WO2018026224A1 - 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2018026224A1
WO2018026224A1 PCT/KR2017/008418 KR2017008418W WO2018026224A1 WO 2018026224 A1 WO2018026224 A1 WO 2018026224A1 KR 2017008418 W KR2017008418 W KR 2017008418W WO 2018026224 A1 WO2018026224 A1 WO 2018026224A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
analog
uplink communication
analog beam
terminal
Prior art date
Application number
PCT/KR2017/008418
Other languages
English (en)
French (fr)
Inventor
이승민
양석철
황대성
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201780047698.4A priority Critical patent/CN109565854B/zh
Priority to CN202210567566.7A priority patent/CN115002914A/zh
Priority to JP2019506119A priority patent/JP6761108B2/ja
Priority to EP17837275.1A priority patent/EP3496494B1/en
Priority to KR1020197001958A priority patent/KR102163673B1/ko
Publication of WO2018026224A1 publication Critical patent/WO2018026224A1/ko
Priority to US16/265,459 priority patent/US10575322B2/en
Priority to US16/787,780 priority patent/US11229040B2/en
Priority to US17/576,526 priority patent/US11533743B2/en
Priority to US17/979,221 priority patent/US20230053557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for performing uplink communication performed by a terminal in a wireless communication system and a terminal using the method.
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication.
  • Next-generation wireless access technology considering improved mobile broadband communication, Massive MTC, Ultra-Reliable and Low Latency Communication (URLLC), etc. May be referred to as new radio access technology (RAT) or NR.
  • RAT new radio access technology
  • Digital beamforming may be referred to as performing precoding in a baseband stage, and analog beamforming may be referred to as performing precoding in a radio frequency (RF) stage.
  • the beam output through digital beamforming may be referred to as a digital beam, and the beam output through analog beamforming may be referred to as an analog beam.
  • the technical problem to be solved by the present invention is to provide a method for performing uplink communication performed by a terminal in a wireless communication system and a terminal using the same.
  • a method of performing uplink communication by a terminal in a wireless communication system receives an uplink communication related parameter independently set for each analog beam and performs the uplink communication based on the parameter.
  • uplink communication related parameters set to the specific analog beam are applied to the uplink communication.
  • the terminal may receive a plurality of analog beams from a base station, measure the plurality of analog beams, and transmit a measurement result of some analog beams of the plurality of analog beams to the base station.
  • the analog beam may include a beam reference signal (BRS).
  • BRS beam reference signal
  • the beam reference signal may include an ID distinguished for each analog beam.
  • the uplink communication related parameter configured for the specific analog beam may include an offset value for determining a modulation and coding scheme (MCS) applied when uplink control information is transmitted.
  • MCS modulation and coding scheme
  • the uplink communication related parameters configured for the specific analog beam may include resources of an uplink control channel for transmitting uplink control information, a format of an uplink control channel, a transmission technique of an uplink control channel, and a reference signal sequence of an uplink control channel. It may include at least one of the generation-related seed value.
  • the uplink communication related parameters configured for the specific analog beam may include a power offset value applied to a sounding reference signal (SRS) transmission, a power offset value applied to each uplink control channel format, and an uplink control channel transmission diver. It may include at least one of a power offset value applied to a transmit diversity scheme and a power offset value according to an uplink control information payload size.
  • SRS sounding reference signal
  • the uplink communication related parameter configured for the specific analog beam may include uplink semi-static scheduling configuration information for each analog beam.
  • the uplink communication related parameter configured for the specific analog beam may include at least one of information on a resource and transmission type of a sounding reference signal, uplink transmission mode information, and timing advanced (TA) information.
  • TA timing advanced
  • the uplink semi-static scheduling operation may be allowed only in some analog beams among the plurality of analog beams configured in the terminal.
  • the parameters related to uplink communication which are independently set for each analog beam, may be set to have the same value for some analog beams and different values for the remaining analog beams.
  • a user equipment includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in combination with the RF unit, wherein the processor is independently for each analog beam.
  • RF radio frequency
  • the processor is independently for each analog beam.
  • independent uplink communication related parameters may be set for each analog beam. Therefore, when uplink channel / signal transmission based on analog beam is performed, high reliability (RELIABILITY) of uplink channel / signal transmitted through analog beams having different characteristics / environments is obtained, and efficient resource operation or scheduling for each analog beam is achieved. This is possible.
  • FIG 1 illustrates an existing wireless communication system.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • NG-RAN new generation radio access network
  • 5 illustrates the functional division between NG-RAN and 5GC.
  • FIG. 6 shows an example of a frame structure for a new radio access technology.
  • FIG. 7 and 8 illustrate examples of a connection scheme of a TXRU and an antenna element.
  • FIG. 10 illustrates the beam sweeping operation with respect to a synchronization signal and system information during downlink (DL) transmission.
  • FIG. 11 schematically illustrates an example of a panel antenna arrangement.
  • FIG. 12 schematically illustrates an example of a service area for each TXRU when all TXRUs have the same analog beamforming direction.
  • FIG. 13 schematically illustrates an example of a service area for each TXRU when each TXRU has a different analog beamforming direction.
  • FIG. 14 schematically illustrates an example in which PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2 are transmitted by frequency division multiplexing (FDM).
  • FDM frequency division multiplexing
  • FIG. 16 illustrates an uplink communication method of a terminal according to the present invention.
  • FIG. 19 is a block diagram illustrating an apparatus in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • new radio access technology new RAT
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication.
  • communication system design considering services / terminals that are sensitive to reliability and latency has been discussed.
  • next-generation wireless access technologies in consideration of such extended mobile broadband communication, massive MTC, Ultra-Reliable and Low Latency Communication (URLLC), and the like are discussed in the present invention for convenience. Is called new RAT or NR.
  • NG-RAN new generation radio access network
  • the NG-RAN may include a gNB and / or eNB that provides a user plane and control plane protocol termination to the terminal.
  • 4 illustrates a case of including only gNB.
  • gNB and eNB are connected to each other by Xn interface.
  • the gNB and eNB are connected to a 5G Core Network (5GC) through an NG interface.
  • 5GC 5G Core Network
  • AMF access and mobility management function
  • UPF user plane function
  • 5 illustrates the functional division between NG-RAN and 5GC.
  • the gNB may configure inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control, radio admission control, and measurement setup and provision. (Measurement configuration & provision), dynamic resource allocation, and the like can be provided.
  • AMF can provide functions such as NAS security, idle state mobility handling, and the like.
  • the UPF may provide functions such as mobility anchoring and PDU processing.
  • the Session Management Function (SMF) may provide functions such as terminal IP address allocation and PDU session control.
  • FIG. 6 shows an example of a frame structure for a new radio access technology.
  • a structure in which a control channel and a data channel are TDM within one TTI may be considered as one of the frame structures.
  • the hatched area represents a downlink control area, and the black part represents an uplink control area.
  • An area without an indication may be used for downlink data (DL data) transmission or may be used for uplink data (UL data) transmission.
  • the characteristics of this structure is that downlink (DL) transmission and uplink (UL) transmission are sequentially performed in one subframe, and DL data is transmitted in a subframe, and UL ACK / NACK is also transmitted. I can receive it. As a result, when a data transmission error occurs, it takes less time to retransmit data, thereby minimizing the latency of the final data transmission.
  • a time gap may be required for a base station and a terminal to switch from a transmission mode to a reception mode or a process from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in a self-contained subframe structure may be configured as a guard period (GP).
  • mmW millimeter wave
  • the wavelength is shortened to allow the installation of a plurality of antenna elements in the same area. That is, in the 30 GHz band, the wavelength is 1 cm, and a total of 64 (8x8) antenna elements can be installed in a 2-dimension array at 0.5 lambda intervals on a panel of 4 by 4 cm. Therefore, in mmW, a plurality of antenna elements may be used to increase beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • TXRU transceiver unit
  • independent beamforming is possible for each frequency resource.
  • TXRU transceiver unit
  • a method of mapping a plurality of antenna elements to one TXRU and adjusting the direction of the beam with an analog phase shifter is considered.
  • Such an analog beamforming method has a disadvantage in that it is not possible to perform frequency selective beamforming because only one beam direction can be made in the entire band.
  • a hybrid BF having B TXRUs, which is smaller than Q antenna elements, may be considered as an intermediate form between digital beamforming and analog beamforming.
  • the direction of beams that can be simultaneously transmitted is limited to B or less.
  • FIG. 7 and 8 illustrate examples of a connection scheme of a TXRU and an antenna element.
  • the TXRU virtualization model represents a relationship between an output signal of the TXRU and an output signal of the antenna elements.
  • W represents the phase vector multiplied by the analog phase shifter. That is, the direction of analog beamforming is determined by W.
  • mapping between CSI-RS antenna ports (CSI-RS antenna ports) and TXRUs may be 1-to-1 or 1-to-many.
  • NR when multiple antennas are used, a hybrid beamforming technique combining digital beamforming and analog beamforming may be used.
  • analog beamforming refers to an operation of performing precoding (or combining) at an RF terminal.
  • the baseband stage and the RF stage perform precoding (or combining), respectively, and thus, the number of RF chains and the D / A (or While reducing the number of A / D converters, there is an advantage in that the performance is close to digital beamforming.
  • the hybrid beamforming structure may be represented by N transceiver units (TXRUs) and M physical antennas. Then, the digital beamforming of the L data layers to be transmitted by the transmitting end may be represented by an N by L matrix, and then the converted N digital signals are transmitted through an TXRU analog signal. Analog beamforming is converted into (Analog signal) and then represented by M by N matrix.
  • the base station is designed to change the analog beamforming in units of symbols, thereby considering a direction in which more efficient beamforming is supported for a terminal located in a specific region. Furthermore, when defining specific N TXRU and M RF antennas as one antenna panel in FIG. 9, the NR system introduces a plurality of antenna panels to which hybrid beamforming independent of each other is applicable. The plan is to consider.
  • the analog beams advantageous for signal reception may be different for each terminal, and thus, at least a synchronization signal, system information, and paging.
  • paging a beam sweeping operation for changing a plurality of analog beams to be applied by a base station for each symbol in a specific subframe (SF) for each symbol so that all terminals have a reception opportunity has been considered. .
  • SF subframe
  • FIG. 10 illustrates the beam sweeping operation with respect to a synchronization signal and system information during downlink (DL) transmission.
  • a physical resource (or physical channel) through which system information of the NR system is transmitted in a broadcasting manner is named as a xPBCH (physical broadcast channel).
  • analog beams belonging to different antenna panels in one symbol may be transmitted simultaneously, and correspond to a specific antenna panel as illustrated in FIG. 10 to measure a channel for each analog beam.
  • a method of introducing a beam RS (BRS), which is a reference signal (RS) transmitted by applying a single analog beam has been discussed.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • a synchronization signal or an xPBCH may be transmitted by applying all the analog beams in the analog beam group so that any terminal can receive it well.
  • FIG. 11 schematically illustrates an example of a panel antenna arrangement.
  • a generalized panel antenna array may include Mg and Ng panels in a horizontal domain and a vertical domain, respectively.
  • One panel consists of M columns and N rows each, and the example assumes an X-pol antenna. Accordingly, the total number of antenna elements is 2 * M * N * Mg * Ng.
  • the UE In the 3GPP LTE (-A) system, the UE is defined to report the channel state information (CSI) to the base station (BS), and the channel state information (CSI) is a wireless channel formed between the terminal and the antenna port.
  • CSI channel state information
  • BS base station
  • CSI channel state information
  • RI rank indicator
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • RI represents rank information of a channel, which means the number of streams that a UE receives through the same time-frequency resource. Since this value is determined dependent on the long term fading of the channel, it is fed back from the terminal to the base station with a period longer than PMI and CQI.
  • PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as signal-to-interference-plus-noise ratio (SINR).
  • SINR signal-to-interference-plus-noise ratio
  • CQI is a value indicating the strength of a channel and generally refers to a reception SINR obtained when a BS uses PMI.
  • the base station may set a plurality of CSI processes to the terminal, and receive and report CSI for each process.
  • the CSI process consists of a CSI-RS for signal quality measurement from a base station and a CSI-interference measurement (CSI-IM) resource for interference measurement.
  • CSI-IM CSI-interference measurement
  • Physical downlink shared channel (PDSCH) transmission is possible only in one analog beam direction at one time by analog beamforming in mmW. Therefore, data can be transmitted from the base station to only a few terminals in the corresponding direction. Therefore, by setting the analog beam direction differently for each antenna port as necessary, it is possible to simultaneously perform data transmission to a plurality of terminals in multiple analog beam directions.
  • PDSCH Physical downlink shared channel
  • FIGS. 12 to 14 a structure in which four sub-arrays are formed by dividing 256 antenna elements into four parts and connecting TXRUs to sub-arrays as shown in FIGS. 12 to 14 is an example. Listen and explain.
  • each sub-array consists of 64 (8x8) antenna elements in the form of a 2-dimension array, the horizontal angle region of 15 degrees and the vertical angle of 15 degrees by a specific analog beamforming
  • the area corresponding to the area can be covered. That is, the area that the base station should serve is divided into a plurality of areas, and serviced one at a time.
  • the CSI-RS antenna fork and the TXRU are 1-to-1 mapped. Therefore, an antenna port and an TXRU have the same meaning in the following description.
  • FIG. 12 schematically illustrates an example of a service area for each TXRU when all TXRUs have the same analog beamforming direction.
  • a digital beam having a higher resolution is formed to provide throughput of a corresponding region.
  • the throughput of the region can be increased.
  • FIG. 13 schematically illustrates an example of a service area for each TXRU when each TXRU has a different analog beamforming direction.
  • each TXRU (antenna port, sub-array) has a different analog beamforming direction
  • data transmission is simultaneously performed in a corresponding subframe (SF) to UEs distributed in a wider area. It becomes possible.
  • two of the four antenna ports can be used for PDSCH transmission to UE1 in region 1 and the other two can be used for PDSCH transmission to UE2 in region 2.
  • FIG. 14 schematically illustrates an example in which PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2 are transmitted by frequency division multiplexing (FDM).
  • FDM frequency division multiplexing
  • the PDSCH1 transmitted to UE1 and the PDSCH2 transmitted to UE2 correspond to an example of spatial division multiplexing (SDM). Unlike this, as shown in FIG. 14, PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2 may be transmitted by frequency division multiplexing (FDM).
  • SDM spatial division multiplexing
  • FDM frequency division multiplexing
  • Preferred method according to RANK and MCS serving UE in order to maximize cell throughput among methods of serving one area using all antenna ports and serving multiple areas simultaneously by dividing antenna ports Will change.
  • the preferred method is changed according to the amount of data to be transmitted to each UE.
  • the base station calculates the cell throughput or scheduling metric obtained when serving one region using all antenna ports, and divides the antenna ports to obtain the cell throughput obtained when serving two regions. cell throughput or scheduling metric is calculated.
  • the base station as compared with that can be obtained through each cell throughput manner (cell throughput) or scheduling metric (scheduling metric) and to select the final delivery system.
  • the number of antenna ports participating in PDSCH transmission is changed by SF-by-SF.
  • CSI feedback from the UE suitable for this is required.
  • phase noise on the frequency axis is defined as phase noise on the frequency axis.
  • the phase noise is randomly changed in phase of the time-base received signal as follows.
  • DFT Discrete Fourier Transform
  • PCRSs of port 0 are defined in the fifth subcarrier.
  • the PCRS is continuously defined on a series of time axes, and thus a phase difference between different time axis OFDM symbols can be estimated. Except for the DMRS (Demodulation Reference Signal) and the PCRS, the rest represents a general PDSCH or PDCCH.
  • the proposed schemes to be described below include uplink channel / signal transmission (switching) operation based on a plurality of pre-configured or signaled analog beams (or IDs of BEAM REFERENCE SIGNAL (BRS)) under an NR system.
  • BRS BEAM REFERENCE SIGNAL
  • analog beam refers to “(digital) beam (index)” and / or “reference signal resources (e.g., associated with beam (index)) (eg, antenna port, LAYER index, (time) (Frequency), resource patterns, etc.) (index) ”and / or“ (virtual) cell (identifier (/ index)) ”.
  • reference signal resources e.g., associated with beam (index)
  • index e.g, antenna port, LAYER index, (time) (Frequency), resource patterns, etc.
  • FIG. 16 illustrates an uplink communication method of a terminal according to the present invention.
  • the terminal receives an uplink communication parameter set independently for each analog beam (S10).
  • uplink communication parameters having the same value may be set for some analog beams and uplink communication parameters having different values may be set in the other analog beams.
  • uplink communication parameters having different values may be set for each of the analog beams. That is, uplink communication parameter values are set independently for each analog beam.
  • the UE When the UE performs uplink communication using a specific analog beam, the UE performs the uplink communication by applying an uplink communication related parameter set to the specific analog beam (S20).
  • the first uplink communication parameter is applied.
  • the second uplink communication parameter is applied.
  • the first and second uplink communication parameters are set in consideration of the characteristics / environment of each analog beam, more efficient uplink communication is possible.
  • BRSRP BEAM REFERENCE SIGNAL RECEIVED POWER
  • the base station schedules (/ triggers) uplink channel / signal transmission (eg, PUSCH / PUCCH / SRS) based on a specific analog beam (or BRS ID) to the terminal through predefined (physical layer) signaling. can do.
  • uplink channel / signal transmission eg, PUSCH / PUCCH / SRS
  • BRS ID specific analog beam
  • a different uplink power control process may be set up (/ interlocked) per (M) analog beams (or BRS IDs).
  • M analog beams
  • BRS beam reference signal
  • TPC Transactional TRANSMIT POWER CONTROL
  • ACCUMULATION cumulative (ACCUMULATION) operation
  • the (M) (multiple) analog beams (or BRS IDs) that are set up / signaled to the UE may have different (or identical) transmit and receive points (where Uplink Cooperative Transmission (CoMP) operation is applied).
  • Interference pattern (/ strength) experienced by uplink channel / signal transmission per (M) analog beams (or BRS IDs), channel state (in frequency / time domain), (traffic) load state, and resource utilization (RESOURCE) UTILIZATION, RESOURCE SCHEDULING POLICY / PATTERN, and TIMING ADVANCE TA may not be the same. This is the case, for example, when (physical) cell (or TRP) related (M) analog beams (or BRS IDs) at different locations are set up (/ signaled).
  • the base station transmits a plurality of analog beams to the terminal (S100).
  • Each analog beam may include a beam reference signal (BRS), and the beam reference signal may include a BRS ID distinguished for each analog beam.
  • BRS beam reference signal
  • the terminal measures the analog beams (S110), and reports the measurement results of the analog beams to the base station (S120). For example, the terminal may report received power (BRSRP) information of the beam reference signal included in each analog beam to the base station.
  • BRSRP received power
  • the base station independently sets uplink communication related parameters for each analog beam by referring to the measurement result (S130) and signals uplink communication related parameters for each analog beam to the terminal (S140).
  • uplink communication-related parameters for each analog beam may be reset (/ resignaling) when a list of the top K analog beams (or BRS IDs) (BRSRP-based) for the UE is changed (/ updated).
  • the base station Signaling uplink communication parameters for each analog beam to the UE.
  • the UE When the UE performs uplink communication through a specific analog beam, it performs after applying a parameter set to the specific analog beam to the uplink communication (S150).
  • uplink power control processes are configured (/ linked) for each of M analog beams (or BRS IDs)
  • the application of the proposed rule below applies to some or all uplink channel / signal transmission based on uplink power control processes. It can be interpreted that uplink communication-related (specific) parameters are set (/ signaled) differently (or independently).
  • the following (uplink communication related) (specific) parameters may be the same between (all or some) analog beams (or BRS IDs): It may be (or commonly) set (/ signaled).
  • service communication e.g., URLLC, EMBB, MMTC, etc.
  • service communication e.g., URLLC, EMBB, MMTC, etc.
  • NUMEROLOGY e.g., quality of service (QOS) / delay requirements, TTI length, subcarrier spacing, etc.
  • OPEN-LOOP Open-loop power control parameter information
  • uplink communication related e.g., "P_O”, "ALPHA”, etc.
  • uplink communication related parameters e.g., “P_O”, "ALPHA”, etc.
  • TPC cumulative operation Some or all
  • URLLC short TTI
  • Examples (Examples # 1-1 to # 1-5) to be described below indicate uplink communication related parameters for each analog beam.
  • Uplink control information (UPCI) piggybacked to the PUSCH includes, for example, HARQ-ACK, CSI (RI / CQI / PMI), etc.
  • the MCS offset value of the UCI ( BETA_OFFSET) may be the aforementioned parameter related to uplink communication for each analog beam.
  • a relatively large MCS offset value is set (/ signaled) to an analog beam (or BRS ID) having a large intensity interference or a large change in the interference pattern (/ characteristic) received. Otherwise, the analog beam (or BRS ID) can be set (/ signaled) with a relatively small MCS offset value.
  • the analog beam (or BRS ID) of the characteristic (/ environment) may be set (/ signaled) differently.
  • UCI (and / or data) can be transmitted with high reliability regardless of analog beam (or BRS ID) switching.
  • PUCCH resources e.g., sequence (/ cyclic shift), (PUCCH)
  • UCI e.g, HARQ-ACK, CSI (RI / CQI / PMI), etc.
  • B PUCCH format
  • C PUCCH transmission scheme (e.g., transmit diversity scheme (based on multiple antenna ports) (SFBC), SORTD, etc.)
  • D Generation of a PUCCH Reference Signal Sequence (e.g., a ZADOFF-CHU Sequence) (PUCCH Reference Signal Group (/ Sequence) Hopping, PUCCH Scrambling (Sequence) Generator) Related Seed (/ Input Parameter) It may be a parameter.
  • Resource regions (/ interference strength), (downlink) load state, (resource) scheduling type, etc., in which (high) interference is received for each analog beam (or BRS ID) may be different.
  • it may be efficient to set (/ signal) different PUCCH resources, PUCCH formats, PUCCH transmission schemes, and the like.
  • PUCCH transmission based on transmission diversity scheme (SFBC) (or SORTD) is configured (/ signaling) for an analog beam (or BRS ID) having a large change in interference pattern (/ characteristic) where a relatively high intensity interference is received or received.
  • Information such as a PUCCH resource, a PUCCH format, a PUCCH transmission scheme, and the like may be linked to a BRS ID through higher layer signaling or physical layer signaling. For example, if BRS ID (or analog beam) information related to uplink channel / signal transmission (or (base station) reception) is signaled through DCI format (UL GRANT), PUCCH resource, PUCCH format, and PUCCH are transmitted through corresponding DCI format. It can be interpreted that dynamic change such as transmission method is supported.
  • PUCCH / PUSCH simultaneous transmission (/ allow) between analog beams (or BRS IDs) of different characteristics (/ environment), power headroom type (e.g., TYPE 1/2), etc. may be set differently (/ signaling). Can be.
  • At least one of the following parameters may be a parameter related to uplink communication independently provided / configured for each of the aforementioned analog beams (or BRS IDs).
  • A Power offset value applied to (aperiodic) SRS transmission
  • B Power offset value applied to each PUCCH format
  • C Power offset value applied to PUCCH transmission diversity scheme (or applied to PUCCH transmission scheme) Power offset value
  • D at least one of the power offset values applied (additionally) taking into account (together) the PUCCH format and the size of the transmitted UCI payload.
  • ADAPTIVE ADAPTIVE power according to analog beams (or BRS IDs) of different (interfering) characteristics (/ environments).
  • the analog beam (or BRS ID) if MULTI-SHOT (aperiodic) SRS transmission is performed (/ triggered) to switch a plurality of pre-set (/ signaled) analog beams (or BRS IDs).
  • the (aperiodic) SRS transmit power (or SRS UL PC PROCESS) may be different (some or all).
  • the maximum allowable transmit power values P_CMAX, C, B (where C / B values are the cell (/ TRP) index and analog beam index, respectively) between different (characteristic / environmental) analog beams (or BRS IDs). (/ BRS ID)) may be set differently (/ signaling).
  • the open-loop power control parameter information (OLPC_PARA) (e.g., "P_O", "ALPHA”, etc.) is differently set (/ signaled) between different (characteristic / environmental) analog beams (or BRS IDs). )can do.
  • OPC_PARA open-loop power control parameter information
  • OLPC_PARA eg, “P_O”, “ALPHA”, etc.
  • P_O uplink power control processes
  • BRS ID an analog beam
  • whether or not to apply a power offset value (preset (/ signaled)) on a DCI format (eg, UL GRANT) (for scheduling uplink channel / signal) may be indicated.
  • the corresponding power offset value may be set (/ signaled) differently for each analog beam (or BRS ID).
  • Example # 1-4 (Example # 1-4)
  • C UL semi-static scheduling hopping
  • At least one of the operation and configuration information (eg, SPS HOPPING BANDWIDTH, etc.) may be a parameter related to uplink communication independently provided / configured for each of the aforementioned analog beams (or BRS IDs).
  • Independent (or separate) TPC accumulation operation may be set (/ signaled) for each uplink SPS (power control) process associated with different analog beams (or BRS IDs).
  • uplink SPS OLPC_PARA information For example, different assignment of uplink SPS OLPC_PARA information, uplink SPS configuration / resource information, uplink SPS hopping operation and configuration information between analog beams (or BRS IDs) may be performed on different analog beams (or BRS IDs). It can also be interpreted that a plurality of linked uplink SPS (power control) processes are set (/ signaled).
  • SRS resource / transmission type (/ method) information e.g., sequence, SRS (hopping) band, COMB, antenna port, SRS (ZADOFF-CHU) sequence generation Associated seed (/ input parameter value)
  • B uplink transmission mode
  • C TA information (e.g., TAG setting (/ signaling)) may be performed in units of analog beams (or BRS IDs). At least one of the above) may be an uplink communication related parameter independently provided / configured for each of the above-described analog beams (or BRS IDs).
  • the following schemes propose methods for efficiently operating / supporting uplink SPS operation under an NR system.
  • uplink SPS operation In a carrier aggregation (CA) situation of an existing LTE system, for example, an uplink SPS operation is allowed (/ configured) only on a primary cell (PCELL).
  • uplink SPS operation only for analog beams (or BRS IDs) of the highest (or lowest) Q-th (or W) BRSRP previously measured / reported or set or signaled from a base station. This can be set (/ signaled).
  • uplink SPS operation may be set (/ signaled) only for the lowest (or highest, or BRS ID) associated with the BRS ID (or uplink power control process index) set up from the base station. Can be. If such a rule is applied, the uplink SPS operation may be performed with relatively high reliability.
  • the base station receives measurement reports for the transmitted analog beams (S200).
  • the base station sets uplink SPS operation only for the selected partial analog beams based on the measurement report (S210). For example, the UE may measure the BRSRP with respect to a beam reference signal (BRS) included in the analog beams, and then perform measurement report on only W analog beams in order of increasing value. In this case, the base station may allow uplink SPS operation only for M analog beams having a BRSRP value greater than or equal to a threshold value or provide configuration for uplink SPS operation with reference to the measurement report.
  • BRS beam reference signal
  • the base station selects a specific analog beam (or BRS ID) out of a plurality of (eg, “2”) analog beams (or BRS IDs) that satisfy the condition (Example # 2-1).
  • This is called CU_SPSBEAM) (the terminal) to perform (current) uplink SPS operation, and uplink SPS operation based on another analog beam (or BRS ID) (referred to as FB_SPSBEAM) is configured in advance (/
  • a signaled event e.g., when CU_SPSBEAM is excluded from the list of analog beams (or BRS IDs) of the top (or bottom) K BRSRPs, or when the (old) BRSRP rank of CU_SPSBEAM changes, or It can be performed only when receiving the relevant signaling (/ indicator) from the base station.
  • the FB_SPSBEAM may be interpreted as an analog beam (or BRS ID) for uplink SPS (operation) fallback.
  • the CU_SPSBEAM may be set (/ signaled) to an analog beam (or BRS ID) of a relatively high (or low) BRSRP (or BRS ID (or uplink power control process index)) compared to the FB_SPSBEAM.
  • BRS ID an analog beam
  • CU_SPSBEAM and FB_SPSBEAM may be designated as upper first (BEST) and upper second BRSRP related analog beams (or BRS IDs).
  • Example # 2-3 The following (some or all) information related fields may be defined on a DCI format for uplink SPS activation and / or release.
  • uplink SPS (set / group) activation and / or deactivation by analog beam (set / group) or BRS ID (set / group) may be pre-configured (/ signaled) for DCI format-related RNTI information (s). Can be.
  • BRS ID information field (or uplink SPS process index information field). By defining these fields, an uplink SPS operation related to a specific BRS ID (or uplink SPS process index) may be activated and / or released individually.
  • K_OFFSET Offset Information
  • the field may be useful when signaling uplink SPS activation and release using a common (or identical) DCI format (/ structure).
  • the UE sets a previously set (/ signaled) event (eg, UL) through a channel / signal (eg, a scheduling request (SR)) previously set or signaled.
  • a previously set (/ signaled) event eg, UL
  • a channel / signal eg, a scheduling request (SR)
  • the (link) quality of the analog beam (or BRS ID) on which the SPS operation is performed is lowered below the preset (/ signaled) threshold or the BRSRP (RNAKING) value is lower than the preset (/ signaled) threshold.
  • information on requesting release of an uplink SPS operation related to a specific BRS ID (or uplink SPS process index), or a specific Information indicating that the uplink SPS operation related to the BRS ID (or uplink SPS process index) is unstable or change request information to another BRS ID (or uplink SPS process index) based uplink SPS operation may be informed (to the base station).
  • (Example # 2-5) In order to efficiently support uplink SPS transmission operation based on different (or plural) analog beams (or BRS IDs) (or uplink SPS (power control) process), (Uplink SPS) TPC DCI format (e.g., DCI format 3 / 3A of the existing LTE system (in this DCI format, only (only) TPC information fields are defined without data scheduling information field) and Similar).
  • DCI format 3 / 3A of the existing LTE system in this DCI format, only (only) TPC information fields are defined without data scheduling information field
  • the (uplink SPS) TPC DCI format is (blind) decoded and / or pre-configured (/ signaled) based on a pre-configured or signaled (terminal group common (/ specific)) RNTI.
  • Related can be sent to a specific aggregation level (AGGREGATION LEVEL: AL) on a (spatial-specific or common) search space resource (derived via a search space (SS) HASHING FUNCTION) with an RNTI value as an input parameter.
  • the base station is signaled (upward) to the terminal (via uplink (/ physical) layer signaling) a specific analog beam (or BRS ID) (or a specific uplink SPS (power control) process) related uplink SPS TPC information (upward) Link SPS) field location (/ index) information (in the TPC DCI format) may be informed.
  • Uplink SPS Uplink SPS
  • BRS IDs BRS IDs
  • specific uplink SPS power control processes
  • TPC DCI formats associated with different analog beams are based on different (terminal group common (/ specific)) RNTI based (different (terminals) May be decoded (blind) on a specific or common) search space resource (at a specific aggregation level).
  • PUCCH TPC DCI Format may be defined.
  • a specific uplink SPS process (setting) is shared between a plurality of (pre-set (/ signaled)) analog beams (or BRS IDs) to switch to an analog beam (or BRS ID) switching operation.
  • physical (/ higher) layer signaling may be defined indicative of uplink SPS transmission related analog beam (or BRS ID) switching.
  • the (physical layer) signaling of the application may be defined in the form of DCI (format).
  • the base station may inform the terminal (via higher (/ physical) layer signaling) the field position (/ index) information to be monitored (on the corresponding DCI (format)).
  • the UE may grasp analog beam (or BRS ID) switching information related to uplink SPS transmission through field monitoring.
  • analog beam or BRS ID
  • This (use) DCI format may be (blind) decoded and / or pre-configured (/ signaled) (or (relevant)) based on a pre-set (/ signaled) (terminal group common (/ specific)) RNTI. It may be transmitted (at a specific aggregation level) on (terminal specific or common) search space resources derived through a search space hashing function having an RNTI value as an input parameter.
  • FIG. 19 is a block diagram illustrating an apparatus in which an embodiment of the present invention is implemented.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods.
  • the processor 210 may receive the uplink communication related parameter independently set for each analog beam and apply the parameter to perform the uplink communication.
  • uplink communication related parameters set to the specific analog beam may be applied to the uplink communication.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Abstract

무선 통신 시스템에서 단말에 의한 상향링크 통신 수행 방법 및 상기 방법을 이용하는 장치를 제공한다. 상기 방법은 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고, 상기 파라미터에 기반하여 상기 상향링크 통신을 수행한다. 상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 이 방법을 이용하는 단말에 관한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 라디오 액세스 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다.
신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템 디자인이 논의되고 있는데, 개선된 모바일 브로드밴드 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR이라 칭할 수 있다.
NR에서는, 디지털 빔포밍(digital beamforming)뿐만 아니라, 아날로그 빔포밍(analog beamforming)을 고려한 통신을 고려하고 있다.
디지털 빔포밍은 베이스밴드 단에서 프리코딩을 수행하는 것이라 할 수 있고, 아날로그 빔포밍은 RF(radio frequency) 단에서 프리코딩을 수행하는 것이라 할 수 있다. 디지털 빔포밍을 거쳐 나온 빔을 디지털 빔, 아날로그 빔포밍을 거쳐 나온 빔을 아날로그 빔이라 칭할 수 있다.
NR에서, 아날로그 빔 기반의 상향링크 채널/신호 전송이 수행될 경우, 상이한 특성/환경의 아날로그 빔을 통해 전송되는 상향링크 채널/신호의 높은 신뢰도(RELIABILITY)를 얻고, 아날로그 빔 별 효율적인 자원 운영 또는 스케줄링을 할 수 있는, 상향링크 통신 관련 파라미터 설정 방법이 필요하고, 상기 방법에 기반한 단말의 상향링크 통신 방법이 요구된다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 이를 이용하는 단말을 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말에 의한 상향링크 통신 수행 방법을 제공한다. 상기 방법은 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고, 상기 파라미터에 기반하여 상기 상향링크 통신을 수행한다. 상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용하는 것을 특징으로 한다.
상기 단말은 복수의 아날로그 빔들을 기지국으로부터 수신하고, 상기 복수의 아날로그 빔들을 측정하고, 상기 복수의 아날로그 빔들 중 일부 아날로그 빔들의 측정 결과를 상기 기지국으로 전송할 수 있다.
상기 아날로그 빔은 빔 참조 신호(beam reference signal: BRS)를 포함할 수 있다.
상기 빔 참조 신호는 아날로그 빔 별로 구분되는 ID(identity)를 포함할 수 있다.
상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는, 상향링크 제어 정보 전송 시에 적용되는 변조 및 코딩 기법(modulation and coding scheme: MCS)을 결정하는 오프셋 값을 포함할 수 있다.
상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는, 상향링크 제어 정보 전송을 위한 상향링크 제어 채널의 자원, 상향링크 제어 채널의 포맷, 상향링크 제어 채널의 전송 기법 및 상향링크 제어 채널의 참조 신호 시퀀스 생성 관련 시드(seed) 값 중 적어도 하나를 포함할 수 있다.
상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는, 사운딩 참조 신호(sounding reference signal: SRS) 전송에 적용되는 전력 오프셋 값, 상향링크 제어 채널 포맷 별로 적용되는 전력 오프셋 값, 상향링크 제어 채널 전송 다이버시티(transmit diversity) 기법에 적용되는 전력 오프셋 값 및 상향링크 제어 정보 페이로드(payload) 크기에 따른 전력 오프셋 값 중 적어도 하나를 포함할 수 있다.
상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는, 아날로그 빔 별 상향링크 반정적 스케줄링 설정 정보를 포함할 수 있다.
상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는, 사운딩 참조 신호의 자원 및 전송 형태에 대한 정보, 상향링크 전송 모드 정보 및 타이밍 어드밴스(timing advanced: TA) 정보 중 적어도 하나를 포함할 수 있다.
상기 단말에게 설정된 복수의 아날로그 빔들 중에서 일부 아날로그 빔들에서만 상향링크 반정적 스케줄링 동작이 허용될 수 있다.
상기 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터는, 일부 아날로그 빔들에게는 동일한 값을 가지고, 나머지 아날로그 빔들에게는 서로 다른 값을 가지도록 설정될 수 있다.
다른 측면에서 제공되는 단말(User equipment; UE)은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고, 상기 파라미터에 기반하여 상기 상향링크 통신을 수행하되, 상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용하는 것을 특징으로 한다.
NR에서, 아날로그 빔 별로 독립적인 상향링크 통신 관련 파라미터가 설정될 수 있다. 따라서, 아날로그 빔 기반의 상향링크 채널/신호 전송이 수행될 경우, 상이한 특성/환경의 아날로그 빔을 통해 전송되는 상향링크 채널/신호의 높은 신뢰도(RELIABILITY)를 얻고, 아날로그 빔 별 효율적인 자원 운영 또는 스케줄링이 가능하다.
도 1은 기존 무선통신 시스템을 예시한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 5는 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 6은 새로운 무선 접속 기술에 대한 프레임 구조의 일례를 도시한 것이다.
도 7 및 도 8은 TXRU와 안테나 엘리먼트(element)의 연결 방식의 일례들을 나타낸다.
도 9는 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍(Hybrid beamforming) 구조를 추상적으로 도식화한 것이다.
도 10은 하향링크(Downlink; DL) 전송 과정에서 동기화 시그널(Synchronization signal)과 시스템 정보(System information)에 대해 상기 빔 스위핑(Beam sweeping) 동작을 도식화 한 것이다.
도 11은 패널 안테나 배열에 대한 일례를 개략적으로 도시한 것이다.
도 12는 모든 TXRU가 동일 아날로그 빔포밍 방향을 가지는 경우, TXRU별 서비스 영역의 일례를 개략적으로 도시한 것이다.
도 13은 각 TXRU가 다른 아날로그 빔포밍 방향을 가지는 경우, TXRU별 서비스 영역의 일례를 개략적으로 도시한 것이다.
도 14는 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 FDM(Frequency Division Multiplexing)되어 전송되는 일례를 개략적으로 도시한 것이다.
도 15는 PCRS의 일례를 개략적으로 도시한 것이다.
도 16은 본 발명에 따른 단말의 상향링크 통신 수행 방법을 예시한다.
도 17은 도 16의 방법을 적용하는 구체적인 예를 나타낸다.
도 18은 예시#2-1에 따른 SPS 설정 방법을 나타낸다.
도 19는 본 발명의 실시예가 구현되는 장치를 나타낸 블록도이다.
도 1은 기존 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이하, 새로운 무선 접속 기술(new radio access technology; new RAT)에 대해 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.
도 4는 NR이 적용되는 차세대 무선 접속 네트워크(New Generation Radio Access Network: NG-RAN)의 시스템 구조를 예시한다.
도 4를 참조하면, NG-RAN은, 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
도 5는 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 5를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
NR에서는 다음 기술/특징이 적용될 수 있다.
<셀프 컨테인드 서브프레임 구조(Self-contained subframe structure)>
도 6은 새로운 무선 접속 기술에 대한 프레임 구조의 일례를 도시한 것이다.
NR에서는 레이턴시(latency)를 최소화 하기 위한 목적으로 도 6과 같이, 하나의 TTI내에, 제어 채널과 데이터 채널이 TDM 되는 구조가 프레임 구조(frame structure)의 한가지로서 고려될 수 있다.
도 6에서 빗금 친 영역은 하향링크 제어(downlink control) 영역을 나타내고, 검정색 부분은 상향링크 제어(uplink control) 영역을 나타낸다. 표시가 없는 영역은 하향링크 데이터(downlink data; DL data) 전송을 위해 사용될 수도 있고, 상향링크 데이터(uplink data; UL data) 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임(subframe) 내에서 하향링크(DL) 전송과 상향링크(UL) 전송이 순차적으로 진행되어, 서브프레임(subframe) 내에서 DL data를 보내고, UL ACK/NACK도 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 레이턴시(latency)를 최소화할 수 있다.
이러한 셀프 컨테인드 서브프레임(self-contained subframe) 구조에서 기지국과 단말이 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 타임 갭(time gap)이 필요할 수 있다. 이를 위하여 셀프 컨테인드 서브프레임(self-contained subframe)구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 보호 구간(guard period; GP)로 설정될 수 있다.
<아날로그 빔포밍 #1(Analog beamforming #1)>
밀리미터 웨이브(Millimeter Wave; mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 엘리먼트(element)의 설치가 가능해 진다. 즉 30GHz 대역에서 파장은 1cm로써 4 by 4 cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)의 안테나 엘리먼트(element) 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 엘리먼트(element)를 사용하여 빔포밍(beamforming; BF) 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높일 수 있다.
이 경우에 안테나 엘리먼트(element) 별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(Transceiver Unit; TXRU)을 가지면 주파수 자원 별로 독립적인 빔포밍(beamforming)이 가능하다. 그러나 100여개의 안테나 엘리먼트(element) 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 엘리먼트(element)를 매핑(mapping)하고 아날로그 페이즈 쉬프터(analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍(analog beamforming) 방식은 전 대역에 있어서 하나의 빔(beam) 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming)을 해줄 수 없는 단점을 갖는다.
디지털 빔포밍(Digital BF)과 아날로그 빔포밍(analog BF)의 중간 형태로 Q개의 안테나 엘리먼트(element)보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(hybrid BF)을 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 엘리먼트(element)의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.
도 7 및 도 8은 TXRU와 안테나 엘리먼트(element)의 연결 방식의 일례들을 나타낸다.
여기서 TXRU 가상 현실화(virtualization) 모델은 TXRU의 출력 시그널(signal)과 안테나 엘리먼트(antenna elements)의 출력 시그널(signal)의 관계를 나타낸다.
도 7은 TXRU가 서브 어레이(sub-array)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트(element)는 하나의 TXRU에만 연결된다. 이와 달리 도 8은 TXRU가 모든 안테나 엘리먼트(element)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트(element)는 모든 TXRU에 연결된다. 그림에서 W는 analog phase shifter에 의해 곱해지는 위상 벡터를 나타낸다. 즉 W에 의해 analog beamforming의 방향이 결정된다. 여기서 CSI-RS 안테나 포트(CSI-RS antenna ports와) TXRU들과의 매핑(mapping)은 1-to-1 또는 1-to-many 일 수 있다.
<아날로그 빔포밍 #2(Analog beamforming #2)>
NR에서는 다수의 안테나가 사용되는 경우, 디지털 빔포밍(Digital beamforming)과 아날로그 빔포밍(Analog beamforming)을 결합한 하이브리드 빔포밍(Hybrid beamforming) 기법이 사용될 수 있다.
이때, 아날로그 빔포밍(Analog beamforming) (또는 RF beamforming)은 RF 단에서 프리코딩(Precoding) (또는 컴바이닝(Combining))을 수행하는 동작을 의미한다. 상기 하이브리드 빔포밍(Hybrid beamforming)에서 베이스밴드(Baseband) 단과 RF 단은 각각 프리코딩(Precoding) (또는 컴바이닝(Combining))을 수행하며, 이로 인해 RF 체인(chain) 수와 D/A (또는 A/D) 컨버터(converter) 수를 줄이면서도 디지털 빔포밍(Digital beamforming)에 근접하는 성능을 낼 수 있다는 장점이 있다.
도 9는 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍(Hybrid beamforming) 구조를 추상적으로 도식화한 것이다.
하이브리드 빔포밍(Hybrid beamforming) 구조는 N개 트랜시버 유닛(Transceiver unit; TXRU)과 M개의 물리적 안테나로 표현될 수 있다. 그러면 송신 단에서 전송할 L개 데이터 레이어(Data layer)에 대한 디지털 빔포밍(Digital beamforming)은 N by L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 시그널(Digital signal)은 TXRU를 거쳐 아날로그 시그널(Analog signal)로 변환된 다음 M by N 행렬로 표현되는 아날로그 빔포밍(Analog beamforming)이 적용된다.
NR 시스템에서는 기지국이 아날로그 빔포밍(Analog beamforming)을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍(beamforming)을 지원하는 방향을 고려하고 있다. 더 나아가서 도 9에서 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 상기 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍(Hybrid beamforming)이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔(Analog beam)을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔(Analog beam)이 다를 수 있으므로 적어도 동기화 시그널(Synchronization signal), 시스템 정보(System information), 페이징(Paging) 등에 대해서는 특정 서브프레임(Subframe; SF)에서 기지국이 적용할 복수 아날로그 빔(Analog beam)들을 심볼 별로 바꾸어 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑(Beam sweeping) 동작이 고려되고 있다.
도 10은 하향링크(Downlink; DL) 전송 과정에서 동기화 시그널(Synchronization signal)과 시스템 정보(System information)에 대해 상기 빔 스위핑(Beam sweeping) 동작을 도식화 한 것이다.
도 10에서, NR 시스템의 시스템 정보(System information)가 브로드캐스팅(Broadcasting) 방식으로 전송되는 물리적 자원 (또는 물리 채널)을 xPBCH (physical broadcast channel)으로 명명하였다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔(Analog beam)들은 동시 전송될 수 있으며, 아날로그 빔(Analog beam) 별 채널을 측정하기 위해 도 10에서 도식화 된 것과 같이 (특정 안테나 패널에 대응되는) 단일 아날로그 빔(Analog beam)이 적용되어 전송되는 참조 신호(Reference signal; RS)인 빔 RS(Beam RS; BRS)를 도입하는 방안이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔(Analog beam)에 대응될 수 있다. 이때, BRS와는 달리 동기화 시그널(Synchronization signal) 또는 xPBCH는 임의의 단말이 잘 수신할 수 있도록 아날로그 빔 그룹(Analog beam group) 내 모든 아날로그 빔(Analog beam)이 적용되어 전송될 수 있다.
<패널 어레이 안테나(Panel array antenna)>
도 11은 패널 안테나 배열에 대한 일례를 개략적으로 도시한 것이다.
도 11에 따르면, 일반화된 패널 안테나 어레이(panel antenna array)는 각각 수평 도메인(horizontal domain)과 수직 도메인(vertical domain)에 Mg개, Ng개의 패널(panel)로 구성될 수 있다. 하나의 패널(panel)은 각각 M개의 열과 N개의 행으로 구성되며, 상기 예제는 X-pol 안테나를 가정하였다. 따라서 총 안테나 엘리먼트(antenna element)의 개수는 2*M*N*Mg*Ng개로 구성된다.
<채널 상태 정보(channel state information; CSI) 피드백(feedback)>
3GPP LTE(-A) 시스템에서는, 단말(UE)이 채널상태정보(CSI)를 기지국(BS)으로 보고하도록 정의되었으며, 채널상태정보(CSI)라 함은 단말과 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.
예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩 행렬 지시자(precoding matrix indicator, PMI), 채널 품질 지시자(channel quality indicator, CQI) 등이 이에 해당한다. 여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 단말이 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기를 가지고 단말에서 기지국으로 피드백된다. PMI는 채널 공간 특성을 반영한 값으로 SINR(signal-to-interference-plus-noise ratio) 등의 메트릭(metric)을 기준으로 단말이 선호하는 프리코딩 인덱스를 나타낸다. CQI는 채널의 세기를 나타내는 값으로 일반적으로 BS가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE(-A) 시스템에서 기지국은 다수개의 CSI 프로세스를 단말에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 측정을 위한 CSI-RS와 간섭 측정을 위한 CSI-interference measurement (CSI-IM) 자원으로 구성된다.
<참조신호(reference signal; RS ) 버츄얼라이제이션 ( virtualization )>
mmW에서 아날로그 빔포밍(Analog beamforming)에 의해 한 시점에 하나의 아날로그 빔(Analog beam) 방향으로만 PDSCH(Physical Downlink Shared Channel) 전송이 가능하다. 그러므로 해당 방향에 있는 일부 소수의 단말에게만 기지국으로부터 데이터 전송이 가능하게 된다. 그러므로 필요에 따라서 안테나 포트별로 아날로그 빔(Analog beam) 방향을 다르게 설정하여 여러 아날로그 빔(Analog beam) 방향에 있는 다수의 단말들에게 동시에 데이터 전송을 수행할 수 있도록 한다.
아래에서는 256 안테나 엘리먼트(antenna element)를 4등분하여 4개의 서브-어레이(sub-array)를 형성하고, 도 12 내지 도 14와 같이 서브-어레이(sub-array)에 TXRU를 연결한 구조를 예로 들어 설명하도록 한다.
각 서브-어레이(sub-array)가 2-dimension 배열 형태로 총 64(8x8)의 안테나 엘리먼트(element)로 구성되면, 특정 아날로그 빔포밍(Analog beamforming)에 의해 15도의 수평각 영역과 15도의 수직각 영역에 해당하는 지역을 커버할 수 있게 된다. 즉, 기지국이 서비스해야 되는 지역을 다수개의 영역으로 나누어, 한번에 하나씩 서비스 하게 된다. 이하의 설명에서 CSI-RS 안테나 포크(CSI-RS antenna port)와 TXRU는 1-to-1 매핑(mapping)되었다고 가정한다. 그러므로 안테나 포트(antenna port)와 TXRU는 이하의 설명에서 같은 의미를 갖는다.
도 12는 모든 TXRU가 동일 아날로그 빔포밍 방향을 가지는 경우, TXRU별 서비스 영역의 일례를 개략적으로 도시한 것이다.
도 12와 같이 모든 TXRU(안테나 포트, sub-array)가 동일 아날로그 빔포밍(Analog beamforming) 방향을 가지면, 더 높은 해상도(resolution)을 갖는 디지털 빔(digital beam)을 형성하여 해당 지역의 처리량(throughput)을 증가 시킬 수 있다. 또한 해당 지역으로 전송 데이터의 랭크(RANK)를 증가시켜 해당 지역의 처리량(throughput)을 증가 시킬 수 있다.
도 13은 각 TXRU가 다른 아날로그 빔포밍 방향을 가지는 경우, TXRU별 서비스 영역의 일례를 개략적으로 도시한 것이다.
도 13과 같이 각 TXRU(안테나 포트, sub-array)가 다른 아날로그 빔포밍(Analog beamforming) 방향을 가지면, 더 넓은 영역에 분포된 UE들에게 해당 서브프레임(subframe)(SF)에서 동시에 데이터 전송이 가능해 진다. 그림의 예와 같이 4개의 안테나 포트 중에서 2개는 영역1에 있는 UE1에게 PDSCH 전송을 위해 사용하고 나머지 2개는 영역2에 있는 UE2에게 PDSCH 전송을 위해 사용할 수 있다.
도 14는 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 FDM(Frequency Division Multiplexing)되어 전송되는 일례를 개략적으로 도시한 것이다.
위의 도 13에서는 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 SDM(Spatial Division Multiplexing)된 예에 해당한다. 이와 달리, 도 14에서와 같이 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 FDM(Frequency Division Multiplexing)되어 전송될 수도 있다.
모든 안테나 포트를 사용하여 한 영역을 서비스 하는 방식과 안테나 포트들을 나누어 여러 영역을 동시에 서비스 하는 방식 중에서 셀 처리량(cell throughput)을 최대화(maximization)하기 위하여 UE에게 서비스하는 RANK 및 MCS에 따라서 선호되는 방식이 바뀌게 된다. 또한 각 UE에게 전송할 데이터의 양에 따라서 선호되는 방식이 바뀌게 된다.
기지국은 모든 안테나 포트를 사용하여 한 영역을 서비스 할 때 얻을 수 있는 셀 처리량(cell throughput) 또는 스케줄링 메트릭(scheduling metric)을 계산하고, 안테나 포트를 나누어서 두 영역을 서비스 할 때 얻을 수 있는 셀 처리량(cell throughput) 또는 스케줄링 메트릭(scheduling metric)을 계산한다. 기지국은 각 방식을 통해 얻을 수 있는 셀 처리량(cell throughput) 또는 스케줄링 메트릭(scheduling metric)을 비교하여 최종 전송 방식을 선택하도록 한다. 결과적으로 SF-by-SF으로 PDSCH 전송에 참여하는 안테나 포트의 개수가 변동되게 된다. 기지국이 안테나 포트의 개수에 따른 PDSCH의 전송 MCS를 계산하고 스케줄링(scheduling) 알고리듬에 반영하기 위하여, 이에 적합한 UE로부터의 CSI 피드백이 요구된다.
< 페이즈 노이즈 (phase noise)>
시간 축으로의 지터(jitter) 는 주파수축으로 페이즈 노이즈(phase noise)로 정의 된다. 상기 페이즈 노이즈(phase noise)는 시간 축 수신 신호의 페이즈(phase)를 하기와 같이 랜덤(random)하게 변경된다.
[수학식 1]
Figure PCTKR2017008418-appb-I000001
상기 수식에서,
Figure PCTKR2017008418-appb-I000002
은 각각 수신 신호, 시간 축 신호, 주파 수 축 신호, 페이즈 노이즈(phase noise)로 인한 페이즈 로테이션(phase rotation) 값을 나타낸다. 상기 수신 신호가 DFT(discrete Fourier transform)을 거치는 경우, 하기와 같이 이를 표현할 수 있다.
[수학식 2]
Figure PCTKR2017008418-appb-I000003
상기 수식에서,
Figure PCTKR2017008418-appb-I000004
은 각각 CPE (common phase error) 및 ICI을 나타낸다. 이 때, 페이즈 노이즈(phase noise) 간에 상관관계가 클수록 상기 CPE는 큰 값을 갖게 된다.
< PCRS (Phase Compensation Reference Signal) 실시 예>
도 15는 PCRS의 일례를 개략적으로 도시한 것이다.
도 15에서, 5번째 서브캐리어(subcarrier)에 각각 0번 port의 PCRS가 정의 되어 있다. 상기 PCRS는 일련의 시간 축으로 연속되게 정의 되어 있으며, 따라서 서로 다른 시간 축 OFDM symbol간의 페이즈(phase) 차를 추정할 수 있다. DMRS(Demodulation reference signal) 및 PCRS을 제외한 나머지는 일반적인 PDSCH 혹은 PDCCH을 나타낸다.
이하, 본 발명에 대해 설명한다.
이하에서 설명할 제안 방식들은 NR 시스템 하에서, 사전에 설정되거나 시그널링된 복수개의 아날로그 빔(또는 빔 참조 신호(BEAM REFERENCE SIGNAL: BRS)의 ID) 기반의 상향링크 채널/시그널 전송 (스위칭) 동작(/모드)이 수행될 때, 아날로그 빔(혹은 BRS ID) 별 (상향링크 통신 관련) 파라미터를 효율적으로 설정(/시그널링)하는 방법들을 제시한다.
본 발명에서, 일례로, “아날로그 빔” 이라는 용어는 “(디지털) 빔 (인덱스)” 그리고/혹은 “(빔 (인덱스)와 연동된) 참조 신호 자원 (예, 안테나 포트, LAYER 인덱스, (시간/주파수) 자원 패턴 등) (인덱스)” 그리고/혹은 “(가상적인) 셀 (식별자(/인덱스))” 등으로 확장 해석될 수도 있다.
도 16은 본 발명에 따른 단말의 상향링크 통신 수행 방법을 예시한다.
도 16을 참조하면, 단말은 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 파라미터를 수신한다(S10). 예컨대, 단말에게 아날로그 빔이 복수개 설정된 경우, 일부 아날로그 빔들에게는 동일한 값을 가지는 상향링크 통신 파라미터가 설정되고, 나머지 아날로그 빔들에게는 서로 다른 값을 가지는 상향링크 통신 파라미터가 설정될 수 있다. 또는 모든 아날로그 빔들 각각에 서로 다른 값을 가지는 상향링크 통신 파라미터가 설정될 수도 있다. 즉, 각 아날로그 빔 별로 독립적으로, 상향링크 통신 파라미터 값이 설정되는 것이다.
단말은 특정 아날로그 빔을 이용하여 상향링크 통신을 수행할 때, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 적용하여 상기 상향링크 통신을 수행한다(S20).
예를 들어, 단말이 제1 아날로그 빔을 이용하여 PUSCH 전송을 할 때는 제1 상향링크 통신 파라미터를 적용하고, 제2 아날로그 빔을 이용하여 PUSCH 전송을 할 때는 제2 상향링크 통신 파라미터를 적용한다. 이 때, 상기 제1, 2 상향링크 통신 파라미터는 각 아날로그 빔의 특성/환경을 고려하여 설정된 값이므로, 보다 효율적인 상향링크 통신이 가능하게 된다.
단말이 사전에 측정/보고한 상위 K 개의 빔 참조 신호의 수신 전력(BEAM REFERENCE SIGNAL RECEIVED POWER: BRSRP) 정보를 참조하여, 기지국은 M 개(예를 들어, K≤≤M)의 아날로그 빔(혹은 BRS ID) 기반의 상향링크 채널/시그널 전송 (스위칭) 동작(/모드)을 설정(/시그널링)해 줄 수 있다.
기지국은 단말에게, 사전에 정의된 (물리 계층) 시그널링을 통해, 특정 아날로그 빔(혹은 BRS ID) 기반의 상향링크 채널/시그널 전송(예를 들어, PUSCH/PUCCH/SRS)을 스케줄링(/트리거링)할 수 있다.
일례로, (M 개의) 아날로그 빔(혹은 BRS ID) 별로 상이한 상향링크 전력 제어 프로세스가 설정(/연동)될 수 있다. 예를 들어, 특정 상향링크 전력 제어 프로세스와 관련된 경로 손실(PATHLOSS: PL) 값은 해당 상향링크 전력 제어 프로세스와 연동된 빔 참조 신호(BRS) 측정을 통해서 수행될 수 있다.
상향링크 전력 제어 프로세스 별로 독립적인 (또는 분리된) 전송 전력 제어(TRANSMIT POWER CONTROL: TPC) 누적(ACCUMULATION) 동작이 설정(/시그널링)될 수도 있다.
일례로, 단말에게 설정(/시그널링)되는 (M 개의) (복수개의) 아날로그 빔 (혹은 BRS ID)은 (상향링크 협력 전송(CoMP) 동작이 적용되는) 상이한 (혹은 동일한) 전송 및 수신 포인트(TRANSMISSION & RECEPTION POINT: TRP) 또는 물리적 셀에 대한 것들일 수 있다.
(M 개의) 아날로그 빔(혹은 BRS ID) 별로 상향링크 채널/시그널 전송이 겪는 간섭 패턴(/세기), (주파수/시간 영역 상의) 채널 상태, (트래픽) 부하(LOAD) 상태, 자원 사용률(RESOURCE UTILIZATION), (자원) 스케줄링 형태(RESOURCE SCHEDULING POLICY/PATTERN), 타이밍 어드밴스(TIMING ADVANCE: TA) 값 등이 동일하지 않을 수 있다. 예를 들어, 상이한 위치의 (물리적) 셀(혹은 TRP) 관련 (M 개의) 아날로그 빔(혹은 BRS ID)이 설정(/시그널링)된 경우에 그러하다.
따라서, 전술한 바와 같이 (A) 상이한 특성(/환경)의 아날로그 빔(혹은 BRS ID)을 통해 전송되는 상향링크 채널/시그널의 높은 신뢰도(RELIABILITY)와 (B) 아날로그 빔(혹은 BRS ID) 별 효율적인 자원 운영(/스케줄링)을 위해서, 아래에서 설명하는 상향링크 통신 관련된 특정 파라미터가 (일부 혹은 모든) 아날로그 빔 (혹은 BRS ID 빔 측정을 위한 새로운 참조 신호 ID) 간에 상이하게(혹은 독립적으로) 설정(/시그널링)될 수 있다.
도 17은 도 16의 방법을 적용하는 구체적인 예를 나타낸다.
도 17을 참조하면, 기지국은 단말에게 복수의 아날로그 빔들을 전송한다(S100). 각 아날로그 빔은 빔 참조 신호(beam reference signal: BRS)를 포함할 수 있으며, 빔 참조 신호는 아날로그 빔 별로 구분되는 BRS ID(identity)를 포함할 수 있다.
단말은 아날로그 빔들을 측정하고(S110), 아날로그 빔들의 측정 결과를 기지국에게 보고한다(S120). 예를 들어, 단말은 각 아날로그 빔에 포함된 빔 참조 신호의 수신 전력(BRSRP) 정보를 기지국에게 보고할 수 있다.
기지국은 상기 측정 결과를 참조하여, 아날로그 빔 별로 상향링크 통신 관련 파라미터를 독립적으로 설정하고(S130), 설정된 아날로그 빔 별 상향링크 통신 관련 파라미터를 단말에게 시그널링한다(S140). 일례로, 아날로그 빔(혹은 BRS ID) 별 상향링크 통신 관련된 파라미터는 단말에 대한 (BRSRP 기반의) 상위 K 개의 아날로그 빔(혹은 BRS ID) 리스트가 변경(/갱신)될 경우에 재설정(/재시그널링)될 수 있다.
예를 들어, 단말에게 제1, 2, 3 아날로그 빔들이 설정되어 있었는데, 단말이 보내온 측정 결과를 기반으로 상기 단말에게 설정되는 아날로그 빔들이 제1, 3, 4 아날로그 빔들로 변경될 경우에 기지국이 아날로그 빔 별 상향링크 통신 관련 파라미터를 단말에게 시그널링하는 것이다.
단말은 특정 아날로그 빔을 통한 상향링크 통신을 수행할 때, 상기 특정 아날로그 빔에 설정된 파라미터를 상기 상향링크 통신에 적용한 후 수행한다(S150).
M 개의 아날로그 빔(혹은 BRS ID) 별로 상이한 상향링크 전력 제어 프로세스가 설정(/연동)된 경우, 아래 제안 규칙의 적용은 일부 혹은 모든 상향링크 전력 제어 프로세스 기반의 상향링크 채널/시그널 전송 시, (상향링크 통신 관련) (특정) 파라미터가 상이하게 (혹은 독립적으로) 설정(/시그널링)된 것으로 해석될 수 있다.
또 다른 일례로, 상이한 특성(/환경)의 아날로그 빔(혹은 BRS ID)에 상관없이, 아래 (상향링크 통신 관련) (특정) 파라미터가 (모든 혹은 일부) 아날로그 빔(혹은 BRS ID) 간에 동일하게 (혹은 공통적으로) 설정(/시그널링)될 수 도 있다.
또 다른 일례로, 상이한 특성(/NUMEROLOGY)(예를 들어, 서비스 품질(QOS)/지연 요구사항, TTI 길이, 부반송파 스페이싱 등)의 서비스 통신(예를 들어, URLLC, EMBB, MMTC 등) 별로 (개-루프(OPEN-LOOP) 전력 제어 파라미터 정보 (예를 들어, “P_O”, “ALPHA” 등)를 포함하여) 아래 (상향링크 통신 관련) (특정) 파라미터 (그리고/혹은 TPC 누적 동작)가 (일부 혹은 모든) 상이하게 (혹은 독립적으로 혹은 공통적으로) 설정(/시그널링)될 수 있다.
상대적으로 높은 서비스 품질 요구사항(그리고/혹은 짧은 지연 요구사항 그리고/혹은 짧은 TTI 길이)의 URLLC 서비스에는 다른 서비스 타입에 비해 상대적으로 높은 값의 (개-루프) 전력 제어 파라미터를 설정(/시그널링) 할 수 있다. 이를 통해, 높은 전력 값의 짧은 TTI(URLLC) 전송시, 신뢰도를 향상시킬 수 있다.
후술하는 예시들(예시#1-1 내지 #1-5)은 아날로그 빔 별 상향링크 통신 관련 파라미터를 나타낸다.
(예시#1-1) PUSCH에 피기백되는 상향링크 제어 정보(UPLINK CONTROL INFORMATION: UCI에는 예를 들어, HARQ-ACK, CSI(RI/CQI/PMI) 등이 있다. 이러한 UCI의 MCS 오프셋 값(BETA_OFFSET)이 전술한 아날로그 빔 별 상향링크 통신 관련 파라미터일 수 있다.
예를 들어, 상대적으로 높은 세기의 간섭이 수신되거나, 또는 수신되는 간섭 패턴(/특성) 변화가 큰 아날로그 빔(혹은 BRS ID)에는 상대적으로 큰 값의 MCS 오프셋 값을 설정(/시그널링)해주고, 그렇지 않은 아날로그 빔(혹은 BRS ID)에는 상대적으로 작은 값의 MCS 오프셋 값을 설정(/시그널링)해 줄 수 있다.
사전에 설정되거나 시그널링된 DCI 포맷을 통한 비주기적 트리거링 기반의 UCI만 전송되는 (UL-SCH 없이) 전송, PUSCH 피기백 기반의 UCI(UL-SCH와 함께)전송, PUSCH(데이터) 전송)에 적용되는 (전송) 기법, 안테나 포트, PUSCH(ZADOFF-CHU) 참조 신호 시퀀스 생성, PUSCH 참조 신호 그룹(/시퀀스) 홉핑, PUSCH 스크램블링 (시퀀스) 생성기 중 적어도 하나에 관련된 시드(/입력 파라미터) 값이 상이한 특성(/환경)의 아날로그 빔(혹은 BRS ID) 간에 다르게 설정(/시그널링)될 수 있다.
상대적으로 높은 세기의 간섭이 수신되거나, 수신되는 간섭 패턴(/특성) 변화가 큰 아날로그 빔(혹은 BRS ID)에는, 복수개의 안테나 포트 기반의 전송 다이버시티(TRANSMISSION (TX) DIVERSITY) 기법(SFBC)이 설정(/시그널링)될 수 있다.
상기 규칙들이 적용될 경우, 아날로그 빔(혹은 BRS ID) 스위칭에 상관없이 UCI (그리고/혹은 데이터)가 신뢰도 높게 전송 가능하다.
(예시#1-2) UCI(예를 들어, HARQ-ACK, CSI (RI/CQI/PMI) 등) 전송을 위한 (A) PUCCH 자원(예를 들어, 시퀀스(/순환 쉬프트), (PUCCH) 자원블록 크기/위치, 안테나 포트 등), (B) PUCCH 포맷, (C) PUCCH 전송 기법(예를 들어, (복수개의 안테나 포트 기반의) 전송 다이버시티 기법 (SFBC), SORTD 등), (D) PUCCH 참조 신호 시퀀스(예컨대, ZADOFF-CHU 시퀀스) 생성(PUCCH 참조 신호 그룹(/시퀀스) 호핑, PUCCH 스크램블링(시퀀스) 생성기) 관련 시드(/입력 파라미터) 값 중 적어도 하나가 전술한 상향링크 통신 관련 파라미터일 수 있다.
아날로그 빔(혹은 BRS ID) 별로 (높은) 간섭이 수신되는 자원 영역(/간섭 세기), (하향링크) 부하 상태, (자원) 스케줄링 형태 등이 상이할 수 있다. 이를 고려하여, PUCCH 자원, PUCCH 포맷, PUCCH 전송 기법 등을 다르게 설정(/시그널링)해주는 것이 효율적일 수 있다.
상대적으로 높은 세기의 간섭이 수신되거나 혹은 수신되는 간섭 패턴(/특성) 변화가 큰 아날로그 빔(혹은 BRS ID)에는, 전송 다이버시티 기법 (SFBC)(혹은 SORTD) 기반의 PUCCH 전송이 설정(/시그널링)될 수 있다.
PUCCH 자원, PUCCH 포맷, PUCCH 전송 방식 등의 정보들은 상위 계층 시그널링 또는 물리 계층 시그널링을 통해서 BRS ID에 링키지 (LINKAGE) 될 수 있다. 예를 들어, DCI 포맷(UL GRANT)을 통해서 상향링크 채널/시그널 전송(혹은 (기지국) 수신) 관련 BRS ID (혹은 아날로그 빔) 정보가 시그널링된다면, 해당 DCI 포맷을 통해서 PUCCH 자원, PUCCH 포맷, PUCCH 전송 방식 등의 동적 변경이 지원되는 것으로 해석 가능하다.
상이한 특성(/환경)의 아날로그 빔(혹은 BRS ID) 간에 PUCCH/PUSCH 동시 전송 설정(/허용) 여부, 파워 헤드룸 타입(예를 들어, TYPE 1/2) 등이 다르게 설정(/시그널링)될 수 있다.
(예시#1-3) 다음 파라미터들 중 적어도 하나가 전술한 아날로그 빔(혹은 BRS ID) 별로 독립적으로 제공/설정되는 상향링크 통신 관련된 파라미터일 수 있다.
(A) (비주기적) SRS 전송에 적용되는 파워 오프셋 값, (B) PUCCH 포맷 별로 적용되는 파워 오프셋 값, (C) PUCCH 전송 다이버시티 기법에 적용되는 파워 오프셋 값 (혹은 PUCCH 전송 기법 별로 적용되는 파워 오프셋 값), (D) PUCCH 포맷과 전송되는 UCI 페이로드(payload) 크기를 (함께) 고려하여 (추가적으로) 적용되는 파워 오프셋 값 중 적어도 하나.
일례로, 이러한 규칙이 적용될 경우, 상이한 (간섭) 특성(/환경)의 아날로그 빔(혹은 BRS ID) 별로 적응적인 (ADAPTIVE) 전력 제어가 가능하다. 상기 규칙이 적용될 때, 만약 사전에 설정(/시그널링)된 복수개의 아날로그 빔(혹은 BRS ID)을 스위칭하는 MULTI-SHOT (비주기적) SRS 전송이 수행(/트리거링)된다면, 아날로그 빔 (혹은 BRS ID) 별로 적용되는 (비주기적) SRS 전송 전력 (혹은 SRS UL PC PROCESS)이 (일부 혹은 모두) 다를 수 있다.
일례로, 상이한 (특성(/환경)의) 아날로그 빔(혹은 BRS ID) 간에 최대 허용 전송 전력 값 (P_CMAX,C,B (여기서, C/B 값은 각각 셀(/TRP) 인덱스, 아날로그 빔 인덱스(/BRS ID)를 나타냄))이 다르게 설정(/시그널링)될 수 있다.
일례로, 상이한 (특성(/환경)의) 아날로그 빔(혹은 BRS ID) 간에 개-루프 전력 제어 파라미터 정보(OLPC_PARA)(예를 들어, “P_O”, “ALPHA” 등)를 다르게 설정(/시그널링)할 수 있다. 이 경우, (A) 가장 낮은(혹은 가장 높은 혹은 (기지국으로부터) 설정(/시그널링)된) BRS ID 관련 OLPC_PARA 정보 혹은 (B) (사전에 측정/보고한) 가장 높은(혹은 가장 낮은 혹은 (기지국으로부터) 설정(/시그널링)된 상위 (혹은 하위) Q 번째) BRSRP의 아날로그 빔(혹은 BRS ID) 관련 OLPC_PARA 정보 혹은 (C) 경로 손실 측정의 기준으로 설정(/시그널링)된 BRS ID 관련 OLPC_PARA 정보를 기준값 (REFER_OLPC)으로 가정하고, 나머지 아날로그 빔 (혹은 BRS ID) 관련 OLPC_PARA 정보들은 상기 기준값 대비 차이값 (DELTA)으로 알려줄 수 있다. 이러한 규칙이 적용될 경우, OLPC_PARA 정보 시그널링 관련 오버헤드를 줄일 수 있다.
일례로, 복수개의 (아날로그 빔 (혹은 BRS ID) 관련) 상향링크 전력 제어 프로세스 간에 (사전에 설정(/시그널링)된) OLPC_PARA(예를 들어, “P_O”, “ALPHA” 등)를 공통적으로 적용시키도록 하되, (상향링크 채널/시그널을 스케줄링 관련) DCI 포맷(예를 들어, UL GRANT) 상에서 (사전에 설정(/시그널링)된) 파워 오프셋 값의 적용 여부가 지시될 수 있다. 여기서, 일례로, 해당 파워 오프셋 값은 아날로그 빔 (혹은 BRS ID) 별로 상이하게 설정(/시그널링) 될 수 있다.
(예시#1-4) (A) 아날로그 빔(혹은 BRS ID) 별 상향링크 반정적 스케줄링(UL SEMI-PERSISTENT SCHEDULING: SPS) 전송 관련 OLPC_PARA 정보 (예를 들어, “P_O_SPS”, “ALPHA_SPS” 등), (B) 아날로그 빔(혹은 BRS ID) 별 상향링크 반정적 스케줄링 설정/자원 정보(예를 들어, SPS 주기, (SPS)MCS/RB 크기 및 위치 등), (C) 상향링크 반정적 스케줄링 홉핑 동작 및 설정 정보(예를 들어, SPS HOPPING BANDWIDTH 등) 중 적어도 하나가 전술한 아날로그 빔(혹은 BRS ID) 별로 독립적으로 제공/설정되는 상향링크 통신 관련된 파라미터일 수 있다.
상이한 아날로그 빔(혹은 BRS ID)과 연동된 상향링크 SPS (전력 제어) 프로세스 별로 독립적인(혹은 분리된) TPC 누적 동작이 설정(/시그널링)될 수 있다. 일례로, 아날로그 빔(혹은 BRS ID) 간에 상향링크 SPS OLPC_PARA 정보, 상향링크 SPS 설정/자원 정보, 상향링크 SPS 홉핑 동작 및 설정 정보 등이 상이하게 지정되는 것은 서로 다른 아날로그 빔(혹은 BRS ID)에 연동된 복수개의 상향링크 SPS (전력 제어) 프로세스가 설정(/시그널링)된 것으로도 해석 가능하다.
(예시#1-5) (A) (비주기적) SRS 자원/전송 형태(/방식) 정보(예를 들어, 시퀀스, SRS(홉핑) 대역, COMB, 안테나 포트, SRS (ZADOFF-CHU) 시퀀스 생성 관련 시드(/입력 파라미터) 값), (B) 상향링크 전송 모드(TM) 정보, (C) TA 정보(예를 들어, TAG 설정(/시그널링)이 아날로그 빔 (혹은 BRS ID) 단위로 수행될 수 있음) 중 적어도 하나가 전술한 아날로그 빔(혹은 BRS ID) 별로 독립적으로 제공/설정되는 상향링크 통신 관련된 파라미터일 수 있다.
아래 제안 방식들은 NR 시스템 하에서, 상향링크 SPS 동작을 효율적으로 운영(/지원)하는 방법들을 제시한다.
(예시#2-1) 기존 LTE 시스템의 반송파 집성(CA) 상황에서는 예를 들어, 프라이머리 셀(PCELL) 상에서만 상향링크 SPS 동작이 허용(/설정) 되었다. NR에서는 사전에 측정/보고한 가장 높은(혹은 가장 낮은, 혹은 기지국으로부터 설정되거나 시그널링된 상위(혹은 하위) Q 번째 (혹은 W 개의)) BRSRP의 아날로그 빔(혹은 BRS ID)에 대해서만 상향링크 SPS 동작이 설정(/시그널링)될 수 있다. 또는 가장 낮은 (혹은 가장 높은, 혹은 기지국으로부터 설정(/시그널링)된) BRS ID(혹은 상향링크 전력 제어 프로세스 인덱스) 관련 아날로그 빔(혹은 BRS ID)에 대해서만 상향링크 SPS 동작이 설정(/시그널링)될 수 있다. 이러한 규칙이 적용될 경우, 상향링크 SPS 동작이 상대적으로 높은 신뢰도로 수행될 수 있다.
도 18은 예시#2-1에 따른 SPS 설정 방법을 나타낸다.
도 18을 참조하면, 기지국은 전송한 아날로그 빔들에 대한 측정 보고를 수신한다(S200).
기지국은 상기 측정 보고를 기반으로, 선택된 일부 아날로그 빔들에 대해서만 상향링크 SPS 동작을 설정한다(S210). 예를 들어, 단말은 아날로그 빔들에 포함된 빔 참조 신호(BRS)에 대하여 BRSRP를 측정한 후, 그 값이 큰 순서대로 W개의 아날로그 빔들에 대해서만 측정 보고를 수행할 수 있다. 이 경우, 기지국은 상기 측정 보고를 참조하여, BRSRP 값이 임계치 이상인 M개의 아날로그 빔들에 대해서만 상향링크 SPS 동작을 허용하거나 상향링크 SPS 동작에 대한 설정을 제공할 수 있다.
(예시#2-2) 기지국은 ((예시#2-1) 조건을 만족시키는) 복수개(예를 들어, “2”)의 아날로그 빔(혹은 BRS ID) 중에 특정 아날로그 빔(혹은 BRS ID) (이를 CU_SPSBEAM이라 하자)에 대해서는 (단말로 하여금) 상향링크 SPS 동작을 (현재) 수행하도록 하고, 다른 아날로그 빔(혹은 BRS ID)(이를 FB_SPSBEAM이라 하자) 기반의 상향링크 SPS 동작은 사전에 설정(/시그널링)된 이벤트(예를 들어, CU_SPSBEAM이 상위 (혹은 하위) K 개의 BRSRP의 아날로그 빔(혹은 BRS ID) 리스트에서 제외될 경우, 혹은 CU_SPSBEAM의 (기존) BRSRP 순위가 변경될 경우) 발생 시(혹은 기지국으로부터 관련 시그널링(/지시자) 수신시)에만 수행되도록 할 수 있다. 예를 들어, 상기 FB_SPSBEAM은 상향링크 SPS (동작) 폴백 용도의 아날로그 빔(혹은 BRS ID)으로 해석될 수 있다.
상기 CU_SPSBEAM은 상기 FB_SPSBEAM 대비 상대적으로 높은(혹은 낮은) BRSRP(혹은 BRS ID (혹은 상향링크 전력 제어 프로세스 인덱스))의 아날로그 빔(혹은 BRS ID)으로 설정(/시그널링) 될 수 있다. 예를 들어, CU_SPSBEAM와 FB_SPSBEAM는 차례로 상위 첫번째(BEST), 상위 두번째의 BRSRP 관련 아날로그 빔(혹은 BRS ID)으로 지정될 수 있다.
(예시#2-3) 상향링크 SPS 활성화 그리고/혹은 해제 용도의 DCI 포맷 상에 아래 (일부 혹은 모든) 정보 관련 필드가 정의될 수 있다.
예를 들어, 아날로그 빔(집합/그룹) 또는 BRS ID(집합/그룹) 별로 상향링크 SPS (집합/그룹) 활성화 그리고/혹은 해제 DCI 포맷 관련 RNTI 정보(들)이 사전에 설정(/시그널링)될 수 있다.
1) BRS ID 정보 필드(혹은 상향링크 SPS 프로세스 인덱스 정보 필드). 이러한 필드가 정의됨으로써, 특정 BRS ID(혹은 상향링크 SPS 프로세스 인덱스) 관련 상향링크 SPS 동작이 개별(/효율)적으로 활성화 그리고/혹은 해제될 수 있다.
2) 상향링크 SPS 활성화 그리고/혹은 해제 용도의 DCI 포맷 수신 시점 (예컨대, SF#N)으로부터 특정 BRS ID(혹은 상향링크 SPS 프로세스 인덱스) 관련 상향링크 SPS 동작이 실제로 활성화 그리고/혹은 해제되는 타이밍(오프셋) 정보 (K_OFFSET) 필드 (예를 들어, SF#(N+K_OFFSET) 시점에서 실제로 상향링크 SPS 활성화 그리고/혹은 해제가 수행됨)
3) 상향링크 SPS 활성화 그리고/혹은 해제 지시(INDICATION) 필드.
상기 필드는 공통된(혹은 동일) DCI 포맷(/구조)를 이용하여 상향링크 SPS 활성화와 해제를 시그널링해줄 때에 유용할 수 있다.
(예시#2-4) 단말은 사전에 설정되거나 시그널링된 채널/시그널(예를 들어, 스케줄링 요청(SCHEDULING REQUEST: SR))을 통해, 사전에 설정(/시그널링)된 이벤트 (예를 들어, UL SPS 동작이 수행되는 아날로그 빔(혹은 BRS ID)의 (링크) 품질이 사전에 설정(/시그널링)된 임계값 이하로 저하되거나 혹은 BRSRP(RNAKING) 값이 사전에 설정(/시그널링)된 임계값보다 저하되는 경우 혹은 BRSRP (저하) 변동 폭이 사전에 설정(/시그널링)된 임계값보다 큰 경우) 발생시, 특정 BRS ID(혹은 상향링크 SPS 프로세스 인덱스) 관련 상향링크 SPS 동작의 해제 요청 정보, 혹은 특정 BRS ID (혹은 상향링크 SPS 프로세스 인덱스) 관련 상향링크 SPS 동작이 불안정하다는 정보 혹은 다른 BRS ID(혹은 상향링크 SPS 프로세스 인덱스) 기반 상향링크 SPS 동작으로의 변경 요청 정보를 (기지국에게) 알려줄 수 있다.
(예시#2-5) 상이한(혹은 복수개의) 아날로그 빔(혹은 BRS ID)(혹은 상향링크 SPS (전력 제어) 프로세스) 기반의 상향링크 SPS 전송 동작을 효율적으로 지원하기 위해서, 단말로 하여금, 사전에 정의되거나 시그널링된 (상향링크 SPS) TPC DCI 포맷(예를 들어, 기존 LTE 시스템의 DCI 포맷 3/3A(이러한 DCI 포맷에는 데이터 스케줄링 정보 필드 없이 (오직) TPC 정보 필드들만이 정의되어 있음)와 유사함)을 모니터링하도록 할 수 있다.
일례로, (상향링크 SPS) TPC DCI 포맷은 사전에 설정되거나 시그널링된 (단말 그룹 공통(/특정적)) RNTI 기반으로 (블라인드) 디코딩 되거나 그리고/혹은 사전에 설정(/시그널링)된 (혹은 (관련) RNTI 값을 입력 파라미터로 가지는 검색 공간(SS) 해싱 함수(HASHING FUNCTION)을 통해 도출된) (단말-특정적 혹은 공통) 검색 공간 자원 상에서 특정 집성 레벨(AGGREGATION LEVEL: AL)로 전송될 수 있다.
일례로, 기지국은 단말에게 (상위(/물리) 계층 시그널링을 통해서) 특정 아날로그 빔(혹은 BRS ID) (혹은 특정 상향링크 SPS (전력 제어) 프로세스) 관련 상향링크 SPS TPC 정보가 시그널링되는((상향링크 SPS) TPC DCI 포맷 상의) 필드 위치(/인덱스) 정보를 알려줄 수 있다.
상이한 아날로그 빔(혹은 BRS ID) (혹은 특정 상향링크 SPS (전력 제어) 프로세스) 관련 (상향링크 SPS) TPC DCI 포맷은, 서로 다른 (단말 그룹 공통(/특정적)) RNTI 기반으로 (상이한 (단말 특정적 혹은 공통) 검색 공간 자원 상에서 (특정 집성 레벨로)) (블라인드) 디코딩될 수도 있다.
상기 설명한 상향링크 SPS TPC DCI 포맷과 동일한(혹은 유사한) 원리(/규칙)로 상이한 (혹은 복수개의) 아날로그 빔(혹은 BRS ID) (혹은 상향링크 전력제어 프로세스) 별 PUCCH 전송 전력을 효율적으로 제어하기 위한 PUCCH TPC DCI 포맷이 정의될 수도 있다.
(예시#2-6) 특정 상향링크 SPS 프로세스(설정)를 (사전에 설정(/시그널링)된) 복수개의 아날로그 빔(혹은 BRS ID) 간에 공유하여 (아날로그 빔(혹은 BRS ID)) 스위칭 동작으로 지원하기 위해서, 상향링크 SPS 전송 관련 아날로그 빔(혹은 BRS ID) 스위칭을 지시하는 물리(/상위) 계층 시그널링이 정의될 수 있다.
일례로, 해당 용도의 (물리 계층) 시그널링은 DCI (포맷) 형태로 정의될 수 있다. 기지국은 단말에게 (상위(/물리) 계층 시그널링을 통해서) (해당 DCI (포맷) 상의) 모니터링해야 하는 필드 위치(/인덱스) 정보를 알려줄 수 있다.
단말은 (해당) 필드 모니터링을 통해 상향링크 SPS 전송 관련 아날로그 빔 (혹은 BRS ID) 스위칭 정보를 파악할 수 있다.
이러한 (용도의) DCI 포맷은 사전에 설정(/시그널링)된 (단말 그룹 공통(/특정적)) RNTI 기반으로 (블라인드) 디코딩 되거나 그리고/혹은 사전에 설정(/시그널링)된 (혹은 (관련) RNTI 값을 입력 파라미터로 가지는 검색 공간 해싱 함수를 통해 도출된) (단말 특정적 혹은 공통) 검색 공간 자원 상에서 (특정 집성 레벨로) 전송될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수도 있다. 일례로, 본 발명의 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
도 19는 본 발명의 실시예가 구현되는 장치를 나타낸 블록도이다.
도 19를 참조하면, 기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(210)는 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고 상기 파라미터를 적용하여 상기 상향링크 통신을 수행할 수 있다. 이 때, 상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용할 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.

Claims (12)

  1. 무선 통신 시스템에서 단말에 의한 상향링크 통신 수행 방법에 있어서,
    아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고; 및
    상기 파라미터에 기반하여 상기 상향링크 통신을 수행하되,
    상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    복수의 아날로그 빔들을 기지국으로부터 수신하고,
    상기 복수의 아날로그 빔들을 측정하고, 및
    상기 복수의 아날로그 빔들 중 일부 아날로그 빔들의 측정 결과를 상기 기지국으로 전송하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 아날로그 빔은 빔 참조 신호(beam reference signal: BRS)를 포함하는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 빔 참조 신호는 아날로그 빔 별로 구분되는 ID(identity)를 포함하는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는
    상향링크 제어 정보 전송 시에 적용되는 변조 및 코딩 기법(modulation and coding scheme: MCS)을 결정하는 오프셋 값을 포함하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는
    상향링크 제어 정보 전송을 위한 상향링크 제어 채널의 자원, 상향링크 제어 채널의 포맷, 상향링크 제어 채널의 전송 기법 및 상향링크 제어 채널의 참조 신호 시퀀스 생성 관련 시드(seed) 값 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는
    사운딩 참조 신호(sounding reference signal: SRS) 전송에 적용되는 전력 오프셋 값, 상향링크 제어 채널 포맷 별로 적용되는 전력 오프셋 값, 상향링크 제어 채널 전송 다이버시티(transmit diversity) 기법에 적용되는 전력 오프셋 값 및 상향링크 제어 정보 페이로드(payload) 크기에 따른 전력 오프셋 값 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는
    아날로그 빔 별 상향링크 반정적 스케줄링 설정 정보를 포함하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터는
    사운딩 참조 신호의 자원 및 전송 형태에 대한 정보, 상향링크 전송 모드 정보 및 타이밍 어드밴스(timing advanced: TA) 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  10. 제 1 항에 있어서,
    상기 단말에게 설정된 복수의 아날로그 빔들 중에서 일부 아날로그 빔들에서만 상향링크 반정적 스케줄링 동작이 허용되는 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서,
    상기 아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터는
    일부 아날로그 빔들에게는 동일한 값을 가지고, 나머지 아날로그 빔들에게는 서로 다른 값을 가지도록 설정되는 것을 특징으로 하는 방법.
  12. 단말(User equipment; UE)은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는,
    아날로그 빔 별로 독립적으로 설정된, 상향링크 통신 관련 파라미터를 수신하고,
    상기 파라미터에 기반하여 상기 상향링크 통신을 수행하되,
    상기 상향링크 통신을 특정 아날로그 빔을 이용하여 수행하는 경우, 상기 특정 아날로그 빔에 설정된 상향링크 통신 관련 파라미터를 상기 상향링크 통신에 적용하는 것을 특징으로 하는 단말.
PCT/KR2017/008418 2016-08-03 2017-08-03 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말 WO2018026224A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201780047698.4A CN109565854B (zh) 2016-08-03 2017-08-03 在无线通信系统中执行上行链路通信的终端的方法和使用该方法的终端
CN202210567566.7A CN115002914A (zh) 2016-08-03 2017-08-03 在无线通信系统中执行上行链路通信的方法和设备
JP2019506119A JP6761108B2 (ja) 2016-08-03 2017-08-03 無線通信システムで端末により遂行されるアップリンク通信遂行方法、及び前記方法を用いる端末
EP17837275.1A EP3496494B1 (en) 2016-08-03 2017-08-03 Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method
KR1020197001958A KR102163673B1 (ko) 2016-08-03 2017-08-03 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말
US16/265,459 US10575322B2 (en) 2016-08-03 2019-02-01 Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method
US16/787,780 US11229040B2 (en) 2016-08-03 2020-02-11 Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method
US17/576,526 US11533743B2 (en) 2016-08-03 2022-01-14 Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method
US17/979,221 US20230053557A1 (en) 2016-08-03 2022-11-02 Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662370698P 2016-08-03 2016-08-03
US62/370,698 2016-08-03
US201662373434P 2016-08-11 2016-08-11
US62/373,434 2016-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/265,459 Continuation US10575322B2 (en) 2016-08-03 2019-02-01 Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method

Publications (1)

Publication Number Publication Date
WO2018026224A1 true WO2018026224A1 (ko) 2018-02-08

Family

ID=61074223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008418 WO2018026224A1 (ko) 2016-08-03 2017-08-03 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말

Country Status (6)

Country Link
US (4) US10575322B2 (ko)
EP (1) EP3496494B1 (ko)
JP (1) JP6761108B2 (ko)
KR (1) KR102163673B1 (ko)
CN (2) CN109565854B (ko)
WO (1) WO2018026224A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034842A1 (zh) * 2018-08-17 2020-02-20 电信科学技术研究院有限公司 数据传输方法、终端及网络设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172444B2 (en) * 2016-10-10 2021-11-09 Qualcomm Incorporated Techniques for power control and management
US20190261287A1 (en) * 2016-11-02 2019-08-22 Idac Holdings, Inc. Devices, systems and methods for power efficient beam management in wireless systems
US11350414B2 (en) * 2016-11-03 2022-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting uplink signal, terminal device and network side device
US10582397B2 (en) * 2016-11-09 2020-03-03 Qualcomm Incorporated Beam refinement reference signal transmissions during control symbol
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
ES2880003T3 (es) * 2017-02-03 2021-11-23 Ericsson Telefon Ab L M Desplazamiento de MCS dinámico para TTI corto
US11140680B2 (en) * 2017-03-23 2021-10-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for determining detection range of control channel in multi-beam system
CN110383905B (zh) * 2017-05-05 2021-05-18 华为技术有限公司 上行链路传输的功率控制方法
US11510228B2 (en) * 2017-08-11 2022-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Autonomous transmission of uplink control information
WO2019069132A1 (en) * 2017-10-02 2019-04-11 Lenovo (Singapore) Pte, Ltd. UPLINK POWER CONTROL
US10813060B2 (en) * 2018-01-19 2020-10-20 Qualcomm Incorporated Reference power headroom report
JP7102767B2 (ja) * 2018-02-19 2022-07-20 富士通株式会社 送信方法、基地局装置及び無線通信システム
CN110351017B (zh) * 2018-04-04 2022-03-29 华为技术有限公司 一种通信方法、装置以及系统
US11019573B2 (en) * 2019-03-29 2021-05-25 Qualcomm Incorporated Out-of-order communication management
CN111953456B (zh) * 2019-05-14 2021-10-29 大唐移动通信设备有限公司 一种信令传输的方法、用户终端、基站及存储介质
US11540236B2 (en) * 2021-03-08 2022-12-27 Qualcomm Incorporated Cell-group transmission power control commands
WO2022193223A1 (en) * 2021-03-18 2022-09-22 Zte Corporation Scheduling network communication services using semi-persistent scheduling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072244A1 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co. Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
US20140369328A1 (en) * 2013-06-13 2014-12-18 Samsung Electronics Co., Ltd. Apparatus and method for operating analog beam in a beam division multiple access system
US20150289281A1 (en) * 2013-01-28 2015-10-08 Samsung Electronics Co., Ltd Apparatus and method for transmission/reception in radio communication system
WO2015157565A1 (en) * 2014-04-09 2015-10-15 Interdigital Patent Holdings, Inc. Mmw physical layer downlink channel scheduling and control signaling
WO2016053426A1 (en) * 2014-10-01 2016-04-07 Intel IP Corporation Mobile communication in macro-cell assisted small cell networks

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005251169B2 (en) * 2004-05-26 2010-07-15 Zboost, Llc Wireless repeater for a duplex communication system implementing a protection based on oscillation detection
EP2679053B1 (en) 2011-02-25 2017-11-01 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for reducing power consumption in a communication device
JP5331161B2 (ja) * 2011-05-19 2013-10-30 シャープ株式会社 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
EP2763471B1 (en) * 2011-09-30 2018-07-04 Sharp Kabushiki Kaisha Terminal and communication method
KR20130127347A (ko) * 2012-05-10 2013-11-22 삼성전자주식회사 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
US9276726B2 (en) * 2012-12-11 2016-03-01 Samsung Electronics Co., Ltd. Transmissions/receptions of uplink acknowledgement signals in wireless networks
US9468022B2 (en) * 2012-12-26 2016-10-11 Samsung Electronics Co., Ltd. Method and apparatus for random access in communication system with large number of antennas
US9392639B2 (en) * 2013-02-27 2016-07-12 Samsung Electronics Co., Ltd. Methods and apparatus for channel sounding in beamformed massive MIMO systems
EP2989838B1 (en) 2013-04-23 2021-01-13 Samsung Electronics Co., Ltd. Method and apparatus for controlling power of uplink in a beam forming system
US9497047B2 (en) 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems
US20150358914A1 (en) * 2013-08-08 2015-12-10 Telefonaktiebolaget L M Ericsson (Publ) Bs and ue, and power control methods used in the same
CN104349443B (zh) * 2013-08-09 2019-02-12 电信科学技术研究院 一种上行功率控制方法和装置
EP3054730B1 (en) * 2013-09-30 2020-02-19 Sony Corporation Communication control device, communication control method, terminal device, and information processing device
US10349356B2 (en) * 2014-04-14 2019-07-09 Sharp Kabushiki Kaisha Terminal device, base station apparatus, integrated circuit, and communication method
WO2016044994A1 (zh) * 2014-09-23 2016-03-31 华为技术有限公司 波束配置方法、基站及用户设备
CN112533272A (zh) * 2014-09-28 2021-03-19 华为技术有限公司 上行功率配置方法和装置
CN115483956A (zh) * 2014-11-26 2022-12-16 Idac控股公司 高频无线系统中的初始接入
CN105743824A (zh) * 2014-12-09 2016-07-06 中兴通讯股份有限公司 一种非正交用户设备间的干扰处理及信令通知方法和装置
JP6317827B2 (ja) * 2015-01-16 2018-04-25 日本電信電話株式会社 局側装置及び波長制御方法
CN112073158B (zh) * 2015-01-28 2023-08-22 交互数字专利控股公司 用于操作大量载波的上行链路反馈方法
WO2017014510A1 (ko) * 2015-07-17 2017-01-26 삼성전자 주식회사 무선 통신 시스템에서 신호 전송 방법 및 장치
US10306597B2 (en) * 2015-07-21 2019-05-28 Samsung Electronics Co., Ltd. Method and apparatus for beam-level radio resource management and mobility in cellular network
CN105281818B (zh) * 2015-09-08 2018-05-15 工业和信息化部电信研究院 一种多天线波束赋形测试方法
US11394447B2 (en) * 2016-03-03 2022-07-19 Idac Holdings, Inc. Methods and apparatus for beam control in beamformed systems
US10681740B2 (en) * 2016-03-16 2020-06-09 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
WO2017165668A1 (en) * 2016-03-25 2017-09-28 Intel Corporation Uplink power control for 5g systems
EP4333515A2 (en) * 2016-05-11 2024-03-06 InterDigital Patent Holdings, Inc. Systems and methods for beamformed uplink transmission
KR102454397B1 (ko) * 2016-05-11 2022-10-14 콘비다 와이어리스, 엘엘씨 새로운 라디오 다운링크 제어 채널
US10660120B2 (en) * 2016-05-11 2020-05-19 Lg Electronics Inc. Downlink signal reception method and user equipment, and downlink signal transmission method and base station
US20180034515A1 (en) * 2016-07-28 2018-02-01 Asustek Computer Inc. Method and apparatus for handling ue beamforming in a wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130072244A1 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co. Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
US20150289281A1 (en) * 2013-01-28 2015-10-08 Samsung Electronics Co., Ltd Apparatus and method for transmission/reception in radio communication system
US20140369328A1 (en) * 2013-06-13 2014-12-18 Samsung Electronics Co., Ltd. Apparatus and method for operating analog beam in a beam division multiple access system
WO2015157565A1 (en) * 2014-04-09 2015-10-15 Interdigital Patent Holdings, Inc. Mmw physical layer downlink channel scheduling and control signaling
WO2016053426A1 (en) * 2014-10-01 2016-04-07 Intel IP Corporation Mobile communication in macro-cell assisted small cell networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3496494A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034842A1 (zh) * 2018-08-17 2020-02-20 电信科学技术研究院有限公司 数据传输方法、终端及网络设备
TWI732261B (zh) * 2018-08-17 2021-07-01 大陸商電信科學技術研究院有限公司 資料傳輸方法、終端及網路設備
US11910376B2 (en) 2018-08-17 2024-02-20 Datang Mobile Communications Equipment Co., Ltd. Data transmission method, and terminal and network device

Also Published As

Publication number Publication date
US11229040B2 (en) 2022-01-18
CN109565854B (zh) 2022-06-17
US10575322B2 (en) 2020-02-25
US11533743B2 (en) 2022-12-20
CN115002914A (zh) 2022-09-02
KR102163673B1 (ko) 2020-10-08
EP3496494A4 (en) 2020-01-15
KR20190018526A (ko) 2019-02-22
US20230053557A1 (en) 2023-02-23
EP3496494B1 (en) 2021-03-24
US20190166610A1 (en) 2019-05-30
US20200178277A1 (en) 2020-06-04
JP6761108B2 (ja) 2020-09-23
JP2019523617A (ja) 2019-08-22
EP3496494A1 (en) 2019-06-12
US20220141855A1 (en) 2022-05-05
CN109565854A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
WO2018026224A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2018128501A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 채널 전송 방법 및 상기 방법을 이용하는 통신 장치
WO2018203738A1 (ko) 무선 통신 시스템에서 릴레이 단말이 사이드링크 신호의 전력을 제어하는 방법 및 이를 위한 장치
WO2018147699A1 (ko) 무선 통신 시스템에서 d2d 단말이 통신 장치와 통신 링크를 형성하는 방법 및 이를 위한 장치
WO2018186667A1 (ko) 무선 통신 시스템에서 단말의 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2018143741A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널을 전송하는 방법 및 이를 위한 장치
WO2018199691A1 (ko) 무선 통신 시스템에서 전력을 공유하는 방법 및 장치
WO2018182263A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 단말
WO2016144050A1 (ko) 무선 통신 시스템에서 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2018174537A1 (ko) 무선 통신 시스템에서 전송 다이버시티 기법에 의하여 전송된 v2x 신호의 디코딩 방법 및 상기 방법을 이용하는 단말
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2018026223A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 파워 헤드룸 보고 방법 및 상기 방법을 이용하는 단말
WO2016163832A1 (ko) 다중 안테나를 이용하는 무선 통신 시스템에서 송신 전력 제어 방법 및 장치
WO2019059739A1 (ko) 피드백 정보의 송신 및 수신 방법과 이를 위한 차량체
WO2018203671A1 (ko) 무선 통신 시스템에서 단말의 물리 사이드링크 제어 채널의 블라인드 디코딩 수행 방법 및 상기 방법을 이용하는 단말
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018203621A1 (ko) 무선 통신 시스템에서 dm-rs의 송수신 방법 및 이를 위한 장치
WO2010082756A2 (en) Method and apparatus of transmitting sounding reference signal in multiple antenna system
WO2017078425A1 (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
WO2018012774A1 (ko) 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치
WO2018199728A1 (ko) 무선 통신 시스템에서 단말의 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2019160292A1 (ko) 비면허 대역에서 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2017222257A1 (ko) 다중 전송 기법이 적용된 무선통신시스템에서 신호를 수신하는 방법 및 장치
WO2018135913A1 (ko) 무선 통신 시스템에서 릴레이 d2d 통신을 수행하는 방법 및 장치
WO2015111966A1 (ko) Lte 복수 기지국의 채널 상태 정보 송신 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001958

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019506119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017837275

Country of ref document: EP

Effective date: 20190304