WO2018028542A1 - 一种信号发送方法、网络设备和终端设备 - Google Patents

一种信号发送方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018028542A1
WO2018028542A1 PCT/CN2017/096221 CN2017096221W WO2018028542A1 WO 2018028542 A1 WO2018028542 A1 WO 2018028542A1 CN 2017096221 W CN2017096221 W CN 2017096221W WO 2018028542 A1 WO2018028542 A1 WO 2018028542A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
group
resource
resource particles
particles
Prior art date
Application number
PCT/CN2017/096221
Other languages
English (en)
French (fr)
Inventor
吕永霞
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019507324A priority Critical patent/JP6783378B2/ja
Priority to BR112019002918-4A priority patent/BR112019002918A2/pt
Priority to EP17838672.8A priority patent/EP3493501B1/en
Publication of WO2018028542A1 publication Critical patent/WO2018028542A1/zh
Priority to US16/272,084 priority patent/US10819550B2/en
Priority to US17/028,634 priority patent/US11212154B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/06Arrangements for supplying the carrier waves ; Arrangements for supplying synchronisation signals
    • H04J1/065Synchronisation of carrier sources at the receiving station with the carrier source at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the field of communications, and in particular, to a signal sending method, a network device, and a terminal device.
  • the traditional digital signal transmission is to transmit information through one channel at a time, which is a serial transmission method.
  • Multi-carrier technology adopts parallel transmission mode, which serially converts serial high-speed information stream into multiple parallel low-speed information streams, and then superimposes multiple parallel low-speed information streams to form multiple carriers.
  • a transmission system i.e., a multi-carrier technique, is a technique for transmitting high-speed data information using multiple carriers.
  • the carrier is a radio wave carrying a specific frequency of data.
  • Multi-carrier transmission technology has been widely used in communication systems, such as 4G communication systems and wireless LAN standard 802.11 series systems.
  • the services supported by each system are relatively uniform, and each communication system supports only one subcarrier spacing waveform.
  • the serving cell of the network device can support multiple sub-carrier spacings, so that the serving cell can use different sub-carrier spacing signals to serve different terminal devices in different services and different deployment scenarios.
  • the embodiments of the present invention provide a signal sending method, a network device, and a terminal device, which can solve the problem of how a network device sends a signal to enable a terminal device to access a system supporting multiple subcarrier spacings.
  • a method for transmitting a signal including: determining, by a network device, a subcarrier position of a first signal to be transmitted and a subcarrier position of a second signal to be transmitted, where the subcarrier occupied by the first signal is a first group of resource particles
  • the continuous subcarriers in the second subcarrier are the consecutive subcarriers in the second group of resource particles, and the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal, and the first group of resources
  • the subcarrier spacing within the particle is different from the subcarrier spacing within the second set of resource particles; the network device transmits the first signal at the determined subcarrier position of the first signal, and transmits the second signal at the determined subcarrier position of the second signal .
  • the network device may be a base station, and the terminal device may be a user equipment, and the first signal and the second signal may be synchronization signals.
  • the terminal device can acquire related information for accessing the cell to support the terminal device to access a cell with different sub-carrier spacing or use a sub-carrier interval.
  • Different time-frequency resources communicate with the network device, which can solve the problem of how the network device sends a signal to enable the terminal device to access a system supporting multiple sub-carrier spacing.
  • the first signal and the second signal are synchronization signals
  • the continuous subcarriers do not include zero subcarriers
  • the first group of resource group particles and the second group of resource group particles occupy the same number of symbols in the time domain. Or different, and in A symbol or at least two consecutive symbols are occupied on the time domain.
  • the first signal and the second signal are primary synchronization signals.
  • the network device exists because the same time domain resource exists.
  • the first signal and the second signal may be transmitted simultaneously such that the terminal device supporting the different subcarriers can receive the primary synchronization signal suitable for itself.
  • the sequence number of the subcarrier in the first group of resource particles is corresponding to the modulation symbol or sequence element of the first signal
  • the sequence number of the subcarrier in the second group of resource particles and the modulation symbol of the second signal or The corresponding relationship of the sequence elements is the same
  • the modulation symbol is a complex symbol after modulation mapping, one complex symbol is mapped to one resource particle, and the order of the complex symbol corresponds to the subcarrier number corresponding to the resource particle.
  • the sequence element can be understood as the signal to be transmitted is an unmodulated sequence signal, for example, a Zadoff-chu sequence signal, one element in the sequence maps a resource particle, and the sequence corresponds to the sequence number of the subcarrier where the resource particle is located, so that the signal can make the signal Mapping with resource particles is easier.
  • an unmodulated sequence signal for example, a Zadoff-chu sequence signal
  • one element in the sequence maps a resource particle
  • the sequence corresponds to the sequence number of the subcarrier where the resource particle is located, so that the signal can make the signal Mapping with resource particles is easier.
  • the method before the network device sends the first signal and the second signal, the method further includes: determining, by the network device, a subcarrier position of the third signal to be transmitted and a subcarrier position of the fourth signal to be sent,
  • the subcarriers occupied by the third signal are consecutive subcarriers in the third group of resource particles
  • the subcarriers occupied by the fourth signal are consecutive subcarriers in the fourth group of resource particles
  • the number of subcarriers occupied by the third signal is fourth.
  • the number of subcarriers occupied by the signal is the same, the subcarrier spacing in the third group of resource particles is the same as the subcarrier spacing in the first group of resource particles, and the subcarrier spacing in the fourth group of resource particles is within the second group of resource particles.
  • the subcarrier spacing is the same, the first signal and the second signal are main synchronization signals, and the third signal and the fourth signal include at least a secondary synchronization signal.
  • the terminal device can accurately and quickly detect the primary synchronization signal, and detect the secondary synchronization signal on the premise of the known primary synchronization signal, thereby obtaining the cell ID according to the primary synchronization signal and the secondary synchronization signal. Further, a full or partial system frame number can also be obtained.
  • the sequence number of the subcarrier in the third group of resource particles is corresponding to the modulation symbol or sequence element of the third signal
  • the sequence number of the subcarrier in the fourth group of resource particles and the modulation symbol of the fourth signal or The correspondence of sequence elements is the same, making the mapping of signals and resource particles easier.
  • the method before the network device sends the third signal and the fourth signal, the method further includes: determining, by the network device, a subcarrier position of the fifth signal to be transmitted and a subcarrier position of the sixth signal to be sent,
  • the subcarriers occupied by the fifth signal are consecutive subcarriers in the fifth group of resource particles
  • the subcarriers occupied by the sixth signal are consecutive subcarriers in the sixth group of resource particles
  • the number of subcarriers occupied by the fifth signal is sixth.
  • the number of subcarriers occupied by the signal is the same, and the subcarrier spacing of the fifth group of resource particles is the same as the subcarrier spacing of the first group of resource particles and/or the third group of resource particles, and the subcarrier spacing of the sixth group of resource particles is
  • the second group of resource particles and/or the fourth group of resource particles have the same subcarrier spacing
  • the fifth signal and the sixth signal are the first broadcast channel signal or the first system information block signal, so that the terminal device needs to acquire the subsequent access procedure.
  • Necessary information such as the first broadcast channel signal or the first system information block signal, including measurement pilot transmission information, random access signal transmission sequence, random access signal transmission Source parameters and system bandwidth.
  • the location of the resource particles of the data signal carrying the fifth signal in the fifth group of resource particles is the same as the location of the resource particles of the data signal carrying the sixth signal in the sixth group of resource particles, the fifth group The resource particle of the pilot signal carrying the fifth signal in the resource particle is located at the same position as the resource particle of the pilot signal carrying the sixth signal in the sixth group resource particle, and the resource particle is a frequency domain resource on the unit symbol.
  • the first set of resource particles, the third set of resource particles, and the fifth set of resource particles At least two groups of resource particles occupy different frequency domain resources on the same time domain resource, and at least two groups of resource particles of the second group resource particle, the fourth group resource particle and the sixth group resource particle occupy different frequencies on the same time domain resource Domain resources, because the fifth signal and the sixth signal not only include the sequence signal, that is, the data signal, but also the pilot signal, thereby making resource particle and signal mapping easier.
  • the seventh signal occupies the first group of resource particles, the third group of resource particles, and the third group of resource particles, at least one group of resource particles occupying the time domain resource except the first group of resource particles,
  • the seventh signal is the second broadcast channel signal or the second system information, the seventh signal
  • the occupied time domain resource is greater than or equal to the time domain resource occupied by at least one of the first signal, the third signal, and the fifth signal. That is, the first signal, the third signal, the fifth signal, and the seventh signal are frequency division signals on the same-domain resource.
  • the second broadcast channel signal or the second system information block signal may carry other information, such as random access configuration information.
  • At least two groups of resource particles of the first group of resource particles, the third group of resource particles and the fifth group of resource particles are located in the first carrier, the second group of resource particles, and the fourth group of resource particles and At least two groups of resource particles in the sixth group of resource particles are located in the second carrier, and the first carrier and the second carrier occupy different frequency domain resources.
  • terminal devices that can support different subcarriers can receive the desired signals on the corresponding carriers.
  • the first group of resource particles occupies at least one frequency domain resource unit of the first carrier, and the second group of resource particles occupies at least one frequency domain resource unit of the second carrier, where the first group of resource particles is The sequence number of the frequency domain resource unit occupied by the first carrier is the same as the sequence number of the frequency domain resource unit occupied by the second group of resource particles in the second carrier; the third group of resource particles occupy at least one frequency domain resource unit of the first carrier, The fourth group of resource particles occupies at least one frequency domain resource unit in the second carrier, the sequence number of the frequency domain resource unit occupied by the third group of resource particles in the first carrier and the frequency domain occupied by the fourth group of resource particles in the second carrier The sequence number of the resource unit is the same; the fifth group resource particle occupies at least one frequency domain resource unit in the first carrier, the sixth group resource particle occupies at least one frequency domain resource unit in the second carrier, and the fifth group resource particle is in the first The sequence number of the frequency domain resource unit occupied by the carrier is the same as the sequence
  • a signal sending method including: receiving, by a terminal device, a first signal and a second signal sent by a network device, where the subcarrier occupied by the first signal is a continuous subcarrier in the first group of resource particles, and the second signal is The occupied subcarriers are consecutive subcarriers in the second group of resource particles, and the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal, and the subcarrier spacing in the first group of resource particles is the second.
  • the subcarrier spacing in the group resource particles is different; the terminal device detects the first signal and the second signal, or the terminal device demodulates and detects the first signal and the second signal, or the terminal device pairs the first signal and the second signal The signal is demodulated and decoded.
  • the first signal and the second signal are synchronization signals
  • the continuous subcarriers do not include zero subcarriers
  • the first group of resource group particles and the second group of resource group particles occupy the same number of symbols in the time domain. Or different, and occupy one symbol or at least two consecutive symbols in the time domain.
  • the sequence number of the subcarrier in the first group of resource particles is corresponding to the modulation symbol or sequence element of the first signal
  • the sequence number of the subcarrier in the second group of resource particles and the modulation symbol of the second signal or The correspondence between the sequence elements is the same.
  • the method further includes: receiving, by the terminal device, the third signal and/or the fourth signal sent by the network device, where the subcarrier occupied by the third signal is a continuous subcarrier in the third group of resource particles, and the third Group resource
  • the subcarrier spacing in the particle is the same as the subcarrier spacing in the first group of resource particles
  • the subcarrier occupied by the fourth signal is a continuous subcarrier in the fourth group of resource particles
  • the subcarrier spacing in the fourth group of resource particles is the same.
  • the subcarriers in a group of resource particles or the third group of resource particles have the same interval, the first signal is a primary synchronization signal, the third signal includes at least a secondary synchronization signal, and the fourth signal is a broadcast channel signal or system information.
  • a network device including: a processing unit, configured to determine a subcarrier position of a first signal to be transmitted and a subcarrier position of a second signal to be transmitted, where the first signal is occupied by a subcarrier
  • the carrier is a contiguous subcarrier in the first group of resource particles
  • the subcarrier occupied by the second signal is a contiguous subcarrier in the second group of resource particles, the number of subcarriers occupied by the first signal and the subcarriers occupied by the second signal
  • the number of the subcarriers in the first group of resource particles is different from the subcarrier spacing in the second group of resource particles
  • the sending unit is configured to send the first signal at the determined subcarrier position of the first signal, in the determined The subcarrier position of the two signals transmits a second signal.
  • the first signal and the second signal are synchronization signals
  • the continuous subcarriers do not include zero subcarriers
  • the first group of resource group particles and the second group of resource group particles occupy the same number of symbols in the time domain. Or different, and occupy one symbol or at least two consecutive symbols in the time domain.
  • the sequence number of the subcarrier in the first group of resource particles is corresponding to the modulation symbol or sequence element of the first signal
  • the sequence number of the subcarrier in the second group of resource particles and the modulation symbol of the second signal or The correspondence of sequence elements is the same.
  • the processing unit is further configured to: determine a subcarrier position of the third signal to be transmitted and a subcarrier position of the fourth signal to be transmitted, and the subcarrier occupied by the third signal is a third group of resource particles.
  • the contiguous subcarriers within the fourth subcarrier are the contiguous subcarriers in the fourth group of resource particles, and the number of subcarriers occupied by the third signal is the same as the number of subcarriers occupied by the fourth signal, and the third group of resources
  • the subcarrier spacing in the particle is the same as the subcarrier spacing in the first group of resource particles, and the subcarrier spacing in the fourth group of resource particles is the same as the subcarrier spacing in the second group of resource particles, and the first signal and the second signal are
  • the primary synchronization signal, the third signal and the fourth signal include at least a secondary synchronization signal.
  • the sequence number of the subcarrier in the third group of resource particles is corresponding to the modulation symbol or sequence element of the third signal
  • the sequence number of the subcarrier in the fourth group of resource particles and the modulation symbol of the fourth signal or The correspondence of sequence elements is the same.
  • the processing unit is further configured to: determine a subcarrier position of the fifth signal to be transmitted and a subcarrier position of the sixth signal to be transmitted, and the subcarrier occupied by the fifth signal is the fifth group of resource particles.
  • the contiguous subcarriers, the subcarriers occupied by the sixth signal are consecutive subcarriers in the sixth group of resource particles, and the number of subcarriers occupied by the fifth signal is the same as the number of subcarriers occupied by the sixth signal, and the fifth group of resources
  • the subcarrier spacing of the particles is the same as the subcarrier spacing of the first set of resource particles and/or the third set of resource particles, the subcarrier spacing of the sixth set of resource particles, and the second set of resource particles and/or the fourth set of resource particles
  • the subcarrier spacing is the same, and the fifth signal and the sixth signal are the first broadcast channel signal or the first system information block signal.
  • the location of the resource particles of the data signal carrying the fifth signal in the fifth group of resource particles is the same as the location of the resource particles of the data signal carrying the sixth signal in the sixth group of resource particles, the fifth group The resource particle of the pilot signal carrying the fifth signal in the resource particle is located at the same position as the resource particle of the pilot signal carrying the sixth signal in the sixth group resource particle, and the resource particle is a frequency domain resource on the unit symbol.
  • the first set of resource particles, the third set of resource particles, and the fifth set of resource particles At least two groups of resource particles occupy different frequency domain resources on the same time domain resource, and at least two groups of resource particles of the second group resource particle, the fourth group resource particle and the sixth group resource particle occupy different frequencies on the same time domain resource Domain resource.
  • the seventh signal occupies the first group of resource particles, the third group of resource particles, and the third group of resource particles, at least one group of resource particles occupying the time domain resource except the first group of resource particles, The subcarriers in the frequency domain resources other than the frequency domain resources occupied by the at least one group of the resource particles and the fifth group of resource particles; the seventh signal is the second broadcast channel signal or the second system information, the seventh signal The occupied time domain resource is greater than or equal to the time domain resource occupied by at least one of the first signal, the third signal, and the fifth signal.
  • At least two groups of resource particles of the first group of resource particles, the third group of resource particles and the fifth group of resource particles are located in the first carrier, the second group of resource particles, and the fourth group of resource particles and At least two groups of resource particles in the sixth group of resource particles are located in the second carrier, and the first carrier and the second carrier occupy different frequency domain resources.
  • the first group of resource particles occupies at least one frequency domain resource unit of the first carrier, and the second group of resource particles occupies at least one frequency domain resource unit of the second carrier, where the first group of resource particles is The sequence number of the frequency domain resource unit occupied by the first carrier is the same as the sequence number of the frequency domain resource unit occupied by the second group of resource particles in the second carrier; the third group of resource particles occupy at least one frequency domain resource unit of the first carrier, The fourth group of resource particles occupies at least one frequency domain resource unit in the second carrier, the sequence number of the frequency domain resource unit occupied by the third group of resource particles in the first carrier and the frequency domain occupied by the fourth group of resource particles in the second carrier The sequence number of the resource unit is the same; the fifth group resource particle occupies at least one frequency domain resource unit in the first carrier, the sixth group resource particle occupies at least one frequency domain resource unit in the second carrier, and the fifth group resource particle is in the first The sequence number of the frequency domain resource unit occupied by the carrier is the same as the sequence
  • a terminal device including:
  • a receiving unit configured to receive the first signal and the second signal sent by the network device, where the subcarrier occupied by the first signal is a continuous subcarrier in the first group of resource particles, and the subcarrier occupied by the second signal is a second group of resource particles
  • the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal, and the subcarrier spacing in the first group of resource particles is different from the subcarrier spacing in the second group of resource particles;
  • a processing unit for detecting the first signal and the second signal, or a processing unit for demodulating and detecting the first signal and the second signal, or a processing unit for the first signal and the second signal Demodulation and decoding are performed.
  • the first signal and the second signal are synchronization signals
  • the continuous subcarriers do not include zero subcarriers
  • the first group of resource group particles and the second group of resource group particles occupy the same number of symbols in the time domain. Or different, and occupy one symbol or at least two consecutive symbols in the time domain.
  • the sequence number of the subcarrier in the first group of resource particles is corresponding to the modulation symbol or sequence element of the first signal
  • the sequence number of the subcarrier in the second group of resource particles and the modulation symbol of the second signal or The correspondence between the sequence elements is the same.
  • the receiving unit is further configured to: receive a third signal and/or a fourth signal sent by the network device, where the subcarrier occupied by the third signal is a continuous subcarrier in the third group of resource particles, and third The subcarrier spacing in the group resource particles is the same as the subcarrier spacing in the first group of resource particles, the subcarriers occupied by the fourth signal are consecutive subcarriers in the fourth group of resource particles, and the subcarrier spacing in the fourth group of resource particles is With the first set of resource particles or The subcarriers in the three sets of resource particles have the same interval, the first signal is a primary synchronization signal, the third signal includes at least a secondary synchronization signal, and the fourth signal is a broadcast channel signal or system information.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to execute the fifth aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the terminal device, which includes a program designed to execute the fifth aspect.
  • An embodiment of the present invention provides a signal sending method, a network device, and a terminal device.
  • the network device determines a subcarrier position of a first signal to be transmitted and a subcarrier position of a second signal to be sent, where the subcarrier occupied by the first signal is The contiguous subcarriers in the first group of resource particles, the subcarriers occupied by the second signal are consecutive subcarriers in the second group of resource particles, and the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal.
  • the subcarrier spacing in the first group of resource particles is different from the subcarrier spacing in the second group of resource particles; the network device transmits the first signal at the determined subcarrier position of the first signal, and the determined subcarrier of the second signal
  • the second signal is sent by the location, so that when the first signal and the second signal are used for time-frequency synchronization or cell search, the terminal device can acquire related information for accessing the cell to support the terminal device to access the sub-carrier spacing.
  • the cell or the time-frequency resource with different sub-carrier spacings communicates with the network device, which can solve how the network device sends a signal to enable the terminal device to connect System-supported multi-carrier spacing of seeds.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a signal sending method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of time-frequency resources with different sub-carrier spacings according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of time-frequency resources with different sub-carrier spacings of a first signal and a second signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the embodiments of the present invention are applicable to a wireless communication system, and are applicable to, for example, a 5G communication system, and are specifically applicable to an application scenario in which a terminal device accesses a network side in a 5G communication system.
  • the 5G communication system can support different services, different deployment scenarios and different spectrums.
  • the service may be, for example, an enhanced mobile broadband (eMBB) service, a machine type communication (MTC) service, or an ultra-reliable low latency communication (URLLC) service.
  • MBMS Multimedia Broadcast Multicast Service
  • the deployment scenario may be, for example, an indoor hotspot scene, a dense urban scene, a suburban scene, a urban macro coverage scene, a high-speed rail scene, and the like.
  • the frequency spectrum can be, for example, any frequency range within 100 GHz.
  • the network architecture includes a network device and a terminal.
  • the device for example, the network device, may be a base station, and the terminal device may be a user equipment (User Equipment, UE).
  • UE User Equipment
  • the network device is used as a base station, and the base station is a device deployed in the wireless access network to provide a wireless communication function.
  • a device providing a network device function includes an evolved Node B (eNB), a new Radio Node B (gNB), a Centralized Unit (CU), and a distributed unit ( Distributed Unit) and new wireless controllers.
  • eNB evolved Node B
  • gNB new Radio Node B
  • CU Centralized Unit
  • Distributed Unit Distributed Unit
  • the terminal device may be any one of the following, and the terminal device may be static or mobile.
  • the terminal device may include, but is not limited to, a station, a mobile station, a subscriber unit, a personal computer, a laptop computer, a tablet computer, and a tablet computer.
  • Netbook Terminal, Cellular Phone, Handheld, Cordless Phone, Personal Digital Assistant (PDA), Data Card, Universal String Universal Serial Bus (USB) plug-in device, mobile WiFi hotspot device (MiFi Devices), smart watch, smart glasses, wireless modem (Modem), wireless router, Wireless Local Loop (WLL) station, etc.
  • FIG. 2 is a block diagram showing a part of the structure of the mobile phone related to the embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 210, a power source 220, a processor 230, a memory 240, an input unit 250, a display unit 260, a sensor 270, an audio circuit 280, and the like.
  • RF radio frequency
  • the structure of the handset shown in FIG. 2 does not constitute a limitation to the handset, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the present invention provides a signal sending method, a network device, and a terminal device, which are applied to a 5G communication system.
  • the network device sends the first signal and the second signal
  • the first signal is mapped into the first group of resource particles
  • the network device The second signal is mapped in the second group of resource particles
  • the first signal occupies consecutive subcarriers in the first group of resource particles
  • the second signal occupies consecutive subcarriers in the second group of resource particles
  • the subcarrier spacing in the group resource particles is different, so that the 5G communication system can support the terminal device to receive signals with different subcarrier spacings sent by the network device to access a system supporting multiple subcarrier spacings.
  • the embodiment of the invention provides a signal sending method, as shown in FIG. 3, including:
  • the network device determines a subcarrier position of the first signal to be sent and a subcarrier position of the second signal to be sent, where the subcarrier occupied by the first signal is a continuous subcarrier in the first group of resource particles, and the second signal is occupied.
  • the subcarriers are consecutive subcarriers in the second group of resource particles, the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal, and the subcarrier spacing in the first group of resource particles is the same as the second group.
  • the subcarrier spacing within the resource particle is different, and the first signal and the second signal are primary synchronization signals.
  • the channel resources may be divided according to the time domain and the frequency domain in advance.
  • the channel resource includes a first resource and a second resource, where the first resource includes at least one resource group, and the second resource is included. Includes at least one set of resource particles.
  • Each group of resource particles includes multiple resource particles. If the time domain is divided according to the symbol length, the frequency domain is divided according to subcarriers, and the resource particles can be understood as frequency domain resources on the unit symbol length.
  • a network device needs to send a signal, it can map the signal to a group of resource particles for transmission.
  • the network device may determine, according to the to-be-transmitted signal and the type of the terminal device supported by the network device, a set of resource particles of the transmitted signal, that is, on which sub-carrier spacing resource.
  • the signal to be sent is a synchronization signal
  • the type of terminal equipment supported by the network device supports the first subcarrier.
  • the interval and the second subcarrier spacing are different, and the first subcarrier spacing and the second subcarrier spacing are different.
  • the network device may map an element of the first signal in the signal to be transmitted on the first group of resource particles that are not occupied by the first resource, and map the element of the second signal in the signal to be transmitted to the second resource.
  • the first signal occupies N subcarriers on the first group of resource particles
  • the second signal occupies N subcarriers on the second group of resource particles, as shown in FIG. 5, the first signal and the second signal are in the time domain and the frequency domain.
  • the elements of the first signal and the second signal may be unmodulated sequence signals, or may be elements of a modulation symbol signal.
  • the subcarrier spacing in the first group of resource particles is the first subcarrier spacing
  • the subcarrier spacing in the second resource particle is the second subcarrier spacing, that is, the subcarrier spacing in the first group of resource particles and the second group of resource particles. The subcarrier spacing is different.
  • the subcarriers occupied by the first signal in the first group of resource particles are consecutive subcarriers, and the subcarriers occupied by the second signal in the second group of resource particles are also continuous subcarriers. If the first group of resource particles or the second group of resource particles includes zero subcarriers, the consecutive subcarriers do not include zero subcarriers. Since the first signal and the second signal are both synchronization signals, the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal.
  • the time domain symbol length is relatively large. Conversely, when the subcarrier spacing is large, the time domain symbol length is relatively small, and the latter can make the signal reach the terminal device faster. . Therefore, the number of symbols occupied by the first group of resource particles and the second group of resource particles in the time domain may be the same or different, and occupy one symbol or at least two consecutive symbols in the time domain.
  • the network device determines, according to which subcarrier spacing, a group of resource particles send signals, or may be a synchronization signal corresponding to the subcarrier spacing required for the terminal device to synchronize with different subcarrier spacing resources, so the network device will be in each sub A synchronization signal of at least one corresponding subcarrier interval is transmitted on a resource corresponding to the carrier interval.
  • the mapping method of the first signal in the first group of resource particles may be the same as the mapping method of the second signal in the second group of resource particles.
  • the sequence number of the subcarrier in the first group of resource particles is corresponding to the modulation symbol or sequence element of the first signal
  • the sequence number of the subcarrier in the second group of resource particles is corresponding to the modulation symbol or sequence element of the second signal.
  • the relationship is the same.
  • the modulation symbol is a complex symbol after modulation mapping, and one complex symbol is mapped to one resource particle, and the order of the complex symbol corresponds to the subcarrier number corresponding to the resource particle.
  • a sequence element can be understood as a signal to be transmitted that is an unmodulated sequence signal.
  • a Zadoff-chu sequence signal one element in the sequence maps a resource particle, and the sequence corresponds to the sequence number of the subcarrier in which the resource particle is located.
  • the mapping method of the first signal in the first group of resource particles is the same as the mapping method of the second signal in the second group of resource particles, the mapping between the first signal and the second signal and the resource particle can be implemented more easily. .
  • the network device determines a subcarrier position of the third signal to be sent and a subcarrier position of the fourth signal to be sent, where the subcarrier occupied by the third signal is a continuous subcarrier in the third group of resource particles, and the fourth signal is occupied.
  • the subcarriers are consecutive subcarriers in the fourth group of resource particles, the number of subcarriers occupied by the third signal is the same as the number of subcarriers occupied by the fourth signal, and the subcarrier spacing in the third group of resource particles is the same as the first group.
  • the subcarrier spacing within the resource particle is the same, the subcarrier spacing within the fourth group of resource particles is the same as the subcarrier spacing within the second group of resource particles, and the third signal and the fourth signal include at least the secondary synchronization signal.
  • the base station needs to send at least a Secondary Synchronization Signal (SSS) to enable the terminal device to Accurately and quickly detecting the primary synchronization signal, and detecting the secondary synchronization signal on the premise of the known primary synchronization signal, thereby completing time-frequency synchronization with the base station according to the primary synchronization signal, and according to the primary synchronization signal and/or the secondary synchronization signal Get the cell ID. Further, it is also available Full or partial system frame number.
  • SSS Secondary Synchronization Signal
  • the base station can also transmit a third synchronization signal, which can be used to locate a subframe or symbol number, or to locate a lobe sequence number.
  • the subcarriers occupied by the third signal may be consecutive subcarriers in the third group of resource particles, and the subcarriers occupied by the fourth signal are consecutive subcarriers in the fourth group of resource particles, and the consecutive subcarriers are not included.
  • the third signal and the fourth signal are at least the same as the secondary synchronization signal, and the number of subcarriers occupied by the third signal is the same as the number of subcarriers occupied by the fourth signal.
  • the subcarrier spacing in the third group of resource particles is the same as the subcarrier spacing in the first group of resource particles
  • the second signal and the fourth signal are For the same type of terminal equipment, the subcarrier spacing in the second group of resource particles is the same as the subcarrier spacing in the fourth group of resource particles, then the subcarrier spacing in the third group of resource particles and the fourth group of resource particles The subcarrier spacing is different.
  • the received primary synchronization signal and the signal including at least the secondary synchronization signal are sequentially the first signal and the third signal, or the received primary synchronization signal and the signal including at least the secondary synchronization signal are sequentially the second signal and the Four signals.
  • the third group of resource particles and the fourth group of resource particles may have the same number of symbols in the time domain, or may be different, and occupy one symbol or at least two consecutive symbols in the time domain.
  • the sequence number of the subcarrier in the third group of resource particles is corresponding to the modulation symbol or sequence element of the third signal, and the correspondence between the sequence number of the subcarrier in the fourth group of resource particles and the modulation symbol or sequence element of the fourth signal. the same.
  • the network device determines a subcarrier position of the fifth signal to be sent and a subcarrier position of the sixth signal to be sent, where the subcarrier occupied by the fifth signal is a continuous subcarrier in the fifth group of resource particles, and the sixth signal is occupied.
  • the subcarriers are consecutive subcarriers in the sixth group of resource particles, the number of subcarriers occupied by the fifth signal is the same as the number of subcarriers occupied by the sixth signal, and the subcarrier spacing in the fifth group of resource particles is the first
  • the sub-carrier spacing in the group resource particle and/or the third group resource particle is the same
  • the sub-carrier spacing in the sixth group resource particle is the same as the sub-carrier spacing in the second group resource particle and/or the fourth group resource particle.
  • the fifth signal and the sixth signal are a first broadcast channel signal or a first System Information Block (SIB) signal.
  • SIB System Information Block
  • the base station before the terminal device accesses the cell, the base station sends the primary synchronization signal and the secondary synchronization signal to enable the terminal device to perform cell search, and the base station also needs to send the first broadcast channel signal or the first system information block signal, Is a first broadcast channel signal or a first system information block signal, so that the terminal device acquires necessary information required for a subsequent access procedure, for example, the first broadcast channel signal or the first system information block signal includes measurement pilot transmission information and random connection Incoming signal transmission configuration information, etc. Therefore, the base station also needs to transmit the fifth signal and the sixth signal occupying different subcarrier spacings.
  • the fifth signal and the sixth signal are a first broadcast channel signal or a first system information block signal.
  • the fifth signal is the same terminal device corresponding to the subcarrier spacing occupied by the first signal and the third signal, then when the subcarrier occupied by the fifth signal is a continuous subcarrier in the fifth group of resource particles, the fifth group of resources
  • the subcarrier spacing of the particles is the same as the subcarrier spacing of the first group of resource particles and the third group of resource particles.
  • the subcarrier spacing of the sixth group of resource particles is the same as the subcarrier spacing of the second group of resource particles and the fourth group of resource particles, that is, The subcarrier spacing of the fifth set of resource particles and the sixth set of resource particles is different.
  • the fifth group of resource particles and the sixth group of resource particles occupy the time domain.
  • the number of symbols may be the same or different, and occupy one symbol or at least two consecutive symbols in the time domain.
  • the fifth signal and the sixth signal are the first broadcast channel signal or the first system information block signal
  • the fifth signal and the sixth signal include not only the sequence signal, that is, the data signal, but also the pilot signal
  • the location of the resource particle of the data signal carrying the fifth signal in the fifth group resource particle is the same as the location of the resource particle of the data signal carrying the sixth signal in the sixth group resource particle, and the fifth group resource particle carries the fifth signal.
  • the location of the resource particle of the pilot signal is the same as the location of the resource particle of the pilot signal carrying the sixth signal in the sixth set of resource particles.
  • At least two groups of resource particles of the first group of resource particles, the third group of resource particles, and the fifth group of resource particles occupy different frequency domain resources on the same time domain resource
  • the second group of resource particles and the fourth group of resources At least two sets of resource particles in the particle and the sixth set of resource particles occupy different frequency domain resources on the same time domain resource. That is, at least two of the first signal, the third signal, and the fifth signal are simultaneously transmitted, and at least two of the second signal, the fourth signal, and the sixth signal are simultaneously transmitted.
  • the second broadcast channel signal or the second system information block signal may be simultaneously sent.
  • the first broadcast channel signal or the first system information block signal carries information such as cell and/or lobe measurement pilot
  • the second broadcast channel signal or the second system information block signal carries other information, such as random access configuration information.
  • the base station transmits the first signal, the third signal, and the fifth signal
  • the base station further needs to send the seventh signal, where the seventh signal is the second broadcast channel signal or the second system information block signal, and the seventh signal is occupied by
  • the time domain resource is greater than or equal to a time domain resource occupied by at least one of the first signal, the third signal, and the fifth signal.
  • the seventh signal occupies the first group of resource particles, the third group of resource particles, and the third group of resource particles, at least one group of resource particles occupying the time domain resource except the first group of resource particles, the third group of resource particles, and the fifth group A subcarrier in a frequency domain resource other than a frequency domain resource occupied by at least one group of resource particles in a resource particle. That is to say, the seventh signal occupies the subcarriers in the remaining frequency domain resources of the frequency domain resource of the first subcarrier interval.
  • a carrier in a carrier, includes multiple subcarriers, and at least two groups of resource particles of the first group of resource particles, the third group of resource particles, and the fifth group of resource particles may be located in the first carrier.
  • the at least two groups of resource particles, the fourth group of resource particles, and the sixth group of resource particles may be located in the second carrier, and the first carrier and the second carrier occupy different frequency domain resources. That is, multiple sets of resource particles are included in each carrier.
  • each carrier includes multiple frequency domain resource units
  • each frequency domain resource unit is a group of subcarriers
  • the group of subcarriers includes at least two subcarriers.
  • the first group of resource particles may occupy at least one frequency domain resource unit of the first carrier
  • the second group of resource particles may occupy at least one frequency domain resource unit of the second carrier, and the frequency of the first group of resource particles occupied by the first carrier
  • the sequence number of the domain resource unit is the same as the sequence number of the frequency domain resource unit occupied by the second group of resource particles in the second carrier
  • the third group of resource particles may occupy at least one frequency domain resource unit in the first carrier
  • fourth The group resource particle may occupy at least one frequency domain resource unit in the second carrier, the sequence number of the frequency domain resource unit occupied by the third group resource particle in the first carrier and the frequency domain resource occupied by the fourth group resource particle in the second carrier
  • the sequence number of the unit is the same; the fifth group resource particle can occupy at least one frequency domain resource unit in the first carrier, the
  • the first group of resource particles and the second group of resource particles may each include 72 or 48 subcarriers.
  • the value of the third group of resource particles and the fourth group of resource particles may be 72, or 48, or 96 or other values.
  • the present application is not limited.
  • the number of subcarriers included in the fifth group of resource particles and the sixth group of resource particles may be 72, or 144, or may be 288 or other values, which is not limited in this application.
  • the number of subcarriers occupying the first group of resource particles by the first signal is less than or equal to the total number of subcarriers of the first group of resource particles, and the subcarrier data of the second group of resource particles occupying the second group of resource particles is less than or equal to the second group of resource particles.
  • the third signal occupies a third group of resource particles, the number of subcarriers is less than or equal to the total number of subcarriers of the third group of resource particles, and the fourth signal occupies the fourth group of resource particles, and the subcarrier data is less than or equal to the fourth group of resources.
  • Total subcarrier data of the particle; the number of subcarriers occupying the fifth group of resource particles is less than or equal to the total number of subcarriers of the fifth group of resource particles, and the sixth signal occupying the subcarrier data of the sixth group of resource particles is less than or equal to The total subcarrier data of the sixth set of resource particles.
  • the network device sends a first signal at a determined subcarrier position of the first signal, a second signal at a determined subcarrier position of the second signal, and a third signal at a determined subcarrier position of the third signal, where The determined subcarrier position of the fourth signal transmits a fourth signal, the fifth signal is transmitted at the determined subcarrier position of the fifth signal, and the sixth signal is transmitted at the determined subcarrier position of the sixth signal.
  • the terminal device performs synchronization or cell search according to the first signal and/or the third signal, and receives the fifth signal for demodulation and decoding; or the terminal device performs synchronization or cell search according to the second signal and/or the fourth signal, And receiving the sixth signal for demodulation and decoding.
  • the terminal device since the subcarrier spacings of the first signal, the third signal, and the fifth signal are the same, the subcarrier spacings of the second signal, the fourth signal, and the sixth signal are the same, the first signal and the second signal.
  • the subcarrier spacing of the signal is different, the first signal and the second signal are both primary synchronization signals, the third signal and the fourth signal at least comprise the secondary synchronization signal, and the fifth signal and the sixth signal comprise at least the first broadcast channel signal or the first
  • the system information block signal if the terminal device supports the subcarrier spacing of the first signal, the terminal device can receive the first signal, the third signal, and the fifth signal, and if the terminal device supports the subcarrier spacing of the second signal, the terminal device can The second signal, the fourth signal, and the sixth signal are received.
  • the terminal device may perform sequence detection on the first signal and/or the third signal to implement the network.
  • a complete or partial system frame number can also be obtained, and the fifth signal is demodulated and decoded to obtain necessary information for a subsequent access procedure, such as a first broadcast channel signal or a first system information block signal.
  • the parameters include measurement pilot transmission information and random access configuration information, so that the terminal device can continue the subsequent access procedure to access the network where the base station is located.
  • the first signal and the second signal may also be a modulation sequence. At this time, the terminal device needs to perform demodulation and sequence detection on the first signal and the third signal.
  • the terminal device may also receive the first signal, the second signal, the third signal, and the fifth signal, where the first signal and the second signal may be primary synchronization signals, and the subcarrier spacing of the first signal Different from the subcarrier spacing of the second signal, the third signal may be at least a secondary synchronization signal, and the fifth signal may be a first broadcast channel signal or a first system information block signal, such as a first broadcast channel signal or a first system information block.
  • the pilot device transmits the information, the random access configuration information, and the like.
  • the terminal device may perform time-frequency synchronization according to the first signal and the second signal, and perform cell according to the first signal and/or the third signal and the fifth signal. Search and obtain information about subsequent access cells.
  • the terminal device can also receive the first signal, the second signal, the fourth signal, and the sixth signal, perform time-frequency synchronization according to the first signal and the second signal, and according to the second signal and/or the fourth signal and The six signals perform cell search and acquire related information of the access cell.
  • the terminal device may also receive the first signal, the second signal, the third signal, the fourth signal, the fifth signal, and the sixth signal, where the first signal and the second signal are primary synchronization signals, The third signal and the fourth signal are at least a secondary synchronization signal, and the fifth signal and the sixth signal are a first broadcast channel signal or a first system information block signal, and the subcarrier spacings of the first signal, the third signal, and the fifth signal are the same, The subcarrier spacings of the second signal, the fourth signal, and the sixth signal are the same, and the first signal is different from the subcarrier spacing of the second signal, and the terminal device may be based on the first signal and/or the third signal and the second signal and/or The fourth signal performs time-frequency synchronization and/or cell search, and acquires information of the subsequent access cell according to the fifth signal and the sixth signal, so that the terminal device can continue the subsequent access procedure to access the cell.
  • the terminal may further receive a seventh signal sent by the network device, where the seventh signal includes a second broadcast channel signal or a second system information block signal, a second broadcast channel signal or second system information.
  • the block signal carries other information, such as random access configuration information.
  • An embodiment of the present invention provides a signal sending method, where a network device determines a subcarrier position of a first signal to be transmitted and a subcarrier position of a second signal to be sent, and the subcarrier occupied by the first signal is in the first group of resource particles.
  • the contiguous subcarriers, the subcarriers occupied by the second signal are consecutive subcarriers in the second group of resource particles, and the number of subcarriers occupied by the first signal is the same as the number of subcarriers occupied by the second signal, and the first group of resource particles
  • the subcarrier spacing is different from the subcarrier spacing in the second group of resource particles; the network device transmits the first signal at the determined subcarrier position of the first signal, and transmits the second signal at the determined subcarrier position of the second signal, In this way, when the first signal and the second signal are used for time-frequency synchronization and cell search, the terminal device can acquire related information for accessing the network where the cell is located, to support the terminal device to access a cell with different sub-carrier spacing or use.
  • the time-frequency resources with different sub-carrier spacings communicate with the network device, which can solve how the network device sends signals to enable the terminal device to access multiple supports. System-carrier interval.
  • each network element such as a network device and a terminal device, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the function modules of the network device and the terminal device according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 6 is a schematic diagram showing a possible structure of a network device involved in the foregoing embodiment, where the network device includes: a processing unit 601 and a sending unit 602.
  • the processing unit 601 is configured to support the network device to perform the processes 301-303 in FIG. 3, and the sending unit 602 is configured to support the network device to perform the process 304 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 7 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device includes a processing module 702 and a communication module 703.
  • the processing module 302 is configured to control management of actions of the network device.
  • the processing module 702 is configured to support the network device to perform the processes 301, 302, and 303 of FIG. 3, and/or other processes for the techniques described herein.
  • Communication module 703 is used to support communication of network devices with other network entities, such as with the functional modules or network entities illustrated in Figures 1 and 2.
  • the network device may further include a storage module 701 for storing program codes and data of the network device.
  • the processing module 702 can be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 703 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 701 can be a memory.
  • the network device involved in the embodiment of the present invention may be the network device shown in FIG.
  • the network device includes a processor 802, a transceiver 803, a memory 801, and a bus 804.
  • the transceiver 803, the processor 802, and the memory 801 are connected to each other through a bus 804.
  • the bus 804 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • FIG. 9 is a schematic diagram showing a possible structure of a terminal device involved in the foregoing embodiment.
  • the terminal device includes: a receiving unit 901 and a processing unit 902.
  • the processing unit 902 is configured to support the terminal device to perform the process 305 in FIG. 3, and the receiving unit 901 is configured to support the terminal device to perform the process 304 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device includes a processing module 102 and a communication module 103.
  • the processing module 102 is configured to control management of actions of the terminal device, for example, the processing module 102 is configured to support the terminal device to perform the process 305 of FIG. 3, and/or other processes for the techniques described herein.
  • the communication module 103 is used to support communication between the terminal device and other network entities, such as communication with the functional modules or network entities shown in FIG.
  • the terminal device may further include a storage module 101 for storing program codes and data of the terminal device.
  • the processing module 102 can be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 103 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 101 can be a memory.
  • the terminal device involved in the embodiment of the present invention may be the terminal device shown in FIG.
  • the terminal device includes a processor 112, a transceiver 113, a memory 111, and a bus 114.
  • the transceiver 113, the processor 112, and the memory 111 are connected to each other through a bus 114.
  • the bus 114 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信号发送方法、网络设备和终端设备,涉及通信领域,能够解决网络设备如何发送信号以使得终端设备接入支持多种子载波间隔的系统的问题。其方法为:网络设备确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;网络设备在确定的第一信号的子载波位置发送第一信号,在确定的第二信号的子载波位置发送第二信号。本发明实施例用于终端设备进行小区搜索以接入小区。

Description

一种信号发送方法、网络设备和终端设备
本申请要求于2016年8月12日提交中国专利局、申请号为201610664562.5、申请名称为“一种信号发送方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种信号发送方法、网络设备和终端设备。
背景技术
传统的数字信号传输,都是将信息流一次通过一条通道进行传输,属于串行传输的方式。多载波技术采用的是并行传输方式,将串行的高速信息流进行串并变换,分隔成多个并行的低速信息流,再将多个并行的低速信息流叠加进行传输,形成多个载波的传输系统,即多载波技术为用多个载波传输高速数据信息的技术。其中,载波即载有数据的特定频率的无线电波。
多载波传输技术在通信系统中已得到广泛应用,例如4G通信系统以及无线局域网标准802.11系列系统。在当前的通信系统中,各系统支持的业务较为统一,每个通信系统仅支持一种子载波间隔的波形。未来5G通信系统中,网络设备的服务小区可以支持多种子载波间隔,使得服务小区可以在不同的业务、不同的部署场景下使用不同的子载波间隔信号服务不同需求的终端设备。
但是,网络设备如何发送信号以使得终端设备接入支持多种子载波间隔的系统是一个亟待解决的问题。
发明内容
本发明实施例提供一种信号发送方法、网络设备和终端设备,能够解决网络设备如何发送信号以使得终端设备接入支持多种子载波间隔的系统的问题。
一方面,提供一种信号发送方法,包括:网络设备确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;网络设备在确定的第一信号的子载波位置发送第一信号,在确定的第二信号的子载波位置发送第二信号。网络设备可以为基站,终端设备可以为用户设备,第一信号和第二信号可以为同步信号。这样,当第一信号和第二信号可用于时频同步或小区搜索时,终端设备可获取用于接入小区的相关信息,以支持终端设备接入子载波间隔不同的小区或使用子载波间隔不同的时频资源与网络设备进行通信,能够解决网络设备如何发送信号以使得终端设备接入支持多种子载波间隔的系统的问题。
在一种可能的设计中,第一信号和第二信号为同步信号,连续子载波不包括零子载波,第一组资源组粒子和第二组资源组粒子在时域所占的符号数相同或不同,且在 时域上占用一个符号或至少两个连续符号。例如第一信号和第二信号为主同步信号,当第一组资源组粒子和第二组资源组粒子在时域所占的符号数相同或不同时,由于存在相同的时域资源,网络设备可同时发送第一信号和第二信号,以使得支持不同子载波的终端设备可接收到适合自身的主同步信号。
在一种可能的设计中,第一组资源粒子中子载波的序号与第一信号的调制符号或序列元素对应关系,与第二组资源粒子中子载波的序号与第二信号的调制符号或序列元素的对应关系相同,调制符号为经过调制映射后的复数符号,一个复数符号与一个资源粒子映射,复数符号的顺序与资源粒子对应的子载波序号对应。序列元素可以理解为待发送的信号为未调制的序列信号时,例如为Zadoff-chu序列信号时,序列中的一个元素映射一个资源粒子,序列与资源粒子所在的子载波的序号对应可使得信号与资源粒子的映射更为简便。
在一种可能的设计中,网络设备在发送第一信号和第二信号之前,方法还包括:网络设备确定待发送的第三信号的子载波位置和待发送的第四信号的子载波位置,第三信号占用的子载波为第三组资源粒子内的连续子载波,第四信号占用的子载波为第四组资源粒子内的连续子载波,第三信号占用的子载波个数与第四信号占用的子载波个数相同,第三组资源粒子内的子载波间隔与第一组资源粒子内的子载波间隔相同,第四组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔相同,第一信号和第二信号为主同步信号,第三信号和第四信号至少包括辅同步信号。这样,终端设备能准确并快速检测出主同步信号,并在已知主同步信号的前提下检测辅同步信号,从而根据主同步信号和辅同步信号获得小区ID。进一步地,还可以获得完整的或部分的系统帧号。
在一种可能的设计中,第三组资源粒子中子载波的序号与第三信号的调制符号或序列元素对应关系,与第四组资源粒子中子载波的序号与第四信号的调制符号或序列元素的对应关系相同,使得信号与资源粒子的映射更为简便。
在一种可能的设计中,在网络设备发送第三信号和第四信号之前,方法还包括:网络设备确定待发送的第五信号的子载波位置和待发送的第六信号的子载波位置,第五信号占用的子载波为第五组资源粒子内的连续子载波,第六信号占用的子载波为第六组资源粒子内的连续子载波,第五信号占用的子载波个数与第六信号占用的子载波个数相同,第五组资源粒子的子载波间隔,与第一组资源粒子和/或第三组资源粒子的子载波间隔相同,第六组资源粒子的子载波间隔,与第二组资源粒子和/或第四组资源粒子的子载波间隔相同,第五信号和第六信号为第一广播信道信号或第一系统信息块信号,以便终端设备获取后续接入流程所需的必要信息,例如第一广播信道信号或第一系统信息块信号包括测量导频发送信息、随机接入信号发送序列、随机接入信号发送资源以及系统带宽等参数。
在一种可能的设计中,第五组资源粒子中承载第五信号的数据信号的资源粒子的位置与第六组资源粒子中承载第六信号的数据信号的资源粒子的位置相同,第五组资源粒子中承载第五信号的导频信号的资源粒子的位置与第六组资源粒子中承载第六信号的导频信号的资源粒子的位置相同,资源粒子为单位符号上的频域资源。
在一种可能的设计中,第一组资源粒子、第三组资源粒子与第五组资源粒子中的 至少两组资源粒子占用相同时域资源上的不同频域资源,第二组资源粒子、第四组资源粒子和第六组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源,这是由于第五信号和第六信号不仅包括序列信号,即数据信号,也包括导频信号,进而使得资源粒子与信号映射更为简便。
在一种可能的设计中,第七信号占用第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少一组资源粒子占用的时域资源上除第一组资源粒子、第三组资源粒子和第五组资源粒子中的至少一组资源粒子占用的频域资源以外的频域资源中的子载波;第七信号为第二广播信道信号或第二系统信息,第七信号占用的时域资源大于或等于第一信号、第三信号和第五信号中的至少一个所占用的时域资源。即第一信号、第三信号、第五信号和第七信号为同时域资源上的频分信号。第二广播信道信号或第二系统信息块信号可以承载其它的信息,如随机接入配置信息。
在一种可能的设计中,第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少两组资源粒子位于第一载波内,第二组资源粒子、第四组资源粒子和第六组资源粒子中的至少两组资源粒子位于第二载波内,第一载波和第二载波占用不同的频域资源。这样,可利于支持不同子载波的终端设备可以在相应的载波上接收到所需的信号。
在一种可能的设计中,第一组资源粒子占用第一载波中的至少一个频域资源单位,第二组资源粒子占用第二载波内的至少一个频域资源单位,第一组资源粒子在第一载波占用的频域资源单位的序号与第二组资源粒子在第二载波内占用的频域资源单位的序号相同;第三组资源粒子占用第一载波中的至少一个频域资源单位,第四组资源粒子占用第二载波内的至少一个频域资源单位,第三组资源粒子在第一载波占用的频域资源单位的序号与第四组资源粒子在第二载波内占用的频域资源单位的序号相同;第五组资源粒子占用第一载波中的至少一个频域资源单位,第六组资源粒子占用第二载波内的至少一个频域资源单位,第五组资源粒子在第一载波占用的频域资源单位的序号与第六组资源粒子在第二载波内占用的频域资源单位的序号相同;其中,频域资源单位为一组子载波。
另一方面,提供一种信号发送方法,包括:终端设备接收网络设备发送的第一信号和第二信号,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;终端设备对第一信号和第二信号进行检测,或终端设备对第一信号和第二信号进行解调和检测,或终端设备对第一信号和第二信号进行解调和解码。
在一种可能的设计中,第一信号和第二信号为同步信号,连续子载波不包括零子载波,第一组资源组粒子和第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
在一种可能的设计中,第一组资源粒子中子载波的序号与第一信号的调制符号或序列元素对应关系,与第二组资源粒子中子载波的序号与第二信号的调制符号或序列元素到的对应关系相同。
在一种可能的设计中,方法还包括:终端设备接收网络设备发送的第三信号和/或第四信号,第三信号占用的子载波为第三组资源粒子内的连续子载波,第三组资源 粒子内的子载波间隔与第一组资源粒子内的子载波间隔相同,第四信号占用的子载波为第四组资源粒子内的连续子载波,第四组资源粒子内的子载波间隔与第一组资源粒子或第三组资源粒子内的子载波间隔相同,第一信号为主同步信号,第三信号至少包括辅同步信号,第四信号为广播信道信号或系统信息。
再一方面,提供一种网络设备,包括:方法还包括:处理单元,用于确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;发送单元,用于在确定的第一信号的子载波位置发送第一信号,在确定的第二信号的子载波位置发送第二信号。
在一种可能的设计中,第一信号和第二信号为同步信号,连续子载波不包括零子载波,第一组资源组粒子和第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
在一种可能的设计中,第一组资源粒子中子载波的序号与第一信号的调制符号或序列元素对应关系,与第二组资源粒子中子载波的序号与第二信号的调制符号或序列元素的对应关系相同。
在一种可能的设计中,处理单元还用于:确定待发送的第三信号的子载波位置和待发送的第四信号的子载波位置,第三信号占用的子载波为第三组资源粒子内的连续子载波,第四信号占用的子载波为第四组资源粒子内的连续子载波,第三信号占用的子载波个数与第四信号占用的子载波个数相同,第三组资源粒子内的子载波间隔与第一组资源粒子内的子载波间隔相同,第四组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔相同,第一信号和第二信号为主同步信号,第三信号和第四信号至少包括辅同步信号。
在一种可能的设计中,第三组资源粒子中子载波的序号与第三信号的调制符号或序列元素对应关系,与第四组资源粒子中子载波的序号与第四信号的调制符号或序列元素的对应关系相同。
在一种可能的设计中,处理单元还用于:确定待发送的第五信号的子载波位置和待发送的第六信号的子载波位置,第五信号占用的子载波为第五组资源粒子内的连续子载波,第六信号占用的子载波为第六组资源粒子内的连续子载波,第五信号占用的子载波个数与第六信号占用的子载波个数相同,第五组资源粒子的子载波间隔,与第一组资源粒子和/或第三组资源粒子的子载波间隔相同,第六组资源粒子的子载波间隔,与第二组资源粒子和/或第四组资源粒子的子载波间隔相同,第五信号和第六信号为第一广播信道信号或第一系统信息块信号。
在一种可能的设计中,第五组资源粒子中承载第五信号的数据信号的资源粒子的位置与第六组资源粒子中承载第六信号的数据信号的资源粒子的位置相同,第五组资源粒子中承载第五信号的导频信号的资源粒子的位置与第六组资源粒子中承载第六信号的导频信号的资源粒子的位置相同,资源粒子为单位符号上的频域资源。
在一种可能的设计中,第一组资源粒子、第三组资源粒子与第五组资源粒子中的 至少两组资源粒子占用相同时域资源上的不同频域资源,第二组资源粒子、第四组资源粒子和第六组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源。
在一种可能的设计中,第七信号占用第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少一组资源粒子占用的时域资源上除第一组资源粒子、第三组资源粒子和第五组资源粒子中的至少一组资源粒子占用的频域资源以外的频域资源中的子载波;第七信号为第二广播信道信号或第二系统信息,第七信号占用的时域资源大于或等于第一信号、第三信号和第五信号中的至少一个所占用的时域资源。
在一种可能的设计中,第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少两组资源粒子位于第一载波内,第二组资源粒子、第四组资源粒子和第六组资源粒子中的至少两组资源粒子位于第二载波内,第一载波和第二载波占用不同的频域资源。
在一种可能的设计中,第一组资源粒子占用第一载波中的至少一个频域资源单位,第二组资源粒子占用第二载波内的至少一个频域资源单位,第一组资源粒子在第一载波占用的频域资源单位的序号与第二组资源粒子在第二载波内占用的频域资源单位的序号相同;第三组资源粒子占用第一载波中的至少一个频域资源单位,第四组资源粒子占用第二载波内的至少一个频域资源单位,第三组资源粒子在第一载波占用的频域资源单位的序号与第四组资源粒子在第二载波内占用的频域资源单位的序号相同;第五组资源粒子占用第一载波中的至少一个频域资源单位,第六组资源粒子占用第二载波内的至少一个频域资源单位,第五组资源粒子在第一载波占用的频域资源单位的序号与第六组资源粒子在第二载波内占用的频域资源单位的序号相同;其中,频域资源单位为一组子载波。
再一方面,提供一种终端设备,包括:
接收单元,用于接收网络设备发送的第一信号和第二信号,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;处理单元,用于对第一信号和第二信号进行检测,或处理单元,用于对第一信号和第二信号进行解调和检测,或处理单元,用于对第一信号和第二信号进行解调和解码。
在一种可能的设计中,第一信号和第二信号为同步信号,连续子载波不包括零子载波,第一组资源组粒子和第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
在一种可能的设计中,第一组资源粒子中子载波的序号与第一信号的调制符号或序列元素对应关系,与第二组资源粒子中子载波的序号与第二信号的调制符号或序列元素到的对应关系相同。
在一种可能的设计中,接收单元还用于:接收网络设备发送的第三信号和/或第四信号,第三信号占用的子载波为第三组资源粒子内的连续子载波,第三组资源粒子内的子载波间隔与第一组资源粒子内的子载波间隔相同,第四信号占用的子载波为第四组资源粒子内的连续子载波,第四组资源粒子内的子载波间隔与第一组资源粒子或第 三组资源粒子内的子载波间隔相同,第一信号为主同步信号,第三信号至少包括辅同步信号,第四信号为广播信道信号或系统信息。
再一方面,本发明实施例提供了一种计算机存储介质,用于存储上述网络设备所用的计算机软件指令,其包含用于执行上述第五方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于存储上述终端设备所用的计算机软件指令,其包含用于执行上述第五方面所设计的程序。
本发明实施例提供一种信号发送方法、网络设备和终端设备,网络设备确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;网络设备在确定的第一信号的子载波位置发送第一信号,在确定的第二信号的子载波位置发送第二信号,这样,当第一信号和第二信号可用于时频同步或小区搜索时,终端设备可获取用于接入小区的相关信息,以支持终端设备接入子载波间隔不同的小区或使用子载波间隔不同的时频资源与网络设备进行通信,能够解决网络设备如何发送信号以使得终端设备接入支持多种子载波间隔的系统的问题。
附图说明
图1为本发明实施例提供的一种网络架构示意图;
图2为本发明实施例提供的一种终端设备的结构示意图;
图3为本发明实施例提供的一种信号发送方法的流程示意图;
图4为本发明实施例提供的一种子载波间隔不同的时频资源的示意图;
图5为本发明实施例提供的一种第一信号和第二信号的子载波间隔不同的时频资源的示意图;
图6为本发明实施例提供的一种网络设备的结构示意图;
图7为本发明实施例提供的一种网络设备的结构示意图;
图8为本发明实施例提供的一种网络设备的结构示意图;
图9为本发明实施例提供的一种终端设备的结构示意图;
图10为本发明实施例提供的一种终端设备的结构示意图;
图11为本发明实施例提供的一种终端设备的结构示意图。
具体实施方式
本发明实施例可应用于无线通信系统,例如可适用于5G通信系统,具体可适用于5G通信系统中终端设备接入网络侧的应用场景。5G通信系统可支持不同的业务,不同的部署场景和不同的频谱。其中,该业务例如可以为增强的移动带宽(enhanced Mobile Broadband,eMBB)业务、机器类型通信(Machine Type Communication,MTC)业务、超可靠低延迟通信(Ultra-reliable and low latency communications,URLLC)业务、多媒体广播多播业务(Multimedia Broadcast Multicast Service,MBMS)和定位业务等。该部署场景例如可以为室内热点场景、密集城区场景、郊区场景、城区宏覆盖场景、高铁场景等。该频谱例如可以为100GHz以内的任一的频率范围。
本发明实施例提供一种网络架构,如图1所示,该网络架构包括网络设备和终端 设备,例如网络设备可以为基站,终端设备可以为用户设备(User Equipment,UE)。
在本发明实施例中,以网络设备为基站为例,基站是一种部署在无线接入网用以提供无线通信功能的装置。在5G通信系统中,提供网络设备功能的设备包括演进型网络设备(evolved Node B,eNB)、新无线节点B(New Radio NodeB,gNB),集中单元(Centralized Unit,CU),分布式单元(Distributed Unit)和新无线控制器等。
在本发明实施例中,终端设备可以为以下任意一种,并且终端设备可以是静态的,也可以是移动的。终端设备可以包括但不限于:站台(Station)、移动台(Mobile Station)、用户单元(Subscriber Unit)、个人电脑(Personal Computer)、膝上型电脑(Laptop Computer)、平板电脑(Tablet Computer)、上网本(Netbook)、终端(Terminal)、蜂窝电话(Cellular Phone)、手持设备(Handheld)、无绳电话(Cordless Phone)、个人数字助理(Personal Digital Assistant,PDA)、数据卡(Data Card)、通用串行总线(Universal Serial Bus,USB)插入设备、移动WiFi热点设备(MiFi Devices)、智能手表、智能眼镜、无线调制解调器(Modem)、无线路由器、无线本地环路(Wireless Local Loop,WLL)台等。
以终端设备为手机为例,图2示出的是与本发明实施例相关的手机的部分结构的框图。参考图2,手机包括:射频(Radio Frequency,RF)电路210、电源220、处理器230、存储器240、输入单元250、显示单元260、传感器270、音频电路280等部件。本领域技术人员可以理解,图2中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本发明实施提供一种信号发送方法、网络设备和终端设备,应用于5G通信系统中,网络设备在发送第一信号和第二信号时,将第一信号映射在第一组资源粒子中,将第二信号映射在第二组资源粒子中,第一信号占用第一组资源粒子中的连续子载波,第二信号占用第二组资源粒子中的连续子载波,第一组资源粒子和第二组资源粒子中的子载波间隔不同,使得5G通信系统可支持终端设备接收网络设备发送的子载波间隔不同的信号,以接入支持多种子载波间隔的系统。
本发明实施例提供一种信号发送方法,如图3所示,包括:
301、网络设备确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同,第一信号和第二信号为主同步信号。
具体的,可以预先将信道资源按照时域和频域进行划分,如图4所示,例如信道资源包括第一资源和第二资源,第一资源中包括至少一组资源粒子,第二资源中包括至少一组资源粒子。每组资源粒子包括多个资源粒子,若时域按照符号长度进行划分,频域按照子载波进行划分,资源粒子可以理解为单位符号长度上的频域资源。当网络设备需发送信号时,可以将信号映射在一组资源粒子上进行发送。
示例性的,当网络设备需发送信号时,网络设备可根据待发送信号以及网络设备支持的终端设备种类确定发送信号的一组资源粒子,即在哪种子载波间隔资源上发送信号。例如待发送的信号为同步信号,网络设备支持的终端设备种类支持第一子载波 间隔和第二子载波间隔,第一子载波间隔和第二子载波间隔不同。网络设备可以将待发送的信号中的第一信号的元素映射在第一资源未被占用的第一组资源粒子上,将待发送的信号中的第二信号的元素映射在第二资源未被占用的第二组资源粒子上。若第一信号在第一组资源粒子上占用N个子载波,第二信号在第二组资源粒子上占用N个子载波,如图5所示为第一信号和第二信号在时域和频域上的资源占用示意图。其中,第一信号和第二信号的元素可以是未调制的序列信号,也可以是调制符号信号的元素。第一组资源粒子内的子载波间隔为第一子载波间隔,第二资源粒子内的子载波间隔为第二子载波间隔,即第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同。第一信号在第一组资源粒子内占用的子载波为连续子载波,第二信号在第二组资源粒子内占用的子载波为也为连续子载波。若第一组资源粒子或第二组资源粒子中包括零子载波,则连续子载波不包括零子载波。由于第一信号和第二信号均为同步信号,因此,第一信号占用的子载波个数与第二信号占用的子载波个数相同。
如图5所示,当子载波间隔较小时,时域符号长度相对较大,反之,当子载波间隔较大时,时域符号长度相对较小,采用后者可以使得信号更快到达终端设备。因此,第一组资源粒子和第二组资源粒子在时域上所占的符号数可以相同,也可以不同,且在时域上占用一个符号或至少两个连续符号。
可选的,网络设备确定以哪种子载波间隔的一组资源粒子发送信号,也可以是由于终端设备与不同子载波间隔资源同步需要对应子载波间隔的同步信号,因此网络设备会在每个子载波间隔对应的资源上发送至少一个相应子载波间隔的同步信号。
进一步的,第一信号在第一组资源粒子内的映射方法可以与第二信号在第二组资源粒子内的映射方法相同。示例性的,第一组资源粒子中子载波的序号与第一信号的调制符号或序列元素对应关系,与第二组资源粒子中子载波的序号与第二信号的调制符号或序列元素的对应关系相同。其中,调制符号为经过调制映射后的复数符号,一个复数符号与一个资源粒子映射,复数符号的顺序与资源粒子对应的子载波序号对应。序列元素可以理解为待发送的信号为未调制的序列信号时,例如为Zadoff-chu序列信号时,序列中的一个元素映射一个资源粒子,序列与资源粒子所在的子载波的序号对应。当第一信号在第一组资源粒子内的映射方法与第二信号在第二组资源粒子内的映射方法相同时,可使得第一信号和第二信号与资源粒子的映射实现方式更为简便。
302、网络设备确定待发送的第三信号的子载波位置和待发送的第四信号的子载波位置,第三信号占用的子载波为第三组资源粒子内的连续子载波,第四信号占用的子载波为第四组资源粒子内的连续子载波,第三信号占用的子载波个数与第四信号占用的子载波个数相同,第三组资源粒子内的子载波间隔与第一组资源粒子内的子载波间隔相同,第四组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔相同,第三信号和第四信号至少包括辅同步信号。
以网络设备为基站为例,当第一信号和第二信号为主同步信号(Primary Synchronization Signal,PSS)时,基站还至少需要发送辅同步信号(Secondary Synchronization Signal,SSS),以使得终端设备能准确并快速检测出主同步信号,并在已知主同步信号的前提下检测辅同步信号,从而根据主同步信号完成与所述基站的时频同步,并且根据主同步信号和/或辅同步信号获得小区ID。进一步地,还可以获得 完整的或部分的系统帧号。因此在确定第一信号和第二信号的子载波位置时,还需要确定至少为辅同步信号的第三信号和第四信号的子载波位置。在一个例子中,基站还可以发送第三种同步信号,该第三种同步信号可以被用于定位子帧或符号序号,或用于定位波瓣序号。
与步骤301类似的,第三信号占用的子载波可以在第三组资源粒子内的连续子载波,第四信号占用的子载波为第四组资源粒子内的连续子载波,连续子载波不包括零子载波。第三信号和第四信号至少同为辅同步信号,第三信号占用的子载波个数和第四信号占用的子载波个数相同。若第一信号和第三信号均针对的是同一种类的终端设备,则第三组资源粒子内的子载波间隔与第一组资源粒子内的子载波间隔相同,若第二信号和第四信号针对的是同一种类的终端设备,则第二组资源粒子内的子载波间隔与第四组资源粒子内的子载波间隔相同,那么第三组资源粒子内的子载波间隔与第四组资源粒子内的子载波间隔不同。对于终端设备来说,接收的主同步信号和至少包括辅同步信号的信号依次为第一信号和第三信号,或者接收的主同步信号和至少包括辅同步信号的信号依次为第二信号和第四信号。
与步骤301类似的,第三组资源粒子和第四组资源粒子在时域上所占的符号数可以相同,也可以不同,且在时域上占用一个符号或至少两个连续符号。相应的,第三组资源粒子中子载波的序号与第三信号的调制符号或序列元素对应关系,与第四组资源粒子中子载波的序号与第四信号的调制符号或序列元素的对应关系相同。
303、网络设备确定待发送的第五信号的子载波位置和待发送的第六信号的子载波位置,第五信号占用的子载波为第五组资源粒子内的连续子载波,第六信号占用的子载波为第六组资源粒子内的连续子载波,第五信号占用的子载波个数与第六信号占用的子载波个数相同,第五组资源粒子内的子载波间隔,与第一组资源粒子和/或第三组资源粒子内的子载波间隔相同,第六组资源粒子内的子载波间隔,与第二组资源粒子和/或第四组资源粒子内的子载波间隔相同,第五信号和第六信号为第一广播信道信号或第一系统信息块(System Information block,SIB)信号。
以网络设备为基站为例,终端设备接入小区前,基站发送主同步信号和辅同步信号使得终端设备进行小区搜索时,基站还需要发送第一广播信道信号或第一系统信息块信号,记为第一广播信道信号或第一系统信息块信号,以便终端设备获取后续接入流程所需的必要信息,例如第一广播信道信号或第一系统信息块信号包括测量导频发送信息以及随机接入信号发送配置信息等。因此,基站还需要发送占用子载波间隔不同的第五信号和第六信号。第五信号和第六信号为第一广播信道信号或第一系统信息块信号。若第五信号与第一信号和第三信号占用的子载波间隔对应的同一种终端设备,那么当第五信号占用的子载波为第五组资源粒子内的连续子载波时,第五组资源粒子的子载波间隔,与第一组资源粒子和第三组资源粒子的子载波间隔相同,若第六信号与第二信号和第四信号占用的子载波间隔对应另一同一种终端设备,那么当第六信号占用的子载波为第六组资源粒子内的连续子载波时,第六组资源粒子的子载波间隔,与第二组资源粒子和第四组资源粒子的子载波间隔相同,即第五组资源粒子和第六组资源粒子的子载波间隔不同。
与步骤301和步骤302类似的,第五组资源粒子和第六组资源粒子在时域上所占 的符号数可以相同,也可以不同,且在时域上占用一个符号或至少两个连续符号。为了便于实现,当第五信号和第六信号为第一广播信道信号或第一系统信息块信号时,由于第五信号和第六信号不仅包括序列信号,即数据信号,也包括导频信号,第五组资源粒子中承载第五信号的数据信号的资源粒子的位置与第六组资源粒子中承载第六信号的数据信号的资源粒子的位置相同,第五组资源粒子中承载第五信号的导频信号的资源粒子的位置与第六组资源粒子中承载第六信号的导频信号的资源粒子的位置相同。
可选的,第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源,第二组资源粒子、第四组资源粒子和第六组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源。即第一信号、第三信号与第五信号中的至少两个信号是同时发送的,第二信号、第四信号与第六信号中的至少两个信号是同时发送的。
可选的,在一种可能的实现方式中,当基站通过第五信号发送第一广播信道信号或第一系统信息块信号时,可同时发送第二广播信道信号或第二系统信息块信号,例如第一广播信道信号或第一系统信息块信号承载如小区和/或波瓣测量导频相关信息,第二广播信道信号或第二系统信息块信号承载其它的信息,如随机接入配置信息,因此,基站在发送第一信号、第三信号以及第五信号的同时,基站还需发送第七信号,第七信号为第二广播信道信号或第二系统信息块信号,第七信号占用的时域资源大于或等于第一信号、第三信号和第五信号中的至少一个所占用的时域资源。第七信号占用第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少一组资源粒子占用的时域资源上除第一组资源粒子、第三组资源粒子和第五组资源粒子中的至少一组资源粒子占用的频域资源以外的频域资源中的子载波。也就是说,第七信号占用的是第一子载波间隔的频域资源剩余的频域资源中的子载波。
可选的,以载波为单位来说,一个载波内包括多个子载波,第一组资源粒子、第三组资源粒子与第五组资源粒子中的至少两组资源粒子可以位于第一载波内,第二组资源粒子、第四组资源粒子和第六组资源粒子中的至少两组资源粒子可以位于第二载波内,第一载波和第二载波占用不同的频域资源。即每个载波内包括多组资源粒子。
可选的,若每个载波内包括多个频域资源单位,每个频域资源单位为一组子载波,一组子载波包括至少两个子载波。第一组资源粒子可以占用第一载波中的至少一个频域资源单位,第二组资源粒子可以占用第二载波内的至少一个频域资源单位,第一组资源粒子在第一载波占用的频域资源单位的序号与第二组资源粒子在第二载波内占用的频域资源单位的序号相同;类似的,第三组资源粒子可以占用第一载波中的至少一个频域资源单位,第四组资源粒子可以占用第二载波内的至少一个频域资源单位,第三组资源粒子在第一载波占用的频域资源单位的序号与第四组资源粒子在第二载波内占用的频域资源单位的序号相同;第五组资源粒子可以占用第一载波中的至少一个频域资源单位,第六组资源粒子可以占用第二载波内的至少一个频域资源单位,第五组资源粒子在第一载波占用的频域资源单位的序号与第六组资源粒子在第二载波内占用的频域资源单位的序号相同。
可选的,第一组资源粒子和第二组资源粒子包括的子载波个数均可以为72,或48, 也可以为96或其它值,本申请不做限定;类似的,第三组资源粒子和第四组资源粒子包括的子载波个数均可以为72,或48,也可以为96或其它值,本申请不做限定;类似的,第五组资源粒子和第六组资源粒子包括的子载波个数可以为72,或144,也可以为288或其它值,本申请不做限定。
其中,第一信号占用第一组资源粒子的子载波数小于或等于第一组资源粒子的总子载波数,第二信号占用第二组资源粒子的子载波数据小于或等于第二组资源粒子的总子载波数据。类似的,第三信号占用第三组资源粒子的子载波数小于或等于第三组资源粒子的总子载波数,第四信号占用第四组资源粒子的子载波数据小于或等于第四组资源粒子的总子载波数据;第五信号占用第五组资源粒子的子载波数小于或等于第五组资源粒子的总子载波数,第六信号占用第六组资源粒子的子载波数据小于或等于第六组资源粒子的总子载波数据。
304、网络设备在确定的第一信号的子载波位置发送第一信号,在确定的第二信号的子载波位置发送第二信号,在确定的第三信号的子载波位置发送第三信号,在确定的第四信号的子载波位置发送第四信号,在确定的第五信号的子载波位置发送第五信号,在确定的第六信号的子载波位置发送第六信号。
305、终端设备根据第一信号和/或第三信号进行同步或小区搜索,并接收第五信号进行解调和解码;或者终端设备根据第二信号和/或第四信号进行同步或小区搜索,并接收第六信号进行解调和解码。
在一种可能的设计中,由于上述第一信号、第三信号和第五信号的子载波间隔相同,第二信号、第四信号和第六信号的子载波间隔相同,第一信号与第二信号的子载波间隔不同,第一信号和第二信号均为主同步信号,第三信号和第四信号至少包含辅同步信号,第五信号和第六信号至少包含第一广播信道信号或第一系统信息块信号,若终端设备支持第一信号的子载波间隔,则终端设备可接收第一信号、第三信号和第五信号,若终端设备支持第二信号的子载波间隔,则终端设备可接收第二信号、第四信号和第六信号。
以终端设备接收第一信号、第三信号和第五信号为例,若第一信号为主同步信号,第三信号为辅同步信号,第五信号为第一广播信道信号或第一系统信息块信号为例,若主同步信号和/或辅同步信号为未调制序列,第五信号为编码且调制信号,则终端设备可以对第一信号和/或第三信号进行序列检测,以实现与网络设备的时频同步,或者根据第一信号和/或第三信号获得小区ID,完成小区搜索。进一步地,还可以获得完整的或部分的系统帧号,并对第五信号进行解调和解码,获得后续接入流程所需的必要信息,例如第一广播信道信号或第一系统信息块信号包括测量导频发送信息以及随机接入配置信息等参数,使得终端设备可继续进行后续接入流程以接入基站所在网络。或者第一信号和第二信号也可能为调制序列,此时,终端设备需对第一信号和第三信号进行解调和序列检测。
在另一种可能的设计中,终端设备也可以接收第一信号、第二信号、第三信号和第五信号,第一信号和第二信号可以为主同步信号,第一信号的子载波间隔与第二信号的子载波间隔不同,第三信号至少可以为辅同步信号,第五信号可以为第一广播信道信号或第一系统信息块信号,例如第一广播信道信号或第一系统信息块信号包括测 量导频发送信息、随机接入配置信息等参数,此时,终端设备可以根据第一信号和第二信号进行时频同步,并根据第一信号和/或第三信号和第五信号进行小区搜索以及获得后续接入小区的相关信息。同理,终端设备也可以接收第一信号、第二信号、第四信号和第六信号,根据第一信号和第二信号进行时频同步,并根据第二信号和/或第四信号和第六信号进行小区搜索和获取接入小区的相关信息。
再一种可能的设计中,终端设备也可以接收第一信号、第二信号、第三信号、第四信号、第五信号和第六信号,第一信号和第二信号为主同步信号,第三信号和第四信号至少为辅同步信号,第五信号和第六信号为第一广播信道信号或第一系统信息块信号,第一信号、第三信号和第五信号的子载波间隔相同,第二信号、第四信号和第六信号的子载波间隔相同,第一信号与第二信号的子载波间隔不同,终端设备可以根据第一信号和/或第三信号以及第二信号和/或第四信号进行时频同步和/或小区搜索,并根据第五信号和第六信号获取后续接入小区的信息,使得终端设备可继续进行后续接入流程以接入小区。
此外,在上述三种可能的设计中,终端还可以接收网络设备发送的第七信号,第七信号包括第二广播信道信号或第二系统信息块信号,第二广播信道信号或第二系统信息块信号承载其它的信息,如随机接入配置信息。
本发明实施例提供一种信号发送方法,网络设备确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,第一信号占用的子载波为第一组资源粒子内的连续子载波,第二信号占用的子载波为第二组资源粒子内的连续子载波,第一信号占用的子载波个数与第二信号占用的子载波个数相同,第一组资源粒子内的子载波间隔与第二组资源粒子内的子载波间隔不同;网络设备在确定的第一信号的子载波位置发送第一信号,在确定的第二信号的子载波位置发送第二信号,这样,当第一信号和第二信号可用于时频同步和或小区搜索时,终端设备可获取用于接入小区所在网络的相关信息,以支持终端设备接入子载波间隔不同的小区或使用子载波间隔不同的时频资源与网络设备进行通信,能够解决网络设备如何发送信号以使得终端设备接入支持多种子载波间隔的系统的问题。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备和终端设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对网络设备和终端设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的网络设备的一种可能的结构示意图,网络设备包括:处理单元601和发送单元602。处理单元601用于支持网络设备执行图3中的过程301~303,发送单元602用于支持网络设备执行图3中的过程304。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图7示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备包括:处理模块702和通信模块703。处理模块302用于对网络设备的动作进行控制管理,例如,处理模块702用于支持网络设备执行图3中的过程301、302和303,和/或用于本文所描述的技术的其它过程。通信模块703用于支持网络设备与其他网络实体的通信,例如与图1和图2中示出的功能模块或网络实体之间的通信。网络设备还可以包括存储模块701,用于存储网络设备的程序代码和数据。
其中,处理模块702可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块703可以是收发器、收发电路或通信接口等。存储模块701可以是存储器。
当处理模块702为处理器,通信模块703为收发器,存储模块701为存储器时,本发明实施例所涉及的网络设备可以为图8所示的网络设备。
参阅图8所示,该网络设备包括:处理器802、收发器803、存储器801以及总线804。其中,收发器803、处理器802以及存储器801通过总线804相互连接;总线804可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的终端设备的一种可能的结构示意图,终端设备包括:接收单元901和处理单元902。处理单元902用于支持终端设备执行图3中的过程305,接收单元901用于支持终端设备执行图3中的过程304。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备包括:处理模块102和通信模块103。处理模块102用于对终端设备的动作进行控制管理,例如,处理模块102用于支持终端设备执行图3中的过程305,和/或用于本文所描述的技术的其它过程。通信模块103用于支持终端设备与其他网络实体的通信,例如与图1中示出的功能模块或网络实体之间的通信。终端设备还可以包括存储模块101,用于存储终端设备的程序代码和数据。
其中,处理模块102可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块103可以是收发器、收发电路或通信接口等。存储模块101可以是存储器。
当处理模块102为处理器,通信模块103为收发器,存储模块101为存储器时,本发明实施例所涉及的终端设备可以为图11所示的终端设备。
参阅图11所示,该终端设备包括:处理器112、收发器113、存储器111以及总线114。其中,收发器113、处理器112以及存储器111通过总线114相互连接;总线114可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种信号发送方法,其特征在于,包括:
    网络设备确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,所述第一信号占用的子载波为第一组资源粒子内的连续子载波,所述第二信号占用的子载波为第二组资源粒子内的连续子载波,所述第一信号占用的子载波个数与所述第二信号占用的子载波个数相同,所述第一组资源粒子内的子载波间隔与所述第二组资源粒子内的子载波间隔不同;
    所述网络设备在确定的所述第一信号的子载波位置发送所述第一信号,在确定的所述第二信号的子载波位置发送所述第二信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号和所述第二信号为同步信号,所述连续子载波不包括零子载波,所述第一组资源组粒子和所述第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一组资源粒子中子载波的序号与所述第一信号的调制符号或序列元素对应关系,与所述第二组资源粒子中子载波的序号与所述第二信号的调制符号或序列元素的对应关系相同。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述网络设备在发送所述第一信号和所述第二信号之前,所述方法还包括:
    所述网络设备确定待发送的第三信号的子载波位置和待发送的第四信号的子载波位置,所述第三信号占用的子载波为第三组资源粒子内的连续子载波,所述第四信号占用的子载波为第四组资源粒子内的连续子载波,所述第三信号占用的子载波个数与所述第四信号占用的子载波个数相同,所述第三组资源粒子内的子载波间隔与所述第一组资源粒子内的子载波间隔相同,所述第四组资源粒子内的子载波间隔与所述第二组资源粒子内的子载波间隔相同,所述第一信号和所述第二信号为主同步信号,所述第三信号和第四信号至少包括辅同步信号。
  5. 根据权利要求4所述的方法,其特征在于,所述第三组资源粒子中子载波的序号与所述第三信号的调制符号或序列元素对应关系,与所述第四组资源粒子中子载波的序号与所述第四信号的调制符号或序列元素的对应关系相同。
  6. 根据权利要求4所述的方法,其特征在于,在所述网络设备发送所述第三信号和所述第四信号之前,所述方法还包括:
    所述网络设备确定待发送的第五信号的子载波位置和待发送的第六信号的子载波位置,所述第五信号占用的子载波为第五组资源粒子内的连续子载波,所述第六信号占用的子载波为第六组资源粒子内的连续子载波,所述第五信号占用的子载波个数与所述第六信号占用的子载波个数相同,所述第五组资源粒子的子载波间隔,与所述第一组资源粒子和/或所述第三组资源粒子的子载波间隔相同,所述第六组资源粒子的子载波间隔,与所述第二组资源粒子和/或所述第四组资源粒子的子载波间隔相同,所述第五信号和所述第六信号为第一广播信道信号或第一系统信息块信号。
  7. 根据权利要求6所述的方法,其特征在于,所述第五组资源粒子中承载所述第五信号的数据信号的资源粒子的位置与所述第六组资源粒子中承载所述第六信号的数 据信号的资源粒子的位置相同,所述第五组资源粒子中承载所述第五信号的导频信号的资源粒子的位置与所述第六组资源粒子中承载所述第六信号的导频信号的资源粒子的位置相同,所述资源粒子为单位符号上的频域资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一组资源粒子、所述第三组资源粒子与所述第五组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源,所述第二组资源粒子、所述第四组资源粒子和所述第六组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源。
  9. 根据权利要求8所述的方法,其特征在于,第七信号占用所述第一组资源粒子、所述第三组资源粒子与所述第五组资源粒子中的至少一组资源粒子占用的时域资源上除所述第一组资源粒子、第三组资源粒子和第五组资源粒子中的至少一组资源粒子占用的频域资源以外的频域资源中的子载波;
    所述第七信号为第二广播信道信号或第二系统信息,所述第七信号占用的时域资源大于或等于所述第一信号、所述第三信号和所述第五信号中的至少一个所占用的时域资源。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述第一组资源粒子、所述第三组资源粒子与所述第五组资源粒子中的至少两组资源粒子位于第一载波内,所述第二组资源粒子、所述第四组资源粒子和所述第六组资源粒子中的至少两组资源粒子位于第二载波内,所述第一载波和所述第二载波占用不同的频域资源。
  11. 根据权利要求9所述的方法,其特征在于,所述第一组资源粒子占用所述第一载波中的至少一个频域资源单位,所述第二组资源粒子占用所述第二载波内的至少一个频域资源单位,所述第一组资源粒子在所述第一载波占用的频域资源单位的序号与所述第二组资源粒子在第二载波内占用的频域资源单位的序号相同;
    所述第三组资源粒子占用所述第一载波中的至少一个频域资源单位,所述第四组资源粒子占用所述第二载波内的至少一个频域资源单位,所述第三组资源粒子在所述第一载波占用的频域资源单位的序号与所述第四组资源粒子在第二载波内占用的频域资源单位的序号相同;
    所述第五组资源粒子占用所述第一载波中的至少一个频域资源单位,所述第六组资源粒子占用所述第二载波内的至少一个频域资源单位,所述第五组资源粒子在所述第一载波占用的频域资源单位的序号与所述第六组资源粒子在第二载波内占用的频域资源单位的序号相同;
    其中,所述频域资源单位为一组子载波。
  12. 一种信号接收方法,其特征在于,包括:
    终端设备接收网络设备发送的第一信号和第二信号,所述第一信号占用的子载波为第一组资源粒子内的连续子载波,所述第二信号占用的子载波为第二组资源粒子内的连续子载波,所述第一信号占用的子载波个数与所述第二信号占用的子载波个数相同,所述第一组资源粒子内的子载波间隔与所述第二组资源粒子内的子载波间隔不同;
    所述终端设备对所述第一信号和所述第二信号进行检测,或所述终端设备对所述第一信号和所述第二信号进行解调和检测,或所述终端设备对所述第一信号和所述第二信号进行解调和解码。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信号和所述第二信号为同步信号,所述连续子载波不包括零子载波,所述第一组资源组粒子和所述第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
  14. 根据权利要去12或13所述的方法,其特征在于,所述第一组资源粒子中子载波的序号与所述第一信号的调制符号或序列元素对应关系,与所述第二组资源粒子中子载波的序号与所述第二信号的调制符号或序列元素到的对应关系相同。
  15. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三信号和/或第四信号,所述第三信号占用的子载波为第三组资源粒子内的连续子载波,所述第三组资源粒子内的子载波间隔与所述第一组资源粒子内的子载波间隔相同,所述第四信号占用的子载波为第四组资源粒子内的连续子载波,所述第四组资源粒子内的子载波间隔与所述第一组资源粒子或所述第三组资源粒子内的子载波间隔相同,所述第一信号为主同步信号,所述第三信号至少包括辅同步信号,所述第四信号为广播信道信号或系统信息。
  16. 一种网络设备,其特征在于,包括:
    处理单元,用于确定待发送的第一信号的子载波位置和待发送的第二信号的子载波位置,所述第一信号占用的子载波为第一组资源粒子内的连续子载波,所述第二信号占用的子载波为第二组资源粒子内的连续子载波,所述第一信号占用的子载波个数与所述第二信号占用的子载波个数相同,所述第一组资源粒子内的子载波间隔与所述第二组资源粒子内的子载波间隔不同;
    发送单元,用于在确定的所述第一信号的子载波位置发送所述第一信号,在确定的所述第二信号的子载波位置发送所述第二信号。
  17. 根据权利要求16所述的网络设备,其特征在于,所述第一信号和所述第二信号为同步信号,所述连续子载波不包括零子载波,所述第一组资源组粒子和所述第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
  18. 根据权利要求16或17所述的网络设备,其特征在于,所述第一组资源粒子中子载波的序号与所述第一信号的调制符号或序列元素对应关系,与所述第二组资源粒子中子载波的序号与所述第二信号的调制符号或序列元素的对应关系相同。
  19. 根据权利要求16-18任一项所述的网络设备,其特征在于,所述处理单元还用于:
    确定待发送的第三信号的子载波位置和待发送的第四信号的子载波位置,所述第三信号占用的子载波为第三组资源粒子内的连续子载波,所述第四信号占用的子载波为第四组资源粒子内的连续子载波,所述第三信号占用的子载波个数与所述第四信号占用的子载波个数相同,所述第三组资源粒子内的子载波间隔与所述第一组资源粒子内的子载波间隔相同,所述第四组资源粒子内的子载波间隔与所述第二组资源粒子内的子载波间隔相同,所述第一信号和所述第二信号为主同步信号,所述第三信号和第四信号至少包括辅同步信号。
  20. 根据权利要求19所述的网络设备,其特征在于,所述第三组资源粒子中子载 波的序号与所述第三信号的调制符号或序列元素对应关系,与所述第四组资源粒子中子载波的序号与所述第四信号的调制符号或序列元素的对应关系相同。
  21. 根据权利要求19所述的网络设备,其特征在于,所述处理单元还用于:
    确定待发送的第五信号的子载波位置和待发送的第六信号的子载波位置,所述第五信号占用的子载波为第五组资源粒子内的连续子载波,所述第六信号占用的子载波为第六组资源粒子内的连续子载波,所述第五信号占用的子载波个数与所述第六信号占用的子载波个数相同,所述第五组资源粒子的子载波间隔,与所述第一组资源粒子和/或所述第三组资源粒子的子载波间隔相同,所述第六组资源粒子的子载波间隔,与所述第二组资源粒子和/或所述第四组资源粒子的子载波间隔相同,所述第五信号和所述第六信号为第一广播信道信号或第一系统信息块信号。
  22. 根据权利要求21所述的网络设备,其特征在于,所述第五组资源粒子中承载所述第五信号的数据信号的资源粒子的位置与所述第六组资源粒子中承载所述第六信号的数据信号的资源粒子的位置相同,所述第五组资源粒子中承载所述第五信号的导频信号的资源粒子的位置与所述第六组资源粒子中承载所述第六信号的导频信号的资源粒子的位置相同,所述资源粒子为单位符号上的频域资源。
  23. 根据权利要求22所述的网络设备,其特征在于,所述第一组资源粒子、所述第三组资源粒子与所述第五组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源,所述第二组资源粒子、所述第四组资源粒子和所述第六组资源粒子中的至少两组资源粒子占用相同时域资源上的不同频域资源。
  24. 根据权利要求23所述的网络设备,其特征在于,第七信号占用所述第一组资源粒子、所述第三组资源粒子与所述第五组资源粒子中的至少一组资源粒子占用的时域资源上除所述第一组资源粒子、第三组资源粒子和第五组资源粒子中的至少一组资源粒子占用的频域资源以外的频域资源中的子载波;
    所述第七信号为第二广播信道信号或第二系统信息,所述第七信号占用的时域资源大于或等于所述第一信号、所述第三信号和所述第五信号中的至少一个所占用的时域资源。
  25. 根据权利要求21-24任一项所述的网络设备,其特征在于,所述第一组资源粒子、所述第三组资源粒子与所述第五组资源粒子中的至少两组资源粒子位于第一载波内,所述第二组资源粒子、所述第四组资源粒子和所述第六组资源粒子中的至少两组资源粒子位于第二载波内,所述第一载波和所述第二载波占用不同的频域资源。
  26. 根据权利要求24所述的网络设备,其特征在于,所述第一组资源粒子占用所述第一载波中的至少一个频域资源单位,所述第二组资源粒子占用所述第二载波内的至少一个频域资源单位,所述第一组资源粒子在所述第一载波占用的频域资源单位的序号与所述第二组资源粒子在第二载波内占用的频域资源单位的序号相同;
    所述第三组资源粒子占用所述第一载波中的至少一个频域资源单位,所述第四组资源粒子占用所述第二载波内的至少一个频域资源单位,所述第三组资源粒子在所述第一载波占用的频域资源单位的序号与所述第四组资源粒子在第二载波内占用的频域资源单位的序号相同;
    所述第五组资源粒子占用所述第一载波中的至少一个频域资源单位,所述第六组 资源粒子占用所述第二载波内的至少一个频域资源单位,所述第五组资源粒子在所述第一载波占用的频域资源单位的序号与所述第六组资源粒子在第二载波内占用的频域资源单位的序号相同;
    其中,所述频域资源单位为一组子载波。
  27. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一信号和第二信号,所述第一信号占用的子载波为第一组资源粒子内的连续子载波,所述第二信号占用的子载波为第二组资源粒子内的连续子载波,所述第一信号占用的子载波个数与所述第二信号占用的子载波个数相同,所述第一组资源粒子内的子载波间隔与所述第二组资源粒子内的子载波间隔不同;
    处理单元,用于对所述第一信号和所述第二信号进行检测,或处理单元,用于对所述第一信号和所述第二信号进行解调和检测,或处理单元,用于对所述第一信号和所述第二信号进行解调和解码。
  28. 根据权利要求27所述的终端设备,其特征在于,所述第一信号和所述第二信号为同步信号,所述连续子载波不包括零子载波,所述第一组资源组粒子和所述第二组资源组粒子在时域所占的符号数相同或不同,且在时域上占用一个符号或至少两个连续符号。
  29. 根据权利要求27或28所述的终端设备,其特征在于,所述第一组资源粒子中子载波的序号与所述第一信号的调制符号或序列元素对应关系,与所述第二组资源粒子中子载波的序号与所述第二信号的调制符号或序列元素到的对应关系相同。
  30. 根据权利要求26所述的终端设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的第三信号和/或第四信号,所述第三信号占用的子载波为第三组资源粒子内的连续子载波,所述第三组资源粒子内的子载波间隔与所述第一组资源粒子内的子载波间隔相同,所述第四信号占用的子载波为第四组资源粒子内的连续子载波,所述第四组资源粒子内的子载波间隔与所述第一组资源粒子或所述第三组资源粒子内的子载波间隔相同,所述第一信号为主同步信号,所述第三信号至少包括辅同步信号,所述第四信号为广播信道信号或系统信息。
  31. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序,所述程序在执行时,权1至15中任一项所述的方法步骤被执行。
  32. 一种信号发送装置,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权1至11中任一项所述的方法步骤。
  33. 一种信号接收装置,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权12至15中任一项所述的方法步骤。
  34. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储程序,所述处理器用于执行所述程序,所述程序在执行时,能够实现权1至11中任一项所述的方法。
  35. 一种终端,其特征在于,包括:
    处理器和存储器,所述存储器用于存储程序,所述处理器用于执行所述程序,所述程序在执行时,能够实现权12至15中任一项所述的方法。
PCT/CN2017/096221 2016-08-12 2017-08-07 一种信号发送方法、网络设备和终端设备 WO2018028542A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019507324A JP6783378B2 (ja) 2016-08-12 2017-08-07 信号送信方法、ネットワークデバイス、及び端末デバイス
BR112019002918-4A BR112019002918A2 (pt) 2016-08-12 2017-08-07 método de envio de sinal, método de recebimento de sinal, aparelho e meio de armazenamento legível
EP17838672.8A EP3493501B1 (en) 2016-08-12 2017-08-07 Signal sending method, network device and terminal device
US16/272,084 US10819550B2 (en) 2016-08-12 2019-02-11 Signal sending method, network device, and terminal device
US17/028,634 US11212154B2 (en) 2016-08-12 2020-09-22 Signal sending method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610664562.5A CN107733827B (zh) 2016-08-12 2016-08-12 一种信号发送方法、网络设备和终端设备
CN201610664562.5 2016-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/272,084 Continuation US10819550B2 (en) 2016-08-12 2019-02-11 Signal sending method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018028542A1 true WO2018028542A1 (zh) 2018-02-15

Family

ID=61161623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096221 WO2018028542A1 (zh) 2016-08-12 2017-08-07 一种信号发送方法、网络设备和终端设备

Country Status (6)

Country Link
US (2) US10819550B2 (zh)
EP (1) EP3493501B1 (zh)
JP (1) JP6783378B2 (zh)
CN (3) CN111541637A (zh)
BR (1) BR112019002918A2 (zh)
WO (1) WO2018028542A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582356B2 (en) 2018-04-20 2020-03-03 At&T Intellectual Property I, L.P. Dynamic management of default subcarrier spacing for 5G or other next generation network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165550B2 (en) * 2016-12-16 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource mapping method and communication device
CN108282289B (zh) * 2017-01-06 2022-10-04 北京三星通信技术研究有限公司 一种数据接收方法和设备
WO2019191898A1 (zh) * 2018-04-03 2019-10-10 Oppo广东移动通信有限公司 免授权频谱的信道传输方法及网络设备、终端
CN111464478B (zh) * 2019-01-21 2023-04-07 华为技术有限公司 一种信号发送、接收方法及设备
CN111526578B (zh) * 2019-02-03 2021-06-22 华为技术有限公司 一种传输同步信号的方法及终端设备
WO2021217510A1 (zh) * 2020-04-29 2021-11-04 华为技术有限公司 一种数据传输方法和通信装置
EP4152708B1 (en) * 2020-05-27 2024-05-15 Huawei Technologies Co., Ltd. Communication method and communication device
WO2022047797A1 (zh) * 2020-09-07 2022-03-10 华为技术有限公司 一种参考信号传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101636992A (zh) * 2007-02-23 2010-01-27 艾利森电话股份有限公司 子载波间隔标识
WO2014139562A1 (en) * 2013-03-13 2014-09-18 Nokia Solutions And Networks Oy Scalable bandwidth design for ofdm
CN104796242A (zh) * 2014-01-22 2015-07-22 电信科学技术研究院 一种发送和接收同步信号的方法、系统及设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649353B2 (ja) 2006-03-17 2011-03-09 株式会社東芝 Ofdm信号の送信方法、ofdm送信機及びofdm受信機
KR20080089728A (ko) 2007-04-02 2008-10-08 엘지전자 주식회사 다중 부 반송파 시스템에서의 부 반송파 간격 적용 방법 및이를 지원하는 이동 단말
JP2009005156A (ja) * 2007-06-22 2009-01-08 Nec Corp 通信システム、受信装置及び同期検出方法
CN101568128B (zh) * 2008-04-22 2011-07-13 中兴通讯股份有限公司 一种子载波映射方法
CN101577857A (zh) * 2008-05-10 2009-11-11 中兴通讯股份有限公司 多媒体广播多播业务的配置方法、数据传输方法及装置
KR101595676B1 (ko) * 2011-08-12 2016-02-18 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 융통성있는 대역폭 동작을 위한 다운링크 리소스 할당
TWI456930B (zh) * 2012-05-25 2014-10-11 Nat Univ Tsing Hua 無資料輔助時間同步之合作式多輸入多輸出正交分頻多工裝置
WO2015080649A1 (en) * 2013-11-27 2015-06-04 Telefonaktiebolaget L M Ericsson (Publ) Sending and detecting synchronization signals and an associated information message
CN104885539B (zh) * 2013-12-27 2019-10-25 华为技术有限公司 窄带系统数据传输方法和装置
WO2016082101A1 (zh) * 2014-11-25 2016-06-02 华为技术有限公司 一种传输信号的方法及装置
WO2017043820A1 (ko) * 2015-09-09 2017-03-16 엘지전자 주식회사 무선랜 시스템에서 빔포밍 전송을 위한 사운딩 방법 및 이를 위한 장치
WO2017188664A1 (ko) 2016-04-25 2017-11-02 한국전자통신연구원 디스커버리 신호를 전송하는 방법 및 장치, 그리고 디스커버리 신호를 수신하는 방법 및 장치
JP6720348B2 (ja) * 2016-05-22 2020-07-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける新しい無線アクセス技術に対するフレーム構造を構成するための方法及び装置
US10212679B1 (en) * 2016-07-22 2019-02-19 Mbit Wireless, Inc. Method and apparatus for delay spread estimation
US10756838B2 (en) * 2016-08-02 2020-08-25 Nec Corporation Methods and apparatuses for numerology multiplexing
US10142073B2 (en) * 2016-08-05 2018-11-27 Panasonic Corporation Terminal apparatus, radio communication system and communication method
KR101952689B1 (ko) * 2016-08-10 2019-02-27 엘지전자 주식회사 이동통신 시스템에서 방송채널 신호 송수신 방법 및 장치
CN107733826B (zh) * 2016-08-11 2020-07-07 华为技术有限公司 下行信号的发送、接收方法以及发送端设备、接收端设备
US10419171B2 (en) * 2016-08-11 2019-09-17 Qualcomm Incorporated Flexible guard band for heterogeneous symbol lengths/subcarrier spacing
US10841052B2 (en) * 2017-03-21 2020-11-17 Samsung Electronics Co., Ltd Multi-numerology based data transmitting and receiving method and apparatus capable of frequency hopping in OFDM system
US11751204B2 (en) * 2017-10-27 2023-09-05 Comcast Cable Communications, Llc Group common DCI for wireless resources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101636992A (zh) * 2007-02-23 2010-01-27 艾利森电话股份有限公司 子载波间隔标识
WO2014139562A1 (en) * 2013-03-13 2014-09-18 Nokia Solutions And Networks Oy Scalable bandwidth design for ofdm
CN104796242A (zh) * 2014-01-22 2015-07-22 电信科学技术研究院 一种发送和接收同步信号的方法、系统及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Discussion on Numerology and Frame Structure", 3GPPTSG RAN WG 1 MEETING #84BIS R1-162549, 15 April 2016 (2016-04-15), XP051079608 *
HUAWEI ET AL.: "Scenario & Design Criteria on Flexible Numerologies", 3GPP TSG RAN WG 1 MEETING #84BIS R1-162156, 15 April 2016 (2016-04-15), XP051080002 *
See also references of EP3493501A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582356B2 (en) 2018-04-20 2020-03-03 At&T Intellectual Property I, L.P. Dynamic management of default subcarrier spacing for 5G or other next generation network
US11012838B2 (en) 2018-04-20 2021-05-18 At&T Intellectual Property I, L.P. Dynamic management of default subcarrier spacing for 5G or other next generation network

Also Published As

Publication number Publication date
EP3493501A1 (en) 2019-06-05
BR112019002918A2 (pt) 2019-05-21
CN107733827B (zh) 2020-04-14
CN111541637A (zh) 2020-08-14
US10819550B2 (en) 2020-10-27
CN111542119B (zh) 2023-05-12
JP2019526966A (ja) 2019-09-19
US20190173716A1 (en) 2019-06-06
EP3493501B1 (en) 2021-05-05
CN107733827A (zh) 2018-02-23
EP3493501A4 (en) 2019-07-31
US20210067398A1 (en) 2021-03-04
US11212154B2 (en) 2021-12-28
CN111542119A (zh) 2020-08-14
JP6783378B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2018028542A1 (zh) 一种信号发送方法、网络设备和终端设备
US11626947B2 (en) Communication method and communications device
WO2018126472A1 (zh) 信息搜索方法、信息发送方法、装置及系统
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
WO2020147731A1 (zh) 一种通信方法及装置
WO2014110815A1 (zh) 公共控制信道的检测方法、传输方法及装置
WO2020186946A1 (zh) 一种通信方法及设备
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2021032017A1 (zh) 通信方法和装置
CN109392182B (zh) 一种信息发送、信息接收方法及装置
JP6740367B2 (ja) システム情報の伝送方法、基地局及び端末
WO2016116019A1 (zh) 增强载波聚合下共享的搜索空间方法以及基站和用户设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
TW201931879A (zh) 車聯網中用於傳輸數據的方法、終端設備和網路設備
TWI767273B (zh) 信號的發送、接收方法、終端及電腦可讀存儲介質
WO2020156223A1 (zh) 一种信号发送方法、信号接收方法以及相关设备
WO2019128949A1 (zh) 一种数据传输格式的传输方法和装置
EP3905730B1 (en) System information transmission method and device
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统
CN111756509B (zh) 一种传输公共信号块的方法和装置
CN115734331A (zh) 同步块的传输方法及装置
CN116367170A (zh) 一种终端确定小区参数的方法
WO2016180352A1 (zh) 用户设备、基站及相关方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838672

Country of ref document: EP

Effective date: 20190228

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002918

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019002918

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190212