的有机发光二极管的共振腔,容易产生加强某一原色而削弱某一原色 的问题。再者,即便设计出能使建设性干涉恰符合白光三原色的有机发光二极管,在大视角时,仍会发生共振波长有蓝位移现象,而使颜色偏移。
因此,在本实施方式中光学调制层3采用高折射率n>1.7的透明材料,可增加白光OLED的总腔长,使得光学等效厚度大幅增厚,约在100-500nm之间;据此,破坏性干涉或建设性干涉的波长距离可远小于红绿蓝三原色彼此之间的波长差值,进而可密集且均匀的加强整体出光的峰值,改善侧看色偏现象,亦可放宽光学设计及制程适用范围条件。在本实施方式的光学调制层3的厚度为285nm时,效果最优。
在优选的实施例中,所述光学调制层3为相互叠加的两层或两层以上的透明薄膜。
在优选的实施例中,所述透明薄膜可采用ITO薄膜,或IZO薄膜,或AZO薄膜。
进一步,相邻的两层透明薄膜之间还可增加一层氧化物插入层插入层,采用插入层有效的抑制了随着透明薄膜厚度的增加而呈结晶态,降低方块电阻,不影响光学调制层3的透过率。
在本实施例中,ITO薄膜(IndiumTinOxide,掺锡氧化铟),作为纳米铟锡金属氧化物,具有很好的导电性和透明性,可以切断对人体有害的电子辐射、紫外线及远红外线。ITO薄膜具有半导体的导电性能。ITO是一种宽能带薄膜材料,其带隙为3.5-4.3ev。紫外光区产生禁带的励起吸收阈值为3.75ev,相当于330nm的波长,因此紫外光区ITO薄膜的光穿透率极低。同时近红外区由于载流子的等离子体振动现象而产生反射,所以近红外区ITO薄膜的光透过率也是很低的,但可见光区ITO薄膜的透过率非常好,由于材料本身特定的物理化学性能,ITO薄膜具有良好的导电性和可见光区较高的光透过率。
IZO薄膜(Indium Zinc Oxide,铟锌氧化物),具有组分可调,多重物理化学特性,适用于低温制备,塑性好,高迁移率;功函数高:能够减小空穴势垒,提高空穴注入效率。
AZO薄膜(铝掺杂的氧化锌),在ZnO体系中掺杂Al得到ZnO,即AZO薄膜,掺杂后薄膜导电性能大幅度提高,电阻率低,而且透明导电薄膜AZO薄膜在氢等离子体中稳定性要优于ITO,同时具有可同ITO相比拟的光电特性,而且AZO薄膜的制备方便,元素资源比In元素丰富,且无毒。
光学调制层3的制备方法如下:采用磁控溅射反射金属层2上上沉积第一层ITO薄膜,再在第一层ITO薄膜3-1上沉积IZO薄膜作为插入层3-2,然后在插入层3-2上沉积第二层ITO薄膜3-3。
在优选的实施例中,反射金属层2的材料为铝、铝合金、银或银合金,反射金属层2的厚度在为80nm到300nm之间。
在本实施方式中,反射金属层2的材料为银时,厚度为100nm,效果最优。
在优选的实施例中,带有TFT阵列的基板1为玻璃基板、塑料基板或金属基板。
在优选的实施例中,WOLED层5包括阳极层51、发光单元52和半透明阴极层53;
半透明阴极层形成于发光单元上,发光单元形成于阳极层51上。
在优选的实施例中,所述半透明阴极采用低功函金属材料,可以采用单一低功函金属材料或多种的组合,所述半透明阴极的膜厚在10nm到30nm之间。
在本实施例中,半透明阴极层可采用常用低功函金属材料,例如:Li,Mg,Ca,Sr,La,Ce,Eu,Yb,Al,Cs,Rb或者这些金属的合金,这些阴极材料可以单独使用,也可两大或者更多组合使用。
本实施方式的半透明阴极层采用真空蒸镀方法成膜。
本实施方式的阳极层51采用ITO和/或IZO,和/或高功函数金属或高功函数金属的合金,均为透明材料,如Au、Pt、Ag,还包括一半透明阴极,因此可减少不同视角下有颜色偏离的缺点。
在优选的实施例中,发光单元52包括功能层、连接层54和发光层523;依照功能需要,通过连接层54,增减功能层和发光层数量及进行组合排列。
进一步地,发光层523为各种颜色发光层,依照功能需要可以增减各种颜色发光层数量及任意组合排列。
在本实施例中,发光层523除了可选用高发光效率的磷光材料外,因光学调制层3的设置,还可以选用发光效率较低的荧光材料。发光层的厚度范围为0.01nm到10nm。
在优选的实施例中,功能层为空穴注入层、空穴传输层、电子注入层和电子传输层组合排列,依照功能可以增减膜层数量。
在优选的实施例中,所述阳极层51为ITO薄膜和/或IZO薄膜,阳极层51厚度在10nm到100nm之间。在本实施方式的阳极层51为ITO薄膜,厚度为15nm时,效果最优。
WOLED层5的实施例1:
本实施方式的WOLED层5包括阳极层51、两个发光单元52、一个连接层54和阴极层53;
发光单元52包括空穴注入层525、形成于空穴注入层525上的空穴传输层524、形成于空穴传输层524上的发光层523、形成于发光层523上的电子传输层522、形成于电子传输层522上的电子注入层521;
发光层523处于电子传输层522与空穴传输层524之间,代替了传统的主体掺杂客体染料;
阴极层53形成于第一发光单元的电子注入层521上,第一发光单元与第二发光单元之间通过连接层连接,第二发光单元的空穴注入层525形成与阳极层上,如图4所示。
本实施例中,第一发光单元的发光层的材料为可发出黄光的磷光材料,而第二发光单元的发光层的材料为可发出蓝光的磷光材料;由第一发光单元的黄光与第二发光单元的蓝光混光后,则可发出白光。
本实施例的光学调制层3的厚度在100-500nm之间,且较佳为285nm,且折射率约为1.8;由此光学调制层的设置,可增加第一发光单元的发光层与反射金属层之间的共振腔距离,由此可使第一发光单元的发光层所发出的光的能量耦合降低,而提升出光效率。
WOLED层5的实施例2:
本实施例WOLED层5包括阳极层51、三个发光单元52、两个连接层54和阴极层53,发光单元的结构与实施例1相同,第一发光单元与第二发光单元之间通过一连接层连接,第二发光单元与第三发光单元之间通过另一个连接层连接,如图5所示。
本实施例中,第一发光单元的发光层的材料为可发出红光的荧光材料,第二发光单元的发光层的材料为可发出绿光的荧光材料,且第三发光单元的发光层的材料为可发出蓝光的荧光材料;由第一发光层单元的红光、与第二发光单元的绿光及第三发光单元的蓝光混光后,则可发出白光。
本实施例的光学调制层3的厚度在100-500nm之间,且较佳为285nm,且折射率约为1.8;由此光学调制层的设置,可增加第一发光单元的发光层与反射金属层之间的共振腔距离,由此可使第一发光单元的发光层所发出的光的能量耦合降低,而提升出光效率。
本实施方式中的电子传输层522的材料为Alq3、BPhen、BAlq、BCP、TmPyPB或TPBi。
空穴传输层524的材料为mCP、TAPC、TCTA、NPB或MADN。
从图6可以看出,具有光学调制层的顶发射WOLED可以有效出射红绿蓝三个峰的白光。可以通过彩色滤光片CF后产生高色纯度的红绿蓝三原色。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (15)

  1. 一种顶发射WOLED显示器,其中所述显示器的RGB三个子像素的阳极层和反射金属层之间加入光学调制层。
  2. 根据权利要求1所述的一种顶发射WOLED显示器,其中所述RGB三个子像素的阳极层等厚度。
  3. 根据权利要求1所述的一种顶发射WOLED显示器,其中所述光学调制层为折射率n>1.7的透明材料。
  4. 根据权利要求2所述的一种顶发射WOLED显示器,其中所述光学调制层为折射率n>1.7的透明材料。
  5. 根据权利要求1所述的一种顶发射WOLED显示器,其中所述光学调制层的厚度在100nm-500nm之间。
  6. 根据权利要求2所述的一种顶发射WOLED显示器,其中所述光学调制层的厚度在100nm-500nm之间。
  7. 根据权利要求3所述的一种顶发射WOLED显示器,其中所述光学调制层的厚度在100nm-500nm之间。
  8. 根据权利要求1所述的一种顶发射WOLED显示器,其中所述显示器包括带有TFT阵列的基板、反射金属层、光学调制层、WOLED层、封装胶材层、彩色滤光片、密封胶框和盖板玻璃;
    反射金属层形成于TFT阵列的基板上,光学调制层形成于反射金属层上,WOLED层形成于光学调制层上,封装胶材层形成于WOLED层上,盖板玻璃位于封装胶材上方,彩色滤光片贴合在盖板玻璃内侧,盖板玻璃与带有TFT阵列的基板之间通过密封胶框固定。
  9. 根据权利要求2所述的一种顶发射WOLED显示器,其中所述显示器包括带有TFT阵列的基板、反射金属层、光学调制层、WOLED层、封装胶材层、彩色滤光片、密封胶框和盖板玻璃;
    反射金属层形成于TFT阵列的基板上,光学调制层形成于反射金属层上,WOLED层形成于光学调制层上,封装胶材层形成于WOLED层上,盖板玻璃位于封装胶材上方,彩色滤光片贴合在盖板玻璃内侧,盖板玻璃与带有TFT阵列的基板之间通过密封胶框固定。
  10. 根据权利要求3所述的一种顶发射WOLED显示器,其中所述显示器包括带有TFT阵列的基板、反射金属层、光学调制层、WOLED层、封装胶材层、彩色滤光片、密 封胶框和盖板玻璃;
    反射金属层形成于TFT阵列的基板上,光学调制层形成于反射金属层上,WOLED层形成于光学调制层上,封装胶材层形成于WOLED层上,盖板玻璃位于封装胶材上方,彩色滤光片贴合在盖板玻璃内侧,盖板玻璃与带有TFT阵列的基板之间通过密封胶框固定。
  11. 根据权利要求8所述的一种顶发射WOLED显示器,其中所述WOLED层包括阳极层、发光单元和半透明阴极层;
    半透明阴极层形成于发光层上,发光单元阳极层上。
  12. 根据权利要求11所述的一种顶发射WOLED显示器,其中所述半透明阴极层采用低功函金属材料,可以采用单一低功函金属材料或多种的组合,所述半透明阴极层的膜厚在10nm到30nm之间。
  13. 根据权利要求11所述的一种顶发射WOLED显示器,其中所示发光单元包括功能层、发光层和连接层,依照功能需要,通过连接层,增减功能层和发光层数量及进行组合排列。
  14. 根据权利要求13所述的一种顶发射WOLED显示器,其中所述发光层为各种颜色发光层,依照功能需要,增减各种颜色发光层数量及进行组合排列。
  15. 根据权利要求13所述的一种顶发射WOLED显示器,其中所述功能层为空穴注入层、空穴传输层、电子注入层和电子传输层组合排列,依照功能可以增减膜层数量。
PCT/CN2017/072028 2016-08-18 2017-01-22 一种顶发射woled显示器 WO2018032728A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/500,298 US10446798B2 (en) 2016-08-18 2017-01-22 Top-emitting WOLED display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610685005.1A CN106449700A (zh) 2016-08-18 2016-08-18 一种顶发射woled显示器
CN201610685005.1 2016-08-18

Publications (1)

Publication Number Publication Date
WO2018032728A1 true WO2018032728A1 (zh) 2018-02-22

Family

ID=58182957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072028 WO2018032728A1 (zh) 2016-08-18 2017-01-22 一种顶发射woled显示器

Country Status (3)

Country Link
US (1) US10446798B2 (zh)
CN (1) CN106449700A (zh)
WO (1) WO2018032728A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284457A (zh) * 2021-12-29 2022-04-05 云南北方奥雷德光电科技股份有限公司 一种硅基oled微型显示器全彩显示结构

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275503B (zh) * 2017-06-30 2019-04-26 京东方科技集团股份有限公司 Oled器件及其制作方法
CN107359183B (zh) * 2017-07-25 2021-07-13 南京昀光科技有限公司 顶发射全彩硅基有机电致发光微显示器及其制造工艺
US11362310B2 (en) * 2017-11-20 2022-06-14 The Regents Of The University Of Michigan Organic light-emitting devices using a low refractive index dielectric
CN110416258B (zh) * 2018-07-27 2021-11-02 广东聚华印刷显示技术有限公司 显示器件及其制作方法
KR102643070B1 (ko) * 2018-12-07 2024-02-29 엘지디스플레이 주식회사 전계 발광 표시 장치
CN109860241B (zh) * 2018-12-29 2021-07-27 苏州清越光电科技股份有限公司 高分辨率Micro-OLED显示模组及其制备方法
CN111710795A (zh) * 2020-06-08 2020-09-25 深圳市华星光电半导体显示技术有限公司 发光器件、显示面板及其制备方法
CN112242496B (zh) * 2020-10-20 2023-06-23 安徽熙泰智能科技有限公司 一种全彩硅基oled显示器件和全彩硅基oled显示方法
CN114420875A (zh) * 2022-01-28 2022-04-29 南京国兆光电科技有限公司 一种高色域的硅基oled微显示器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243219A1 (en) * 2011-03-25 2012-09-27 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Panel, Light-Emitting Device, and Method for Manufacturing the Light-Emitting Panel
JP2012252933A (ja) * 2011-06-06 2012-12-20 Seiko Epson Corp 発光装置および電子機器
CN104143559A (zh) * 2013-05-09 2014-11-12 上海和辉光电有限公司 一种有机发光器件及制造方法及显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560862B2 (en) * 2004-10-22 2009-07-14 Eastman Kodak Company White OLEDs with a color-compensated electroluminescent unit
CN103545449A (zh) * 2012-07-10 2014-01-29 群康科技(深圳)有限公司 有机发光二极管、包含其的显示面板及显示设备
CN102881357B (zh) * 2012-09-06 2014-12-17 广州新视界光电科技有限公司 一种复合透明导电薄膜
CN102891265B (zh) * 2012-09-28 2015-10-07 昆山工研院新型平板显示技术中心有限公司 Oled阳极的增反结构和oled阴极的增反结构
JP2015022120A (ja) * 2013-07-18 2015-02-02 株式会社ジャパンディスプレイ 表示素子及びその製造方法
CN203644825U (zh) * 2013-12-18 2014-06-11 昆山国显光电有限公司 有机发光器件及电子器件
CN103928495B (zh) * 2013-12-31 2017-01-18 上海天马有机发光显示技术有限公司 一种oled显示面板及其制备方法、显示装置
CN104659241A (zh) * 2015-01-20 2015-05-27 北京鼎材科技有限公司 一种顶发射白光有机电致发光器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120243219A1 (en) * 2011-03-25 2012-09-27 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Panel, Light-Emitting Device, and Method for Manufacturing the Light-Emitting Panel
JP2012252933A (ja) * 2011-06-06 2012-12-20 Seiko Epson Corp 発光装置および電子機器
CN104143559A (zh) * 2013-05-09 2014-11-12 上海和辉光电有限公司 一种有机发光器件及制造方法及显示面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284457A (zh) * 2021-12-29 2022-04-05 云南北方奥雷德光电科技股份有限公司 一种硅基oled微型显示器全彩显示结构

Also Published As

Publication number Publication date
CN106449700A (zh) 2017-02-22
US20190006627A1 (en) 2019-01-03
US10446798B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
WO2018032728A1 (zh) 一种顶发射woled显示器
KR102277563B1 (ko) 백색 유기 발광 소자
US10026915B2 (en) White organic light emitting device
US10566577B2 (en) Organic light emitting display device and organic light emitting display apparatus
CN106981504B (zh) 一种显示面板及显示装置
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
TWI596748B (zh) 顯示裝置
KR101727668B1 (ko) 유기 발광 표시 장치
US9000425B2 (en) Organic light emitting diode, and panel and display using the same
TW201526336A (zh) 一種有機發光顯示器件和改善視角特性的頂發射oled器件
CN103579529B (zh) 有机发光二极管器件
TWI294255B (en) Organic electro-luminescence device
WO2019148594A1 (zh) Oled显示器及其制作方法
CN102270750A (zh) 有机电致发光器件、显示设备及制备方法
WO2024022057A1 (zh) 发光模组和发光装置
Xie et al. Blue top-emitting organic light-emitting devices based on wide-angle interference enhancement and suppression of multiple-beam interference
WO2019006793A1 (zh) 一种白光oled器件
WO2015067098A1 (zh) 叠层有机发光二极管器件和显示装置
CN105789240A (zh) 具有信息保密功能的oled显示器件及其制作方法
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
TWI501439B (zh) 影像顯示系統
US9960215B2 (en) Organic electroluminescent display device
KR20060047227A (ko) 다층막 구성을 갖는 유기 전계 다중면 발광장치 및 그제조방법
TWI754181B (zh) 發光裝置及其電極
CN111785844B (zh) 一种发光器件、显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840706

Country of ref document: EP

Kind code of ref document: A1