WO2018030823A1 - 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유 - Google Patents

고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유 Download PDF

Info

Publication number
WO2018030823A1
WO2018030823A1 PCT/KR2017/008707 KR2017008707W WO2018030823A1 WO 2018030823 A1 WO2018030823 A1 WO 2018030823A1 KR 2017008707 W KR2017008707 W KR 2017008707W WO 2018030823 A1 WO2018030823 A1 WO 2018030823A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
spinning
fibers
metal
strength high
Prior art date
Application number
PCT/KR2017/008707
Other languages
English (en)
French (fr)
Inventor
이준영
이형석
이태호
유필진
이기라
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2018030823A1 publication Critical patent/WO2018030823A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/065Addition and mixing of substances to the spinning solution or to the melt; Homogenising
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the present invention relates to a method for producing high strength high conductivity fibers and also to high strength high conductivity fibers produced using such a method.
  • conductive fibers it is usually manufactured by a method such as coating process, vacuum deposition, electroless plating.
  • the inventor of the present invention intends to contribute to the wearable industry or various high-performance material industry by producing a conductive fiber having a strong strength and similar properties to general fibers through the contents of the present invention.
  • High-strength high-conductivity fiber manufacturing method preparing a coagulation bath consisting of a spinning solution and a metal salt solution; Spinning the spinning solution into the coagulation bath to form a fiber including metal ions; Stretching the solidified fiber comprising the metal ion; Drying the fiber containing the metal ions; Preparing metal / metal nanoparticle composite fibers by reducing metal ions contained in the fibers to form metal nanoparticles in the fibers; And drying or heat-treating the fiber including the metal nanoparticles.
  • the spinning solution includes a polymer having a structure capable of attracting or binding of metal ions in a coagulation bath to a monomer of a polymer chain.
  • the polymer includes alginate or polyacrylonitrile (PAN).
  • the spinning is performed by wet spinning, and the spinning is carried out at a draw ratio of 10% to 300% depending on the type of polymer.
  • the step of reducing the metal ions contained in the fiber including the metal ions may further comprise the step of drying or heat-treating the fiber.
  • the drying or heat treatment is preferably performed for a predetermined time depending on the type of the polymer at a temperature of 110 to 150 °C.
  • High-strength high-conductivity fibers made in accordance with one embodiment of the present invention are excellent in elasticity, the elasticity is about 11% or more.
  • the conductivity of the fiber can be arbitrarily adjusted by changing the spinning conditions, exhibits an electrical conductivity of at least 3,000 S / cm or more, the fiber has a strength of 260 mpa or more.
  • the method of manufacturing a high strength high conductive fiber according to an embodiment of the present invention solves the problem of low conductivity or poor physical properties of the fiber by using an ion exchange reduction method together with wet spinning.
  • the manufacturing method of the high strength high conductive fiber according to an embodiment of the present invention will be able to continuously produce a fiber showing a high strength high conductivity than the existing conductive fiber with the saving of production time.
  • FIG. 1 shows a flow chart of a method of making high strength high conductivity fibers in accordance with one embodiment of the present invention.
  • Figure 2 shows a schematic diagram of a high-strength highly conductive fiber manufacturing method according to an embodiment of the present invention.
  • Figure 3 shows the cross-sectional and surface analysis results of the fiber produced by the high-strength high-conductivity fiber manufacturing method according to an embodiment of the present invention.
  • Figure 4a shows the EDS mapping results of the fibers produced by the high-strength high-conductivity fiber manufacturing method according to an embodiment of the present invention.
  • Figure 4b shows the results of TGA (Thermogravimetric Analysis) analysis of the fiber produced by the high-strength high-conductivity fiber manufacturing method according to an embodiment of the present invention.
  • FIG. 5 illustrates a stress-strain curve of a fiber produced by the method of manufacturing a high strength high conductivity fiber according to an embodiment of the present invention.
  • Figure 1 shows a flow chart of a method of manufacturing a high strength high conductivity fiber according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of a method of manufacturing a high strength high conductivity fiber according to an embodiment of the present invention.
  • High-strength high-conductivity fiber manufacturing method preparing a coagulation bath consisting of a spinning solution and a metal salt solution (S 110); Spinning the spinning solution into the coagulation bath to form a fiber including metal ions (S 120); Stretching the solidified fiber including the metal ions (S 130); Drying the fiber including the metal ions (S 140); Reducing the metal ions contained in the fiber to form metal nanoparticles in the fiber to produce a polymer / metal nanoparticle composite fiber (S 150).
  • step S110 a coagulation bath consisting of a spinning solution and a metal salt solution is prepared.
  • A represents a coagulation bath, and a spinning solution is prepared in the syringe.
  • the spinning solution includes a polymer having a structure capable of attracting or binding a metal ion in a coagulation bath to a monomer of a polymer chain.
  • the polymer included in the spinning solution includes alginate or polyacrylonitrile (PAN).
  • the coagulation bath consisting of a metal salt solution can use a solution of metal salts of almost all metals such as silver, nickel, copper and the like.
  • metal salts of almost all metals such as silver, nickel, copper and the like.
  • silver nitrate solution, silver acetate solution, and the like can be used.
  • the spinning solution is spun into a coagulation bath, and metal ions are combined with the polymer, so that the solubility of the polymer is lowered to coagulate to form a fiber containing metal ions.
  • the spinning solution is spun into the coagulation bath (A) of FIG. 2, whereby fibers containing metal ions are formed.
  • the spinning method of the present invention is carried out by wet spinning techniques.
  • spinning is preferably performed at an elongation ratio of 10 to 300% according to the type of the polymer.
  • the polymer such as alginate in the stretching step S 130
  • the polymer chain is very rigid and hardly stretched. Therefore, the ratio of the roller speed of the first coagulation bath and the roller speed of the final flush bath is 1: 1.1. It is advisable to make the spinning at 10 percent elongation.
  • step S 140 the fiber containing the metal ions is dried.
  • Figure 2 B and C correspond to the bath of the washing step, F corresponds to the dryer.
  • Such a dryer is an essential step before and after the step of reducing the metal ions present in the fiber in the manufacture of the highly conductive fiber according to the present invention.
  • the drying process is preferably performed for a predetermined time depending on the type of polymer at a temperature of 110 to 150 °C.
  • the temperature of the dryer is 30 seconds to 1 minute at a temperature of about 120 ° C.
  • step S 150 it is to reduce the metal ions contained in the fiber.
  • reducing agents such as DMAB (dimethylamine borane), formalin, hypophosphite, DEAB (Diethylaminobenzaldehyde), and hydrazine may be used.
  • the reducing agent should be processed according to the metal for reducing the temperature and concentration, which is a condition under which the ability to reduce the metal ions is exerted, which is solidified during the process of the method of the present invention because the reducing agent has inherent reducing power. It can be changed depending on the metal salt used in the bath.
  • D is a portion corresponding to a reduction bath to reduce metal ions included in a fiber including metal ions in D, thereby producing metal nanoparticles in the fiber. After reduction, the washing takes place again in E.
  • step S160 after the step of reducing the metal ions contained in the fiber including the metal ions, the fiber is dried or heat treated to make the fiber structure dense.
  • the drying step is performed in the dryer (F), the drying process is preferably made for a time of about 1 to 5 minutes at a temperature of 110 to 150 °C. More preferably, the temperature of the dryer is 30 seconds to 1 minute at a temperature of about 130 ° C.
  • the fiber containing the metal ion is first produced through wet spinning, and in this case, the reduction of the metal ion is necessary because the fiber containing the metal ion is not conductive.
  • the reduction is performed immediately after forming the fiber through the wet spinning process, since the fiber itself contains water, the reduction between the polymers is broken and the metal ions are not properly reduced when the reduction is performed immediately. Therefore, in the present invention, as described above, by installing a dryer in front of the reduction bath to add a drying step to reduce the fiber in a dry state to reduce evenly from the surface to the inside.
  • High-strength high-conductivity fibers according to an embodiment of the present invention made by such a method as shown in Figure 3 has a dense structure without the voids (void) inside the fiber was observed and the alignment of the polymer It was confirmed that the physical properties of the fiber is excellent, and also as shown in Figure 4 it was confirmed that the metal is evenly distributed throughout the fiber is distributed to the metal nanoparticles. That is, the high-strength high-conductive fiber according to the present invention has elasticity, and this elasticity had elasticity of about 11% or more, which is supported by the experimental data of FIG. 5.
  • the high-strength high-conductivity fibers according to the present invention exhibit an electrical conductivity of up to 3,000 S / cm and may exhibit strength of about 260 mpa or more, which is also supported by the experimental data of FIG. 5.
  • Ag-alginate conductive fibers were manufactured using wet spinning. Sodium alginate was used as a fiber-forming polymer, and silver nitrate solution was used as a coagulation bath.
  • Ag-alginate fibers containing Ag ions can be made using a wet spinning process using such fiber-forming polymers and coagulation baths. However, since only the Ag ions do not exhibit conductivity, a reduction process was added in the existing wet spinning process to reduce Ag ions contained in the fiber.
  • Figure 2 shows a schematic diagram of a high-strength highly conductive fiber manufacturing method according to an embodiment of the present invention. Referring again to the schematic diagram of FIG. 2 as follows.
  • the coagulation solution used in this example is (solute: silver nitrate (400 g), solvent: distilled water (2 L) weight ratio: 20wt%, temperature: 25 °C (room temperature)).
  • B.C, E are the tubs in the washing stage that serve to clean and stretch the fibers. (100% distilled water, temperature: 25 °C normal temperature)
  • D serves as a reduction bath to reduce silver ions contained in the fiber to silver nanoparticles to impart conductivity to the fiber.
  • F is a key element in the fabrication of the highly conductive alginate fibers in this study.
  • the temperature of the dryer is 120 °C and dried for 30 seconds before and after the reduction of the fiber.
  • alginate solution (8 g of solute: alginate, 100 g mass ratio of solvent: distilled water: 8 wt%) as a spinning solution.
  • Table 1 below shows the spinning conditions of the Ag-alginate fibers used in this example.
  • the key point of this study is to be able to continuously produce high strength high conductivity fibers through wet spinning process.
  • the highly conductive fibers produced through the process of this study do not impart conductivity through the post-treatment process like conventional conductive fibers (electroless plating fibers), which saves production time and is higher than conventional conductive fibers. It has high conductivity and can be produced continuously, so it is possible to obtain large commercial efficiency.
  • Figure 3 shows the cross-sectional and surface analysis results of the fiber produced by the high-strength high-conductivity fiber manufacturing method according to an embodiment of the present invention.
  • FIG. 4a shows the EDS mapping results of the fibers produced by the high-strength high-conductivity fiber manufacturing method according to an embodiment of the present invention.
  • the Ag-to-fiber polymer weight ratio was about 18:82 when observed through the EDS fiber cross-sectional mapping.
  • FIG. 4B when the analysis was performed using TGA (Thermogravimetric Analysis), it was found that silver was distributed at about 45% of the total mass.
  • FIG. 5 illustrates a stress-strain curve of a fiber produced by the method of manufacturing a high strength high conductivity fiber according to an embodiment of the present invention. 5, it can be seen that the average breaking stress of the fiber showing the tensile strength and elongation for the random five points of the Ag-alginate fiber is about 279.4MPa, the average tensile strain is formed within about 12%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

본 발명은 고강도 고전도성 섬유의 제조 방법에 관한 것이며, 또한 이러한 방법을 이용해 제조된 고강도 고전도성 섬유에 관한 것이다. 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법은, 방사용액 및 금속염 용액으로 이루어진 응고욕을 준비하는 단계; 상기 방사 용액을 상기 응고욕으로 방사하여 금속 이온을 포함한 섬유를 형성하는 단계; 상기 금속이온을 포함한 응고된 섬유를 연신하는 단계; 상기 금속 이온을 포함한 섬유를 건조시키는 단계; 및 상기 섬유에 포함된 금속 이온을 환원시켜 섬유 내에서 금속나노입자를 형성시켜 고분자/금속나노입자 복합섬유를 제조하는 단계; 상기 금속나노입자를 포함한 섬유를 건조 또는 열처리하는 단계를 포함한다.

Description

고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유
본 발명은 고강도 고전도성 섬유의 제조 방법에 관한 것이며, 또한 이러한 방법을 이용해 제조된 고강도 고전도성 섬유에 관한 것이다.
최근 전도성 섬유 개발 동향을 파악해보면, 통상적으로 코팅 공정이나 진공증착, 무전해도금과 같은 방법으로 제조되는 것이 보통이다.
하지만 이러한 방법들은 보완해야할 점들이 아직 많이 남아 있다. 상용 섬유 표면에 후처리를 통해 전도성 피막을 코팅하여 제조하는 방법의 경우에는 외부환경에 의해 전도성이 낮아질 가능성이 있으며, 마찰에 의해 전도성 피막이 박리되거나 손실될 가능성이 있다. 또한 섬유에 전도성 필러를 임베딩 시킴으로써 섬유를 제조하는 경우에는 제조되는 섬유의 전도도가 일반적으로 낮으며 필러자체가 물성을 약화시키는 요인이 되기 때문에 섬유의 물성이 눈에 띠게 낮아지는 문제점이 있다.
따라서 이러한 단점들을 보완할 수 있는 방법에 대한 제시가 요구되고 있으며, 본 발명은 이러한 단점들을 보완하는 기술을 제시하고자 한다.
본 발명의 발명자는 본 발명의 내용을 통해 강한 강도를 가지고 일반섬유와 비슷한 성질을 가지는 전도성 섬유를 제조하여 웨어러블 산업이나 다양한 고기능 소재 산업에 기여하고자 한다.
본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법은, 방사용액 및 금속염 용액으로 이루어진 응고욕을 준비하는 단계; 상기 방사 용액을 상기 응고욕으로 방사하여 금속 이온을 포함한 섬유를 형성하는 단계; 상기 금속이온을 포함한 응고된 섬유를 연신하는 단계; 상기 금속 이온을 포함한 섬유를 건조시키는 단계; 상기 섬유에 포함된 금속 이온을 환원시켜 섬유 내에서 금속나노입자를 형성시켜 고분자/금속나노입자 복합섬유를 제조하는 단계; 상기 금속나노입자를 포함한 섬유를 건조 또는 열처리하는 단계를 포함한다.
상기 방사 용액은 고분자 사슬의 단량체에 응고욕 내에 있는 금속 이온과 인력이 작용하거나 또는 결합이 가능한 구조를 가진 고분자를 포함한다. 상기 고분자는 알지네이트 또는 폴리아크릴로니트릴(PAN)을 포함한다.
상기 방사는 습식 방사에 의해 수행되고, 상기 습식 방사는 고분자의 종류에 따라 10% - 300%의 연신비로 방사가 진행된다.
상기 금속 이온을 포함한 섬유에 포함된 금속 이온을 환원시키는 단계 이후에 상기 섬유를 건조 또는 열처리하는 단계를 추가로 포함할 수 있다.
상기 건조 또는 열처리는 110 내지 150℃의 온도에서 고분자의 종류에 따라 일정 시간 동안 이루어지는 것이 바람직하다.
본 발명의 일 실시예에 따라 제작된 고강도 고전도성 섬유는, 신축성이 우수하며, 신축성은 약 11% 이상이다.
또한, 상기 섬유의 전도도는 방사조건을 변경하면 임의로 조절이 가능하며, 최대 3,000 S/cm 이상의 전기 전도도를 나타내며, 상기 섬유는 260 mpa 이상의 강도를 나타낸다.
본 발명의 일 실시예에 따른 고강도 고전도성 섬유의 제조 방법은 습식 방사와 함께 이온교환 환원법을 이용함으로써 종래 기술의 문제점인 전도성이 낮아지거나 섬유의 물성이 떨어지는 문제점을 해결하였다.
본 발명의 일 실시예에 따른 고강도 고전도성 섬유의 제조 방법을 통해 생산 시간의 절약과 더불어 기존 전도성 섬유보다 고강도 고전도성을 나타내는 섬유를 연속적으로 생산할 수 있게 될 것이다.
도 1은 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법의 순서도를 도시한다.
도 2는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법의 모식도를 도시한다.
도 3은 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 단면 및 표면 분석 결과를 도시한다.
도 4a는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 EDS 맵핑 결과를 도시한다.
도 4b는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 TGA(Thermogravimetric Analysis) 분석 결과를 도시한다.
도 5는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 스트레스-스트레인(stress-strain) 커브를 도시한다.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다.
하기 설명은 본 발명의 실시예에 대한 기본적인 이해를 제공하기 위해서 하나 이상의 실시예들의 간략화된 설명을 제공한다. 본 섹션은 모든 가능한 실시예들에 대한 포괄적인 개요는 아니며, 모든 엘리먼트들 중 핵심 엘리먼트를 식별하거나, 모든 실시예의 범위를 커버하고자 할 의도도 아니다. 그 유일한 목적은 후에 제시되는 상세한 설명에 대한 도입부로서 간략화된 형태로 하나 이상의 실시예들의 개념을 제공하기 위함이다.
도 1은 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법의 순서도를 도시하고, 도 2는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법의 모식도를 도시한다.
본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법은, 방사용액 및 금속염 용액으로 이루어진 응고욕을 준비하는 단계(S 110); 상기 방사 용액을 상기 응고욕으로 방사하여 금속 이온을 포함한 섬유를 형성하는 단계(S 120); 상기 금속이온을 포함한 응고된 섬유를 연신하는 단계 (S 130); 상기 금속 이온을 포함한 섬유를 건조시키는 단계(S 140); 상기 섬유에 포함된 금속 이온을 환원시시켜 섬유 내에서 금속나노입자를 형성시켜 고분자/금속나노입자 복합섬유를 제조하는 단계(S 150)를 포함한다. 한편, 추가적으로 섬유에 포함된 금속 이온을 환원시시켜 섬유 내에서 금속나노입자를 형성시켜 고분자/금속나노입자 복합섬유를 제조하는 단계 이후에 상기 섬유를 건조 또는 열처리하는 단계(S 160)를 포함할 수 있다.
S 110 단계에서는 방사용액 및 금속염 용액으로 이루어진 응고욕을 준비하게 된다. 도 2에서 A는 응고욕을 나타내며 주사기에는 방사 용액이 준비되어 있다.
방사 용액은 고분자 사슬의 단량체에 응고욕 내에 있는 금속 이온과 인력이 작용하거나 또는 결합이 가능한 구조를 가진 고분자를 포함한다. 이러한 방사 용액에 포함되는 고분자는 알지네이트(alginate) 또는 폴리아크릴로니트릴(PAN)을 포함한다.
금속염 용액으로 이루어진 응고욕은 은, 니켈, 구리 등과 같은 거의 모든 금속의 금속염의 용액을 이용할 수 있다. 예를 들어 질산은 용액, 아세트산은 용액 등이 이용될 수 있다.
S 120 단계에서는 방사 용액을 응고욕으로 방사하여 금속 이온이 고분자와 결합을 하면서 고분자의 용해도가 낮아지면서 응고가 되어 금속이온이 포함된 섬유를 형성하게 된다. 도 2의 응고욕(A)에 방사 용액을 방사하고, 이에 의해 금속 이온을 포함한 섬유가 형성되게 된다.
본 발명의 방사 방법은 습식 방사 기술에 의해 진행된다. 본 발명의 습식 방사는 고분자의 종류에 따라 10 - 300%의 연신비로 방사가 진행되는 것이 바람직하다. S 130 연신단계에서 알지네이트와 같은 고분자의 경우 고분자 사슬이 매우 강직하여 연신이 거의 되지 않는 고분자의 특성을 가지고 있기 때문에 최초의 응고욕의 롤러 속도와 최종 수세욕의 롤러 속도의 비를 1:1.1로 세팅을 하여 10퍼센트의 연신비로 방사를 진행하는 것이 바람직하다.
S 140 단계에서는 금속 이온을 포함한 섬유를 건조시키는 과정을 거친다. 도 2에서 B 및 C는 세척 단계의 욕조에 해당하고, F는 건조기에 해당한다. 이러한 건조기는 본 발명에 따른 고전도성 섬유 제작에 있어서, 섬유 내에 존재하는 금속이온을 환원시키는 단계 전과 후에 꼭 필요한 핵심 단계이다.
건조 과정은 110 내지 150℃의 온도에서 고분자의 종류에 따라 일정시간 동안 이루어지는 것이 바람직하다. 알지네이트 섬유의 경우는 더욱 바람직하게는 건조기의 온도가 약 120℃ 정도의 온도에서 30초 - 1분간 이루어지는 것이 바람직하다.
S 150 단계에서는 섬유에 포함된 금속 이온을 환원시키게 된다. 환원제로는 DMAB(Dimethylamine borane), 포르말린, 차아인산염, DEAB(Diethylaminobenzaldehyde), 히드라진 등의 환원제를 사용할 수 있다. 환원제가 변경될 경우에는 각 환원제별로 금속이온을 환원시키는 능력이 발휘되는 조건인 온도 및 농도를 환원시키는 금속에 맞게 진행되어야 하며, 이는 환원제는 고유의 환원력이 있기 때문에 본 발명의 방법의 공정 중 응고욕에 사용되는 금속염에 따라 변경할 수 있다.
도 2에서 D는 환원욕에 해당하는 부분으로서 D에서 금속 이온을 포함한 섬유에 포함된 금속 이온을 환원시켜 섬유 내에서 금속나노입자를 생성키게 된다. 환원 이후 E에서 다시 세척이 이루어지게 된다.
S 160 단계에서는 금속 이온을 포함한 섬유에 포함된 금속 이온을 환원시키는 단계 이후에 상기 섬유를 건조 또는 열처리하여 섬유조직을 치밀하게 하는 과정을 거친다. 건조기(F)에서 건조 단계가 수행되며, 건조 과정은 110 내지 150℃의 온도에서 1 - 5분 정도의 시간 동안 이루어지는 것이 바람직하다. 더욱 바람직하게는 건조기의 온도가 약 130℃ 정도의 온도에서 30초 - 1분간 이루어지는 것이 바람직하다.
위에서 설명한 것처럼, 본 발명에서는 습식 방사를 통해 금속 이온을 포함한 섬유를 먼저 제작하고, 이 경우 금속 이온을 포함한 섬유만으로는 전도성을 띠지 않기 때문에 이러한 금속 이온의 환원이 필요하다. 다만, 습식 방사 공정을 통해 섬유를 형성한 직후 환원을 시킬 경우 섬유 자체가 수분을 포함하고 있기 때문에 바로 환원시킬 경우 고분자 간의 결합이 끊어지고 금속 이온 또한 제대로 환원이 이루어지지 않게 된다. 따라서, 본 발명에서는 위에서 설명한 것처럼, 환원욕 바로 앞에 건조기를 설치하여 건조 단계를 추가함으로써 건조한 상태의 섬유를 환원시켜 표면으로부터 내부까지 골고루 환원되도록 하였다.
이와 같은 방법에 의해 만들어진 본 발명의 일 실시예에 따른 고강도 고전도성 섬유는 도 3에서 보는 것처럼 섬유내부에 기공(void)이 없는 치밀한 구조의 섬유형상이 관찰되었으며 고분자들의 정렬(alignment)이 잘 이루어져 있어 섬유의 물성이 우수함을 확인할 수 있었으며, 또한 도 4에서 보는 것처럼 섬유 전체에서 골고루 금속이 환원되어 금속나노입자로 분포하고 있음을 확인할 수 있었다. 즉, 본 발명에 따른 고강도 고전도성 섬유는 신축성을 가지고 있으며, 이러한 신축성은 약 11% 이상의 신축성을 갖고 있었고, 이는 도 5의 실험데이터로부터 뒷받침되는 내용이다.
또한, 본 발명에 따른 고강도 고전도성 섬유는 최대 3,000 S/cm의 전기 전도도를 나타내고, 약 260 mpa 이상의 강도를 나타낼 수 있으며, 이러한 데이터 역시 도 5의 실험 데이터로부터 뒷받침되는 내용이다.
이하에서는 구체적인 실시예와 함께 본 발명의 내용을 추가적으로 설명하도록 하겠다.
[실시예 1]
본 실시예에서는 습식방사를 이용하여 Ag-alginate 전도성 섬유를 제조 하였다. Sodium alginate를 섬유형성 고분자로 사용하였고, 질산은 수용액을 응고욕으로 사용하였다.
이러한 섬유 형성 고분자 및 응고욕을 이용한 습식 방사 공정을 이용하여 Ag 이온이 포함된 Ag-alginate 섬유를 만들 수 있다. 하지만 Ag 이온을 가지는 것만으로는 전도성을 띄지 않기 때문에, 섬유에 포함된 Ag 이온을 환원시키기 위해 환원공정을 기존의 습식방사공정에서 추가하여 진행하였다.
환원공정의 조건은 0.07wt%의 DMAB 수용액을 환원용액으로 사용하였다. 섬유를 형성한 직후에는 섬유자체가 수분을 머금고 있기 때문에 이 상태에서 바로 환원을 시킬 경우 고분자 간의 결합이 끊어지고, 은 또한 제대로 환원이 되지 않는 문제점이 존재한다.
따라서 환원 조 바로앞에서 건조공정을 추가하여 건조한 상태의 섬유를 환원시켜 집중적으로 표면부터 환원되어 내부까지 환원된 것을 FE-SEM 분석을 통해 알 수 있었다.
도 2는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법의 모식도를 도시한다. 이러한 도 2의 모식도와 함께 다시 한번 설명하면 다음과 같다.
A는 응고욕으로서 방사되는 용액을 고화시켜 형태를 유지 할 수 있도록 해준다. 본 실시예에 사용된 응고용액은 (용질: 질산은(silver-nitrate:400g), 용매: 증류수(2L) 무게비율: 20wt%, 온도: 25℃(상온))이다.
B.C,E 는 세척단계의 욕조로서 섬유의 세척 및 연신작용 역할을 한다. (100% 증류수, 온도: 25℃ 상온)
D는 환원욕으로서 섬유에 포함된 은이온을 은나노입자로 환원시켜 섬유에 전도성을 부여시키는 역할을 한다. 본 연구의 사용된 환원용액은 (용질:DMAB(Borane dimethylamine complex : 1.5g, MW(분자량) = 58.92, 용매: 증류수(2250ml) 무게비율:0.068wt%, 온도: 45℃) 이다.
F는 건조기로서 본 연구인 고전도성 알지네이트 섬유 제작에 있어서, 섬유의 환원전과 환원후 단계에 꼭 필요한 핵심요소이다. 건조기의 온도는 120℃이며 섬유의 환원전과 환원후 각각 30초씩 건조한다.
가. 는 방사용액인 알지네이트 용액 (용질: 알지네이트8g, 용매: 증류수 100g 질량비: 8wt%)이다.
나. 는 환원전 알지네이트섬유(부도성)를 직선으로 나타내었다.
다. 는 환원후 알지네이트섬유(전도성)을 점선으로 나타내었다.
아래의 표 1은 본 실시예에서 이용된 Ag-alginate 파이버의 스피닝 조건을 나타낸다.
1st Bath (Coagulation Bath)
Composition 20wt% AgNO3 Aqueous Solution
Temperature 25 °C
Spinning rate 20 ml/Hour
Take-up roller speed 0.5 m/min
2nd Bath, 3rd Bath, 5th Bath (Washing Bath)
Composition 100% distilled water
Temperature 25 °C
Take-up roller speed 0.55 m/min
4th Bath (Reduction Bath)
Composition 0.068wt% DMAB Aqueous Solution
Temperature 45 °C
Take-up roller speed 0.55 m/min
Drying stage
Temperature 120 °C
Time 30 Seconds
Final Winding speed & Total draw ratio
Final winding speed 0.55 m/min
Total draw ratio 0.55 m/min ÷ 0.5 m/min = 1.1
본 연구의 핵심은 습식방사공정을 통하여 고강도 고전도성 섬유를 연속적으로 생산할수 있다는 점이다. 특히 본 연구의 공정을 통하여 생산된 고전도성 섬유는 기존의 전도성섬유(무전해도금섬유)처럼 후처리 공정을 통하여 전도성을 부여하는 것이 아니므로, 생산 시간의 절약은 물론이며, 기존 전도성섬유보다도 고강도 고전도성을 띄며 연속적으로 생산이 가능하여 상업적으로 큰 효율을 얻을수 있다.
도 3은 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 단면 및 표면 분석 결과를 도시한다. 단면 및 표면 분석 결과, 섬유의 물성을 약화 시킬 수 있는 기공(void)이 관찰되지 않았으며, 표면을 확인하였을 때, 고분자들의 정렬이 잘 이루어져 있음을 알 수 있었다.
또한, EDS Mapping을 통해 은 나노입자의 분포도 확인할 수 있었다. 도 4a는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 EDS 맵핑 결과를 도시한다. EDS 맵핑을 통해 섬유를 분석해본 결과, 표 2에서 처럼 은이 섬유 전체에 골고루 환원되어 분포하고 있음을 알 수 있었다. 도 4a에서 보는 것처럼 EDS 섬유 단면 맵핑을 통해 관찰했을 때 Ag와 섬유 고분자 무게비가 약 18:82 정도로 형성되어 있음을 확인할 수 있었다. 이 경우 도 4b와 같이 TGA (Thermogravimetric Analysis)를 이용하여 분석을 해보면 전체질량의 약 45%정도로 은이 분포되어있는 것을 알 수 있었다.
Element weight % atomic%
C K 47.16 63.27
O K 33.62 33.86
Ag L 19.22 2.87
Totals 100.00
연신비는 alginate가 연신이 거의 되지 않는 고분자의 특성을 가지고 있기 때문에 최조의 응고욕의 롤러 속도와 최종 수세욕의 롤러 속도의 비를 1:1.1로 세팅을 하여 10퍼센트의 연신비로 방사를 진행하였다. 이렇게 제조된 Ag-alginate 섬유는 1,137 S/cm 의 전도도를 가진다는 것을 two-point probe를 이용하여 측정할 수 있었고, 110um의 직경을 가지는 것을 확인할 수 있었다. Universal testing machine을 통해 섬유가 269mpa의 기계적 강도와 11.7%의 신도를 가지는 것을 확인할 수 있었다. 도 5는 본 발명의 일 실시예에 따른 고강도 고전도성 섬유 제조 방법에 의해 제작된 섬유의 스트레스-스트레인(stress-strain) 커브를 도시한다. 도 5를 통해 Ag-alginate 섬유의 무작위 5지점에 대한 인장강도 및 신도를 나타내어주는 섬유의 average breaking stress는 약 279.4MPa, average tensile strain은 약 12%내에서 형성됨을 알 수 있었다.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.

Claims (9)

  1. 방사용액 및 금속염 용액으로 이루어진 응고욕을 준비하는 단계;
    상기 방사 용액을 상기 응고욕으로 방사하여 금속 이온을 포함한 섬유를 형성하는 단계;
    상기 금속이온을 포함한 응고된 섬유를 연신하는 단계;
    상기 섬유를 건조시키는 단계; 및
    상기 섬유에 포함된 금속 이온을 환원시켜 섬유 내에서 금속나노입자를 형성시켜 고분자-금속나노입자 복합섬유를 제조하는 단계를 포함하는,
    고강도 고전도성 섬유 제조 방법.
  2. 제 1 항에 있어서,
    상기 방사 용액은 고분자 사슬의 단량체에 응고욕 내에 있는 금속 이온과 인력이 작용하거나 또는 결합이 가능한 구조를 가진 고분자를 포함하는,
    고강도 고전도성 섬유 제조 방법.
  3. 제 2 항에 있어서,
    상기 고분자는 알지네이트 또는 폴리아크릴로니트릴(PAN)을 포함하는,
    고강도 고전도성 섬유 제조 방법.
  4. 제 1 항에 있어서,
    상기 방사는 습식 방사에 의해 수행되는,
    고강도 고전도성 섬유 제조 방법.
  5. 제 4 항에 있어서,
    상기 습식 방사는 10% - 300%의 연신비로 방사가 진행되는,
    고강도 고전도성 섬유 제조 방법.
  6. 제 1 항에 있어서,
    상기 고분자-금속나노입자 복합섬유를 제조하는 단계 이후에 상기 섬유를 건조 또는 열처리하는 단계를 추가로 포함하는,
    고강도 고전도성 섬유 제조 방법.
  7. 제 1 항에 있어서,
    상기 건조는 110 내지 150℃의 온도에서 일정 시간 동안 이루어지는,
    고강도 고전도성 섬유 제조 방법.
  8. 제 6 항에 있어서,
    상기 건조는 110 내지 150℃의 온도에서 일정 시간 동안 이루어지는,
    고강도 고전도성 섬유 제조 방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항의 방법에 따라 제조되고,
    섬유는 금속 나노 입자를 포함하고 있으며,
    상기 금속 나노 입자는 섬유의 표면과 내부에 모두 배치되고,
    상기 섬유는 11% 이상의 신축성을 가지며, 3000 S/cm 이하의 전기 전도도를 나타내고, 260mpa 이상의 강도를 나타내는,
    고강도 고전도성 섬유.
PCT/KR2017/008707 2016-08-12 2017-08-10 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유 WO2018030823A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160102790A KR101733927B1 (ko) 2016-08-12 2016-08-12 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유
KR10-2016-0102790 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018030823A1 true WO2018030823A1 (ko) 2018-02-15

Family

ID=60164275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008707 WO2018030823A1 (ko) 2016-08-12 2017-08-10 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유

Country Status (2)

Country Link
KR (1) KR101733927B1 (ko)
WO (1) WO2018030823A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704186A (zh) * 2021-08-10 2023-02-17 铨程国际股份有限公司 具有透湿性的高强度防护布及其制造方法
CN115928423A (zh) * 2021-08-10 2023-04-07 铨程国际股份有限公司 具有防臭抗菌的高强度防护布及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733927B1 (ko) * 2016-08-12 2017-05-08 성균관대학교산학협력단 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유
KR102231426B1 (ko) * 2019-11-11 2021-03-23 중앙대학교 산학협력단 코어-쉘 구조의 광촉매 섬유 복합체, 이의 제조방법
KR102130936B1 (ko) 2020-03-03 2020-07-06 주식회사 파이버엔텍 항바이러스성 알긴산 복합섬유의 제조방법 및 항바이러스성 알긴산 복합섬유

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090050872A (ko) * 2007-11-16 2009-05-20 한양대학교 산학협력단 금속 섬유의 제조방법 및 이를 이용하여 제조된 금속 섬유
KR20120111661A (ko) * 2011-04-01 2012-10-10 삼성전자주식회사 신축가능한 전도성 나노섬유, 이를 이용한 신축가능한 섬유전극 및 그 제조방법
KR101420084B1 (ko) * 2013-05-10 2014-07-21 한국화학연구원 전도성 장섬유의 제조방법 및 이를 통해 제조된 전도성 장섬유
KR20150139367A (ko) * 2014-06-03 2015-12-11 한국전기연구원 탄소나노소재와 금속나노소재가 복합화된 고전도성 고분자복합체 전도성 섬유 및 그 제조방법
KR101733927B1 (ko) * 2016-08-12 2017-05-08 성균관대학교산학협력단 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090050872A (ko) * 2007-11-16 2009-05-20 한양대학교 산학협력단 금속 섬유의 제조방법 및 이를 이용하여 제조된 금속 섬유
KR20120111661A (ko) * 2011-04-01 2012-10-10 삼성전자주식회사 신축가능한 전도성 나노섬유, 이를 이용한 신축가능한 섬유전극 및 그 제조방법
KR101420084B1 (ko) * 2013-05-10 2014-07-21 한국화학연구원 전도성 장섬유의 제조방법 및 이를 통해 제조된 전도성 장섬유
KR20150139367A (ko) * 2014-06-03 2015-12-11 한국전기연구원 탄소나노소재와 금속나노소재가 복합화된 고전도성 고분자복합체 전도성 섬유 및 그 제조방법
KR101733927B1 (ko) * 2016-08-12 2017-05-08 성균관대학교산학협력단 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115704186A (zh) * 2021-08-10 2023-02-17 铨程国际股份有限公司 具有透湿性的高强度防护布及其制造方法
CN115928423A (zh) * 2021-08-10 2023-04-07 铨程国际股份有限公司 具有防臭抗菌的高强度防护布及其制造方法

Also Published As

Publication number Publication date
KR101733927B1 (ko) 2017-05-08

Similar Documents

Publication Publication Date Title
WO2018030823A1 (ko) 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유
CN108273399B (zh) 增强型中空纤维膜及其制备方法和应用
JP6852200B2 (ja) 改質繊維製品、調製方法及びその使用
KR102193267B1 (ko) 전도성 섬유
Ali et al. Enhancement in ageing and functional properties of copper-coated fabrics by subsequent electroplating
JPWO2013157613A1 (ja) 炭素繊維束および炭素繊維束の製造方法
KR20180021360A (ko) 그래핀 섬유 복합체 및 그 제조 방법
JP4023226B2 (ja) 炭素繊維束の処理方法
CN114032675B (zh) 导电纤维及其制备方法
JP2006152533A (ja) ポリパラフェニレンテレフタルアミド繊維複合体およびその用途
Lee et al. Fabrication of highly conductive fibers by metal ion-exchange using a simply modified wet-spinning process
Geng et al. The strategic use of hyperbranched polyamidoamine through chemical bonding in fabricating stable, highly conductive Ag-plated aramid fiber
WO2022089510A1 (zh) 可拉伸的导电纱线及其制造方法
JP2007186802A (ja) 耐炎化繊維および炭素繊維の製造方法
JP5899669B2 (ja) 耐炎化繊維束の製造方法
KR20230160942A (ko) 해조 섬유 및 이의 제조 방법
JPH11181679A (ja) ポリパラフェニレンテレフタルアミド繊維複合体およびその用途
CN115354410B (zh) 聚酰亚胺纤维及其制备方法和用途
JP2003234013A (ja) 電気伝導体
CN114302984B (zh) 可拉伸的导电纱线及其制造方法
CN114716718B (zh) 双网络导电水凝胶及其制备方法
JP2003020516A (ja) 炭素繊維用ポリアクリロニトリル系前駆体繊維及びその製造方法
JP6359860B2 (ja) 炭素繊維前駆体繊維および炭素繊維前駆体繊維の製造方法
KR102261388B1 (ko) 폴리비닐 알코올 고분자 섬유, 이의 제조방법, 및 폴리비닐 알코올 고분자 섬유의 강도 향상방법
CN114921864B (zh) 一种湿度响应瓜尔胶纤维及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839840

Country of ref document: EP

Kind code of ref document: A1