WO2022089510A1 - 可拉伸的导电纱线及其制造方法 - Google Patents

可拉伸的导电纱线及其制造方法 Download PDF

Info

Publication number
WO2022089510A1
WO2022089510A1 PCT/CN2021/126915 CN2021126915W WO2022089510A1 WO 2022089510 A1 WO2022089510 A1 WO 2022089510A1 CN 2021126915 W CN2021126915 W CN 2021126915W WO 2022089510 A1 WO2022089510 A1 WO 2022089510A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
sbs
soaking
acrylate
solution
Prior art date
Application number
PCT/CN2021/126915
Other languages
English (en)
French (fr)
Inventor
马志军
郑子剑
庄秋娜
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Priority to CN202180003441.5A priority Critical patent/CN114302984B/zh
Publication of WO2022089510A1 publication Critical patent/WO2022089510A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Definitions

  • the present invention generally relates to a superstretchable and highly conductive yarn and a method of making the same.
  • Wearable electronics play an increasingly important role in human daily life. They are often designed in the form of straps and watches worn on the wrist, footwear on the feet, glasses and helmets on the head, and products including smart clothing, backpacks, walking sticks and accessories. Typical applications of wearable electronics include sports/health monitoring, positioning, communication, entertainment, electronic payment, etc. According to market statistics, the global wearable electronics market size can reach US$31.27 billion in 2020, which is equivalent to an annual growth of 17.8% during 2015-2020. Wearable electronics will be a huge market. In addition to functionality, consumers will also have higher and higher requirements for the comfort of future wearable electronics. High-performance elastic conductive materials as basic components have become a major influence on the further development of wearable electronics technology.
  • yarn is the basic and most important material for the production of garments. Fabrics made from yarn typically have good air and moisture permeability, as well as a soft touch. In order to provide wearing comfort and convenience, one of the most important trends in the future development of wearable electronics is to integrate electronic devices with clothing, or directly impart electronic functions to clothing. Conductive yarns are the basis of electronic textile materials. Therefore, it will play an important role in the future development of high-performance wearable electronics. To meet the demand for large deformation adaptability of wearable electronic products, such as devices used at the joints of the human body, it is urgent to develop high-performance elastic conductive yarns.
  • the elastic conductive yarns disclosed so far have at least the following disadvantages: 1. They cannot have high stretchability and electrical conductivity at the same time; 2. The manufacturing process is not suitable for industrialization; and 3. The manufacturing cost is too high to be commercialized.
  • the present invention discloses a method for making a stretchable conductive yarn comprising: providing a rod composed of an elastomer, the elastomer being poly(styrene-block-butadiene-block-styrene ) (SBS), hydrogenated poly(styrene-block-butadiene-block-styrene)) (SEBS) or polyurethane (PU); the rod is inserted into a first pipe to generate a first fiber preform; heating and drawing the first fiber preform to generate a first composite fiber having a core-spun structure; cutting the first composite fiber into a plurality of composite fiber strips; inserting a composite fiber strip into a second tube composed of a second acrylic polymer to produce a second fiber preform; heating and drawing the second fiber preform to produce a second composite fiber; the second composite fiber
  • the fibers are soaked in a glacial acetic acid solution or a formic acid solution to remove the first acrylate-based polymer and the second acryl
  • the step of providing a rod composed of an elastomer includes preparing the rod by solution casting or hot extrusion of the elastomer.
  • the first acrylate-based polymer is polymethyl methacrylate (PMMA) or polyethyl methacrylate
  • the second acrylate-based polymer is PMMA or polyethyl methacrylate
  • the first acrylate-based polymer and the second acrylate-based polymer have the same acrylate-based polymer.
  • the first acrylate-based polymer and the second acrylate-based polymer have different acrylate-based polymers.
  • the elastomer is SBS, and the first acrylate-based polymer and the second acrylate-based polymer are PMMA.
  • the step of heating and drawing the first fiber preform includes a thermal drawing temperature of 150°C to 350°C.
  • the method further includes stacking the plurality of composite fiber strands together and inserting the stacked composite fiber strands into the second tube.
  • the second fiber preform is rotated to twist the filaments of the multifilament yarn while the second fiber preform is heated and drawn.
  • the speed at which the second fiber preform is rotated is 1 to 50 revolutions/cm.
  • the step of heating and drawing the second fiber preform includes thermal drawing at a temperature of 150°C to 350°C.
  • the step of soaking the second composite fiber in the glacial acetic acid solution or the formic acid solution includes a soaking time of 5 minutes to 30 minutes and a soaking temperature of 25°C to 118°C.
  • the filaments of the multifilament yarn have a diameter of 1 ⁇ m to 1000 ⁇ m.
  • the alcoholic solvent is ethanol, methanol, ethylene glycol or propanol.
  • the step of soaking the multifilament yarn in the AgTFA solution includes soaking for a time ranging from 3 minutes to 60 minutes.
  • the reducing agent of the reducing agent solution is sodium borohydride, phenol or ascorbic acid
  • the solvent of the reducing agent solution is water or an alcohol solvent
  • the step of soaking the Ag ion-loaded multifilament yarn in the reducing agent solution includes soaking for more than 5 minutes.
  • the present invention also discloses a method for making a stretchable conductive yarn, comprising: providing a rod composed of an elastomer, the elastomer being poly(styrene-block-butadiene-block-benzene) ethylene) (SBS), hydrogenated poly(styrene-block-butadiene-block-styrene)) (SEBS) or polyurethane (PU); the rod is inserted into a tube composed of an acrylate polymer to thereby A fiber preform is generated; the fiber preform is heated and stretched to generate a composite fiber with a core-spun structure; the composite fiber is soaked in a glacial acetic acid solution or a formic acid solution to remove the acrylic polymer in the composite fiber to generate A monofilament yarn composed of the elastomer; the monofilament yarn is soaked in a silver trifluoroacetate (AgTFA) solution including an alcohol solvent to load the monofilament yarn with silver (Ag) ions
  • the step of providing a rod composed of an elastomer includes preparing the rod by solution casting or hot extrusion of the elastomer.
  • the acrylate-based polymer is polymethyl methacrylate (PMMA) or polyethyl methacrylate.
  • the elastomer is SBS and the acrylate-based polymer is PMMA.
  • the step of heating and drawing the fiber preform includes a thermal drawing temperature of 150°C to 350°C.
  • the step of soaking the composite fiber in the glacial acetic acid solution or the formic acid solution includes soaking time of 5 minutes to 30 minutes and soaking temperature of 25°C to 118°C.
  • the filaments of the monofilament yarn have a diameter of 1 ⁇ m to 1000 ⁇ m.
  • the alcoholic solvent is ethanol, methanol, ethylene glycol or propanol.
  • the step of soaking the monofilament yarn in the AgTFA solution includes soaking for a time ranging from 3 minutes to 60 minutes.
  • the reducing agent of the reducing agent solution is sodium borohydride, phenol or ascorbic acid
  • the solvent of the reducing agent solution is water or an alcohol solvent
  • the step of soaking the Ag ion-loaded monofilament yarn in the reducing agent solution includes soaking for more than 5 minutes.
  • the present invention also discloses a stretchable conductive yarn, which is manufactured by the above method.
  • FIG. 1 illustrates a method of manufacturing a stretchable conductive yarn (Ag-SBS yarn) according to some embodiments of the present invention.
  • Figure 2A shows a photograph of Ag-SBS yarn.
  • Figure 2B shows the SEM image of the Ag-SBS yarn.
  • Figure 2C shows an SEM image of a cross-section of the Ag-SBS yarn.
  • Figure 2D shows photographs of Ag-SBS yarns in the relaxed state (top) and in the stretched state (bottom).
  • Figure 2E shows the stress-strain curves of Ag-SBS yarns.
  • Figure 2F shows the resistance of Ag-SBS yarns as a function of applied strain.
  • Figure 2G shows cyclic tensile release at strains above the critical strain of the Ag-SBS yarn, above which the material becomes electrically insulating.
  • Figure 3A shows an SEM image of an Ag-SBS yarn with a twist of 0 T/cm.
  • Figure 3B shows an SEM image of an Ag-SBS yarn with a twist of 4 T/cm.
  • Figure 3C shows an SEM image of an Ag-SBS yarn with a twist of 10 T/cm.
  • Figure 3D shows an SEM image of an Ag-SBS yarn with a filament number of 1.
  • Figure 3E shows an SEM image of an Ag-SBS yarn with a filament count of 87.
  • Figure 3F shows an SEM image of an Ag-SBS yarn with a filament count of 217.
  • Figure 4A shows SEM images of Ag-SBS yarns treated by 1 cycle of Ag loading.
  • Figure 4B shows SEM images of Ag-SBS yarns treated by 7 cycles of Ag loading.
  • Figure 4C shows SEM images of Ag-SBS yarns treated by 15 cycles of Ag loading.
  • Figure 4D shows the change in Ag thickness in Ag-SBS yarns treated with different Ag loading cycles.
  • Figure 4E shows the change in Ag mass ratio in Ag-SBS yarns treated with different Ag loading cycles.
  • Figure 4F shows the stress-strain curves of Ag-SBS yarns treated via different Ag loading cycles.
  • Figure 4G shows the "strain at break” and modulus of Ag-SBS yarns as a function of the treatment cycle used to load Ag.
  • Figure 4H shows the change in resistance of Ag-SBS yarns treated via different Ag loading cycles with increasing applied strain.
  • Figure 4I shows the change in conductivity and critical strain (over which the yarn suddenly becomes insulating) for Ag-SBS yarns with variable Ag loading cycles.
  • Figure 5A shows an SEM image of fibers prepared from 2-ply Ag-SBS yarns.
  • Figure 5B shows photographs and SEM images (inset) of fabrics prepared by weaving Ag-SBS yarns.
  • Figure 5C shows photographs and SEM images (inset) of fabrics prepared by knitting Ag-SBS yarns.
  • Figure 5D shows the change in stress-strain curves for single yarn, 2-ply fibers, woven fabrics, and knitted fabrics.
  • Figure 5E shows the relative resistance of single yarn (curve with square markers), 2-ply fibers (curve with circle markers), woven fabric (curve with upper triangle markers), and knitted fabric (curve with lower triangle markers) - Changes in the strain curve (R s refers to the resistance when strain is applied, R s0 refers to the resistance in the relaxed state).
  • Figure 5F shows the critical strain for different samples.
  • the present invention provides a stretchable conductive yarn and a manufacturing method thereof.
  • the stretchable conductive yarn is composed of elastomer yarn and Ag particles dispersed in and on the elastomer yarn.
  • the fabrication method is based on co-thermal drawing of polymers and elastomers and post-loading of silver particles and is a scalable production technology.
  • the stretchable conductive yarns produced by the present method may include multifilament yarns (ie, multifilament yarns) or monofilament yarns (ie, monofilament yarns).
  • the present invention discloses a method for making a stretchable conductive yarn comprising: providing a rod composed of an elastomer, the elastomer being poly(styrene-block-butadiene-block-styrene ) (SBS), hydrogenated poly(styrene-block-butadiene-block-styrene)) (SEBS) or polyurethane (PU); the rod is inserted into a first pipe to generate a first fiber preform; heating and drawing the first fiber preform to generate a first composite fiber having a core-spun structure; cutting the first composite fiber into a plurality of composite fiber strips; inserting a composite fiber strip into a second tube composed of a second acrylic polymer to produce a second fiber preform; heating and drawing the second fiber preform to produce a second composite fiber; the second composite fiber
  • the fibers are soaked in a glacial acetic acid solution or a formic acid solution to remove the first acrylate-based polymer and the second acryl
  • the step of providing a rod composed of an elastomer includes preparing the rod by solution casting or hot extrusion of the elastomer.
  • the first acrylate-based polymer is polymethyl methacrylate (PMMA) or polyethyl methacrylate
  • the second acrylate-based polymer is PMMA or polyethyl methacrylate
  • the first acrylate-based polymer and the second acrylate-based polymer have the same acrylate-based polymer.
  • the first acrylate-based polymer and the second acrylate-based polymer have different acrylate-based polymers.
  • the elastomer is SBS, and the first acrylate-based polymer and the second acrylate-based polymer are PMMA.
  • the step of heating and drawing the first fiber preform includes a thermal drawing temperature of 150°C to 350°C.
  • the method further includes stacking the plurality of composite fiber strands together and inserting the stacked composite fiber strands into the second tube.
  • the second fiber preform is rotated to twist the filaments of the multifilament yarn while the second fiber preform is heated and drawn.
  • the speed at which the second fiber preform is rotated is 1 to 50 revolutions/cm.
  • the step of heating and drawing the second fiber preform includes thermal drawing at a temperature of 150°C to 350°C.
  • the step of soaking the second composite fiber in the glacial acetic acid solution or the formic acid solution includes a soaking time of 5 minutes to 30 minutes and a soaking temperature of 25°C to 118°C.
  • the filaments of the multifilament yarn have a diameter of 1 ⁇ m to 1000 ⁇ m.
  • the alcoholic solvent is ethanol, methanol, ethylene glycol or propanol.
  • the step of soaking the multifilament yarn in the AgTFA solution includes soaking for a time ranging from 3 minutes to 60 minutes.
  • the reducing agent of the reducing agent solution is sodium borohydride, phenol or ascorbic acid
  • the solvent of the reducing agent solution is water or an alcohol solvent
  • the step of soaking the Ag ion-loaded multifilament yarn in the reducing agent solution includes soaking for more than 5 minutes.
  • the present invention also discloses a method for making a stretchable conductive yarn, comprising: providing a rod composed of an elastomer, the elastomer being poly(styrene-block-butadiene-block-benzene) ethylene) (SBS), hydrogenated poly(styrene-block-butadiene-block-styrene)) (SEBS) or polyurethane (PU); the rod is inserted into a tube composed of an acrylate polymer to thereby A fiber preform is generated; the fiber preform is heated and stretched to generate a composite fiber with a core-spun structure; the composite fiber is soaked in a glacial acetic acid solution or a formic acid solution to remove the acrylic polymer in the composite fiber to generate A monofilament yarn composed of the elastomer; the monofilament yarn is soaked in a silver trifluoroacetate (AgTFA) solution including an alcohol solvent to load the monofilament yarn with silver (Ag) ions
  • the step of providing a rod composed of an elastomer includes preparing the rod by solution casting or hot extrusion of the elastomer.
  • the acrylate-based polymer is polymethyl methacrylate (PMMA) or polyethyl methacrylate.
  • the elastomer is SBS and the acrylate-based polymer is PMMA.
  • the step of heating and drawing the fiber preform includes a thermal drawing temperature of 150°C to 350°C.
  • the step of soaking the composite fiber in the glacial acetic acid solution or the formic acid solution includes soaking time of 5 minutes to 30 minutes and soaking temperature of 25°C to 118°C.
  • the filaments of the monofilament yarn have a diameter of 1 ⁇ m to 1000 ⁇ m.
  • the alcoholic solvent is ethanol, methanol, ethylene glycol or propanol.
  • the step of soaking the monofilament yarn in the AgTFA solution includes soaking for a time ranging from 3 minutes to 60 minutes.
  • the reducing agent of the reducing agent solution is sodium borohydride, phenol or ascorbic acid
  • the solvent of the reducing agent solution is water or an alcohol solvent
  • the step of soaking the Ag ion-loaded monofilament yarn in the reducing agent solution includes soaking for more than 5 minutes.
  • the stretchable conductive yarn (Ag-SBS yarn) of this example consists of SBS yarn and Ag nanoparticles dispersed in the matrix and surface of the SBS yarn and coated on the surface of its SBS filaments.
  • the SBS yarn is an SBS multifilament yarn composed of a plurality of SBS filaments.
  • Ag-SBS yarn 100 is fabricated according to the steps of the method shown in FIG. 1 .
  • step S11 the SBS rod 111 is prepared by solution casting or hot extrusion of the SBS material. Then, the SBS rod 111 is inserted into the hollow PMMA tube 112, thereby generating the SBS@PMMA fiber preform 113 with a core-clad layer structure.
  • step S12 the SBS@PMMA fiber preform 113 is heated and drawn by the fiber drawing tower 121 including the melting furnace 1211 to generate the SBS@PMMA fiber 122 having a core-spun structure.
  • step S13 the SBS@PMMA fiber 122 is cut into a plurality of SBS@PMMA fiber strips 131 .
  • step S14 a plurality of SBS@PMMA fiber strips 131 are stacked into fiber rods 141 .
  • step S15 the fiber rod 141 is inserted into another hollow PMMA tube 151, thereby generating a cylindrical SBS-PMMA fiber preform 152.
  • step S16 the SBS-PMMA fiber preform 152 is rotated, and simultaneously, the SBS-PMMA fiber preform 152 is heated and drawn by the fiber drawing tower 161 including the melting furnace 1611 to generate the SBS-PMMA fiber 162 .
  • step S17 the SBS-PMMA fiber 162 is soaked in glacial acetic acid 171 to remove the PMMA component in the SBS-PMMA composite fiber 162, thereby generating an SBS yarn 172 composed of a plurality of SBS filaments 173 (ie SBS multifilament yarn).
  • step S18 the SBS yarn 172 is soaked in a silver trifluoroacetate (AgTFA) solution 181 with ethanol as a solvent to load a silver precursor including silver ions into the matrix of the SBS yarn 172, thereby generating a load SBS yarn with Ag ions (Ag + -SBS yarn 182).
  • step S19 the Ag + -SBS multifilament yarn 182 loaded with silver trifluoroacetate is soaked in a hydrazine ethanol solution 191 to reduce silver ions to silver particles attached to the surface and inside of the SBS yarn 172 , thereby generating Ag - SBS Yarn 100.
  • AgTFA silver trifluoroacetate
  • SBS Poly(styrene-block-butadiene-block-styrene)
  • PMMA polymethyl methacrylate
  • Ethylene, glacial acetic acid, 99% pure dichloroethane (DCE) and 80% pure hydrazine hydrate are available. Supplied with silver trifluoroacetate.
  • SBS@PMMA fiber preforms with core-clad layer structure First, SBS rods were prepared using SBS powder. SBS powder was dissolved in DCE at the appropriate concentration. The SBS solution was then poured into a Teflon mold and left to evaporate the solvent. After being completely dried, a thick SBS film was obtained on the bottom of the Teflon mold and peeled off. The SBS thick film was rolled into a rod with a diameter slightly smaller than the inner diameter of the PMMA tube (used as the cladding of the composite fiber preform). In addition to the casting manufacturing method, the SBS rod can also be hot extruded using a co-rotating twin screw extruder. Insert the SBS rod into the PMMA tube to obtain the SBS@PMMA fiber preform.
  • Hot drawing of SBS@PMMA fiber The SBS@PMMA fiber preform is fixed by a steel sleeve connected to a servo motor. A motor with preforms is mounted on a drawing tower to draw out SBS@PMMA fibers. During fiber drawing, the furnace temperature is gradually increased until the preform softens and elongates. Preform feeding speed and fiber drawing speed are precisely adjusted to ensure smooth fiber drawing and control fiber diameter. The temperature of the drawn fiber is set to about 255°C. To fabricate SBS yarns, the obtained SBS@PMMA fibers were cut into short-length SBS@PMMA fiber strips and stacked together to form cylindrical rods with a diameter slightly smaller than the inner diameter of the PMMA tube.
  • a cylindrical rod of stacked fiber strips was inserted into a PMMA tube to obtain a preform for drawing SBS-PMMA fibers, which contained multiple SBS filaments.
  • Preform feeding speed and fiber drawing speed are precisely adjusted to ensure smooth fiber drawing and control fiber diameter.
  • the preform was rotated to twist the SBS-PMMA fibers.
  • Preparation of SBS yarn The SBS-PMMA fibers obtained in the above steps were soaked in glacial acetic acid to remove the PMMA component. Typically, the soaking time is in the range of 5 to 30 minutes, depending on the temperature of the soaking solution. Higher temperature is beneficial to accelerate the removal of PMMA. The soaking temperature is preferably in the range of room temperature to 60°C. After soaking, the resulting SBS yarns were rinsed with fresh glacial acetic acid to remove residual PMMA. Finally, the SBS yarn is air-dried naturally.
  • Silver trifluoroacetate was dissolved in ethylene at a concentration of 0.1-1 g/mL. Dried SBS yarns were soaked in the above solution for about 5 minutes, then removed and left to dry naturally. The dried yarn was then soaked in a solution of hydrazine in ethanol. Typical soaking time is no less than 5 minutes. After that, the Ag-SBS yarn was taken out and soaked in fresh ethylene for no less than 10 minutes to remove the remaining hydrazine, and then placed in air to dry to obtain the final stretchable and conductive Ag-SBS yarn.
  • a home-made setup consisting of a Keithley 2400 source meter and a Zolix moving plate was used to study the electrical properties of Ag-SBS yarns. Both ends of the Ag-SBS yarn were fixed to a pair of clapper plates of the Zolix mobile plate. The two pairs of electrodes of the Keithley 2400 source meter were connected to both ends of the membrane. During the stretching of the film by the Zolix moving plate, the change in sheet resistance was automatically recorded by the computer.
  • the existing preparation strategies of stretchable conductive fibers, wires and yarns mainly include the following types: (1) spinning a mixture of natural or chemical synthetic fibers and metal fibers into composite yarns; (2) using dip coating, physical deposition Or the method of chemical reaction, coating elastomer fibers or yarns with metal or carbon materials; (3) winding metal wires or carbon fibers on the elastomer core fibers to form composite fibers.
  • an extra protective shell is coated on the outside for protection; (4) carbon nanotube fibers are twisted for stretchability; (5) conductive fillers, including metal nanowires, metal nanoflakes, metal nanoparticles , metal nanoflowers, carbon nanotubes, carbon black, graphene or conductive polymers, dispersed in a matrix of elastic fibers or yarns.
  • the twist can be adjusted by changing the rotational speed of the servo motor holding the preform, while the number of filaments can be changed by changing the number of SBS@PMMA fiber strips stacked in the preform.
  • the loading of conductive fillers in elastomeric fibers or yarns prepared by wet spinning in most of the reported methods is performed by dispersing the conductive fillers in an elastomer solution. Achieving homogeneous conductive filler and elastomer suspensions with high dispersibility and long-term stability is technically challenging.
  • Ag loading in the present method is achieved by soaking SBS yarns in an ethanolic solution of silver trifluoroacetate followed by reduction. This method is very simple and effective. Therefore, the manufacturing method of the stretchable conductive yarn proposed by the present invention is very promising in industrial application.
  • FIG. 2A shows a photograph of a roll of Ag-SBS yarn with a total length of about 500 m.
  • the Ag-SBS yarn consisted of 87 SBS filaments with a diameter of about 10 ⁇ m (Fig. 2B).
  • Silver nanoparticles were dispersed on the surface and inside of the yarn (Fig. 2C).
  • Ag-SBS yarns are highly stretchable (Fig. 2D). It can be stretched to more than 15 times its original length before mechanical fracture (Fig. 2E). Its resistance increases rapidly with applied strain and becomes insulating at strains above 148%. As the strain is released, it conducts again at about 145% strain (Fig. 2F).
  • the conductivity of Ag-SBS yarns could be maintained after repeated stretching and releasing (Fig. 2G).
  • the twist of the final Ag-SBS yarn can be flexibly adjusted by changing the rotational speed of the servo motor holding the preform (while keeping the preform feeding speed and the fiber drawing speed fixed) (Figs. 3A-3C).
  • the present invention demonstrates the fabrication of Ag-SBS yarns with different filament counts ( Figures 3D-3F).
  • the mechanical, electrical, and electromechanical properties of Ag-SBS yarns can be tuned by changing the treatment cycle used to load Ag nanoparticles.
  • the stretchability and flexibility of Ag-SBS yarns decreased with increasing Ag-loaded treatment cycles ( Figures 4F and 4G), while their electrical conductivity changed inversely (curves with square markers in Figure 4I).
  • the change in the critical strain of the yarn is not monotonic with increasing loading cycles (curves with circle markers in Figure 4H and Figure 4I).
  • the samples treated with 5 cycles exhibited the highest critical strain.
  • the conductivity of this sample is about 2536 S/cm, which is high enough for a large number of applications. Therefore, for different applications, the present method can tune the mechanical, electrical, and electromechanical properties of Ag-SBS yarns to achieve a balance only by changing the treatment period for loading Ag nanoparticles.
  • Ag-SBS yarns are mechanically strong enough for post-processing such as plying, weaving, and knitting to make various textiles.
  • 2-ply fibers, woven fabrics, and knitted fabrics were fabricated (FIGS. 5A-5C).
  • the stretchability of the 2-ply fibers and the woven fabric decreased only slightly, while the knitted fabric exhibited higher stretchability (Fig. 5D).
  • the electromechanical properties of the woven fabric are almost identical to that of the single yarn, while the critical strain of the two-ply fibers and the knitted fabric is much higher ( Figures 5E and 5F).
  • the method is environmentally friendly, can flexibly adjust the geometric properties, mechanical properties and electrical properties of the yarn, and is simple and efficient to load conductive fillers.
  • the superelastic, highly conductive yarns prepared by this method can be further processed into various textiles, such as 2-ply fibers, woven fabrics, and knitted fabrics.
  • the present disclosure provides the manufacture of SBS-PMMA fibers by heat drawing on a fiber draw tower, and the manufacture of SBS-PMMA fibers containing a plurality of SBS cores, ie, comprising a plurality of elastomeric filaments, by heat drawing on a fiber draw tower fiber.
  • Certain embodiments of the present disclosure include adjusting the twist and filament count simply by changing the rotational speed of the preform and the number of SBS@PMMA fiber strips stacked in the preform.
  • SBS fibers or yarns are usually produced by wet spinning, and toxic organic solvents are inevitably used to prepare SBS solutions.
  • PMMA which is an inexpensive polymer that is easily heat-drawn into fibers, is used to coat the SBS and guide the heat-drawing of the SBS. After removing the PMMA component in the SBS-PMMA composite fiber after heat drawing, the SBS fiber or yarn can be prepared. The loading of silver nanoparticles can be achieved by post-soaking and reduction. Therefore, the present invention solves the problem of inevitably using toxic organic solvents in wet spinning of SBS fibers or yarns.
  • the present invention can be applied to antistatic gloves, electromagnetic shielding clothing, medical or sports monitoring, wearable electronic products or soft robots.
  • the present invention can be applied to the clothing industry, the fashion industry, the medical industry or the electronic industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种可拉伸的导电纱线及其制造方法,该可拉伸的导电纱线由弹性体纱线和分散在弹性体纱线中和表面的银颗粒组成。该制造方法基于聚合物和弹性体的共热拉延和银颗粒的后加载,属于可扩展的生产技术。该制造方法简单、高效且成本效益高,同时可避免使用有毒的有机溶剂。

Description

可拉伸的导电纱线及其制造方法 技术领域
本发明总体上涉及一种具有超拉伸性和高导电性的纱线及其制造方法。
背景技术
可穿戴电子产品在人类日常生活中扮演越来越重要的角色。它们通常设计成戴在手腕上的条带和手表、穿在脚上的鞋袜、戴在头上的眼镜和头盔以及包括智能服装、背包、手杖和配件等产品的形式。可穿戴电子产品的典型应用包括运动/健康监测、定位、通讯、娱乐、电子支付等。根据市场统计,2020年全球可穿戴电子产品市场规模可达到312.7亿美元,相当于2015-2020年期间每年增长17.8%。可穿戴电子产品将是一个巨大的市场。除了功能之外,消费者对未来可穿戴电子产品的舒适性的要求也将越来越高。作为基础部件的高性能弹性导电材料已成为对可穿戴电子产品技术进一步发展产生重大影响。
另一方面,纱线是生产服装的基本和最重要的材料。由纱线制成的织物通常具有良好的透气性和透湿性,以及柔软的触感。为了提供穿着的舒适性和便利性,可穿戴电子产品未来发展的最重要趋势之一是将电子设备与服装集成,或直接将电子功能赋予服装。导电纱是电子织物材料的基础。因此,它将在高性能可穿戴电子产品的未来发展中发挥重要作用。为满足可穿戴电子产品对大变形适应性的需求,如在人体关节部位处使用的器件,迫切需要开发高性能弹性导电纱。然而,目前已公开的弹性导电纱至少存在以下缺点:1、未能同时具备高拉伸性和导电性;2、制造工艺不适合产业化;以及3、制造成本太高,无法商业化。
发明内容
本发明公开一种用于制造可拉伸的导电纱线的方法,其包括:提供由弹性体组成的棒,该弹性体为聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯) (SBS)、氢化聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯))(SEBS)或聚氨酯(PU);将该棒插入由第一丙烯酸酯类聚合物组成的第一管中从而生成第一纤维预制棒;对该第一纤维预制棒加热并拉伸从而生成具有包芯结构的第一复合纤维;将该第一复合纤维切为多根复合纤维条;将该多根复合纤维条插入由第二丙烯酸酯类聚合物组成的第二管中从而生成第二纤维预制棒;对该第二纤维预制棒加热并拉伸从而生成第二复合纤维;将该第二复合纤维浸泡在冰醋酸溶液或甲酸溶液中以去除第二复合纤维中的第一丙烯酸酯类聚合物和第二丙烯酸酯类聚合物从而生成由该弹性体组成的复丝纱;将该复丝纱浸泡在包括醇类溶剂的三氟乙酸银(AgTFA)溶液中以将AgTFA溶液中的银(Ag)离子加载到该复丝纱从而生成负载有Ag离子的复丝纱;以及将该负载有Ag离子的复丝纱浸泡在用于将该Ag离子还原成Ag颗粒的还原剂溶液中以生成附着在复丝纱的表面和内部的Ag颗粒,从而生成所述可拉伸的导电纱线。
根据某些实施例,提供由弹性体组成的棒的步骤包括通过溶液浇铸或热挤压该弹性体以制备该棒。
根据某些实施例,该第一丙烯酸酯类聚合物为聚甲基丙烯酸甲酯(PMMA)或聚甲基丙烯酸乙酯,该第二丙烯酸酯类聚合物为PMMA或聚甲基丙烯酸乙酯。
根据某些实施例,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物具有相同的丙烯酸酯类聚合物。
根据某些实施例,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物具有不同的丙烯酸酯类聚合物。
根据某些实施例,该弹性体为SBS,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物为PMMA。
根据某些实施例,对该第一纤维预制棒加热并拉伸的步骤包括热拉伸温度为150℃至350℃。
根据某些实施例,本方法还包括将该多根复合纤维条堆叠在一起并且将堆叠的复合纤维条插入该第二管中。
根据某些实施例,在对该第二纤维预制棒加热并拉伸的同时,旋转该第二纤维预制棒以使复丝纱的长丝加捻。
根据某些实施例,旋转该第二纤维预制棒的速度为1转/cm至50转/cm。
根据某些实施例,对该第二纤维预制棒加热并拉伸的步骤包括热拉伸的温度为150℃至350℃。
根据某些实施例,将该第二复合纤维浸泡在冰醋酸溶液或甲酸溶液中的步骤包括浸泡时间为5分钟至30分钟以及浸泡温度为25℃至118℃。
根据某些实施例,复丝纱的长丝的直径为1μm至1000μm。
根据某些实施例,该醇类溶剂为乙醇、甲醇、乙二醇或丙醇。
根据某些实施例,将该复丝纱浸泡在AgTFA溶液中的步骤包括浸泡时间为3分钟至60分钟。
根据某些实施例,还原剂溶液的还原剂为硼氢化钠、苯酚或抗环血酸,还原剂溶液的溶剂为水或醇类溶剂。
根据某些实施例,将该负载有Ag离子的复丝纱浸泡在还原剂溶液中的步骤包括浸泡时间为5分钟以上。
本发明还公开一种用于制造可拉伸的导电纱线的方法,其包括:提供由弹性体组成的棒,该弹性体为聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯)(SBS)、氢化聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯))(SEBS)或聚氨酯(PU);将该棒插入由丙烯酸酯类聚合物组成的管中从而生成纤维预制棒;对该纤维预制棒加热并拉伸从而生成具有包芯结构的复合纤维;将该复合纤维浸泡在冰醋酸溶液或甲酸溶液中以去除复合纤维中的丙烯酸酯类聚合物从而生成由该弹性体组成的单丝纱;将该单丝纱浸泡在包括醇类溶剂的三氟乙酸银(AgTFA)溶液中以将AgTFA溶液中的银(Ag)离子加载到该单丝纱从而生成负载有Ag离子的单丝纱;以及将该负载有Ag离子的单丝纱浸泡在用于将该Ag离子还原成Ag颗粒的还原剂溶液中以生成附着在单丝纱的表面的Ag颗粒,从而生成所述可拉伸的导电纱线。
根据某些实施例,提供由弹性体组成的棒的步骤包括通过溶液浇铸或热挤压该弹性体以制备该棒。
根据某些实施例,该丙烯酸酯类聚合物为聚甲基丙烯酸甲酯(PMMA)或聚甲基丙烯酸乙酯。
根据某些实施例,该弹性体为SBS,该丙烯酸酯类聚合物为PMMA。
根据某些实施例,对该纤维预制棒加热并拉伸的步骤包括热拉伸温度为150℃至350℃。
根据某些实施例,将该复合纤维浸泡在冰醋酸溶液或甲酸溶液中的步骤包括浸泡时间为5分钟至30分钟以及浸泡温度为25℃至118℃。
根据某些实施例,单丝纱的长丝的直径为1μm至1000μm。
根据某些实施例,该醇类溶剂为乙醇、甲醇、乙二醇或丙醇。
根据某些实施例,将该单丝纱浸泡在AgTFA溶液中的步骤包括浸泡时间为3分钟至60分钟。
根据某些实施例,还原剂溶液的还原剂为硼氢化钠、苯酚或抗环血酸,还原剂溶液的溶剂为水或醇类溶剂。
根据某些实施例,将该负载有Ag离子的单丝纱浸泡在还原剂溶液中的步骤包括浸泡时间为5分钟以上。
本发明还公开一种可拉伸的导电纱线,其由上述的方法制造。
附图说明
现通过附图描述本发明的某些实施例。应当理解,在不脱离上述本发明范围的情况下,可以进行各种变化。
图1示出根据本发明某些实施例的可拉伸的导电纱线(Ag-SBS纱线)的制造方法。
图2A示出Ag-SBS纱线的照片。
图2B示出Ag-SBS纱线的SEM图像。
图2C示出Ag-SBS纱线的横切面的SEM图像。
图2D示出Ag-SBS纱线在松弛状态(上)和拉伸状态(下)下的照片。
图2E示出Ag-SBS纱线的应力-应变曲线。
图2F示出Ag-SBS纱线的电阻随施加应变的变化。
图2G示出在超过Ag-SBS纱线的临界应变(在此之上材料变得电绝缘)的应变下的周期拉伸释放。
图3A示出具有捻度为0T/cm的Ag-SBS纱线的SEM图像。
图3B示出具有捻度为4T/cm的Ag-SBS纱线的SEM图像。
图3C示出具有捻度为10T/cm的Ag-SBS纱线的SEM图像。
图3D示出具有长丝数为1的Ag-SBS纱线的SEM图像。
图3E示出具有长丝数为87的Ag-SBS纱线的SEM图像。
图3F示出具有长丝数为217的Ag-SBS纱线的SEM图像。
图4A示出通过1周期的Ag加载所处理的Ag-SBS纱线的SEM图像。
图4B示出通过7周期的Ag加载所处理的Ag-SBS纱线的SEM图像。
图4C示出通过15周期的Ag加载所处理的Ag-SBS纱线的SEM图像。
图4D示出在不同Ag加载周期所处理的Ag-SBS纱线中Ag厚度的变化。
图4E示出在不同Ag加载周期所处理的Ag-SBS纱线中Ag质量比的变化。
图4F示出经由不同Ag加载周期处理的Ag-SBS纱线的应力-应变曲线。
图4G示出Ag-SBS纱线的“断裂应变”和模量随用于加载Ag的处理周期而变化。
图4H示出随着外加应变的增加经由不同Ag加载周期处理的Ag-SBS纱线的电阻变化。
图4I示出使用Ag加载周期为变数Ag-SBS纱线的电导率和临界应变(在此之上纱线突然变得绝缘)的变化。
图5A示出2合股Ag-SBS纱线制备的纤维的SEM图像。
图5B示出通过编织Ag-SBS纱线制备的织物的照片和SEM图像(插图)。
图5C示出通过针织Ag-SBS纱线制备的织物的照片和SEM图像(插图)。
图5D示出单纱、2合股纤维、编织织物和针织织物的应力-应变曲线的变化。
图5E示出单纱(具有正方标记的曲线)、2合股纤维(具有圈标记的曲线)、编织织物(具有上三角标记的曲线)和针织织物(具有下三角标记的曲线)的相对电阻-应变曲线的变化(R s是指施加应变时的电阻,R s0是指松弛状态下的电阻)。
图5F示出不同样品的临界应变。
具体实施方式
本发明提供一种可拉伸的导电纱线及其制造方法。该可拉伸的导电纱线由弹性体纱线和分散在弹性体纱线中和表面的Ag颗粒组成。该制造方法基于聚合物和弹性体的共热拉延和银颗粒的后加载,属于可扩展的生产技术。此外,本方法所制造的可拉伸的导电纱线可包括多丝的纱线(即复丝纱)或单丝的纱线(即单丝纱)。
本发明公开一种用于制造可拉伸的导电纱线的方法,其包括:提供由弹性体组成的棒,该弹性体为聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯)(SBS)、氢化聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯))(SEBS)或聚氨酯(PU);将该棒插入由第一丙烯酸酯类聚合物组成的第一管中从而生成第一纤维预制棒;对该第一纤维预制棒加热并拉伸从而生成具有包芯结构的第一复合纤维;将该第一复合纤维切为多根复合纤维条;将该多根复合纤维条插入由第二丙烯酸酯类聚合物组成的第二管中从而生成第二纤维预制棒;对该第二纤维预制棒加热并拉伸从而生成第二复合纤维;将该第二复合纤维浸泡在冰醋酸溶液或甲酸溶液中以去除第二复合纤维中的第一丙烯酸酯类聚合物和第二丙烯酸酯类聚合物从而生成由该弹性体组成的复丝 纱;将该复丝纱浸泡在包括醇类溶剂的三氟乙酸银(AgTFA)溶液中以将AgTFA溶液中的银(Ag)离子加载到该复丝纱从而生成负载有Ag离子的复丝纱;以及将该负载有Ag离子的复丝纱浸泡在用于将该Ag离子还原成Ag颗粒的还原剂溶液中以生成附着在复丝纱的表面和内部的Ag颗粒,从而生成所述可拉伸的导电纱线。
根据某些实施例,提供由弹性体组成的棒的步骤包括通过溶液浇铸或热挤压该弹性体以制备该棒。
根据某些实施例,该第一丙烯酸酯类聚合物为聚甲基丙烯酸甲酯(PMMA)或聚甲基丙烯酸乙酯,该第二丙烯酸酯类聚合物为PMMA或聚甲基丙烯酸乙酯。
根据某些实施例,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物具有相同的丙烯酸酯类聚合物。
根据某些实施例,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物具有不同的丙烯酸酯类聚合物。
根据某些实施例,该弹性体为SBS,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物为PMMA。
根据某些实施例,对该第一纤维预制棒加热并拉伸的步骤包括热拉伸温度为150℃至350℃。
根据某些实施例,本方法还包括将该多根复合纤维条堆叠在一起并且将堆叠的复合纤维条插入该第二管中。
根据某些实施例,在对该第二纤维预制棒加热并拉伸的同时,旋转该第二纤维预制棒以使复丝纱的长丝加捻。
根据某些实施例,旋转该第二纤维预制棒的速度为1转/cm至50转/cm。
根据某些实施例,对该第二纤维预制棒加热并拉伸的步骤包括热拉伸的温度为150℃至350℃。
根据某些实施例,将该第二复合纤维浸泡在冰醋酸溶液或甲酸溶液中的步骤包括浸泡时间为5分钟至30分钟以及浸泡温度为25℃至118℃。
根据某些实施例,复丝纱的长丝的直径为1μm至1000μm。
根据某些实施例,该醇类溶剂为乙醇、甲醇、乙二醇或丙醇。
根据某些实施例,将该复丝纱浸泡在AgTFA溶液中的步骤包括浸泡时间为3分钟至60分钟。
根据某些实施例,还原剂溶液的还原剂为硼氢化钠、苯酚或抗环血酸,还原剂溶液的溶剂为水或醇类溶剂。
根据某些实施例,将该负载有Ag离子的复丝纱浸泡在还原剂溶液中的步骤包括浸泡时间为5分钟以上。
本发明还公开一种用于制造可拉伸的导电纱线的方法,其包括:提供由弹性体组成的棒,该弹性体为聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯)(SBS)、氢化聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯))(SEBS)或聚氨酯(PU);将该棒插入由丙烯酸酯类聚合物组成的管中从而生成纤维预制棒;对该纤维预制棒加热并拉伸从而生成具有包芯结构的复合纤维;将该复合纤维浸泡在冰醋酸溶液或甲酸溶液中以去除复合纤维中的丙烯酸酯类聚合物从而生成由该弹性体组成的单丝纱;将该单丝纱浸泡在包括醇类溶剂的三氟乙酸银(AgTFA)溶液中以将AgTFA溶液中的银(Ag)离子加载到该单丝纱从而生成负载有Ag离子的单丝纱;以及将该负载有Ag离子的单丝纱浸泡在用于将该Ag离子还原成Ag颗粒的还原剂溶液中以生成附着在单丝纱的表面的Ag颗粒,从而生成所述可拉伸的导电纱线。
根据某些实施例,提供由弹性体组成的棒的步骤包括通过溶液浇铸或热挤压该弹性体以制备该棒。
根据某些实施例,该丙烯酸酯类聚合物为聚甲基丙烯酸甲酯(PMMA)或聚甲基丙烯酸乙酯。
根据某些实施例,该弹性体为SBS,该丙烯酸酯类聚合物为PMMA。
根据某些实施例,对该纤维预制棒加热并拉伸的步骤包括热拉伸温度为150℃至350℃。
根据某些实施例,将该复合纤维浸泡在冰醋酸溶液或甲酸溶液中的步骤包括浸泡时间为5分钟至30分钟以及浸泡温度为25℃至118℃。
根据某些实施例,单丝纱的长丝的直径为1μm至1000μm。
根据某些实施例,该醇类溶剂为乙醇、甲醇、乙二醇或丙醇。
根据某些实施例,将该单丝纱浸泡在AgTFA溶液中的步骤包括浸泡时间为3分钟至60分钟。
根据某些实施例,还原剂溶液的还原剂为硼氢化钠、苯酚或抗环血酸,还原剂溶液的溶剂为水或醇类溶剂。
根据某些实施例,将该负载有Ag离子的单丝纱浸泡在还原剂溶液中的步骤包括浸泡时间为5分钟以上。
实施例1
本实施例的可拉伸的导电纱线(Ag-SBS纱线)由SBS纱线和分散在SBS纱线的基体中和表面上并涂覆在其SBS长丝表面上的Ag纳米颗粒组成。在本实施例中,该SBS纱线为由多根SBS长丝组成的SBS复丝纱。Ag-SBS纱线100由根据图1所示的方法的步骤制造而成。在步骤S11中,通过溶液浇铸或热挤压SBS物料以制备SBS棒111。然后,将SBS棒111插入中空的PMMA管112中,从而生成具包芯层结构的SBS@PMMA纤维预制棒113。在步骤S12中,通过包括熔炉1211的纤维拉丝塔121对SBS@PMMA纤维预制棒113加热并拉伸从而生成具有包芯结构的SBS@PMMA纤维122。在步骤S13中,将SBS@PMMA纤维122切割为多根SBS@PMMA纤维条131。在步骤S14中,将多根SBS@PMMA纤维条131堆叠成纤维杆141。在步骤S15中,将纤维杆141插入另一个中空的PMMA管151中,从而生成圆柱形的SBS-PMMA纤维预制棒152。在步骤S16中,旋转SBS-PMMA纤维预制棒152,并同时通过包括熔炉1611的纤维拉丝塔161将SBS-PMMA纤维预制棒152加热并拉伸从而生成SBS-PMMA纤维162。在步骤S17中,将SBS-PMMA纤维162浸泡在冰醋酸171中以去除SBS-PMMA复合纤维162中的PMMA成分,从而生成由多根SBS长丝173组成的SBS纱线172(即SBS复丝纱)。在步骤S18中,将SBS纱线172线浸泡在以乙醇为溶剂的三氟乙酸银(AgTFA)溶液181中以将包括银离子的银前体加载到SBS纱线172的基体中,从而生成负载有Ag离子的SBS纱线(Ag +-SBS纱线182)。在步骤S19中,将加载有三氟乙酸银的Ag +-SBS复丝纱182浸泡在肼乙醇溶液191中以将银 离子还原为附着在SBS纱线172的表面和内部的银颗粒,从而生成Ag-SBS纱线100。
实施例1的制造细节
材料:提供苯乙烯/丁二烯质量比为40/60的聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯)(SBS)粉末。提供直径和壁厚可调的聚甲基丙烯酸甲酯(PMMA)空心管。提供乙烯、冰醋酸、纯度99%的二氯乙烷(DCE)和纯度80%的水合肼。提供三氟乙酸银。
具有包芯层结构的SBS@PMMA纤维预制棒的制造:首先,使用SBS粉末制备SBS棒。SBS粉末以适当的浓度溶解在DCE中。然后将SBS溶液倒入铁氟龙(Teflon)模具中并放置以蒸发溶剂。待完全干燥后,在铁氟龙模具底部得到一层SBS厚膜,并将其剥离。将SBS厚膜卷成直径略小于PMMA管内径的棒材(用作复合纤维预制棒的包层)。除了铸造制造方法外,也可以使用同向双螺杆挤出机将SBS棒热挤出来。将SBS棒插入PMMA管中以获得SBS@PMMA纤维预制棒。
SBS@PMMA纤维的热拉延:SBS@PMMA纤维预制棒通过连接到伺服电机的钢套固定。带有预制棒的电机安装在拉丝塔上,以拉延出SBS@PMMA纤维。在纤维拉延过程中,炉温逐渐升高,直到预制棒软化和拉长。精确调整预制棒的进料速度和纤维的拉延速度,以保证纤维的拉延顺畅并控制纤维的直径。拉延纤维的温度设定为255℃左右。为了制造SBS纱线,将获得的SBS@PMMA纤维切成长度较短的SBS@PMMA纤维条并将其堆叠在一起,形成直径略小于PMMA管的内径的圆柱形杆。将纤维条堆叠而成的圆柱形杆插入PMMA管中以获得用于拉延SBS-PMMA纤维(其包含多根SBS长丝)的预制棒。精确调整预制棒的进料速度和纤维的拉延速度,以保证纤维的拉延顺畅并控制纤维的直径。在拉延时,旋转预制棒以对SBS-PMMA纤维进行加捻。
SBS纱线的制备:将上述步骤中得到的SBS-PMMA纤维浸泡在冰醋酸中以去除PMMA成分。通常,浸泡时间在5到30分钟的范围内,具体取决于浸泡溶液的温度。较高的温度有利于加速PMMA的去除。均热温度优选在 室温至60℃的范围内。浸泡后,得到的SBS纱线用新鲜的冰醋酸漂洗以去除残留的PMMA。最后,将SBS纱线在空气中自然干燥。
Ag纳米颗粒的加载:将三氟乙酸银以0.1-1g/mL的浓度溶解在乙烯中。干燥的SBS纱线在上述溶液中浸泡约5分钟,然后取出,自然晾干。然后将干燥的纱线浸泡在肼的乙醇溶液中。典型的浸泡时间不少于5分钟。之后,将Ag-SBS纱线取出并在新鲜乙烯中浸泡不少于10分钟以除去剩余的肼,然后放置在空气中干燥,得到最终的可拉伸且导电的Ag-SBS纱线。
Ag-SBS纱线的表征:使用Instron 5944万能试验机研究SBS纱线和Ag-SBS纱线的机械性能。将长度为5cm的SBS纱线或Ag-SBS纱线固定在机器上,两端由一对拍板拍打。设置测试参数后,对样品进行拉伸。监测作为抗拉应变的函数的抗拉应力的变化曲线。由软件根据应力-应变曲线计算纱线的杨氏模量。通过扫描电子显微镜(SEM,Hitachi TM3000台式显微镜)观察Ag-SBS纱线的微观形态。由Keithley 2400源计和Zolix移动板组成的自制装置用于研究Ag-SBS纱线的电性能。将Ag-SBS纱线的两端固定在Zolix移动板的一对拍板上。Keithley 2400源计的两对电极连接到薄膜的两端。在Zolix移动板拉伸薄膜期间,薄膜电阻的变化由计算机自动记录。
现有的可拉伸导电纤维、导线和纱线的制备策略主要包括以下类型:(1)将天然或化学合成纤维、金属纤维的混合物纺成复合纱线;(2)采用浸涂、物理沉积或化学反应的方法,用金属或碳材料涂覆弹性体纤维或纱线;(3)在弹性体芯纤维上缠绕金属丝或碳纤维,形成复合纤维。有时,会在外部涂上额外的保护壳以进行保护;(4)将碳纳米管纤维加捻以达到拉伸性;(5)将导电填料,包括金属纳米线、金属纳米薄片、金属纳米粒子、金属纳米花、碳纳米管、炭黑、石墨烯或导电聚合物,分散在弹性纤维或纱线的基体中。在上述所有策略中,只有第一种策略和第二种策略已成功用于商业产品的制造。然而,通过这些方法制备的导电纱线仅具有较低的拉伸性(通常小于50%应变)。第三种策略和第四种策略繁琐且难以实施,不适合工业化生产。最后一种策略简单、高效,适用于各种导电添加剂和弹性体。此外,这种策略可以同时实现极高的拉伸性和导电性。因此,最 后一种策略对于工业应用非常有前景。为了通过这种策略制备弹性导电纤维/导线/纱线,首先将导电填料分散在弹性体溶液中,然后通过湿法纺丝制造纤维或纱线。现有的使用PEDOT:PSS作为导电填料通过这种策略制造了可拉伸和导电的纱线。然而,实现的电导率(5.4S/cm)和拉伸性(~400%应变)都不高。本发明提出了一种基于第五种策略的可拉伸导电纱线的新制造方法。但本纱线制造方法与以前报道的方法大不相同。如图1所示,与之前报道的方法相比,本方法至少有3个优点:(1)不使用有毒的有机溶剂。对于弹性体纤维或纱线的湿法纺丝,必须使用有毒的有机溶剂,例如二甲基甲酰胺(DMF)、DMSO(二甲基亚砜)、四氢呋喃(THF)、二氯乙烷(DCE)或甲苯来制备弹性体溶液。但本方法制造SBS-PMMA纤维的过程是一个完全干燥的过程,用于去除PMMA的冰醋酸(或甲酸)是一种无毒的弱酸。(2)易于控制纱线的直径、捻度和长丝数。可以通过改变SBS-PMMA纤维的拉延速度来调整纱线的直径。捻度可以通过改变夹持预制棒的伺服电机的转速来调整,而长丝数可以通过改变堆放在预制棒中的SBS@PMMA纤维条的数量来改变。(3)易加载导电填料。在大多数已报道的方法中通过湿法纺丝制备的弹性体纤维或纱线中的导电填料的加载是通过将导电填料分散在弹性体溶液中来进行的。实现高分散性和长期稳定性的均质导电填料与弹性体悬浮液在技术上具有挑战性。在本方法中加载Ag是通过将SBS纱线浸泡在三氟乙酸银的乙醇溶液中并随后还原来实现的。这种方法非常简单有效。因此,本发明提出的可拉伸导电纱的制造方法在工业应用上是非常有前景的。
通过采用本发明提出的方法,能够高效地制造连续的超拉伸导电纱线。图2A显示了总长度约500m的一卷Ag-SBS纱线的照片。Ag-SBS纱线由87根直径约10μm的SBS长丝组成(图2B)。银纳米粒子分散在纱线的表面和内部(图2C)。Ag-SBS纱线具有高度可拉伸性(图2D)。它可以在机械断裂前拉伸到其原始长度的15倍以上(图2E)。它的电阻随着外加应变的增加而迅速增加,并在应变高于148%时变得绝缘。随着应变的释放,它在约145%的应变下再次导电(图2F)。Ag-SBS纱线的导电性在反复拉伸和释放后可以得以保持(图2G)。通过改变保持预制棒的伺服电机的转速(同时对预制棒的进料速度和纤维的拉延速度固定),可以灵活地调整 最终的Ag-SBS纱线的捻度(图3A-3C)。通过简单地改变堆叠在预制棒中的SBS@PMMA纤维条的数量,本发明展示了具有不同长丝数的Ag-SBS纱线的制造(图3D-3F)。
Ag-SBS纱线的机械性质、电性质和机电性质可以通过改变用于加载Ag纳米颗粒的处理周期来调节。Ag-SBS纱线的拉伸性和柔韧性随着加载Ag的处理周期的增加而降低(图4F和4G),而其导电性则相反地改变(图4I中的具有正方标记的曲线)。随着加载周期的增加,纱线临界应变的变化并不是单调的(图4H和图4I中的具有圈标记的曲线)。经过5次周期处理的样品表现出最高的临界应变。该样品的电导率约为2536S/cm,对于大量应用来说已经足够高。因此,对于不同的应用,本方法可以调整Ag-SBS纱线的机械性质、电性质和机电性质,仅通过改变加载Ag纳米粒子的处理周期来实现平衡。
Ag-SBS纱线的机械强度足以进行后处理,例如合股、编织和针织,以制造各种纺织品。作为概念证明,制造了2合股纤维、编织织物和针织织物(图5A-5C)。与单根Ag-SBS纱线相比,2合股纤维和编织织物的拉伸性仅略有下降,而针织织物则表现出更高的拉伸性(图5D)。另一方面,编织织物的机电性质几乎与单纱相同,而两合股纤维和针织织物的临界应变要高得多(图5E和5F)。
与现有的超弹性导电纤维和纱线的制造方法相比,本方法环保,可灵活调整纱线的几何性质、机械性质和电性质,加载导电填料简单高效。通过本方法制备的超弹性、高导电纱线可以进一步加工成各种纺织品,例如2合股纤维、编织织物和针织织物。
本公开提供了通过在纤维拉丝塔上热拉延来制造SBS-PMMA纤维,在纤维拉丝塔上通过热拉延制造含多个SBS纤芯的SBS-PMMA纤维,即包含多个弹性体长丝的纤维。本公开的某些实施例包括简单地通过改变预制棒的旋转速度和堆叠在预制棒中的SBS@PMMA纤维条的数量来调整捻度和长丝数。
由于SBS不能直接通过热拉延加工成纤维或纱线,因此,SBS纤维或纱线通常采用湿法纺丝制造,不可避免地要使用有毒的有机溶剂来制备 SBS溶液。在本发明中,使用PMMA(其为一种易于热拉成纤维的廉价聚合物)包覆SBS并引导SBS的热拉延。将热拉延后的SBS-PMMA复合纤维中的PMMA成分去除后,即可制备SBS纤维或纱线。银纳米粒子的加载可以通过后浸泡和还原来实现。因此,本发明解决了在SBS纤维或纱线湿法纺丝中不可避免地使用有毒的有机溶剂的问题。
软性可穿戴电子产品与服装的融合是未来可穿戴电子发展的必然趋势。作为软电子设备的重要组成部分,高度可拉伸的导电纤维或纱线是会商业化的。本发明提出的超弹性导电纱的制造方法简单、高效且成本效益高。本方法可避免使用在湿法纺丝制造过程中必不可少的有毒的有机溶剂。因此,本方法在工业应用中非常有前景。
本发明可应用于抗静电手套、电磁屏蔽服装、医疗或运动监测、可穿戴电子产品或软性机器人。本发明可应用于服装行业、时尚行业、医疗行业或电子行业。
虽然本发明是通过具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明的范围的情况下,还可以对本发明进行各种变化及同等替代。另外,针对特定情形或材料,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (30)

  1. 一种用于制造可拉伸的导电纱线的方法,其包括:
    提供由弹性体组成的棒,该弹性体为聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯)(SBS)、氢化聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯))(SEBS)或聚氨酯(PU);
    将该棒插入由第一丙烯酸酯类聚合物组成的第一管中从而生成第一纤维预制棒;
    对该第一纤维预制棒加热并拉伸从而生成具有包芯结构的第一复合纤维;
    将该第一复合纤维切为多根复合纤维条;
    将该多根复合纤维条插入由第二丙烯酸酯类聚合物组成的第二管中从而生成第二纤维预制棒;
    对该第二纤维预制棒加热并拉伸从而生成第二复合纤维;
    将该第二复合纤维浸泡在冰醋酸溶液或甲酸溶液中以去除第二复合纤维中的第一丙烯酸酯类聚合物和第二丙烯酸酯类聚合物从而生成由该弹性体组成的复丝纱;
    将该复丝纱浸泡在包括醇类溶剂的三氟乙酸银(AgTFA)溶液中以将AgTFA溶液中的银(Ag)离子加载到该复丝纱从而生成负载有Ag离子的复丝纱;以及
    将该负载有Ag离子的复丝纱浸泡在用于将该Ag离子还原成Ag颗粒的还原剂溶液中以生成附着在复丝纱的表面和内部的Ag颗粒,从而生成所述可拉伸的导电纱线。
  2. 根据权利要求1所述的方法,其中,提供由弹性体组成的棒的步骤包括通过溶液浇铸或热挤压该弹性体以制备该棒。
  3. 根据权利要求1所述的方法,其中,该第一丙烯酸酯类聚合物为聚甲基丙烯酸甲酯(PMMA)或聚甲基丙烯酸乙酯,该第二丙烯酸酯类聚合物为PMMA或聚甲基丙烯酸乙酯。
  4. 根据权利要求1所述的方法,其中,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物具有相同的丙烯酸酯类聚合物。
  5. 根据权利要求1所述的方法,其中,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物具有不同的丙烯酸酯类聚合物。
  6. 根据权利要求1所述的方法,其中,该弹性体为SBS,该第一丙烯酸酯类聚合物和该第二丙烯酸酯类聚合物为PMMA。
  7. 根据权利要求1所述的方法,其中,对该第一纤维预制棒加热并拉伸的步骤包括热拉伸温度为150℃至350℃。
  8. 根据权利要求1所述的方法,还包括将该多根复合纤维条堆叠在一起并且将堆叠的复合纤维条插入该第二管中。
  9. 根据权利要求1所述的方法,其中,在对该第二纤维预制棒加热并拉伸的同时,旋转该第二纤维预制棒以使复丝纱的长丝加捻。
  10. 根据权利要求9所述的方法,其中,旋转该第二纤维预制棒的速度为1转/cm至50转/cm。
  11. 根据权利要求1所述的方法,其中,对该第二纤维预制棒加热并拉伸的步骤包括热拉伸的温度为150℃至350℃。
  12. 根据权利要求1所述的方法,其中,将该第二复合纤维浸泡在冰醋酸溶液或甲酸溶液中的步骤包括浸泡时间为5分钟至30分钟以及浸泡温度为25℃至118℃。
  13. 根据权利要求1所述的方法,其中,复丝纱的长丝的直径为1μm至1000μm。
  14. 根据权利要求1所述的方法,其中,该醇类溶剂为乙醇、甲醇、乙二醇或丙醇。
  15. 根据权利要求1所述的方法,其中,将该复丝纱浸泡在AgTFA溶液中的步骤包括浸泡时间为3分钟至60分钟。
  16. 根据权利要求1所述的方法,其中,还原剂溶液的还原剂为硼氢化钠、苯酚或抗环血酸,还原剂溶液的溶剂为水或醇类溶剂。
  17. 根据权利要求1所述的方法,其中,将该负载有Ag离子的复丝纱浸泡在还原剂溶液中的步骤包括浸泡时间为5分钟以上。
  18. 一种可拉伸的导电纱线,其由根据权利要求1-17任一项所述的方法制造。
  19. 一种用于制造可拉伸的导电纱线的方法,其包括:
    提供由弹性体组成的棒,该弹性体为聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯)(SBS)、氢化聚(苯乙烯-嵌段-丁二烯-嵌段-苯乙烯))(SEBS)或聚氨酯(PU);
    将该棒插入由丙烯酸酯类聚合物组成的管中从而生成纤维预制棒;
    对该纤维预制棒加热并拉伸从而生成具有包芯结构的复合纤维;
    将该复合纤维浸泡在冰醋酸溶液或甲酸溶液中以去除复合纤维中的丙烯酸酯类聚合物从而生成由该弹性体组成的单丝纱;
    将该单丝纱浸泡在包括醇类溶剂的三氟乙酸银(AgTFA)溶液中以将AgTFA溶液中的银(Ag)离子加载到该单丝纱从而生成负载有Ag离子的单丝纱;以及
    将该负载有Ag离子的单丝纱浸泡在用于将该Ag离子还原成Ag颗粒的还原剂溶液中以生成附着在单丝纱的表面的Ag颗粒,从而生成所述可拉伸的导电纱线。
  20. 根据权利要求19所述的方法,其中,提供由弹性体组成的棒的步骤包括通过溶液浇铸或热挤压该弹性体以制备该棒。
  21. 根据权利要求19所述的方法,其中,该丙烯酸酯类聚合物为聚甲基丙烯酸甲酯(PMMA)或聚甲基丙烯酸乙酯。
  22. 根据权利要求19所述的方法,其中,该弹性体为SBS,该丙烯酸酯类聚合物为PMMA。
  23. 根据权利要求19所述的方法,其中,对该纤维预制棒加热并拉伸的步骤包括热拉伸温度为150℃至350℃。
  24. 根据权利要求19所述的方法,其中,将该复合纤维浸泡在冰醋酸溶液或甲酸溶液中的步骤包括浸泡时间为5分钟至30分钟以及浸泡温度为25℃至118℃。
  25. 根据权利要求19所述的方法,其中,单丝纱的长丝的直径为1μm至1000μm。
  26. 根据权利要求19所述的方法,其中,该醇类溶剂为乙醇、甲醇、乙二醇或丙醇。
  27. 根据权利要求19所述的方法,其中,将该单丝纱浸泡在AgTFA溶液中的步骤包括浸泡时间为3分钟至60分钟。
  28. 根据权利要求19所述的方法,其中,还原剂溶液的还原剂为硼氢化钠、苯酚或抗环血酸,还原剂溶液的溶剂为水或醇类溶剂。
  29. 根据权利要求19所述的方法,其中,将该负载有Ag离子的单丝纱浸泡在还原剂溶液中的步骤包括浸泡时间为5分钟以上。
  30. 一种可拉伸的导电纱线,其由根据权利要求19-29任一项所述的方法制造。
PCT/CN2021/126915 2020-11-02 2021-10-28 可拉伸的导电纱线及其制造方法 WO2022089510A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180003441.5A CN114302984B (zh) 2020-11-02 2021-10-28 可拉伸的导电纱线及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063198652P 2020-11-02 2020-11-02
US63/198,652 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022089510A1 true WO2022089510A1 (zh) 2022-05-05

Family

ID=81383346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126915 WO2022089510A1 (zh) 2020-11-02 2021-10-28 可拉伸的导电纱线及其制造方法

Country Status (1)

Country Link
WO (1) WO2022089510A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418860A (zh) * 2022-08-19 2022-12-02 兰州大学 一种导电纤维体及其制备方法和在制备应变传感器中的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176228A (ja) * 2002-11-28 2004-06-24 Asahi Kasei Fibers Corp 熱接着性複合モノフィラメント
CN102121194A (zh) * 2010-01-11 2011-07-13 香港理工大学 导电织物制造方法及其制造的织物
US20120100386A1 (en) * 2010-10-20 2012-04-26 Toyota Boshoku Kabushiki Kaisha Heating yarn and woven or knitted fabric using this heating yarn
CN102733174A (zh) * 2011-03-31 2012-10-17 香港理工大学 一种处理织物的方法
CN102995395A (zh) * 2011-09-15 2013-03-27 香港理工大学 一种导电纺织品及其制作方法
CN104499272A (zh) * 2015-01-15 2015-04-08 中国科学院上海硅酸盐研究所 一种高弹性导电纤维及其制备方法
WO2017119489A1 (ja) * 2016-01-08 2017-07-13 グンゼ株式会社 導電性伸縮糸、導電性伸縮布帛及び導電性伸縮編地
CN109371527A (zh) * 2018-12-21 2019-02-22 南通源佑纺织科技有限公司 一种涤纶导电衬布及其生产工艺
CN209194119U (zh) * 2018-11-23 2019-08-02 苏州高研纺织科技有限公司 一种高性能导电纱线
CN111227812A (zh) * 2020-01-16 2020-06-05 武汉纺织大学 一种全纤维基柔性传感器及其制备方法与应用
CN111430062A (zh) * 2020-04-03 2020-07-17 香港理工大学 一种弹性导体复合膜及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004176228A (ja) * 2002-11-28 2004-06-24 Asahi Kasei Fibers Corp 熱接着性複合モノフィラメント
CN102121194A (zh) * 2010-01-11 2011-07-13 香港理工大学 导电织物制造方法及其制造的织物
US20120100386A1 (en) * 2010-10-20 2012-04-26 Toyota Boshoku Kabushiki Kaisha Heating yarn and woven or knitted fabric using this heating yarn
CN102733174A (zh) * 2011-03-31 2012-10-17 香港理工大学 一种处理织物的方法
CN102995395A (zh) * 2011-09-15 2013-03-27 香港理工大学 一种导电纺织品及其制作方法
CN104499272A (zh) * 2015-01-15 2015-04-08 中国科学院上海硅酸盐研究所 一种高弹性导电纤维及其制备方法
WO2017119489A1 (ja) * 2016-01-08 2017-07-13 グンゼ株式会社 導電性伸縮糸、導電性伸縮布帛及び導電性伸縮編地
CN209194119U (zh) * 2018-11-23 2019-08-02 苏州高研纺织科技有限公司 一种高性能导电纱线
CN109371527A (zh) * 2018-12-21 2019-02-22 南通源佑纺织科技有限公司 一种涤纶导电衬布及其生产工艺
CN111227812A (zh) * 2020-01-16 2020-06-05 武汉纺织大学 一种全纤维基柔性传感器及其制备方法与应用
CN111430062A (zh) * 2020-04-03 2020-07-17 香港理工大学 一种弹性导体复合膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418860A (zh) * 2022-08-19 2022-12-02 兰州大学 一种导电纤维体及其制备方法和在制备应变传感器中的应用
CN115418860B (zh) * 2022-08-19 2023-10-31 兰州大学 一种导电纤维体及其制备方法和在制备应变传感器中的应用

Similar Documents

Publication Publication Date Title
Dias Electronic textiles: Smart fabrics and wearable technology
CN113235202B (zh) 一种多功能织物及其制备方法和应用
WO2022089510A1 (zh) 可拉伸的导电纱线及其制造方法
CN110359128B (zh) 一种纤维材料、纤维凝胶、具有超弹性和抗冻性的可拉伸导电复合纤维及其制备方法
CN105862210A (zh) 抗菌纳米纤维纱线及其制备方法
CN112127147B (zh) 多功能导电纱线及其制备和在柔性可穿戴电子织物中的应用
CN113201802A (zh) 拉力传感纤维、纱线、织物及拉力传感纤维制备方法
CN113215682A (zh) 温度传感纤维、纱线、织物及温度传感纤维制备方法
WO2018030823A1 (ko) 고강도 고전도성 섬유의 제조 방법 및 이에 의해 제조된 고강도 고전도성 섬유
Zhang et al. Weaving a magnificent world: 1D fibrous electrodes and devices for stretchable and wearable electronics
CN108625005B (zh) 碳纳米管纤维复合包芯纱及其制备方法与应用
Ma et al. Stretchable and conductive fibers fabricated by a continuous method for wearable devices
Wu et al. A Hollow Core‐Sheath Composite Fiber Based on Polyaniline/Polyurethane: Preparation, Properties, and Multi‐Model Strain Sensing Performance
JP2021515854A (ja) ナノ材料被覆繊維
CN114302984B (zh) 可拉伸的导电纱线及其制造方法
CN109576990A (zh) 一种基于银纳米线导电网络的蚕丝电极材料及其制备方法
CN113498899A (zh) 一种导电手套及其制备工艺
US20180102201A1 (en) Stretchable conductive fiber and method of manufacturing the same
Chen et al. Highly stretchable and durable electrospinning polyurethane nanofiber composite yarn for electronic devices
CN116516539A (zh) 一种导电纱线及制备方法以及在汉麻双层柔性面料中的应用
JP4320231B2 (ja) 紡績糸
CN112941661B (zh) 一种高拉伸高灵敏的压阻纤维及其制备方法与应用
CN113737341B (zh) 弹性皮芯纤维及其制备方法
WO2023279320A1 (zh) 一种复合纱线及其制备方法和应用
CN114855328A (zh) 一种透气可拉伸导电纱线及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885237

Country of ref document: EP

Kind code of ref document: A1