WO2024022057A1 - 发光模组和发光装置 - Google Patents

发光模组和发光装置 Download PDF

Info

Publication number
WO2024022057A1
WO2024022057A1 PCT/CN2023/105833 CN2023105833W WO2024022057A1 WO 2024022057 A1 WO2024022057 A1 WO 2024022057A1 CN 2023105833 W CN2023105833 W CN 2023105833W WO 2024022057 A1 WO2024022057 A1 WO 2024022057A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
functional layer
emitting
layer
Prior art date
Application number
PCT/CN2023/105833
Other languages
English (en)
French (fr)
Inventor
秦成杰
周宏军
嵇凤丽
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024022057A1 publication Critical patent/WO2024022057A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure belongs to the field of lighting technology, and specifically relates to a light-emitting module and a light-emitting device.
  • LEDs Light emitting diodes
  • OLED Organic Light-Emitting Diode
  • OLED has the advantages of self-illumination, wide viewing angle, almost infinitely high contrast, low power consumption, extremely high response speed, etc., and is gradually becoming more and more popular in the field of lighting technology. receiving more and more attention.
  • Car taillight OLED products are becoming more and more popular in the market and are becoming more and more diversified.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provide a light-emitting module and a light-emitting device that can achieve multiple colors of light without increasing the cost of the mask.
  • embodiments of the present disclosure provide a light-emitting module, which includes a first base substrate, a functional layer and at least one light-emitting element disposed on the first base substrate;
  • the light-emitting element is provided with a first electrode, a light-emitting layer and a second electrode sequentially on the functional layer in a direction away from the first base substrate;
  • the functional layer is located on a side of the first electrode close to the first substrate and is configured to convert the light emitted by the light-emitting element into light of a specific color; wherein the functional layer includes a N sub-functional layers are arranged sequentially on the first substrate, N ⁇ 3;
  • the sub-functional layer includes at least one first sub-functional layer and at least one second sub-functional layer; the first sub-functional layer and the second sub-functional layer are alternately arranged; the refractive index of the first sub-functional layer is greater than the refractive index of the second sub-functional layer.
  • the material of the first sub-functional layer is silicon nitride or silicon oxynitride.
  • the material refractive index of the first sub-functional layer is 1.6-2.0.
  • the material of the second sub-functional layer is silicon oxide.
  • the refractive index of the material of the second sub-functional layer is 1.2-1.6.
  • the functional layer includes N sub-functional layers, N ⁇ 3; the one closest to the light-emitting element among the sub-functional layers is the first sub-functional layer.
  • the functional layer includes N sub-functional layers, N ⁇ 3; the one closest to the light-emitting element among the sub-functional layers is the second sub-functional layer.
  • the functional layer when the light emitting color of the light-emitting module is orange-red, the functional layer includes two layers of the first sub-functional layer and a second layer sandwiched between the two layers of the first sub-functional layer. Sub-functional layer; the thickness of the first sub-functional layer is 66nm; the thickness of the second sub-functional layer is 50nm.
  • the functional layer when the light emitting color of the light-emitting module is red, the functional layer includes two layers of the first sub-functional layer and a second sub-functional layer sandwiched between the two layers of the first sub-functional layer. Functional layer; the thickness of the first sub-functional layer is 66nm; the thickness of the second sub-functional layer is 70nm.
  • the first electrode is a transparent electrode
  • the second electrode is a reflective electrode
  • the light-emitting module further includes a second base substrate disposed opposite to the first base substrate, and a reflective layer disposed on a side of the second base substrate away from the light-emitting element;
  • the reflective layer is located on an orthographic projection of the first base substrate and covers the second electrode of each of the light-emitting elements on an orthographic projection of the first base substrate.
  • the light-emitting module further includes a packaging substrate and a packaging structure located at the edge of the light-emitting module and disposed between the first substrate and the second substrate;
  • the packaging base is located on the side of the functional layer away from the first base substrate; the second electrode of the light-emitting element located at the edge of the light-emitting module partially covers the packaging base;
  • the packaging structure is used to seal the edge of the light-emitting module.
  • the packaging base includes a main structure and a plurality of branch structures; the packaging structure is at least partially embedded in the gap formed between each of the branch structures.
  • an embodiment of the present disclosure provides a light-emitting device, including any one of the above-mentioned light-emitting modules.
  • FIG. 1 is a schematic structural diagram of a light-emitting element provided by an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a light-emitting layer of a light-emitting element in an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of a functional layer structure provided by an embodiment of the present disclosure.
  • the reference numbers are: 101. First substrate; 102. Second substrate; 103. Reflective layer; 201. Functional layer; 2011. First sub-functional layer; 2012. Second sub-functional layer; 202. Packaging substrate; 203, first electrode; 204, light-emitting layer; 205, second electrode; 301, packaging structure; HIL, hole injection layer; HTL, hole transport layer; EBL, electron blocking layer; EML, organic light-emitting layer ; HBL, hole blocking layer; ETL, electron transport layer.
  • the light-emitting elements used in light-emitting modules are usually light-emitting diodes (LEDs).
  • LEDs light-emitting diodes
  • OLEDs organic electroluminescent diodes
  • OLEDs Organic Light-Emitting Diodes
  • embodiments of the present disclosure provide a vehicle taillight product with multiple colors without additionally increasing mask costs. If organic electroluminescent diodes are improved to have multiple colors, the process flow and the number of masks may be increased. Masks occupy a certain amount of cost in the production of organic electroluminescent diodes.
  • the light-emitting module in the embodiment of the present disclosure can be produced in a variety of colors without adding masks and process flows, and can be used in car taillight products to make the car taillights have a variety of colors.
  • an embodiment of the present disclosure discloses a light-emitting module.
  • Figure 1 is a schematic structural diagram of a light-emitting element provided by an embodiment of the present disclosure.
  • Figure 2 is a schematic structural diagram of a light-emitting layer of the light-emitting element in the embodiment of the present disclosure;
  • Figure 3 is a schematic structural diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • the light-emitting module includes a first base substrate 101 and a functional layer 201 disposed on the first base substrate 101. At least one light-emitting element.
  • the at least one light-emitting element is provided with a first electrode 203, a light-emitting layer 204 and a second electrode 205 in sequence on the functional layer 201.
  • the functional layer 201 is configured to convert the light emitted by the light-emitting element into light of a specific color.
  • the function The layer 201 is sequentially provided with at least three sub-functional layers along the surface away from the first base substrate 101 .
  • the light-emitting element in the embodiment of the present disclosure is an organic light-emitting diode (OLED).
  • OLED organic light-emitting diode
  • the structure of the organic light-emitting diode includes an anode, a light-emitting layer 204 and a cathode sequentially arranged on a substrate, wherein the light-emitting diode emits light.
  • Layer 204 includes a hole injection layer HIL, a hole transport layer HTL, an electron blocking layer EBL, an organic light emitting layer EML, a hole blocking layer HBL, and an electron transport layer ETL.
  • Organic electroluminescent diodes include two types, namely top-emitting organic electroluminescent diodes and bottom-emitting organic electroluminescent diodes.
  • the light emitting direction of the top-emitting organic electroluminescent diode is emitted in the direction away from the base substrate, that is, the light is emitted from the cathode side;
  • the top-emitting organic electroluminescent diode has an anode, a hole injection layer HIL, and Hole transport layer HTL, electron blocking layer EBL, organic light emitting layer EML, hole blocking layer HBL, electron transport layer ETL and cathode;
  • the anode is a metal electrode with a certain degree of light reflectivity;
  • the cathode is translucent or transparent electrode; its first substrate substrate 101 can be metal, organic synthetic material and inorganic synthetic material.
  • the light emitting direction of the bottom-emitting organic electroluminescent diode is opposite to that of the top-emitting organic electroluminescent diode, and emits light in the direction close to the substrate, that is, from the side of the substrate; the bottom-emitting organic electroluminescent diode emits light on the first substrate.
  • the anode, hole injection layer HIL, hole transport layer HTL, electron blocking layer EBL, organic light emitting layer EML, hole blocking layer HBL, electron transport layer ETL and cathode are arranged in sequence on 101; the anode is a transparent electrode with good The light emission property; the cathode is a reflective electrode, which can reflect most of the light so that it can be emitted from the side of the substrate substrate.
  • the substrate substrate is usually made of materials with excellent light transmission effects such as glass or light-transmitting film.
  • the organic light-emitting layer EML directly passes through the transparent electrode used as an anode and is emitted from the substrate.
  • the organic light-emitting layer EML also has a part of the light. It spreads to the reflective electrode used for the cathode. The reflective electrode reflects this part of the light. The reflected light forms a resonance with each other. At the same time, the reflected light forms a resonance with the light of the organic light-emitting layer EML that propagates to the transparent electrode, forming a microcavity effect.
  • the luminous brightness of organic electroluminescent diodes is improved.
  • top-emitting organic electroluminescent diodes may be used, or bottom-emitting organic electroluminescent diodes may be used. In the implementation of the present disclosure, the use of bottom-emitting organic electroluminescent diodes is used as an example for explanation.
  • the light-emitting element in the embodiment of the present disclosure has a first electrode 203, a light-emitting layer 204 and a second electrode 205 sequentially arranged on the functional layer 201.
  • the second electrode 205 is located in the orthographic projection of the functional layer 201 and completely covers the light-emitting layer.
  • 204 is located in the orthographic projection of the functional layer 201, and the luminescent layer 204 is located in the functional layer
  • the orthographic projection of 201 completely covers the orthographic projection of the first electrode 203 located on the functional layer 201 .
  • the first electrode 203 is a transparent electrode, used as the anode of the light-emitting element; the second electrode 205 is a reflective electrode, used as the cathode of the light-emitting element. It can be understood that the second electrode 205 completely covers the light-emitting layer 204, so as to reflect as much light as possible from the light-emitting layer 204 and improve the luminance of the light-emitting element.
  • the material of the second electrode 205 can be any one of aluminum (Al), silver (Ag), titanium (Ti), molybdenum (Mo), or any of the above alloys.
  • the first electrode 203 The material can be indium tin oxide (ITO) or other conductive materials with good light transmittance. In the embodiment of the present disclosure, the specific materials of the first electrode 203 and the second electrode 205 are not further limited.
  • the light-emitting layer 204 in the embodiment of the present disclosure includes a hole injection layer HIL, a hole transport layer HTL, an electron blocking layer EBL, an organic light-emitting layer EML, which are arranged in sequence along the first electrode 203 away from the functional layer 201.
  • the first electrode 203 is a transparent electrode and serves as an anode.
  • the second electrode 205 is a reflective electrode and serves as a cathode. By applying a voltage to the anode and cathode, holes and electrons are injected from the anode and cathode respectively and enter the holes respectively.
  • the HOMO (highest occupied molecular orbital) energy level of the hole transport layer HTL and the LUMO (lowest unoccupied molecular orbital) energy level of the electron transport layer ETL then transition to the organic light-emitting layer EML to meet and form electron-hole pairs, which are excitons. Excitons in the molecular excited state are released in the form of photons, causing the organic light-emitting layer EML to emit visible light.
  • Part of the visible light emitted by the organic light-emitting layer EML is emitted from the first electrode 203 used as an anode, and the other part propagates to the second electrode 205 used as a cathode and is reflected by the second electrode 205, and then emitted from the first electrode 203.
  • the light emitted by the second electrode 205 resonates with each other, and the reflected light also resonates with the light propagated directly from the organic light-emitting layer EML to the first electrode 203, thereby forming a microcavity effect and improving the luminous brightness of the light-emitting element.
  • the thickness or the number of layers of the above-mentioned luminescent layer 204 can be changed, and the materials of each layer can also be changed.
  • the thickness and number of each layer of the luminescent layer 204 are not mentioned. Quantity and materials are further limited.
  • the light-emitting module in the embodiment of the present disclosure includes a first base substrate 101, a functional layer 201 and at least one light-emitting element sequentially provided on the first base substrate 101.
  • the functional layer 201 is configured to convert the light emitted by the light-emitting element into light of a specific color.
  • the functional layer 201 is sequentially provided with at least three sub-functional layers along the direction away from the first base substrate 101 .
  • the sub-functional layer includes the first sub-functional layer 2011 and the second sub-functional layer 2012, the first sub-functional layer 2011 and the second sub-functional layer 2012 are alternately arranged, and the refractive index of the first sub-functional layer 2011 is greater than the refractive index of the second sub-functional layer 2012.
  • the first sub-functional layer 2011 and the second sub-functional layer 2012 have different refractive indexes. By alternately arranging the two, the light emitted by the light-emitting element can change color when passing through the functional layer 201, thereby realizing multi-color display of the light-emitting module. It is understandable that the light-emitting module can have one light-emitting element or multiple light-emitting elements, and the number of light-emitting elements can be adjusted according to actual usage conditions.
  • the material of the first sub-functional layer 2011 is silicon nitride or silicon oxynitride, and its material refractive index is between 1.6-2.0.
  • the material of the second sub-functional layer 2012 is silicon oxide, and the refractive index of the material is 1.2-1.6.
  • the first sub-functional layer 2011 and the second sub-functional layer 2012 need to be arranged alternately.
  • the functional layer 201 may include at least three sub-functional layers 201, which include alternately arranged first sub-functional layers 2011 and second sub-functional layers 2012. It can be understood that the functional layer 201 can have more than 3 sub-functional layers, for example: 4 sub-functional layers, two first sub-functional layers 2011 and two second sub-functional layers 2012, or 5 or 6 sub-functional layers.
  • the material of the first sub-functional layer 2011 is silicon nitride or silicon oxynitride material, so the material of the first sub-functional layer 2011 can be SiNx, and the second sub-functional layer 2012 is made of silicon oxide material, so the material of the second sub-functional layer 2012 can also be is SiO2.
  • the embodiment of the present disclosure takes as an example that the functional layer 201 has three sub-functional layers, the first sub-functional layer 2011 is made of SiNx, and the second sub-functional layer 2012 is made of SiO2.
  • Figure 4 is a schematic diagram of the functional layer structure provided by an embodiment of the present disclosure, as shown in Figure 4 and Table 1.
  • the functional layer 201 includes three sub-functional layers, including two first sub-functional layers 2011 and one second sub-functional layer 2012.
  • the first sub-functional layer 2011 is sandwiched between the two first sub-functional layers 2011.
  • the thickness and refractive index of the two first sub-functional layers 2011 are the same, their thicknesses are both 66nm, and they are both SiNx film.
  • Mo molybdenum
  • the color of the light after the light passes through the functional layer 201 can be changed by changing the thickness of the second sub-functional layer 2012.
  • the light reflected by the second electrode 205 generates CIE coordinates of a specific color of light when passing through the functional layer 201 corresponding to the second sub-functional layer 2012 of different thicknesses.
  • the thickness of the two first sub-functional layers 2011 of the sample was maintained at 66nm, and the thickness of the metallic molybdenum (Mo) layer used for reflection was 330nm.
  • the thickness of the second sub-functional layer 2012 among the two first sub-functional layers 2011 changes the color of the light.
  • the thickness of the second sub-functional layer 2012 is 50 nm.
  • the CIE coordinates of the color of the light reflected from the molybdenum (Mo) layer and refracted through the three sub-functional layers are (0.4592, 0.4517), the corresponding color at this coordinate is red.
  • the thickness of sample 2 is used on the light-emitting module, which can make the light-emitting module emit orange-red light.
  • the thickness of the second sub-functional layer 2012 is 70 nm.
  • the CIE coordinates of the color of the light reflected from the molybdenum (Mo) layer and refracted through the three sub-functional layers are (0.4244, 0.3227), The corresponding color at these coordinates is red.
  • the thickness of sample 2 is used on the light-emitting module, so that the light-emitting module can emit red light.
  • the thickness of the second sub-functional layer 2012 is 130 nm.
  • the CIE coordinates of the color of the light reflected from the molybdenum (Mo) layer and refracted through the three sub-functional layers are (0.1766, 0.2477), The color corresponding to these coordinates is blue.
  • the thickness of sample 5 is used on a light-emitting module, the light-emitting module can emit blue light.
  • the thickness of the second sub-functional layer 2012 is 170 nm.
  • the CIE coordinates of the color of the light reflected from the molybdenum (Mo) layer and refracted through the three sub-functional layers are (0.3131, 0.4256), The corresponding color at these coordinates is green.
  • the thickness of sample 7 is used on the light-emitting module, so that the light-emitting module can emit green light.
  • the thickness of the second sub-functional layer 2012 in sample 3 is 90 nm, and the reflected and emitted light is purple.
  • the thickness of the second sub-functional layer 2012 in sample 4 and sample 6 are 110 nm and 150 nm respectively, and both reflect and emit light. Blue light, second in sample 8
  • the thickness of the sub-functional layer 2012 is 190nm, and the light reflected and emitted is yellow.
  • there are three sub-functional layers and a second sub-functional layer 2012 is sandwiched between two first sub-functional layers 2011. By changing the thickness of the second sub-functional layer 2012 in the middle, the thickness of the three sub-functional layers can be changed.
  • the CIE coordinates of the color of refracted light When the aforementioned functional layer is used in a light-emitting module, the light-emitting module can emit light of a specific color.
  • the samples in Table 1 are only some examples of the embodiments of the present disclosure.
  • the CIE coordinates of the light outside the sample are used on the display module to make it emit more types of light of specific colors.
  • the thickness and material of the first sub-functional layer 2011, the material of the second sub-functional layer 2012 and the material of the second electrode 205 in this disclosure can be changed or adjusted according to specific products, for example, the first sub-functional layer 2011
  • the silicon nitride material used is SiNx
  • the silicon nitride material used in the second sub-functional layer 2012 may be SiO2.
  • the above examples are only used to better illustrate the technical solutions in the present disclosure, and the thicknesses of the first sub-functional layer 2011, the second sub-functional layer 2012 and the second electrode 205 are not further limited.
  • the light-emitting module in the present disclosure adds a functional layer 201 in order to achieve multiple color displays.
  • a functional layer 201 is used to change the color of the light-emitting module, which can also simplify part of the manufacturing process of the organic electroluminescent diode.
  • the functional layer 201 includes at least three sub-functional layers.
  • the multi-layer sub-functional layer includes at least one first sub-functional layer 2011 and at least one second sub-functional layer 2012.
  • the first sub-functional layer 2011 and the second sub-functional layer Functional layers 2012 are arranged alternately.
  • the one closest to the light-emitting element among the sub-functional layers is the first sub-functional layer. It can be understood that the first sub-functional layer 2011 with a high refractive index is preferentially disposed close to the first electrode 203, and the light reflected by the second electrode 205 first passes through the first sub-functional layer 2011 with a high refractive index.
  • the functional layer 201 includes at least three sub-functional layers.
  • the multi-layer sub-functional layer includes at least one first sub-functional layer 2011 and at least one second sub-functional layer 2012.
  • the first sub-functional layer 2011 and the second sub-functional layer Functional layers 2012 are arranged alternately. The one closest to the light-emitting element among each sub-functional layer The second sub-functional layer. It can be understood that the second sub-functional layer 2012 with a low refractive index can also be preferentially disposed close to the first electrode 203, and the light reflected by the second electrode 205 first passes through the second sub-functional layer 2012 with a low refractive index.
  • the light-emitting module further includes a second base substrate 102 disposed opposite to the first base substrate 101, and a reflective layer 103 disposed on a side of the second base substrate 102 away from the light-emitting element.
  • the second electrode 205 in the light-emitting element is a reflective electrode for reflecting the visible light emitted by the light-emitting layer 204 toward the first base substrate 101.
  • the second electrode 205 of each light-emitting element is away from the first base substrate 101 for light extraction.
  • a reflective layer 103 is provided in the direction.
  • the reflective layer 103 can be used to reflect the light that is not reflected by the second electrode 205 in each light-emitting element to the first substrate 101 for light extraction, thereby reducing the risk of partial light not being completely absorbed.
  • the second electrode 205 reflects the light loss caused by the first base substrate 101 for light extraction, thereby increasing the effective light extraction amount of the light-emitting module and improving the overall brightness of the light-emitting module.
  • the orthographic projection of the reflective layer located on the first base substrate 101 covers the second electrode 205 of each light-emitting element located on the orthogonal projection of the first base substrate 101 . It can be understood that the reflective layer 103 entirely covers all the second electrodes 205 of each light-emitting element.
  • the material of the reflective layer 103 can be the same as the material of the second electrode 205 or different from the material of the second electrode 205.
  • the material of the reflective layer 103 can be molybdenum (Mo), aluminum (Al), or silver. Any one of (Ag), titanium (Ti), or any of the above alloys. In the embodiment of the present disclosure, the material of the reflective layer 103 is not further limited.
  • the light-emitting module further includes a packaging substrate 202 and a packaging structure 301 located at the edge of the light-emitting module and disposed between the first substrate substrate 101 and the second substrate substrate 102 .
  • the packaging substrate 202 is located on the side of the functional layer away from the first base substrate 101; the second electrode 205 of the light-emitting element located at the edge of the light-emitting module partially covers the packaging substrate 202.
  • the packaging structure 301 is used to seal the edges of the light-emitting module to prevent water and oxygen from entering the light-emitting module, causing damage to the light-emitting elements or shortening the life of the light-emitting module.
  • the packaging substrate 202 includes a main structure and a plurality of branch structures, and the packaging structure 301 is at least partially embedded in the gaps formed between the respective branch structures.
  • the branch structure Through the branch structure, the overlapping area of the packaging structure and the packaging substrate is increased, making the packaging structure more firmly fixed on the light-emitting module and achieving better packaging effect.
  • a second substrate 102 can be disposed between the reflective layer 103 and the packaging structure 301.
  • the material of the second substrate 102 can be the same as that of the first substrate 101, and can be glass or a material with excellent light transmission effect. Materials.
  • the materials of the first base substrate 101 and the second base substrate 102 are not further limited here.
  • inventions of the present disclosure provide a light-emitting device, including any one of the above-mentioned light-emitting modules.
  • the light-emitting device may be a car taillight or other light-emitting device using an organic electroluminescent diode.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种发光模组和发光装置,其包括第一衬底基板和设置在所述第一衬底基板上的功能层和至少一个发光元件;所述发光元件在所述功能层上沿背离第一衬底基板方向依次设置第一电极、发光层和第二电极;所述功能层位于所述第一电极靠近所述第一衬底基板的一侧,被配置为将所述发光元件发出的光转换成特定颜色的光;其中,所述功能层包括沿背离所述第一衬底基板依次设置的N个子功能层,N≥3;所述子功能层包括至少一个第一子功能层和至少一个第二子功能层;所述第一子功能层和所述第二子功能层交替排列;所述第一子功能层的折射率大于所述第二子功能层的折射率。

Description

发光模组和发光装置 技术领域
本公开属于照明技术领域,具体涉及一种发光模组和发光装置。
背景技术
传统车尾灯产品,通常使用发光二极管(light emitting diode,LED)。随着有机电致发光二极管(Organic Light-Emitting Diode,OLED)的发展,OLED具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,逐渐在照明技术领域受到越来越多的关注。车尾灯OLED产品,目前越来越受市场青睐,也越来越多样化。
随着照明技术领域以及汽车技术领域的发展,车尾灯的颜色也变得多种多样。因此在不增加成本的前提下,例如:不增加掩膜版成本,如何设计出具有多种颜色的车尾灯产品,满足市场多样化的需求,成为了当今需要解决的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种在不增加掩膜版成本的前提下,实现多种颜色发光的发光模组和发光装置。
第一方面,本公开实施例提供了一种发光模组,其包括第一衬底基板和设置在所述第一衬底基板上的功能层和至少一个发光元件;
所述发光元件在所述功能层上沿背离第一衬底基板方向依次设置第一电极、发光层和第二电极;
所述功能层位于所述第一电极靠近所述第一衬底基板的一侧,被配置为将所述发光元件发出的光转换成特定颜色的光;其中,所述功能层包括沿背离所述第一衬底基板依次设置的N个子功能层,N≥3;
所述子功能层包括至少一个第一子功能层和至少一个第二子功能层;所述第一子功能层和所述第二子功能层交替排列;所述第一子功能层的折射率大于所述第二子功能层的折射率。
其中,所述第一子功能层的材料为氮化硅或氮氧化硅。
其中,所述第一子功能层的材料折射率为1.6-2.0。
其中,所述第二子功能层材料为氧化硅。
其中,所述第二子功能层的材料的折射率为1.2-1.6。
其中,所述功能层包括N个子功能层,N≥3;各所述子功能层中最靠近所述发光元件的一者为所述第一子功能层。
其中,所述功能层包括N个子功能层,N≥3;各所述子功能层中最靠近所述发光元件的一者为所述第二子功能层。
其中,当所述发光模组的出光颜色为橘红色时,所述功能层包括两层所述第一子功能层和夹设在所述两层所述第一子功能层之间的第二子功能层;所述第一子功能层的厚度为66nm;所述第二子功能层的厚度为50nm。
其中,当所述发光模组的出光颜色为红色时,所述功能层包括两层所述第一子功能层和夹设在所述两层所述第一子功能层之间的第二子功能层;所述第一子功能层的厚度为66nm;所述第二子功能层的厚度为70nm。
其中,所述第一电极为透明电极;所述第二电极为反射电极。
其中,所述发光模组还包括与所述第一衬底基板相对设置的第二衬底基板,以及设置在所述第二衬底基板远离所述发光元件一侧的反射层;
所述反射层位于所述第一衬底基板的正投影覆盖各个所述发光元件的所述第二电极位于所述第一衬底基板的正投影。
其中,所述发光模组还包括位于发光模组边缘,且设置在所述第一衬底基板和所述第二衬底基板之间的封装基底和封装结构;
所述封装基底位于所述功能层远离所述第一衬底基板一侧;位于所述发光模组边缘的所述发光元件的第二电极部分覆盖于所述封装基底上;
所述封装结构用于密封所述发光模组的边缘。
其中,所述封装基底包括一个主体结构和多个分支结构;所述封装结构至少部分嵌入各个所述分支结构之间形成的间隙中。
第二方面,本公开实施例提供了一种发光装置,包括上述中任一所述的发光模组。
附图说明
图1为本公开实施例提供的一种发光元件的结构示意图。
图2为本公开实施例中发光元件的发光层的结构示意图。
图3为本公开实施例提供的一种发光模组结构示意图。
图4为本公开实施例提供的功能层结构示意图。
其中附图标记为:101、第一衬底基板;102、第二衬底基板;103、反射层;201、功能层;2011、第一子功能层;2012、第二子功能层;202、封装基底;203、第一电极;204、发光层;205、第二电极;301,封装结构;HIL、空穴注入层;HTL、空穴传输层;EBL、电子阻挡层;EML、有机发光层;HBL、空穴阻挡层;ETL、电子传输层。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
发光模组采用的发光元件通常为发光二极管(Light Emitting Diode,LED),随着有机电致发光二极管(Organic Light-Emitting Diode,OLED)的发 展,其具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,逐渐使用于照明技术领域。同时在汽车市场上,对车尾灯照明质量要求越来越高,因此车尾灯OLED产品越来越受到青睐,具有多种颜色的车尾灯产品也受到大家的喜爱。如何在不额外增加成本的前提下,设计出具有多种颜色的车尾灯产品成了现如今需要解决的问题。
鉴于此,本公开实施例提供一种在不额外增加掩膜版成本的前提下,具有多种颜色的车尾灯产品。如果在有机电致发光二极管上进行改进,使其具有多种颜色,可能会增加工艺流程和掩膜版数量,掩膜版在有机电致发光二极管的生产中,占据着一定量的成本。本公开实施例中的发光模组可以在不增加掩膜版和工艺流程的前提下生产出具有多种颜色,可用于车尾灯产品,使车尾灯具有多种颜色。
以下结合附图和具体实施例对本公开实施例的发光模组进行说明。
第一方面,本公开实施例公开了一种发光模组,图1为本公开实施例提供的一种发光元件的结构示意图,图2为本公开实施例中发光元件的发光层的结构示意图;图3为本公开实施例提供的一种发光模组结构示意图,如图1-3所示,发光模组包括第一衬底基板101和设置在第一衬底基板101上的功能层201和至少一个发光元件,至少一个发光元件在功能层201上依次设置第一电极203,发光层204和第二电极205,功能层201被配置为将发光元件发出的光转换成特定颜色的光,功能层201沿背离第一衬底基板101依次设置至少3层子功能层。
本公开实施例中的发光元件为有机电致发光二极管(Organic Light-Emitting Diode,OLED),有机电致发光二极管的结构包括在衬底基板上依次设置的阳极、发光层204和阴极,其中发光层204包括空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、有机发光层EML、空穴阻挡层HBL、电子传输层ETL。在阳极和阴极上加载电压后,空穴与电子分别从阳极和阴极注入,并分别进入空穴传输层HTL的HOMO(分子最高占据轨道)能级和电子传输层ETL的LUMO(分子最低空置轨道)能级,然后跃迁到有机发光层EML相遇形成电子-空穴对,也就是激子。处于分子激发态的激 子以光子形式释放出来,发出可见光。
有机电致发光二极管包括两种类型,分别是顶发射有机电致发光二极管和底发射有机电致发光二极管。顶发射有机电致发光二极管的出光方向沿远离衬底基板的方向发出,也就是从阴极一侧出光;顶发射有机电致发光二极管在衬底基板上依次设置的阳极、空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、有机发光层EML、空穴阻挡层HBL、电子传输层ETL和阴极;其阳极为金属电极,带有一定的光线反射性;其阴极为半透明或者透明的电极;其第一衬底基板101可以是金属、有机合成材料和无机合成材料。底发射有机电致发光二极管与顶发射有机电致发光二极管出光方向相反,沿靠近衬底基板方向发出,也就是从衬底基板一侧出光;底发射有机电致发光二极管在第一衬底基板101上依次设置的阳极、空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、有机发光层EML、空穴阻挡层HBL、电子传输层ETL和阴极;其阳极为透明电极,具有良好的出光性;其阴极为反射电极,可反射大部分光线使其可以从衬底基板一侧发出,衬底基板通常采用玻璃或者透光膜等透光效果优异的材料。
需要说明的是,底发射有机电致发光二极管在发光过程中,有机发光层EML所发出的光部分直接穿过用作阳极的透明电极,从衬底基板射出,有机发光层EML还有一部分光传播到用于阴极的反射电极上,反射电极将该部分光进行反射,反射的光线彼此形成共振,同时反射的光线和有机发光层EML传播向透明电极的光形成共振,形成了微腔效应,提高了有机电致发光二极管的发光亮度。可理解的是,顶发射有机电致发光二极管其有机发光层EML部分光线直接射出阴极,还有一部分光通过金属阳极进行反射,同样也可以形成微腔效应,提高了有机电致发光二极管的发光亮度。可以采用顶发射有机电致发光二极管,也可以采用底发射有机电致发光二极管,在本公开实施中,以使用底发射有机电致发光二极管为例进行说明。
如图1所示,本公开实施例中的发光元件在功能层201上依次设置第一电极203、发光层204和第二电极205,第二电极205位于功能层201的正投影完全覆盖发光层204位于功能层201的正投影,发光层204位于功能层 201的正投影完全覆盖第一电极203位于功能层201的正投影。第一电极203为透明电极,用作发光元件的阳极;第二电极205为反射电极,用作发光元件的阴极。可理解的是,第二电极205完全覆盖了发光层204,这样可以尽可能多的反射发光层204发出的光,提高发光元件的发光亮度。
需要说明的是,第二电极205的材料可以为铝(Al)、银(Ag)、钛(Ti)、钼(Mo)中的任意一种,或者上述任意多种的合金,第一电极203的材料可以是氧化铟锡(ITO)或者其他种类透光性好的导电材料。在本公开实施例中不对第一电极203和第二电极205的具体材料做进一步的限定。
如图2所示,本公开实施例中的发光层204包括沿第一电极203背离功能层201依次设置的空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL、有机发光层EML、空穴阻挡层HBL、电子传输层ETL。第一电极203为透明电极,用作阳极,第二电极205为反射电极,用作阴极,通过对阳极和阴极上加载的电压,使空穴与电子分别从阳极和阴极注入,并分别进入空穴传输层HTL的HOMO(分子最高占据轨道)能级和电子传输层ETL的LUMO(分子最低空置轨道)能级,然后跃迁到有机发光层EML相遇形成电子-空穴对,也就是激子。处于分子激发态的激子以光子形式释放出来,使有机发光层EML发出可见光。有机发光层EML发出的可见光一部分从用作阳极的第一电极203射出,另一部分传播到用作阴极的第二电极205并被第二电极205反射,再从第一电极203射出,在该过程中,被第二电极205发射的光彼此形成共振,反射的光还会和有机发光层EML直接向第一电极203传播的光形成共振,以此形成微腔效应,并提高发光元件的发光亮度。
需要说明的是,为了提高发光质量,可以改变上述发光层204各层的厚度亦或是层数,也可以对各层的材料进行改变,在本公开中不对发光层204的各层厚度和层数以及材料做进一步的限定。
如图3所示,本公开实施例中的发光模组,其包括第一衬底基板101,依次设置在第一衬底基板101上的功能层201和至少一个发光元件。功能层201被配置为将发光元件发出的光转换成特定颜色的光,功能层201沿背离第一衬底基板101依次设置至少3层子功能层。子功能层包括第一子功能层 2011和第二子功能层2012,第一子功能层2011和第二子功能层2012交替排列,第一子功能层2011的折射率大于第二子功能层2012的折射率。第一子功能层2011和第二子功能层2012的折射率不同,通过二者交替排列使发光元件发出的光通过功能层201时可以改变颜色,实现发光模组多色显示。可理解的是,发光模组可以有一个发光元件,也可以有多个发光元件,发光元件的数量可以根据实际使用情况进行调整。
在一些示例中,第一子功能层2011的材料为氮化硅或氮氧化硅,其材料折射率为1.6-2.0之间。第二子功能层2012材料为氧化硅,其材料的折射率为1.2-1.6。为了实现光通过功能层201的多次折射,滤出想要得到的特定颜色的光,第一子功能层2011和第二子功能层2012需交替排列。
进一步的,功能层201可以包括至少三个子功能层201,其包括交替排列的第一子功能层2011和第二子功能层2012。可理解的是功能层201可以有3个以上的子功能层,例如:4个子功能层,两个第一子功能层2011和两个第二子功能层2012,又或者有5个、6个子功能层。第一子功能层2011材料为氮化硅或氮氧化硅材料,因此第一子功能层2011材料可以是SiNx,第二子功能层2012为氧化硅材料,因此第二子功能层2012材料也可以为SiO2。本公开实施例以功能层201有3个子功能层,第一子功能层2011材料为SiNx,第二子功能层2012材料为SiO2为例进行说明。
表1:
图4为本公开实施例提供的功能层结构示意图,如图4和表1所示,在 本公开实施例中以功能层201包括三个子功能层,其有两个第一子功能层2011和一个第二子功能层2012。其两个第一子功能层2011中夹设第一子功能层2011,如表1所示,两个第一子功能层2011的厚度和折射率相同,其厚度均为66nm,其均为SiNx薄膜。在实验过程中用厚度为330nm的钼(Mo)用作第二电极205进行实验,可以通过改变第二子功能层2012的厚度来改变光线透过功能层201后的光的颜色,最终得到了从同样颜色的光射向第二电极205时,第二电极205反射的光线在通过不同厚度的第二子功能层2012所对应的功能层201时,产生特定颜色光的CIE坐标。
进一步的,如表1所示,在实验过程中,所以样品其两个第一子功能层2011厚度均保持为66nm,用于反射的金属钼(Mo)层的厚度为330nm,通过改变夹在两个第一子功能层2011中的第二子功能层2012的厚度,改变光的颜色。如表1所示,在样品1中,第二子功能层2012的厚度为50nm,在此条件下,从钼(Mo)层反射并经由三层子功能层折射的光的颜色的CIE坐标为(0.4592,0.4517),在该坐标下所对应的颜色为红色系,样品2的厚度搭配用于发光模组上,可以使发光模组发出呈橘红色的光。在样品2中,第二子功能层2012的厚度为70nm,在此条件下,从钼(Mo)层反射并经由三层子功能层折射的光的颜色的CIE坐标为(0.4244,0.3227),在该坐标下所对应的颜色为红色系,样品2的厚度搭配用于发光模组上,可以使发光模组发出呈红色系的光。在样品5中,第二子功能层2012的厚度为130nm,在此条件下,从钼(Mo)层反射并经由三层子功能层折射的光的颜色的CIE坐标为(0.1766,0.2477),在该坐标下所对应的颜色为蓝色系,样品5的厚度搭配用于发光模组上,可以使发光模组发出呈蓝色系的光。在样品7中,第二子功能层2012的厚度为170nm,在此条件下,从钼(Mo)层反射并经由三层子功能层折射的光的颜色的CIE坐标为(0.3131,0.4256),在该坐标下所对应的颜色为绿色系,样品7的厚度搭配用于发光模组上,可以使发光模组发出呈绿色系的光。在样品3中的第二子功能层2012的厚度为90nm,反射并发出的光呈紫色,在样品4和样品6中的第二子功能层2012的厚度分别为110nm和150nm,均反射并发出呈蓝色系的光,在样品8中的第二 子功能层2012的厚度为190nm,反射并发出的光呈黄色。以有三层子功能层,两层第一子功能层2011中夹设一层第二子功能层2012为例,通过改变位于中间的第二子功能层2012的厚度可以改变经由三层子功能层折射光的颜色的CIE坐标,将前述功能层用于发光模组时,可实现发光模组发出特定颜色的光。表1中的样品仅为本公开实施例的部分示例,可以通过改变第二子功能层2012的厚度,或者改变第一子功能层和钼(Mo)层的厚度,得到除表1中8个样品之外的光的CIE坐标,用于显示模组上,使其发出更多种类的特定颜色的光。
需要说明的是,本公开中的第一子功能层2011的厚度和材料,第二子功能层2012的材料和第二电极205的材料可以根据具体产品改变或调整,例如第一子功能层2011所用的氮化硅材料为SiNx,第二子功能层2012所用的氮化硅材料可以是SiO2。上述示范例仅用于更好的说明本公开中的技术方案,不对第一子功能层2011、第二子功能层2012和第二电极205的厚度作进一步的限定。
可理解的是,本公开中的发光模组为实现多种颜色显示,增加了功能层201,无需对用于发光元件的有机电致发光二极管进行改进,因此无需增加掩膜版成本。同时,有机电致发光二极管可以为制作成单色发光,因此采用功能层201来改变发光模组的颜色,还可以简化有机电致发光二极管的部分制作工艺。
在一些示例中,功能层201包括至少3个子功能层,多层子功能层中包括至少一个第一子功能层2011和至少一个第二子功能层2012,第一子功能层2011和第二子功能层2012交替设置。各子功能层中最靠近发光元件的一者为第一子功能层。可理解的是,折射率高的第一子功能层2011在靠近第一电极203的位置优先设置,第二电极205反射的光线先通过折射率高的第一子功能层2011。
在一些示例中,功能层201包括至少3个子功能层,多层子功能层中包括至少一个第一子功能层2011和至少一个第二子功能层2012,第一子功能层2011和第二子功能层2012交替设置。各子功能层中最靠近发光元件的一 者为第二子功能层。可理解的是,也可以将折射率低的第二子功能层2012在靠近第一电极203的位置优先设置,第二电极205反射的光线先通过折射率低的第二子功能层2012。
在一些示例中,发光模组还包括与第一衬底基板101相对设置的第二衬底基板102,以及设置在第二衬底基板102远离发光元件一侧的反射层103。发光元件中的第二电极205为反射电极,用于将发光层204发出的可见光反射向第一衬底基板101在各个发光元件的第二电极205背离用于出光的第一衬底基板101的方向上设置反射层103,该反射层103可以用于将各个发光元件中第二电极205未能反射的光反射向用于出光的第一衬底基板101,降低了因部分光线未能完全被第二电极205反射向用于出光的第一衬底基板101而造成的光损耗,从而提升了发光模组的有效出光量,并提升了发光模组的整体亮度。为了使反射层103效果更好,反射层位于第一衬底基板101的正投影覆盖各个发光元件的第二电极205位于第一衬底基板101的正投影。可理解的是,反射层103整体覆盖各个发光元件的所有第二电极205。
需要说明的是,反射层103的材料可以和第二电极205的材料相同,也可以和第二电极205的材料不同,反射层103材料可以为钼(Mo)还可以是铝(Al)、银(Ag)、钛(Ti)、中的任意一种,或者上述任意多种的合金,在本公开实施例中,不对反射层103的材料做进一步的限定。
在一些示例中,发光模组还包括位于发光模组边缘,且设置在第一衬底基板101和第二衬底基板102之间的封装基底202和封装结构301。封装基底202位于功能层远离第一衬底基板101一侧;位于发光模组边缘的发光元件的第二电极205部分覆盖于封装基底202上。封装结构301用于密封发光模组的边缘,达到防止水氧等进入发光模组中,导致发光元件损坏或缩短发光模组寿命。
在一些示例中,封装基底202包括一个主体结构和多个分支结构,封装结构301至少部分嵌入各个分支结构之间形成的间隙中。通过分支结构,增加了封装结构与封装基底的交叠面积,使封装结构更加稳固的固定在发光模组,起到更好的封装效果。
需要说明的是,反射层103和封装结构301之间还可以设置一层第二衬底基板102,其材料可以和第一衬底基板101的材料一样,可以是玻璃或是透光效果优异的材料,在此不对第一衬底基板101和第二衬底基板102的材料作进一步的限定。
第二方面,本公开实施例提供了一种发光装置,包括上述中任一所述的发光模组,该发光装置可以是车尾灯,也可以是其他使用有机电致发光二极管的发光装置。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种发光模组,其包括第一衬底基板和设置在所述第一衬底基板上的功能层和至少一个发光元件;
    所述发光元件在所述功能层上沿背离第一衬底基板方向依次设置第一电极、发光层和第二电极;
    所述功能层位于所述第一电极靠近所述第一衬底基板的一侧,被配置为将所述发光元件发出的光转换成特定颜色的光;其中,所述功能层包括沿背离所述第一衬底基板依次设置的N个子功能层,N≥3;
    所述子功能层包括至少一个第一子功能层和至少一个第二子功能层;所述第一子功能层和所述第二子功能层交替排列;所述第一子功能层的折射率大于所述第二子功能层的折射率。
  2. 根据权利要求1所述的发光模组,其中,所述第一子功能层的材料为氮化硅或氮氧化硅。
  3. 根据权利要求2所述的发光模组,其中,所述第一子功能层的材料折射率为1.6-2.0。
  4. 根据权利要求1所述的发光模组,其中,所述第二子功能层材料为氧化硅。
  5. 根据权利要求4所述的发光模组,其中,所述第二子功能层的材料的折射率为1.2-1.6。
  6. 根据权利要求1所述的发光模组,其中,所述功能层包括N个子功能层,N≥3;各所述子功能层中最靠近所述发光元件的一者为所述第一子功能层。
  7. 根据权利要求1所述的发光模组,其中,所述功能层包括N个子功能层,N≥3;各所述子功能层中最靠近所述发光元件的一者为所述第二子功能层。
  8. 根据权利要求1所述的发光模组,其中,当所述发光模组的出光颜色为橘红色时,所述功能层包括两层所述第一子功能层和夹设在所述两层所 述第一子功能层之间的第二子功能层;所述第一子功能层的厚度为66nm;所述第二子功能层的厚度为50nm。
  9. 根据权利要求1所述的发光模组,其中,当所述发光模组的出光颜色为红色时,所述功能层包括两层所述第一子功能层和夹设在所述两层所述第一子功能层之间的第二子功能层;所述第一子功能层的厚度为66nm;所述第二子功能层的厚度为70nm。
  10. 根据权利要求1所述的发光模组,其中,所述第一电极为透明电极;所述第二电极为反射电极。
  11. 根据权利要求1所述的发光模组,其中,所述发光模组还包括与所述第一衬底基板相对设置的第二衬底基板,以及设置在所述第二衬底基板远离所述发光元件一侧的反射层;
    所述反射层位于所述第一衬底基板的正投影覆盖各个所述发光元件的所述第二电极位于所述第一衬底基板的正投影。
  12. 根据权利要求11所述的发光模组,其中,所述发光模组还包括位于发光模组边缘,且设置在所述第一衬底基板和所述第二衬底基板之间的封装基底和封装结构;
    所述封装基底位于所述功能层远离所述第一衬底基板一侧;位于所述发光模组边缘的所述发光元件的第二电极部分覆盖于所述封装基底上;
    所述封装结构用于密封所述发光模组的边缘。
  13. 根据权利要求12所述的发光模组,其中,所述封装基底包括一个主体结构和多个分支结构;所述封装结构至少部分嵌入各个所述分支结构之间形成的间隙中。
  14. 一种发光装置,其包括权利要求1-13中任一所述的发光模组。
PCT/CN2023/105833 2022-07-25 2023-07-05 发光模组和发光装置 WO2024022057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210879182.9A CN115101688A (zh) 2022-07-25 2022-07-25 发光模组和发光装置
CN202210879182.9 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024022057A1 true WO2024022057A1 (zh) 2024-02-01

Family

ID=83298625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105833 WO2024022057A1 (zh) 2022-07-25 2023-07-05 发光模组和发光装置

Country Status (2)

Country Link
CN (1) CN115101688A (zh)
WO (1) WO2024022057A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101688A (zh) * 2022-07-25 2022-09-23 京东方科技集团股份有限公司 发光模组和发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083693A1 (ja) * 2012-11-30 2014-06-05 パイオニア株式会社 発光装置
JP2016164855A (ja) * 2015-03-06 2016-09-08 シャープ株式会社 発光装置並びにこれを備えた表示装置、照明装置および電子機器
CN108417725A (zh) * 2018-03-20 2018-08-17 京东方科技集团股份有限公司 发光器件、显示基板
CN115101688A (zh) * 2022-07-25 2022-09-23 京东方科技集团股份有限公司 发光模组和发光装置
CN218851229U (zh) * 2022-07-25 2023-04-11 京东方科技集团股份有限公司 发光模组和发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083693A1 (ja) * 2012-11-30 2014-06-05 パイオニア株式会社 発光装置
JP2016164855A (ja) * 2015-03-06 2016-09-08 シャープ株式会社 発光装置並びにこれを備えた表示装置、照明装置および電子機器
CN108417725A (zh) * 2018-03-20 2018-08-17 京东方科技集团股份有限公司 发光器件、显示基板
CN115101688A (zh) * 2022-07-25 2022-09-23 京东方科技集团股份有限公司 发光模组和发光装置
CN218851229U (zh) * 2022-07-25 2023-04-11 京东方科技集团股份有限公司 发光模组和发光装置

Also Published As

Publication number Publication date
CN115101688A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
JP6475251B2 (ja) 有機発光表示装置及び視野角特性を改善したトップエミッション型oled装置
TWI284492B (en) Organic EL device
CN104752623B (zh) 有机电致发光装置和有机电致发光显示装置
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
US10446798B2 (en) Top-emitting WOLED display device
TWI617023B (zh) 顯示裝置與光學膜
TWI596748B (zh) 顯示裝置
US9000425B2 (en) Organic light emitting diode, and panel and display using the same
WO2020001040A1 (zh) 发光器件及其制作方法、电子装置
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2024022057A1 (zh) 发光模组和发光装置
US20160285025A1 (en) Tandem white organic light-emitting device
CN102270750A (zh) 有机电致发光器件、显示设备及制备方法
CN218851229U (zh) 发光模组和发光装置
CN111162108A (zh) 一种显示面板、其制作方法及显示装置
JP2001237074A (ja) 有機エレクトロルミネッセンス光源
KR102006476B1 (ko) 유기전계발광표시장치 및 그 제조방법
KR20160030205A (ko) 유기 일렉트로 루미네센스 소자 및 조명 장치
US20230105196A1 (en) Display device
KR20190092349A (ko) 유기전계발광표시장치 및 그 제조방법
CN110600632A (zh) 电致发光器件及显示装置
TWI245582B (en) Picture element for electro-luminescent display
TWI754181B (zh) 發光裝置及其電極
KR20110038513A (ko) 유기 발광 표시 장치 및 그 제조 방법
KR100628150B1 (ko) 유기 el 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845270

Country of ref document: EP

Kind code of ref document: A1