WO2018028251A1 - 反光膜表面层、表面保护膜、反光膜及其制造工艺 - Google Patents

反光膜表面层、表面保护膜、反光膜及其制造工艺 Download PDF

Info

Publication number
WO2018028251A1
WO2018028251A1 PCT/CN2017/082358 CN2017082358W WO2018028251A1 WO 2018028251 A1 WO2018028251 A1 WO 2018028251A1 CN 2017082358 W CN2017082358 W CN 2017082358W WO 2018028251 A1 WO2018028251 A1 WO 2018028251A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
surface layer
reflective film
convex structure
Prior art date
Application number
PCT/CN2017/082358
Other languages
English (en)
French (fr)
Inventor
黄自立
杨帆
杨汉阳
Original Assignee
福建三昊科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建三昊科技有限公司 filed Critical 福建三昊科技有限公司
Publication of WO2018028251A1 publication Critical patent/WO2018028251A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Definitions

  • the invention relates to a surface layer of a reflective film, a surface protective film, a reflective film and a manufacturing process thereof.
  • the reflective film can reflect most of the incident light back in the direction of the emission source, and is widely used in a wide variety of products, such as road signs, barriers for barrier paths, truck body identification, etc.
  • Existing reflective films include glass beads. Reflective film and microprism reflective film, glass bead reflective film uses a lot of glass fine beads to make a retroreflective reflective layer, the microprism reflective film contains a transparent substrate layer and is placed on the substrate layer A reflective layer of a microprism with a reflective effect.
  • the fine water droplets condensed on the surface of the reflective film change the path of the incident light, reduce the incident light that reaches the reflective layer, and are again subjected to fine water drops when the incident light is reflected by the reflective layer to the surface of the reflective film.
  • the refraction effect makes the reflective effect of the reflective film seriously weakened.
  • the temperature is lower than the freezing point (0°)
  • the condensed water vapor becomes a solid crystal frost, and the frost will seriously weaken the reflective effect of the reflective film, condensation or frosting. It usually occurs when the temperature changes, such as at night, and the nighttime darkness is the time when the reflective film product plays the most important role. Therefore, how to eliminate or reduce the influence of the fine water droplets on the reflective film is an urgent problem to be solved.
  • the object of the present invention is to address the deficiencies of the prior art, and propose a reflective film surface layer and surface protection capable of eliminating the influence of fine water droplets and weakening the solid crystal frost on the reflective performance, and permanently maintaining the anti-damp and anti-frost properties. Film, reflective film and its manufacturing process.
  • a surface layer of a reflective film comprising a substrate, the surface of the substrate is formed with a plurality of translucent convex structures uniformly spaced apart, the convex structure has a flat top surface, and the surface of the substrate is not coated with a convex structure.
  • the convex structure is a cylinder, and the cylinder has a circular or polygonal cross section.
  • the hydrophilic layer includes at least one of silicon dioxide, aluminum silicon oxide, aluminum oxide, titanium oxide, and tin oxide.
  • the convex structure has a top surface area of 1-10, and the raised structure has a height of 15-50.
  • the sum of the top surface areas of the plurality of raised structures accounts for 10-50% of the surface area of the substrate.
  • the sum of the top surface areas of the plurality of raised structures accounts for 15%-30% of the surface area of the substrate.
  • the height of the raised structure is greater than the thickness of the hydrophilic layer coated on the surface of the substrate.
  • the substrate is made of the same material as the protruding structure, and both are polymethyl methacrylate or polycarbonate, and are integrally formed.
  • a retroreflective film comprising a surface layer as described above.
  • the reflective film is a microprism reflective film comprising a surface layer and a microprism layer which are combined with each other.
  • the reflective film is a glass bead reflective film comprising a surface layer and a glass bead layer which are combined with each other.
  • a surface protective film comprising a surface layer as described above, a backing layer coated on the back side of the surface layer, and a release layer laminated on the backing layer.
  • a surface layer manufacturing process using a carrier film that cannot be thermally fused with a raw material, a first heat roller and a first pressure roller that are arranged in parallel and can be driven to rotate in synchronization, and the carrier film is sandwiched between the first heat roller and the first
  • the pressure rollers are transported between the first heat roller surfaces, and the grooves for forming the convex structures are evenly spaced, including the following steps:
  • the raw material is melted and cast to the surface of the first heat roller to form a surface layer substrate, and the rotation of the first heat roller and the first pressure roller causes the carrier film to be attached to the surface layer substrate and the surface layer substrate is rolled. , forming a convex structure on the surface of the surface layer substrate;
  • Corona treatment is performed on the surface of the surface layer substrate to remove the floating organic resin to form a hydrophilic layer;
  • the surface of the substrate of the surface layer is formed with a plurality of light-transmissive convex structures uniformly spaced apart, the convex structure has a flat top surface, and the surface of the substrate surface not provided with the convex structure is coated with a hydrophilic layer.
  • a manufacturing process of a microprism reflective film the microprism reflective film comprises a surface layer and a microprism layer which are combined with each other, and a carrier film which cannot be thermally fused with the raw material, a first heat roller which is arranged in parallel and can be driven to rotate in reverse synchronously And a first pressure roller, the carrier film is conveyed between the first heat roller and the first pressure roller, and the surface of the first heat roller is evenly spaced and distributed with grooves for forming the convex structure, comprising the following steps:
  • the raw material is melted and cast to the surface of the first heat roller to form a surface layer substrate, and the rotation of the first heat roller and the first pressure roller causes the carrier film to be attached to the surface layer substrate and the surface layer substrate is rolled. Pressing to form a convex structure on the surface of the surface layer substrate;
  • microprism substrate and the surface layer substrate after peeling off the carrier film are transported between the second heat roller and the second pressure roller, and the rotation of the second heat roller and the second pressure roller causes the micro prism substrate to
  • the surface layer substrate is thermally fused, and the surface of the microprism substrate is formed into a microprism structure
  • Corona treatment is performed on the surface of the surface layer substrate to remove the floating organic resin to form a hydrophilic layer;
  • the surface of the substrate of the surface layer is formed with a plurality of light-transmissive convex structures uniformly spaced apart, the convex structure has a flat top surface, and the surface of the substrate surface not provided with the convex structure is coated with a hydrophilic layer.
  • a manufacturing process of a microprism reflective film comprising a surface layer and a microprism layer which are combined with each other, and a first heat roller and a second heat roller which are arranged in parallel and can be driven to rotate in opposite directions, the first heat
  • the surface of the roller is evenly spaced with grooves for forming the convex structure
  • the surface of the second heat roller is formed with a microprism forming structure, comprising the following steps:
  • the surface layer substrate and the microprism layer substrate are synchronously sandwiched between the first heat roller and the second heat roller, and the rotation of the first heat roller and the second heat roller causes the surface layer substrate and the microprism layer
  • the substrate is composited, and the surface layer substrate and the surface of the microprism layer substrate are rolled, so that the surface of the surface layer substrate forms a convex structure, and the surface of the microprism layer forms a microprism structure;
  • Corona treatment is performed on the surface of the surface layer substrate to remove the floating organic resin to form a hydrophilic layer;
  • the surface of the substrate of the surface layer is formed with a plurality of light-transmissive convex structures uniformly spaced apart, the convex structure has a flat top surface, and the surface of the substrate surface not provided with the convex structure is coated with a hydrophilic layer.
  • a manufacturing process of a microprism reflective film comprising a surface layer, a microprism layer and a sealing layer arranged in order from top to bottom, using a first heat roller and a first parallel arrangement and capable of being driven to rotate synchronously in reverse a second heat roller, the first heat roller surface is evenly spaced with a groove for forming the convex structure, and the second heat roller surface is distributed with a groove for forming a closed cavity structure, comprising the following steps:
  • the surface layer substrate, the microprism layer and the sealing layer substrate are synchronously conveyed between the first heat roller and the second heat roller, and the rotation of the first heat roller and the second heat roller will be the surface layer substrate and the micro
  • the prism layer and the sealing layer substrate are combined to form a multi-layer hot-melt composite, and the surface of the surface layer substrate and the surface of the sealing layer substrate are rolled, so that the surface of the surface layer substrate forms a convex structure to seal Forming a closed cavity structure on the surface of the layer substrate;
  • Corona treatment is performed on the surface of the surface layer substrate to remove the floating organic resin to form a hydrophilic layer;
  • the surface of the substrate of the surface layer is formed with a plurality of light-transmissive convex structures uniformly spaced apart, the convex structure has a flat top surface, and the surface of the substrate surface not provided with the convex structure is coated with a hydrophilic layer.
  • a surface layer of a reflective film comprising a substrate, a hydrophilic layer formed on the surface of the substrate, and a plurality of light-transmitting convex structures uniformly formed on the hydrophilic layer, the raised structure having a flat top surface, the protrusion
  • the structure is used to quickly guide the water droplets to agglomerate in the hydrophilic layer and protect the hydrophilic layer from damage.
  • the convex structure is a cylinder, and the cylinder has a circular or polygonal cross section.
  • the hydrophilic layer includes at least one of silicon dioxide, aluminum silicon oxide, aluminum oxide, titanium oxide, and tin oxide.
  • the hydrophilic layer comprises a nano-fine material of at least one of silicon dioxide, aluminum silicon oxide, aluminum oxide, titanium oxide, and tin oxide.
  • the convex structure has a top surface area of 1-10, and the raised structure has a height of 15-50.
  • the sum of the top surface areas of the plurality of raised structures accounts for 10-50% of the surface area of the substrate.
  • the sum of the top surface areas of the plurality of raised structures accounts for 15-30% of the surface area of the substrate.
  • the raised structure material is a colorless transparent printing material
  • the colorless transparent printing material comprises an acrylic copolymer resin, an olefin copolymer resin, an aliphatic polyurethane, a fluorine-containing organic resin, a silane-containing organic plastic or a light-containing material. Curing functional organic resin.
  • a retroreflective film comprising the surface layer as described in the above technical solution.
  • the reflective film is a microprism reflective film comprising a surface layer and a microprism layer which are combined with each other.
  • the reflective film is a glass bead reflective film comprising a surface layer and a glass bead layer which are combined with each other.
  • a surface protective film comprising a surface layer as described in the above aspect, a backing layer coated on the back side of the surface layer, and a release layer laminated on the backing layer.
  • a surface layer manufacturing process includes the following steps:
  • A coating a surface of the substrate with a hydrophilic layer raw material, a mixture of an aqueous organic resin and water to form a hydrophilic layer;
  • the hydrophilic layer is subjected to corona treatment to remove the floating organic resin.
  • the colorless transparent material is printed on the hydrophilic layer by screen printing or digital printing to form a plurality of light-transmitting convex structures uniformly spaced.
  • a surface layer manufacturing process includes the following steps:
  • A coating a surface of the substrate with a hydrophilic layer raw material, a mixture of an aqueous organic resin and water to form a hydrophilic layer;
  • Corona treatment is performed on the hydrophilic layer to remove the floating organic resin.
  • a plurality of light-transmitting convex structures are evenly spaced on the carrier film by hot pressing or casting.
  • the convex structure of the surface layer of the invention can rapidly guide the surrounding water vapor to condense in the hydrophilic layer, and the fine water droplets are rapidly expanded into a water film in the hydrophilic layer, and the water film is flat, so that the reflective effect is not affected, so Eliminating the adverse effects of fine water droplets on the reflective properties of the reflective film.
  • the flat top surface of the raised structure is hydrophobic, so water vapor cannot condense on the top surface of the raised structure. At the freezing point temperature, the water film becomes highly crystalline.
  • the convex structure of the present invention can eliminate the fine water droplets or weaken the adverse effect of the solid crystal frost on the reflective film, thereby ensuring the reflective effect of the reflective film.
  • the convex structure of the surface layer of the present invention can serve as a contact point for the reflective film to be touched, and protect the hydrophilic layer from being damaged or damaged during storage, transportation, reprocessing and use of the surface layer.
  • Grease fouling the reflective film has a self-protection function, and can maintain good anti-dew and anti-frost properties forever.
  • the surface layer of the reflective film of the invention can be adhered to the surface of various finished reflective films or transparent articles, so that the finished reflective film or transparent product has permanent anti-dew and anti-frost properties, and the transparent products include glass, mirror, reflective road signs, Eye masks and diving masks for surgery.
  • FIG. 1 is a schematic top plan view showing a surface layer of a reflective film according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional structural view showing a surface layer of a reflective film according to Embodiment 1 of the present invention.
  • FIG 3 is a schematic structural view of a device for manufacturing a surface layer according to Embodiment 2 of the present invention.
  • Figure 4 is a schematic view showing the surface structure of the first heat roller of Figure 3.
  • FIG. 5 is a schematic structural view of a surface protective film according to Embodiment 3 of the present invention.
  • Fig. 6 is a cross-sectional structural view showing a microprism reflective film of the present invention.
  • FIG. 7 is a schematic structural view of a manufacturing apparatus of a microprism reflective film according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural view of a manufacturing apparatus of a microprism reflective film according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic structural view of a manufacturing apparatus of a microprism reflective film according to Embodiment 6 of the present invention.
  • Figure 10 is a cross-sectional structural view showing the surface layer of the reflective film in the seventh embodiment of the present invention.
  • Figure 11 is a cross-sectional view showing the surface layer of the tenth embodiment and the eleventh embodiment of the present invention.
  • the surface layer of the reflective film of the present invention comprises a substrate 1 on which a plurality of light-transmitting convex structures 2 are uniformly spaced apart, and the convex structure 2 is formed.
  • the region of the substrate 1 on which the convex structure 2 is not provided is coated with a hydrophilic layer 3 for rapidly guiding the water droplets to agglomerate on the hydrophilic layer 3 and in the hydrophilic layer 3 Rapid diffusion into a water film, the raised structure 2 can still maintain good light transmission under the frosting phenomenon, thereby eliminating fine water drops or weakening the adverse effects of frost on the reflective film, ensuring that the reflective film always has good reflective performance, It can protect the hydrophilic layer 3 from being damaged during storage, transportation and use.
  • the substrate 1 and the raised structure 2 are made of the same material, both of which are polymethyl methacrylate (PMMA) or polycarbonate (PC).
  • the substrate 1 is integrally formed with the convex structure 2, and the convex structure 2 is a cylinder.
  • the cross section of the cylinder may be a circle, a triangle, a rectangle or an arbitrary polygon.
  • the cross section of the cylinder is circular, and the bottom surface and the top surface of the convex structure 2 are the same size, and the top surface area is 10 Range, the height of the raised structure 2 is 50
  • the range of the top surface area of all the convex structures 2 on the surface of the substrate 1 accounts for 30% of the surface area of the substrate 1.
  • the top surface of the convex structure 2 differs greatly from the height, and does not affect the light transmittance of the surface layer. Sexuality, and the use of the fine water droplets in the natural phenomenon of the attraction, repulsive force, affinity and relative temperature difference dynamics, so that the fine water droplets are quickly guided by the convex structure 2 to the hydrophilic layer 3 to form a water film, to avoid affecting the reflection Membrane properties.
  • the manufacturing apparatus of the surface layer of this embodiment includes a first heat roller 41 and a first pressure roller 42 which are arranged in parallel and can be driven to rotate in synchronization, and are disposed at the first pressure.
  • a roller coating mechanism on the output side of the roller 42, a rubber scraping blade 43 disposed on the output side of the roller coating mechanism, and a carrier film (PET film) which cannot be thermally fused with the PMMA rubber particles are sandwiched between the first heat roller 41 and the first pressure roller 42.
  • PET film carrier film
  • the first pressure roller 42 is a hard rubber roller, and the roller coating mechanism comprises a trough 45, which are arranged in parallel and can be arranged.
  • the second pressure roller 46 and the roller coating roller 47 are driven to rotate in the opposite direction, and the roller coating roller 47 is disposed in the trough 45.
  • the manufacturing process of the surface layer of the embodiment specifically includes the following steps:
  • the surface of the surface layer substrate 1 is coated with a thickness of about 10 by a roll coating mechanism.
  • a mixture of silica, an aqueous organic resin and water is placed in the trough 45 and the mixture of the top surface of the raised structure 2 is scraped off with a rubber scraping sheet 43 and then at 85. Drying at C temperature for 5 minutes to remove moisture, wherein in the coated mixture, the weight of silica accounts for 50% by weight of the mixture;
  • the surface of the surface layer substrate 1 is subjected to two energy levels of 5 Corona treatment, removing the floating organic resin, exposing the silicon dioxide to the air to form a hydrophilic layer 3, and the hydrophilic layer 3 has a water static contact angle of less than 20 degrees;
  • the PET film was peeled off to obtain a surface layer.
  • the surface layer comprises a substrate 1 on the surface of the substrate 1 with a plurality of light-transmitting convex structures 2 uniformly spaced apart, the raised structure 2 has a flat top surface, and the substrate surface 1 is not provided with a convex surface.
  • the region of the structure 2 is coated with a hydrophilic layer 3, the convex structure 2 is a cylinder, the cross section of the cylinder is circular, and the bottom surface and the top surface of the convex structure 2 are the same size, and the top surface area is 3
  • the height of the convex structure 2 is 30, and the sum of the top surface areas of all the convex structures 2 on the surface of the substrate 1 accounts for 50% of the surface area of the substrate 1.
  • the height of the convex structure 2 is greater than the hydrophilicity of the surface coated with the substrate 1.
  • the surface layer of the reflective film of the present invention can also be used for a glass bead reflective film or a microprism reflective film.
  • the surface protective film of the present embodiment includes a substrate 1, and a plurality of light-transmitting convex structures 2 uniformly spaced apart are formed on the surface of the substrate 1, and the convex structure 2 has a flat shape.
  • the top surface, the region of the substrate surface 1 where the convex structure 2 is not provided is coated with the hydrophilic layer 3, the back surface of the substrate 1 is coated with the backing layer 4, and the backing layer 4 is compounded with the release layer 5, After the backing layer 4 is coated on the back surface of the surface layer prepared in the second embodiment, and then the release layer 5 is composited on the backing layer 4 to protect the backing layer 4, a surface layer protective film can be obtained.
  • the glue layer 4 is a pressure sensitive adhesive.
  • the microprism reflective film of the present embodiment is as shown in FIG. 6.
  • the microprism reflective film includes a surface layer, a microprism layer 6, a sealing layer 7, a backing layer 8, and a release layer which are sequentially arranged from top to bottom.
  • the surface layer comprises a substrate 1, a raised structure 2 formed on the surface of the substrate 1, and a hydrophilic layer 3 coated on the surface of the substrate 1 where the raised structure 2 is not provided.
  • the manufacturing apparatus of the microprism reflective film of the present embodiment includes a first heat roller 51 and a first pressure roller 52 which are arranged in parallel and can be driven to rotate in reverse, and are arranged in parallel and can be driven synchronously reversed.
  • the rotating second heat roller 53 and the second pressure roller 54, the roller coating mechanism provided on the output side of the first pressure roller 52, the rubber scraping blade 58 provided on the output side of the roller coating mechanism, and the output side of the rubber scraping blade 58 are disposed on the output side of the rubber scraping blade 58.
  • the traction wand 59, the second heat roller 53 and the second press roller 54 are disposed on the output side of the rubber scraping blade 58, and the carrier film (PET film) which cannot be thermally fused with the PMMA colloid is sandwiched between the first heat roller 51 and the first
  • the pressure roller 52 is transported between the surfaces of the first heat roller 51 with a groove for forming a convex structure, and the surface of the second heat roller 53 is distributed with a groove for forming a microprism structure, the first pressure roller 52,
  • the second pressing roller 54 is a hard rubber roller, and the roller coating mechanism comprises a chute 55, a third pressing roller 56 and a roller coating roller 57 which are arranged in parallel and can be driven to rotate in opposite directions, and the roller coating roller 57 is disposed in the material.
  • the manufacturing process of the microprism reflective film of the embodiment specifically includes the following step:
  • the PMMA pellets were heated to 130 in a hot press.
  • C after being melted, it is cast to the surface of the first heat roller 51 to form the surface layer substrate 1, and the rotation of the first heat roller 51 and the first pressure roller 52 causes the PET film to be attached to the surface layer substrate 1 and the surface layer
  • the substrate 1 is rolled to form a convex structure 2 on the surface of the surface layer substrate;
  • the surface of the surface layer substrate 1 is coated with a thickness of about 10 by a roll coating mechanism.
  • a mixture of silica, an aqueous organic resin and water is placed in the trough 55 and the mixture of the top surface of the raised structure 2 is scraped off with a rubber scraping sheet 58 and then at 90. Drying at C temperature for 3 minutes to remove moisture, wherein in the coated mixture, the weight of silica accounts for 60% by weight of the mixture;
  • the microprism substrate PMMA film or PC film
  • the surface layer substrate 1 are sandwiched between the second heat roller 53.
  • the rotation of the second heat roller 53 and the second pressure roller 54 thermally fuses the microprism substrate and the surface layer substrate 1, and forms a microprism structure on the surface of the microprism substrate;
  • the surface of the surface layer substrate 1 is subjected to two energy levels of 5 Corona treatment, removing the floating organic resin, exposing the silicon dioxide to the air to form a hydrophilic layer 3, and the hydrophilic layer 3 has a water static contact angle of less than 20 degrees;
  • a laminated sensitive adhesive is attached to the sealing layer 7 to form a backing layer 8, and a release film 9 is attached to the adhesive layer 8 to form a release layer 9.
  • the surface layer substrate 1 is formed with a plurality of light transmissive convex structures 2 uniformly spaced apart, the convex structure 2 has a flat top surface, and the substrate surface 1 is not coated with the convex structure 2 Covered with a hydrophilic layer 3, the convex structure 2 is a cylinder, the cross section of the cylinder is a triangle, and the bottom surface and the top surface of the convex structure 2 are the same size, and the top surface area is 1
  • the height of the convex structure 2 is 15, the sum of the top surface areas of all the convex structures 2 on the surface of the substrate 1 accounts for 10% of the surface area of the substrate 1, and the height of the convex structure 2 is larger than the hydrophilic surface coated on the surface of the substrate 1.
  • the microprism reflective film of the present embodiment is as shown in FIG. 6.
  • the microprism reflective film comprises a surface layer, a microprism layer 6, a sealing layer 7, a backing layer 8, and a release layer which are sequentially arranged from top to bottom.
  • the surface layer comprises a substrate 1, a raised structure 2 formed on the surface of the substrate 1, and a hydrophilic layer 3 coated on the surface of the substrate 1 where the raised structure 2 is not provided.
  • the manufacturing apparatus of the microprism reflective film of the present embodiment includes a first heat roller 61 and a second heat roller 62 which are arranged in parallel and can be driven to rotate in reverse, and are disposed on the output side of the second heat roller 62.
  • the roller coating mechanism comprises a chute 64, a first pressing roller 65 and a roller coating wheel 66 arranged in parallel opposite to each other and capable of being driven to rotate in synchronization, and the roller coating wheel 66 is disposed in the chute 64;
  • the manufacturing process of the microprism reflective film specifically includes the following steps:
  • the surface layer substrate 1 (PMMA film) and the microprism layer substrate (PC film or PMMA film) are synchronously sandwiched between the first heat roller 61 and the second heat roller 62, and the first heat roller 61 and The rotation of the second heat roller 62 fuses the surface layer substrate 1 and the microprism substrate, and rolls the surface layer substrate 1 and the surface of the microprism substrate to form a convex structure on the surface of the surface layer substrate 1.
  • a microprism structure is formed on the surface of the microprism substrate;
  • the surface of the surface layer substrate 1 is coated with a thickness of about 15 by a roll coating mechanism.
  • a mixture of silica, an aqueous organic resin and water is placed in the trough 64 and the mixture of the top surface of the raised structure 2 is scraped off with a rubber scraping sheet 63, and then at 90. Drying at C temperature for 3 minutes to remove moisture, wherein in the coated mixture, the weight of silica accounts for 50% by weight of the mixture;
  • the surface of the surface layer substrate 1 is subjected to two energy levels of 5 Corona treatment, removing the floating organic resin, exposing the silicon dioxide to the air to form a hydrophilic layer 3, and the hydrophilic layer 3 has a water static contact angle of less than 20 degrees;
  • the sealing layer 7 and the microprism layer 6 are heat embossed and composited;
  • a layer of a pressure sensitive adhesive is attached to the sealing layer 7 to form a backing layer 8, and a release film 9 is attached to the backing layer 8 to form a release layer 9.
  • the surface layer substrate 1 is formed with a plurality of light transmissive convex structures 2 uniformly spaced apart, the convex structure 2 has a flat top surface, and the substrate surface 1 is not coated with the convex structure 2
  • the hydrophilic layer 3 is covered, the convex structure 2 is a cylinder, the cross section of the cylinder is rectangular, and the bottom surface and the top surface of the convex structure 2 are the same size, and the top surface area is 5
  • the height of the convex structure 2 is 25, and the sum of the top surface areas of all the convex structures 2 on the surface of the substrate 1 accounts for 15% of the surface area of the substrate 1.
  • the height of the convex structure 2 is greater than the hydrophilicity of the surface coated with the substrate 1.
  • the microprism reflective film of the present embodiment is as shown in FIG. 6.
  • the microprism reflective film comprises a surface layer arranged in order from top to bottom, a microprism layer 6, a sealing layer 7, a backing layer 8, and a release layer.
  • the surface layer comprises a substrate 1, a raised structure 2 formed on the surface of the substrate 1, and a hydrophilic layer 3 coated on the surface of the substrate 1 where the raised structure 2 is not provided.
  • the manufacturing apparatus of the microprism reflective film of the present embodiment includes a first heat roller 71 and a second heat roller 72 which are arranged in parallel and can be driven to rotate in reverse, and are disposed on the output side of the second heat roller 72.
  • the roller coating mechanism comprises a chute 74, a first pressing roller 75 and a roller coating wheel 76 arranged in parallel and capable of being driven to rotate in opposite directions, and the roller coating wheel 76 is disposed in the chute 74;
  • the manufacturing process of the microprism reflective film specifically includes the following steps:
  • the surface layer substrate 1 PMMA film
  • the sealing layer substrate white hot melt adhesive film
  • the rotation of the first heat roller 71 and the second heat roller 72 combines the surface layer substrate 1, the microprism layer 6 and the sealing layer substrate to form a multilayer hot melt composite, and the surface layer base Rolling the surface of the material 1 and the surface of the sealing layer substrate to form a convex structure on the surface of the surface layer substrate 1, so that the surface of the sealing layer substrate forms a closed cavity structure;
  • the surface of the surface layer substrate 1 is coated with a thickness of about 20 by a roll coating mechanism.
  • a mixture of silica, an aqueous organic resin and water is placed in the trough 74 and the mixture of the top surface of the raised structure 2 is scraped off with a rubber scraping blade 73 and then at 85. Drying at C temperature for 5 minutes to remove moisture, wherein in the coated mixture, the weight of silica accounts for 60% by weight of the mixture;
  • the surface of the surface layer substrate 1 is subjected to two energy levels of 5 Corona treatment, removing the floating organic resin, exposing the silicon dioxide to the air to form a hydrophilic layer 3, and the hydrophilic layer 3 has a water static contact angle of less than 20 degrees;
  • a pressure sensitive adhesive is attached to the sealing layer 7 to form a backing layer 8, and a release film 9 is attached to the adhesive layer 8 to form a release layer 9.
  • the surface layer substrate 1 is formed with a plurality of light transmissive convex structures 2 uniformly spaced apart, the convex structure 2 has a flat top surface, and the substrate surface 1 is not coated with the convex structure 2 Covered with a hydrophilic layer 3, the convex structure 2 is a cylinder, the cross section of the cylinder is a polygon, and the bottom surface and the top surface of the convex structure 2 are the same size, and the top surface area is 8
  • the height of the convex structure 2 is 45, and the sum of the top surface areas of all the convex structures 2 on the surface of the substrate 1 accounts for 20% of the surface area of the substrate 1.
  • the height of the convex structure 2 is greater than the hydrophilicity of the surface coated with the substrate 1.
  • the surface layer of the reflective film includes a substrate 10, a hydrophilic layer 11 formed on the substrate 10, and a plurality of light-transmitting convex structures 12 uniformly formed on the hydrophilic layer 11.
  • the raised structure 12 has a flat top surface, and the convex structure 12 is used for rapidly guiding the fine water droplets to agglomerate on the hydrophilic layer 11, so that the fine water drops rapidly diffuse into the water film in the hydrophilic layer 11, and the convex structure 12 is Under the frosting phenomenon, it can still maintain good light transmittance, thereby eliminating fine water drops or weakening the adverse effects of frost on the surface layer of the reflective film, and ensuring the reflective performance of the surface layer of the reflective film.
  • the raised structure 12 can protect the pro The water layer 11 is not destroyed during storage, transportation, and use.
  • the material of the substrate 10 is polymethyl methacrylate (PMMA)
  • the raw material of the hydrophilic layer 11 is silica
  • the raw material of the convex structure 12 is a colorless transparent material, specifically an acrylic copolymer resin, a convex structure.
  • 12 is a cylinder
  • the cross section of the cylinder may be a circle, a triangle, a rectangle or an arbitrary polygon.
  • the cross section of the cylinder is circular
  • the bottom surface and the top surface of the convex structure 12 are the same size.
  • Surface area is 10
  • the height of the raised structure 12 is 50
  • the sum of the top surface areas of all the convex structures 12 accounts for 30% of the surface area of the substrate 10.
  • the top surface of the convex structure 12 differs greatly from the height, does not affect the light transmittance of the surface layer directly opposite, and utilizes nature.
  • the sexual attraction, repulsive force, affinity and relative temperature difference dynamics of the fine water droplets cause the fine water droplets to be quickly guided by the convex structure 12 to the hydrophilic layer 11 to diffuse into a water film, and the water film is flat, so it will not The reflective effect is affected.
  • the top surface of the convex structure 12 is hydrophobic, no moisture condensation, and no frost is formed, so the convex structure 12 has light transmissivity and can ensure the reflective performance of the reflective film.
  • Embodiment 8 The manufacturing process of the surface layer of this embodiment includes the following steps:
  • a surface of the substrate 10 (PMMA film) is coated with a mixture of silica, an aqueous organic resin and water to form a hydrophilic layer 11, and then at 85. Drying at C temperature for 5 minutes to remove moisture, wherein the weight of silica accounts for 60% of the weight of the mixture;
  • the colorless transparent material is printed by screen printing on the hydrophilic layer 11 to form a plurality of light transmissive convex structures 12 evenly spaced;
  • the hydrophilic layer 11 is subjected to two energy levels of 5
  • the corona treatment removes the floating organic resin to expose the silica to the air, and the hydrophilic contact angle of the hydrophilic layer 11 after the corona treatment is less than 20 degrees.
  • the surface of the substrate 10 of the surface layer is coated with a hydrophilic layer 11, and a plurality of light-transmitting convex structures 12 uniformly spaced apart are formed on the hydrophilic layer 11, and the convex structure 12 has a flat top.
  • the convex structure 12 is a cylinder, the cross section of the cylinder is circular, and the bottom surface and the top surface of the convex structure 12 are the same size, and the top surface area is 5 , the height of the raised structure 12 is 30
  • the sum of the top surface areas of all the convex structures 12 accounts for 50% of the surface area of the substrate 10.
  • the surface layer can be used for the glass bead reflective film, the microprism reflective film, and can be adhered to the transparent glass and the bathroom is reflective. Keep the transparency and shininess on the mirror and reflective road signs.
  • Embodiment 9 The manufacturing process of the surface layer of this embodiment includes the following steps:
  • a surface of the substrate 10 (PMMA film) is coated with a mixture of a silica nanofine material, an aqueous organic resin and water to form a hydrophilic layer 11, and then at 85. Drying at C temperature for 5 minutes to remove moisture, wherein the weight of the silica nanofine material accounts for 75% of the weight of the mixture;
  • a plurality of light-transmitting convex structures 12 are evenly spaced on the carrier film (PET film) by casting;
  • the energy level of the hydrophilic layer 11 is 4
  • the corona treatment removes the floating organic resin to expose the silica nano-fine material to the air, and the hydrophilic contact angle of the hydrophilic layer 11 after the corona treatment is less than 20 degrees.
  • the surface of the substrate 10 of the surface layer is coated with a hydrophilic layer 11, and a plurality of light-transmitting convex structures 12 uniformly spaced apart are formed on the hydrophilic layer 11, and the convex structure 12 has a flat top.
  • the convex structure 12 is a cylinder, the cross section of the cylinder is circular, and the bottom surface and the top surface of the convex structure 12 are the same size, and the top surface area is 1 , the height of the raised structure 12 is 15
  • the sum of the top surface areas of all the raised structures 12 accounts for 10% of the surface area of the substrate 10.
  • the surface layer can be used for the glass bead reflective film, the microprism reflective film, and can be adhered to the transparent glass and the bathroom is reflective. Keep the transparency and shininess on the mirror and reflective road signs.
  • the surface protective film of the present embodiment includes a substrate 10, a hydrophilic layer 11 formed on the substrate 10, and a plurality of light-transmitting convexities uniformly formed on the hydrophilic layer 11 as shown in FIG.
  • the structure 12, the backing layer 13 and the release layer 14 disposed on the back surface of the substrate 10, the manufacturing process of the surface protection film includes the following steps:
  • a surface of the substrate 10 (PMMA film) is coated with a mixture of silica, an aqueous organic resin and water to form a hydrophilic layer 11, and then at 85. Drying at C temperature for 5 minutes to remove moisture, wherein the weight of silica accounts for 60% of the weight of the mixture;
  • the colorless transparent material is printed by screen printing on the hydrophilic layer 11 to form a plurality of light transmissive convex structures 12 evenly spaced;
  • a backing layer 13 is disposed on the back surface of the substrate 10, and a release film is formed on the backing layer 13 to form a release layer 14, wherein the backing layer 13 is a pressure sensitive adhesive;
  • the hydrophilic layer 11 is subjected to two energy levels of 5
  • the corona treatment removes the floating organic resin to expose the silica to the air, and the hydrophilic contact angle of the hydrophilic layer 11 after the corona treatment is less than 20 degrees.
  • the surface protective film of the present embodiment includes a substrate 10, a hydrophilic layer 11 formed on the substrate 10, and a plurality of light transmissive groups uniformly formed on the hydrophilic layer 11 as shown in FIG.
  • a surface of the substrate 10 (PMMA film) is coated with a mixture of a silica nanofine material, an aqueous organic resin and water to form a hydrophilic layer 11, and then at 85. Drying at C temperature for 5 minutes to remove moisture, wherein the weight of the silica nanofine material accounts for 75% of the weight of the mixture;
  • a plurality of light-transmitting convex structures 12 are evenly spaced on the carrier film (PET film) by casting;
  • a backing layer 13 is disposed on the back surface of the substrate 10, and a release film is formed on the backing layer 13 to form a release layer 14, wherein the backing layer 13 is a pressure sensitive adhesive;
  • the energy level of the hydrophilic layer 11 is 4
  • the corona treatment removes the floating organic resin to expose the silica nano-fine material to the air, and the hydrophilic contact angle of the hydrophilic layer 11 after the corona treatment is less than 20 degrees.
  • the surface layer of the reflective film of the invention serves as a surface layer of the reflective film, and the convex structure can protect the hydrophilic region, and avoid the storage, transportation, reprocessing and use of the inorganic oxide coating of the hydrophilic region in the reflective film. It is destroyed or stained by various greases, so that the reflective film has a self-protecting function, can permanently maintain good anti-dew and anti-frost properties, and has good industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种反光膜表面层,作为反光膜的表面层,包括基材(1),基材(1)表面形成有均匀间隔分布的多个透光性凸起结构(2),凸起结构(2)具有平整的顶面,基材(1)表面未设置凸起结构(2)的区域涂覆有亲水层(3),凸起结构(2)用于快速引导水珠凝聚在亲水层(3)并保护亲水层(3)不被破坏;且凸起结构(2)能够对亲水层(3)形成保护,避免亲水层(3)在反光膜存储、运输、再加工及使用过程中被破坏,使反光膜能够永久地保持良好的防露、防霜性能。

Description

反光膜表面层、表面保护膜、反光膜及其制造工艺 技术领域
本发明涉及反光膜表面层、表面保护膜、反光膜及其制造工艺。
背景技术
反光膜能够将大部分入射光沿发射光源的方向反射回去,广泛地应用于各式各样的制品,如道路标志、阻挡通路的障碍物、卡车车身识别等,现有反光膜包括玻璃微珠反光膜和微棱镜反光膜两种,玻璃微珠反光膜采用非常多的玻璃细微珠球制成具有逆向反射效果的反光层,微棱镜反光膜包含透明的基材层和设置在基材层上的具有反射效应的微棱镜反光层。
当反光膜发生结露现象时,凝结在反光膜表面的细微水珠会改变入射光的路径、减少到达反光层的入射光、当入射光被反光层反射至反光膜表面时再次受到细微水珠的折射影响,使反光膜的反光效果严重被削弱,当气温低于冰点(0°)时,凝结水汽变成固态晶体冰霜,冰霜亦会严重削弱反光膜的反光效果,结露或结霜现象通常发生在温度变化时,如夜间,而夜间黑暗时正是反光膜制品发挥最大作用的时间,因此如何消除或者降低细微水珠对反光膜的影响是亟需解决的问题。
发明内容
本发明的目的是针对现有技术的不足,提出一种能够消除细微水珠和减弱固态晶体冰霜对反光性能的影响,并且能够永久地保持防露、防霜性能的反光膜表面层、表面保护膜、反光膜及其制造工艺。
本发明通过以下技术方案实现:
一种反光膜表面层,包括基材,基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层,凸起结构用于快速引导水珠凝聚在亲水层并保护亲水层不被破坏。
进一步的,所述凸起结构为柱体,所述柱体的横截面为圆形或者多边形。
进一步的,所述亲水层包括二氧化硅、铝硅氧化物、铝氧化物、钛氧化物和锡氧化物中的至少一种。
进一步的,所述凸起结构的顶面面积为1-10 ,所述凸起结构的高度为15-50 ,所述多个凸起结构的顶面面积之和占所述基材表面面积的10-50%。
进一步的,所述多个凸起结构的顶面面积之和占所述基材表面面积的15%-30%。
进一步的,所述凸起结构的高度大于基材表面涂覆的亲水层的厚度。
进一步的,所述基材与所述凸起结构的材质相同,均为聚甲基丙烯酸甲酯或聚碳酸酯,一体成型。
本发明还通过以下技术方案实现:
一种反光膜,包括如上所述的表面层。
进一步的,所述反光膜为微棱镜反光膜,包括相互复合的表面层和微棱镜层。
进一步的,所述反光膜为玻璃微珠反光膜,包括相互复合的表面层和玻璃微珠层。
本发明还通过以下技术方案实现:
一种表面保护膜,包括如上所述的表面层、涂覆在表面层背面的背胶层和复合在背胶层上的离形层。
本发明还通过以下技术方案实现:
一种表面层的制造工艺,利用不能与原料热融合的载体膜、平行相对布置并可被驱动同步逆向转动的第一热辊和第一压辊,载体膜夹在第一热辊和第一压辊之间被输送,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,包括以下步骤:
A、将原料熔融后流延至第一热辊表面形成表面层基材,第一热辊和第一压辊的转动使载体膜贴附在表面层基材上并对表面层基材进行辊压,使表面层基材表面形成凸起结构;
B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
C、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
D、剥离载体膜,制得表面层;
其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
本发明还通过以下技术方案实现:
一种微棱镜反光膜的制造工艺,微棱镜反光膜包括相互复合的表面层和微棱镜层,利用不能与原料热融合的载体膜、平行相对布置并可被驱动同步逆向转动的第一热辊和第一压辊,载体膜夹在第一热辊和第一压辊之间被输送,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,包括如下步骤:
A、将原料熔融后流延至第一热辊表面以形成表面层基材,第一热辊和第一压辊的转动使载体膜贴附在表面层基材上并对表面层基材进行辊压,使表面层基材表面形成凸起结构;
B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
C、将微棱镜基材和剥离载体膜后的表面层基材夹在第二热辊和第二压辊之间被输送,第二热辊和第二压辊的转动使微棱镜基材与表面层基材热融合,并且使微棱镜基材表面形成微棱镜结构;
D、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
本发明还通过以下技术方案实现:
一种微棱镜反光膜的制造工艺,微棱镜反光膜包括相互复合的表面层和微棱镜层,利用平行相对布置并可被驱动同步逆向转动的第一热辊和第二热辊,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,第二热辊表面形成有微棱镜成型结构,包括如下步骤:
A、将表面层基材和微棱镜层基材同步夹在第一热辊和第二热辊之间被输送,第一热辊和第二热辊的转动使表面层基材和微棱镜层基材复合,并对表面层基材和微棱镜层基材表面进行辊压,使表面层基材表面形成凸起结构,微棱镜层表面形成微棱镜结构;
B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
C、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
本发明还通过以下技术方案实现:
一种微棱镜反光膜的制造工艺,微棱镜反光膜包括由上至下依次布置的表面层、微棱镜层和密封层,利用平行相对布置并可被驱动同步逆向转动的第一热辊和第二热辊,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,第二热辊表面分布有用于形成密闭穴状结构的凹槽,包括如下步骤:
A、将表面层基材、微棱镜层和密封层基材夹在第一热辊和第二热辊之间同步输送,第一热辊和第二热辊的转动将表面层基材、微棱镜层和密封层基材复合在一起,形成多层热熔的复合体,并对表面层基材表面和密封层基材表面进行辊压,使表面层基材表面形成凸起结构,使密封层基材表面形成密闭穴状结构;
B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
C、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
本发明还通过以下技术方案实现:
一种反光膜表面层,包括基材、形成在基材表面的亲水层、均匀间隔形成在亲水层上的多个透光性凸起结构,凸起结构具有平整的顶面,凸起结构用于快速引导水珠凝聚在亲水层并保护亲水层不被破坏。
进一步的,所述凸起结构为柱体,所述柱体的横截面为圆形或者多边形。
进一步的,所述亲水层包括二氧化硅、铝硅氧化物、铝氧化物、钛氧化物和锡氧化物中的至少一种。
进一步的,所述亲水层包括二氧化硅、铝硅氧化物、铝氧化物、钛氧化物和锡氧化物中的至少一种的纳米细微材料。
进一步的,所述凸起结构的顶面面积为1-10 ,所述凸起结构的高度为15-50 ,所述多个凸起结构的顶面面积之和占所述基材表面面积的10-50%。
进一步的,所述多个凸起结构的顶面面积之和占所述基材表面面积的15-30%。
进一步的,所述凸起结构材质为无色透明印料,所述无色透明印料包括丙烯酸共聚树脂、烯烃共聚树脂、脂族聚氨酯、含氟化物有机树脂、含硅烷有机塑料或含可光固化功能基的有机树脂。
本发明还通过以下技术方案实现:
一种反光膜,包括如上一技术方案所述的表面层。
进一步的,所述反光膜为微棱镜反光膜,包括相互复合的表面层和微棱镜层。
进一步的,所述反光膜为玻璃微珠反光膜,包括相互复合的表面层和玻璃微珠层。
本发明还通过以下技术方案实现:
一种表面保护膜,包括如上一方案所述的表面层、涂覆在表面层背面的背胶层和复合在背胶层上的离形层。
本发明还通过以下技术方案实现:
一种表面层的制造工艺,包括如下步骤:
A、在基材表面涂覆亲水层原料、水性有机树脂和水的混合物,形成亲水层;
B、将无色透明印料印刷在亲水层上形成均匀间隔分布的多个透光性凸起结构;
C、对亲水层进行电晕处理,去除上浮的有机树脂。
进一步的,所述无色透明材料通过丝网印刷或者数位印刷方式印刷在所述亲水层上形成均匀间隔分布的多个透光性凸起结构。
本发明还通过以下技术方案实现:
一种表面层的制造工艺,包括如下步骤:
A、在基材表面涂覆亲水层原料、水性有机树脂和水的混合物,形成亲水层;
B、在载体膜上均匀间隔设置多个透光性凸起结构;
C、利用热压方式将凸起结构翻转至亲水层上;
D、对亲水层进行电晕处理,去除上浮的有机树脂。
进一步的,通过热压或者流延的方式在所述载体膜上均匀间隔设置多个透光性凸起结构。
本发明具有如下有益效果:
1、本发明表面层的凸起结构能够将周遭水汽迅速引导凝结在亲水层,这些细微水珠在亲水层快速扩算成水膜,水膜是平面故而不会影响反光效果,因此能够消除细微水珠对反光膜反光性能的不良影响,另外,凸起结构的平整顶面具有疏水性,因此水汽无法凝结在凸起结构顶面,在冰点温度下,水膜变为高度结晶状的冰霜,会削弱反光效果,但凸起结构顶面由于没有水汽凝结而不会形成冰霜,凸起结构依然能够保持良好的透光性,从而保证反光膜的反光性能,因此,在结露或者结霜的情况下,本发明的凸起结构能够消除细微水珠或者减弱固态晶体冰霜对反光膜的不良影响,从而保证反光膜的反光效果。
2、本发明表面层的凸起结构能够充当反光膜被触摸的接触点,对亲水层形成保护,避免亲水层在表面层存储、运输、再加工及使用过程中被破坏或者被各种油脂污损,使反光膜具有自保护功能,能够永久地保持良好的防露、防霜性能。
3、本发明的反光膜表面层能够粘贴在各种成品反光膜表面或者透明制品上,使成品反光膜或者透明制品具有永久的防露、防霜性能,透明制品包括玻璃、镜子、反光路标、手术上用的眼罩、潜水面罩。
附图说明
下面结合附图对本发明做进一步详细说明。
图1为本发明实施例一中反光膜表面层的俯视结构示意图。
图2为本发明实施例一中反光膜表面层的剖视结构示意图。
图3为本发明实施例二中表面层的制造装置结构示意图。
图4为图3中第一热辊表面结构示意图。
图5为本发明实施例三中表面保护膜的结构示意图。
图6为本发明微棱镜反光膜的剖视结构示意图。
图7为本发明实施例四中微棱镜反光膜的制造装置结构示意图。
图8为本发明实施例五中微棱镜反光膜的制造装置结构示意图。
图9为本发明实施例六中微棱镜反光膜的制造装置结构示意图。
图10为本发明实施例七中反光膜表面层的剖视结构示意图。
图11为本发明实施例十及实施例十一中表面层的剖视结构示意图。
具体实施方式
实施例一,如图1和图2所示,本发明的反光膜表面层包括基材1,在基材1表面形成有均匀间隔分布的多个透光性凸起结构2,凸起结构2具有与基材1表面平行的平整顶面,基材1表面未设置凸起结构2的区域涂覆有亲水层3,用于快速引导水珠凝聚在亲水层3并在亲水层3快速扩散成水膜,凸起结构2在结霜现象下仍然能够保持良好的透光性,从而消除细微水珠或者减弱冰霜对反光膜的不良影响,保证反光膜一直具有良好的反光性能,还能保护亲水层3在储存、运输、使用过程中不被破坏。
基材1与凸起结构2的材质相同,均为聚甲基丙烯酸甲醋(PMMA)或者聚碳酸酯(PC),基材1与凸起结构2一体成型,凸起结构2为柱体,柱体的横截面可以是圆形、三角形、矩形或者任意的多边形,本实施例中,柱体的横截面为圆形,凸起结构2的底面和顶面大小相同,顶面面积为10 范围,凸起结构2的高度为50 范围,基材1表面所有凸起结构2的顶面面积之和占基材1表面面积的30%,凸起结构2的顶面大小与高度相差很大,不影响表面层正对面的透光性,并且利用自然现象中细微水珠的性向吸引力、排斥力、亲和力和相对温差动态等作用,使细微水珠被凸起结构2迅速引导至亲水层3凝聚成水膜,避免影响反光膜的性能。
实施例二,本实施例表面层的制造装置如图3和图4所示,包括平行相对布置并可被驱动同步逆向转动的第一热辊41和第一压辊42、设置在第一压辊42输出侧的辊涂机构、设置在辊涂机构输出侧的橡胶刮削片43,将不能与PMMA胶粒热融合的载体膜(PET膜)夹在第一热辊41和第一压辊42之间被输送,第一热辊41表面均匀间隔分布有用于形成凸起结构的凹槽44,第一压辊42为硬式橡塑辊轮,辊涂机构包括料槽45、平行相对布置并可被驱动同步逆向转动的第二压辊46和辊涂轮47,辊涂轮47设置在料槽45中,本实施例的表面层的制造工艺具体包括如下步骤:
A、将PMMA胶粒在热炷机中加热至120。C,使其熔融后流延至第一热辊41表面形成表面层基材1,第一热辊41和第一压辊42的转动使PET膜贴附在表面层基材1上并对表面层基材1进行辊压,使表面层基材1表面形成凸起结构2;
B、在表面层基材1表面利用辊涂机构涂覆厚度约为10 的二氧化硅、水性有机树脂和水的混合物,该混合物装在料槽45中,并利用橡胶刮削片43将凸起结构2顶面的混合物刮除,然后在85。C温度下烘干5分钟,以去除水分,其中,在涂覆的混合物中,二氧化硅的重量占混合物重量的50%;
C、对表面层基材1表面进行两次能量级为5 的电晕处理,去除上浮的有机树脂,使二氧化硅暴露在空气中,形成亲水层3,亲水层3的水静态接触角小于20度;
D、剥离PET膜,制得表面层。
本实施例中,表面层包括基材1,在基材1表面形成有均匀间隔分布的多个透光性凸起结构2,凸起结构2具有平整的顶面,基材表面1未设置凸起结构2的区域涂覆有亲水层3,凸起结构2为柱体,柱体的横截面是圆形,凸起结构2的底面和顶面大小相同,顶面面积为3 ,凸起结构2的高度是30 ,基材1表面所有凸起结构2的顶面面积之和占基材1表面面积50%,凸起结构2的高度大于基材1表面涂覆的亲水层3的厚度。
本发明的反光膜表面层还可以用于玻璃微珠反光膜、微棱镜反光膜。
实施例三,本实施例的表面保护膜如图5所示,包括基材1、在基材1表面形成有均匀间隔分布的多个透光性凸起结构2,凸起结构2具有平整的顶面,基材表面1未设置凸起结构2的区域涂覆有亲水层3,在基材1背面涂覆有背胶层4,在背胶层4上复合有离形层5,在根据实施例二制得的表面层背面涂覆背胶层4之后,再在背胶层4上复合离形层5用以保护背胶层4,即可制得表面层保护膜,其中,背胶层4为压敏粘连剂。
实施例四,本实施例的微棱镜反光膜如图6所示,微棱镜反光膜包括由上至下依次布置的表面层、微棱镜层6、密封层7、背胶层8和离型层9,表面层包括基材1、形成在基材1表面的凸起结构2和涂覆在基材1表面未设置凸起结构2区域的亲水层3。
本实施例的微棱镜反光膜的制造装置如图7所示,包括平行相对布置并可被驱动同步逆向转动的第一热辊51和第一压辊52、平行相对布置并可被驱动同步逆向转动的第二热辊53和第二压辊54、设置在第一压辊52输出侧的辊涂机构、设置在辊涂机构输出侧的橡胶刮削片58、设置在橡胶刮削片58输出侧的牵引棍59,第二热辊53和第二压辊54设置在橡胶刮削片58的输出侧,将不能与PMMA胶粒热融合的载体膜(PET膜)夹在第一热辊51和第一压辊52之间被输送,第一热辊51表面均匀间隔分布有用于形成凸起结构的凹槽,第二热辊53表面分布有用于形成微棱镜结构的凹槽,第一压辊52、第二压辊54均为硬式橡塑辊轮,辊涂机构包括料槽55、平行相对布置并可被驱动同步逆向转动的第三压辊56和辊涂轮57,辊涂轮57设置在料槽55中;本实施例的微棱镜反光膜的制造工艺具体包括如下步骤:
A、将PMMA胶粒在热炷机中加热至130。C,使其熔融后流延至第一热辊51表面形成表面层基材1,第一热辊51和第一压辊52的转动使PET膜贴附在表面层基材1上并对表面层基材1进行辊压,使表面层基材表面形成凸起结构2;
B、在表面层基材1表面利用辊涂机构涂覆厚度约为10 的二氧化硅、水性有机树脂和水的混合物,该混合物装在料槽55中,并利用橡胶刮削片58将凸起结构2顶面的混合物刮除,然后在90。C温度下烘干3分钟,以去除水分,其中,在涂覆的混合物中,二氧化硅的重量占混合物重量的60%;
C、利用牵引棍59将经步骤B处理后的表面层基材1上的PET膜剥离后,将微棱镜基材(PMMA膜或者PC膜)和表面层基材1夹在第二热辊53和第二压辊54之间被输送,第二热辊53和第二压辊54的转动使微棱镜基材和表面层基材1热融合,并且使微棱镜基材表面形成微棱镜结构;
D、对表面层基材1表面进行两次能量级为5 的电晕处理,去除上浮的有机树脂,使二氧化硅暴露在空气中,形成亲水层3,亲水层3的水静态接触角小于20度;
E、将密封层7与微棱镜层6热压花复合;
F、将一层压敏粘连剂贴附在密封层7上形成背胶层8,再在背胶层8上贴上一层可离型的保护膜形成离形层9。
本实施例中,表面层基材1表面形成有均匀间隔分布的多个透光性凸起结构2,凸起结构2具有平整的顶面,基材表面1未设置凸起结构2的区域涂覆有亲水层3,凸起结构2为柱体,柱体的横截面是三角形,凸起结构2的底面和顶面大小相同,顶面面积为1 ,凸起结构2的高度是15 ,基材1表面所有凸起结构2的顶面面积之和占基材1表面面积10%,凸起结构2的高度大于基材1表面涂覆的亲水层3的厚度。
实施例五,本实施例的微棱镜反光膜如图6所示,微棱镜反光膜包括由上至下依次布置的表面层、微棱镜层6、密封层7、背胶层8和离型层9,表面层包括基材1、形成在基材1表面的凸起结构2和涂覆在基材1表面未设置凸起结构2区域的亲水层3。
本实施例的微棱镜反光膜的制造装置如图8所示,包括平行相对布置并可被驱动同步逆向转动的第一热辊61和第二热辊62、设置在第二热辊62输出侧的辊涂机构、设置在辊涂机构输出侧的橡胶刮削片63,第一热辊61表面均匀间隔分布有用于形成凸起结构2的凹槽,第二热辊62表面分布有用于形成微棱镜结构的凹槽,辊涂机构包括料槽64、平行相对布置并可被驱动同步逆向转动的第一压辊65和辊涂轮66,辊涂轮66设置在料槽64中;本实施例的微棱镜反光膜的制造工艺具体包括如下步骤:
A、将表面层基材1(PMMA膜)和微棱镜层基材(PC膜或者PMMA膜)同步夹在第一热辊61和第二热辊62之间被输送,第一热辊61和第二热辊62的转动使表面层基材1和微棱镜基材融合在一起,并对表面层基材1和微棱镜基材表面进行辊压,使表面层基材1表面形成凸起结构,微棱镜基材表面形成微棱镜结构;
B、在表面层基材1表面利用辊涂机构涂覆厚度约为15 的二氧化硅、水性有机树脂和水的混合物,该混合物装在料槽64中,并利用橡胶刮削片63将凸起结构2顶面的混合物刮除,然后在90。C温度下烘干3分钟,以去除水分,其中,在涂覆的混合物中,二氧化硅的重量占混合物重量的50%;
C、对表面层基材1表面进行两次能量级为5 的电晕处理,去除上浮的有机树脂,使二氧化硅暴露在空气中,形成亲水层3,亲水层3的水静态接触角小于20度;
D、将密封层7与微棱镜层6热压花复合;
E、将一层压敏粘连剂贴附在密封层7上形成背胶层8,再在背胶层8上贴上一层可离型的保护膜形成离形层9。
本实施例中,表面层基材1表面形成有均匀间隔分布的多个透光性凸起结构2,凸起结构2具有平整的顶面,基材表面1未设置凸起结构2的区域涂覆有亲水层3,凸起结构2为柱体,柱体的横截面是矩形,凸起结构2的底面和顶面大小相同,顶面面积为5 ,凸起结构2的高度是25 ,基材1表面所有凸起结构2的顶面面积之和占基材1表面面积15%,凸起结构2的高度大于基材1表面涂覆的亲水层3的厚度。
实施例六,本实施例的微棱镜反光膜如图6所示,微棱镜反光膜包括由上至下依次布置的表面层、微棱镜层6、密封层7、背胶层8和离型层9,表面层包括基材1、形成在基材1表面的凸起结构2和涂覆在基材1表面未设置凸起结构2区域的亲水层3。
本实施例的微棱镜反光膜的制造装置如图9所示,包括平行相对布置并可被驱动同步逆向转动的第一热辊71和第二热辊72、设置在第二热辊72输出侧的辊涂机构、设置在辊涂机构输出侧的橡胶刮削片73,第一热辊71表面均匀间隔分布有用于形成凸起结构2的凹槽,第二热辊72表面分布有用于形成密闭穴状结构的凹槽,辊涂机构包括料槽74、平行相对布置并可被驱动同步逆向转动的第一压辊75和辊涂轮76,辊涂轮76设置在料槽74中;本实施例的微棱镜反光膜的制造工艺具体包括如下步骤:
A、将表面层基材1(PMMA膜)、已形成微棱镜结构的微棱镜层6和密封层基材(白色热熔胶膜)夹在第一热辊71和第二热辊72之间同步输送,第一热辊71和第二热辊72的转动将表面层基材1、微棱镜层6和密封层基材复合在一起,形成多层热熔的复合体,并对表面层基材1表面和密封层基材表面进行辊压,使表面层基材1表面形成凸起结构,使密封层基材表面形成密闭穴状结构;
B、在表面层基材1表面利用辊涂机构涂覆厚度约为20 的二氧化硅、水性有机树脂和水的混合物,该混合物装在料槽74中,并利用橡胶刮削片73将凸起结构2顶面的混合物刮除,然后在85。C温度下烘干5分钟,以去除水分,其中,在涂覆的混合物中,二氧化硅的重量占混合物重量的60%;
C、对表面层基材1表面进行两次能量级为5 的电晕处理,去除上浮的有机树脂,使二氧化硅暴露在空气中,形成亲水层3,亲水层3的水静态接触角小于20度;
D、将一层压敏粘连剂贴附在密封层7上形成背胶层8,再在背胶层8上贴上一层可离型的保护膜形成离形层9。
本实施例中,表面层基材1表面形成有均匀间隔分布的多个透光性凸起结构2,凸起结构2具有平整的顶面,基材表面1未设置凸起结构2的区域涂覆有亲水层3,凸起结构2为柱体,柱体的横截面是多边形,凸起结构2的底面和顶面大小相同,顶面面积为8 ,凸起结构2的高度是45 ,基材1表面所有凸起结构2的顶面面积之和占基材1表面面积20%,凸起结构2的高度大于基材1表面涂覆的亲水层3的厚度。
实施例七,如图10所示,反光膜表面层包括基材10、形成在基材10上的亲水层11、均匀间隔形成在亲水层11上的多个透光性凸起结构12,凸起结构12具有平整的顶面,凸起结构12用于快速引导细微水珠凝聚在亲水层11,使细微水珠在亲水层11快速扩散成水膜,且凸起结构12在结霜现象下仍然能够保持良好的透光性,从而消除细微水珠或者减弱冰霜对反光膜表面层的不良影响,保证反光膜表面层的反光性能,另一方面,凸起结构12能够保护亲水层11在储存、运输、使用过程中不被破坏。
本实施例中,基材10材质为聚甲基丙烯酸甲醋(PMMA),亲水层11原料为二氧化硅,凸起结构12原料为无色透明材料,具体为丙烯酸共聚树脂,凸起结构12为柱体,柱体的横截面可以是圆形、三角形、矩形或者任意的多边形,本实施例中,柱体的横截面为圆形,凸起结构12的底面和顶面大小相同,顶面面积为10 ,凸起结构12的高度为50 ,所有凸起结构12的顶面面积之和占基材10表面面积的30%,凸起结构12的顶面大小与高度相差很大,不影响表面层正对面的透光性,并且利用自然现象中细微水珠的性向吸引力、排斥力、亲和力和相对温差动态等作用,使细微水珠被凸起结构12迅速引导至亲水层11扩散成水膜,水膜为平面,因此不会影响反光效果,在冰点时,凸起结构12顶面由于呈现疏水性,没有水汽凝结,不会形成冰霜,所以凸起结构12具有透光性,能够保证反光膜的反光性能。
实施例八,本实施例表面层的制造工艺包括如下步骤:
A、在基材10(PMMA膜)表面涂覆二氧化硅、水性有机树脂和水的混合物,形成亲水层11,然后在85。C温度下烘干5分钟,以去除水分,其中,二氧化硅的重量占混合物重量的60%;;
B、将无色透明材料通过丝网印刷方式印刷在亲水层11上形成均匀间隔分布的多个透光性凸起结构12;
C、对亲水层11进行两次能量级为5 的电晕处理,去除上浮的有机树脂,使二氧化硅暴露在空气中,电晕处理后的亲水层11的水静态接触角小于20度。
本实施例中,表面层的基材10表面涂覆有亲水层11,在亲水层11上形成有均匀间隔分布的多个透光性凸起结构12,凸起结构12具有平整的顶面,凸起结构12为柱体,柱体的横截面是圆形,凸起结构12的底面和顶面大小相同,顶面面积为5 ,凸起结构12的高度是30 ,所有凸起结构12的顶面面积之和占基材10表面面积的50%,此表面层可以用于玻璃微珠反光膜、微棱镜反光膜,还可粘着附贴在透明玻璃、浴室反光镜、反光路标上,保持其透明度和反光度。
实施例九,本实施例的表面层的制造工艺包括如下步骤:
A、在基材10(PMMA膜)表面涂覆二氧化硅纳米细微材料、水性有机树脂和水的混合物,形成亲水层11,然后在85。C温度下烘干5分钟,以去除水分,其中,其中二氧化硅纳米细微材料的重量占混合物重量的75%;
B、通过流延方式在载体膜(PET膜)上均匀间隔设置多个透光性凸起结构12;
C、利用热压方式将凸起结构12翻转至亲水层上;
D、对亲水层11进行能量级为4 的电晕处理,去除上浮的有机树脂,使二氧化硅纳米细微材料暴露在空气中,电晕处理后的亲水层11的水静态接触角小于20度。
本实施例中,表面层的基材10表面涂覆有亲水层11,在亲水层11上形成有均匀间隔分布的多个透光性凸起结构12,凸起结构12具有平整的顶面,凸起结构12为柱体,柱体的横截面是圆形,凸起结构12的底面和顶面大小相同,顶面面积为1 ,凸起结构12的高度是15 ,所有凸起结构12的顶面面积之和占基材10表面面积的10%,此表面层可以用于玻璃微珠反光膜、微棱镜反光膜,还可粘着附贴在透明玻璃、浴室反光镜、反光路标上,保持其透明度和反光度。
实施例十,本实施例的表面保护膜如图11所示,包括基材10、形成在基材10上的亲水层11、均匀间隔形成在亲水层11上的多个透光性凸起结构12、设置在基材10背面的背胶层13和离形层14,表面保护膜的制造工艺包括如下步骤:
A、在基材10(PMMA膜)表面涂覆二氧化硅、水性有机树脂和水的混合物,形成亲水层11,然后在85。C温度下烘干5分钟,以去除水分,其中,二氧化硅的重量占混合物重量的60%;
B、将无色透明材料通过丝网印刷方式印刷在亲水层11上形成均匀间隔分布的多个透光性凸起结构12;
C、在基材10背面设置背胶层13,再在背胶层13上贴上一层可离型的保护膜形成离形层14,其中,背胶层13为压敏粘连剂;
D、对亲水层11进行两次能量级为5 的电晕处理,去除上浮的有机树脂,使二氧化硅暴露在空气中,电晕处理后的亲水层11的水静态接触角小于20度。
实施例十一,本实施例的表面保护膜如图11所示,包括基材10、形成在基材10上的亲水层11、均匀间隔形成在亲水层11上的多个透光性凸起结构12、设置在基材10背面的背胶层13和离形层14,表面保护膜的制造工艺包括如下步骤:
A、在基材10(PMMA膜)表面涂覆二氧化硅纳米细微材料、水性有机树脂和水的混合物,形成亲水层11,然后在85。C温度下烘干5分钟,以去除水分,其中,其中二氧化硅纳米细微材料的重量占混合物重量的75%;
B、通过流延方式在载体膜(PET膜)上均匀间隔设置多个透光性凸起结构12;
C、利用热压方式将凸起结构12翻转至亲水层上;
D、在基材10背面设置背胶层13,再在背胶层13上贴上一层可离型的保护膜形成离形层14,其中,背胶层13为压敏粘连剂;
对亲水层11进行能量级为4 的电晕处理,去除上浮的有机树脂,使二氧化硅纳米细微材料暴露在空气中,电晕处理后的亲水层11的水静态接触角小于20度。
以上所述,仅为本发明的较佳实施例而已,故不能以此限定本发明实施的范围,即依本发明申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。
工业实用性
本发明一种反光膜表面层,作为反光膜的表面层,其凸起结构能够对亲水区形成保护,避免亲水区的无机氧化物涂层在反光膜存储、运输、再加工及使用过程中被破坏或者被各种油脂污损,使反光膜具有自保护功能,能够永久地保持良好的防露、防霜性能,具有良好的工业实用性。

Claims (19)

  1. 一种反光膜表面层,包括基材,其特征在于:基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层,凸起结构用于快速引导水珠凝聚在亲水层并保护亲水层不被破坏。
  2. 根据权利要求1所述的一种反光膜表面层,其特征在于:所述凸起结构为柱体,所述柱体的横截面为圆形或者多边形。
  3. 根据权利要求1所述的一种反光膜表面层,其特征在于:所述亲水层包括二氧化硅、铝硅氧化物、铝氧化物、钛氧化物和锡氧化物中的至少一种。
  4. 根据权利要求1或2或3所述的一种反光膜表面层,其特征在于:所述凸起结构的顶面面积为1-10 ,所述凸起结构的高度为15-50 ,所述多个凸起结构的顶面面积之和占所述基材表面面积的10-50%。
  5. 根据权利要求4所述的一种反光膜表面层,其特征在于:所述多个凸起结构的顶面面积之和占所述基材表面面积的15%-30%。
  6. 根据权利要求1或2或3所述的一种反光膜表面层,其特征在于:所述凸起结构的高度大于基材表面涂覆的亲水层的厚度。
  7. 根据权利要求1或2或3所述的一种反光膜表面层,其特征在于:所述基材与所述凸起结构的材质相同,均为聚甲基丙烯酸甲酯或聚碳酸酯,一体成型。
  8. 一种反光膜,其特征在于:包括如权利要求1-7任一所述的表面层。
  9. 根据权利要求8所述的一种反光膜,其特征在于:所述反光膜为微棱镜反光膜,包括相互复合的表面层和微棱镜层。
  10. 根据权利要求8所述的一种反光膜,其特征在于:所述反光膜为玻璃微珠反光膜,包括相互复合的表面层和玻璃微珠层。
  11. 一种表面保护膜,其特征在于:包括如权利要求1-7任一所述的表面层、涂覆在表面层背面的背胶层和复合在背胶层上的离形层。
  12. 一种表面层的制造工艺,其特征在于:利用不能与原料热融合的载体膜、平行相对布置并可被驱动同步逆向转动的第一热辊和第一压辊,载体膜夹在第一热辊和第一压辊之间被输送,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,包括以下步骤:
    A、将原料熔融后流延至第一热辊表面形成表面层基材,第一热辊和第一压辊的转动使载体膜贴附在表面层基材上并对表面层基材进行辊压,使表面层基材表面形成凸起结构;
    B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
    C、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
    D、剥离载体膜,制得表面层;
    其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
  13. 一种微棱镜反光膜的制造工艺,微棱镜反光膜包括相互复合的表面层和微棱镜层,利用不能与原料热融合的载体膜、平行相对布置并可被驱动同步逆向转动的第一热辊和第一压辊,载体膜夹在第一热辊和第一压辊之间被输送,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,其特征在于:包括如下步骤:
    A、将原料熔融后流延至第一热辊表面以形成表面层基材,第一热辊和第一压辊的转动使载体膜贴附在表面层基材上并对表面层基材进行辊压,使表面层基材表面形成凸起结构;
    B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
    C、将微棱镜基材和剥离载体膜后的表面层基材夹在第二热辊和第二压辊之间被输送,第二热辊和第二压辊的转动使微棱镜基材与表面层基材热融合,并且使微棱镜基材表面形成微棱镜结构;
    D、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
    其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
  14. 一种微棱镜反光膜的制造工艺,微棱镜反光膜包括相互复合的表面层和微棱镜层,利用平行相对布置并可被驱动同步逆向转动的第一热辊和第二热辊,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,第二热辊表面形成有微棱镜成型结构,其特征在于:包括如下步骤:
    A、将表面层基材和微棱镜层基材同步夹在第一热辊和第二热辊之间被输送,第一热辊和第二热辊的转动使表面层基材和微棱镜层基材复合,并对表面层基材和微棱镜层基材表面进行辊压,使表面层基材表面形成凸起结构,微棱镜层表面形成微棱镜结构;
    B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
    C、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
    其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
  15. 一种微棱镜反光膜的制造工艺,微棱镜反光膜包括由上至下依次布置的表面层、微棱镜层和密封层,利用平行相对布置并可被驱动同步逆向转动的第一热辊和第二热辊,第一热辊表面均匀间隔分布有用于形成所述凸起结构的凹槽,第二热辊表面分布有用于形成密闭穴状结构的凹槽,其特征在于:包括如下步骤:
    A、将表面层基材、微棱镜层和密封层基材夹在第一热辊和第二热辊之间同步输送,第一热辊和第二热辊的转动将表面层基材、微棱镜层和密封层基材复合在一起,形成多层热熔的复合体,并对表面层基材表面和密封层基材表面进行辊压,使表面层基材表面形成凸起结构,使密封层基材表面形成密闭穴状结构;
    B、在表面层基材表面涂覆亲水层原料、水性有机树脂和水的混合物,并将凸起结构顶面的混合物刮除,然后烘干去除水分;
    C、对表面层基材表面进行电晕处理,去除上浮的有机树脂,形成亲水层;
    其表面层的基材表面形成有均匀间隔分布的多个透光性凸起结构,凸起结构具有平整的顶面,基材表面未设置凸起结构的区域涂覆有亲水层。
  16. 一种反光膜表面层,其特征在于:包括基材、形成在基材表面的亲水层、均匀间隔形成在亲水层上的多个透光性凸起结构,凸起结构具有平整的顶面,凸起结构用于快速引导水珠凝聚在亲水层并保护亲水层不被破坏。
  17. 根据权利要求16所述的一种反光膜表面层,其特征在于:所述凸起结构为柱体,所述柱体的横截面为圆形或者多边形。
  18. 根据权利要求16所述的一种反光膜表面层,其特征在于:所述亲水层包括二氧化硅、铝硅氧化物、铝氧化物、钛氧化物和锡氧化物中的至少一种。
  19. 根据权利要求16所述的一种反光膜表面层,其特征在于:所述亲水层包括二氧化硅、铝硅氧化物、铝氧化物、钛氧化物和锡氧化物中的至少一种的纳米细微材料。
PCT/CN2017/082358 2016-08-08 2017-04-28 反光膜表面层、表面保护膜、反光膜及其制造工艺 WO2018028251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610641318.7 2016-08-08
CN201610641318.7A CN106125174A (zh) 2016-08-08 2016-08-08 反光膜表面层、反光膜及其制造工艺

Publications (1)

Publication Number Publication Date
WO2018028251A1 true WO2018028251A1 (zh) 2018-02-15

Family

ID=57255935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082358 WO2018028251A1 (zh) 2016-08-08 2017-04-28 反光膜表面层、表面保护膜、反光膜及其制造工艺

Country Status (2)

Country Link
CN (2) CN106125174A (zh)
WO (1) WO2018028251A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113440013A (zh) * 2020-03-25 2021-09-28 佛山市顺德区美的电热电器制造有限公司 防滴水结构、上盖组件和烹饪器具
CN114241948A (zh) * 2021-12-20 2022-03-25 湖南鼎一致远科技发展有限公司 一种电致发光标识牌及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125174A (zh) * 2016-08-08 2016-11-16 福建三昊科技有限公司 反光膜表面层、反光膜及其制造工艺
CN109664539B (zh) * 2017-10-13 2024-05-03 宁德时代新能源科技股份有限公司 辊压装置
CN108761594A (zh) * 2018-04-28 2018-11-06 宁波激智科技股份有限公司 一种反光膜及其连续贴合生产设备
CN109315229A (zh) * 2018-10-29 2019-02-12 河北中尔新材料有限公司 包菇片
WO2020252700A1 (zh) * 2019-06-19 2020-12-24 深圳盈天下视觉科技有限公司 一种增加可视范围的空中成像系统及空中成像方法
CN211000058U (zh) * 2019-09-16 2020-07-14 南京贝迪电子有限公司 一种复合棱镜导光膜生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716513B1 (en) * 1999-03-09 2004-04-06 Toto Ltd. Hydrophilic member, method for preparation thereof, and coating agent and apparatus for preparation thereof
CN101173506A (zh) * 2006-11-03 2008-05-07 陈庆雄 警示装置
CN103105637A (zh) * 2013-01-31 2013-05-15 江苏特森特新材料科技有限公司 高强级反光膜的制造方法
CN106125174A (zh) * 2016-08-08 2016-11-16 福建三昊科技有限公司 反光膜表面层、反光膜及其制造工艺
CN205899062U (zh) * 2016-08-08 2017-01-18 福建三昊科技有限公司 一种反光膜表面层及反光膜
CN205899061U (zh) * 2016-08-08 2017-01-18 福建三昊科技有限公司 反光膜表面层及微棱镜反光膜的制造装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352758B1 (en) * 1998-05-04 2002-03-05 3M Innovative Properties Company Patterned article having alternating hydrophilic and hydrophobic surface regions
CN202494794U (zh) * 2012-03-19 2012-10-17 晋江联兴反光材料有限公司 一种微棱镜反光膜
US10605967B2 (en) * 2014-08-08 2020-03-31 3M Innovative Properties Company Retroreflective elements including particles
CN204374458U (zh) * 2015-02-09 2015-06-03 台州市黄岩今阳实业有限公司 防水反光布
CN105036560A (zh) * 2015-07-13 2015-11-11 安徽天堂唯高塑业科技有限公司 一种微棱镜型反光膜用玻璃微珠及其制备方法
CN105514188B (zh) * 2015-12-25 2017-10-03 中国科学院上海高等研究院 一种减反射自清洁薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716513B1 (en) * 1999-03-09 2004-04-06 Toto Ltd. Hydrophilic member, method for preparation thereof, and coating agent and apparatus for preparation thereof
CN101173506A (zh) * 2006-11-03 2008-05-07 陈庆雄 警示装置
CN103105637A (zh) * 2013-01-31 2013-05-15 江苏特森特新材料科技有限公司 高强级反光膜的制造方法
CN106125174A (zh) * 2016-08-08 2016-11-16 福建三昊科技有限公司 反光膜表面层、反光膜及其制造工艺
CN205899062U (zh) * 2016-08-08 2017-01-18 福建三昊科技有限公司 一种反光膜表面层及反光膜
CN205899061U (zh) * 2016-08-08 2017-01-18 福建三昊科技有限公司 反光膜表面层及微棱镜反光膜的制造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113440013A (zh) * 2020-03-25 2021-09-28 佛山市顺德区美的电热电器制造有限公司 防滴水结构、上盖组件和烹饪器具
CN114241948A (zh) * 2021-12-20 2022-03-25 湖南鼎一致远科技发展有限公司 一种电致发光标识牌及其制备方法

Also Published As

Publication number Publication date
CN106125174A (zh) 2016-11-16
CN106646705A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018028251A1 (zh) 反光膜表面层、表面保护膜、反光膜及其制造工艺
KR101727328B1 (ko) 리소그래피용 펠리클
TWI587187B (zh) 帶有裝飾材料的基材以及其製造方法、觸控面板以及資訊顯示裝置
WO2018190564A1 (ko) 기재필름을 포함하지 않는 디스플레이 보호필름
WO2003093878A3 (en) High refraction film, its coating composition, and an anti-reflection film, a polarizing plate and an image display device including said film
WO2019124751A1 (ko) 편광판 및 이를 포함하는 광학표시장치
EP1947682A4 (en) MULTILAYER REFLECTOR MIRROR, METHOD FOR MANUFACTURING MULTILAYER REFLECTOR MIRROR, OPTICAL SYSTEM, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
TWI256487B (en) Protective, diffusive film and process for producing the same
WO2014141921A1 (ja) タッチパネル用積層体およびタッチパネル用積層体の製造方法
WO2009145564A2 (ko) 보호필름
WO2021167377A1 (ko) 다층 필름 및 이를 포함하는 적층체
US11225057B2 (en) Bonded article of thin glass on support substrate, preparation method and use thereof
WO2016153192A1 (ko) 필름 터치 센서 제조 방법 및 제조 장치
WO2015026066A1 (ko) 데코 시트
WO2017181462A1 (zh) 一种基于boa技术的显示面板及制作方法
JP2002052675A (ja) 窓貼り用二軸配向ポリエステルフィルム
CN207845554U (zh) 一种防窥tpu保护膜
JP3135944B2 (ja) 低反射透明体
WO2021167378A1 (ko) 다층 필름 및 이를 포함하는 적층체
WO2019198893A1 (ko) 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법
JP2003240953A (ja) 偏光板
WO2020017792A1 (ko) 스마트 윈도우 필름 및 이의 제조방법
KR101579454B1 (ko) 화면 보호 필름 및 이의 제조 방법
WO2014021594A1 (ko) 일체형 광학 필름 제조 방법
KR20190118304A (ko) 연질 비산방지 데코필름 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838383

Country of ref document: EP

Kind code of ref document: A1