WO2020034842A1 - 数据传输方法、终端及网络设备 - Google Patents

数据传输方法、终端及网络设备 Download PDF

Info

Publication number
WO2020034842A1
WO2020034842A1 PCT/CN2019/098618 CN2019098618W WO2020034842A1 WO 2020034842 A1 WO2020034842 A1 WO 2020034842A1 CN 2019098618 W CN2019098618 W CN 2019098618W WO 2020034842 A1 WO2020034842 A1 WO 2020034842A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink transmission
mode
supported
uplink
Prior art date
Application number
PCT/CN2019/098618
Other languages
English (en)
French (fr)
Inventor
苏昕
陈润华
高秋彬
黄秋萍
缪德山
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP19850657.8A priority Critical patent/EP3840242A4/en
Priority to JP2021507953A priority patent/JP2021534674A/ja
Priority to KR1020217007828A priority patent/KR20210044272A/ko
Priority to US17/268,051 priority patent/US11910376B2/en
Publication of WO2020034842A1 publication Critical patent/WO2020034842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to a data transmission method, a terminal, and a network device.
  • a user equipment or a terminal (User Equipment) provided in the related art with multiple transmitting antennas can perform uplink beamforming.
  • a UE in a radio resource control connected (RRC_CONNECTED) state may be semi-statically configured with multiple UE-specific uplink sounding reference signal (SRS) resources.
  • SRS signals transmitted on each SRS resource are beamformed using a specific beamforming matrix.
  • the UE sends these SRS resources in the uplink.
  • Transmission and reception points (TRP) measure the signal quality of different SRS resources and select the optimal SRS resource.
  • the TRP sends an index (SRS resource indicator (SRS) resource indicator (SRI)) of the selected SRS resource to the UE via Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the UE can infer from the SRI which uplink beamforming matrix (eg, SRS resources) is recommended by the TRP for future uplink transmissions.
  • the UE may then use the uplink beamforming matrix indicated by the SRI
  • the UE may have multiple antenna panels for uplink transmission.
  • Each antenna panel consists of a group of antenna elements.
  • the exact number of antenna panels, the number of antenna units, and the arrangement of antenna units within each panel are determined according to specific implementations, and different UEs may have different implementations.
  • the UE can send one data layer from one panel at a time.
  • the UE may also send a data layer from a subset of antenna panels (including more than one antenna panel) at the same time.
  • the description here is also applicable to SRS resources (transmission of SRS signals). However, in the case where the specifications in the related technology support joint transmission of data from a multi-antenna panel, how to transmit uplink data through the antenna panel of the terminal has not been described.
  • An object of the present disclosure is to provide a data transmission method, terminal, and network device, which are used to solve the related technical specifications.
  • the terminal supports joint transmission of data from a multi-antenna panel, how to transmit uplink data through the antenna panel of the terminal Issues not yet described.
  • the present disclosure provides a data transmission method applied to a terminal configured with at least two antenna panels for uplink transmission, including:
  • the data layer of the uplink data in the target uplink transmission mode is sent on at least one antenna panel of the terminal.
  • obtaining the target uplink transmission method corresponding to the transmission capability of the terminal includes:
  • At least one uplink transmission method is selected as the target uplink transmission method among a plurality of pre-configured uplink transmission methods.
  • the layer data of the uplink data is The correspondence relationship between them is different;
  • report the transmission capability of the terminal to a network device obtain an uplink transmission mode indicated by the network device according to the terminal's transmission capability, and determine the target uplink transmission mode according to the uplink transmission mode indicated by the network device;
  • At least one uplink transmission mode is selected as a recommended uplink transmission mode from a plurality of pre-configured uplink transmission modes and sent to a network device; and the network device is selected from the recommended uplink transmission modes.
  • report the transmission capability of the terminal to a network device obtain at least one recommended uplink transmission method indicated by the network device according to the terminal's transmission capability, and select one of the at least one recommended uplink transmission method.
  • the target uplink transmission method is described.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and an amplitude and / or phase weighting factor between any two antenna panels;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the selection of at least one uplink transmission method as the target uplink transmission method among a plurality of pre-configured multiple uplink transmission methods according to the transmission capability of the terminal includes:
  • the target uplink transmission mode is the first An uplink transmission mode
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • M is a positive integer greater than 1.
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • the method Before selecting at least one uplink transmission method as the target uplink transmission method among a plurality of pre-configured multiple uplink transmission methods according to the transmission capability of the terminal, the method further includes:
  • the transmission capability of the terminal is reported to the network device; a scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal is used as the scheduling indication method of the terminal ;
  • report the transmission capability of the terminal to the network device obtain at least one recommended scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal; Selecting a scheduling instruction mode from the scheduling instruction modes, and using the scheduling instruction mode as the scheduling instruction mode of the terminal;
  • the terminal determine at least one recommended scheduling indication mode among at least two scheduling indication modes supported by the terminal and send it to a network device; and select the network device among the at least one recommended scheduling indication mode.
  • the scheduling instruction mode of the terminal as the scheduling instruction mode of the terminal.
  • an embodiment of the present disclosure further provides a data transmission method, which is applied to a network device and includes:
  • the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal;
  • an uplink transmission mode is indicated to the terminal.
  • indicating the uplink transmission mode to the terminal according to the transmission information includes:
  • At least one uplink transmission mode is selected from a plurality of pre-configured multiple uplink transmission modes to indicate to the terminal according to the transmission capacity of the terminal; or,
  • the transmission information is at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and the transmission capability of the terminal
  • at least one uplink transmission is selected according to the transmission capability of the terminal Mode indication to the terminal;
  • the transmission information is at least one recommended uplink transmission mode corresponding to the transmission capability of the terminal, among the at least one recommended uplink transmission mode, at least one uplink transmission mode is selected to be indicated to the terminal.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and position information between any two antenna panels, and the position information includes amplitude and / or phase weighting factor;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • selecting and indicating to the terminal at least one uplink transmission mode among a plurality of pre-configured multiple uplink transmission modes according to the terminal's transmission capability includes:
  • the first uplink transmission mode is indicated to the terminal ;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, indicating the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, indicating the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, instructing the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, indicate the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • M is a positive integer greater than 1.
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • the method further includes:
  • one of the at least two scheduling instruction modes supported by the terminal is selected as the scheduling instruction mode of the terminal, and is indicated to the terminal;
  • At least one recommended scheduling indication mode is selected from the at least two scheduling indication modes supported by the terminal and indicated to the terminal;
  • one of the at least one recommended scheduling indication manner sent by the terminal is selected as the scheduling indication manner of the terminal, and is instructed to the terminal.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission.
  • the terminal includes: a transceiver, a memory, a processor, and a memory stored in the memory. And a program that can be run on a processor that implements the following steps when the processor executes the program:
  • the data layer of the uplink data in the target uplink transmission mode is sent on at least one antenna panel of the terminal.
  • At least one uplink transmission method is selected as the target uplink transmission method among a plurality of pre-configured uplink transmission methods.
  • the layer data of the uplink data and the antenna panel of the terminal are different. The correspondence relationship between them is different;
  • report the transmission capability of the terminal to a network device obtain an uplink transmission mode indicated by the network device according to the terminal's transmission capability, and determine the target uplink transmission mode according to the uplink transmission mode indicated by the network device;
  • At least one uplink transmission mode is selected as a recommended uplink transmission mode from a plurality of pre-configured uplink transmission modes and sent to a network device; and the network device is selected from the recommended uplink transmission modes.
  • report the transmission capability of the terminal to a network device obtain at least one recommended uplink transmission method indicated by the network device according to the terminal's transmission capability, and select one of the at least one recommended uplink transmission method.
  • the target uplink transmission method is described.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and an amplitude and / or phase weighting factor between any two antenna panels;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the target uplink transmission mode is the first An uplink transmission mode
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • M is a positive integer greater than 1.
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • the transmission capability of the terminal is reported to the network device; a scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal is used as the scheduling indication method of the terminal ;
  • report the transmission capability of the terminal to the network device obtain at least one recommended scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal; Selecting a scheduling instruction mode from the scheduling instruction modes, and using the scheduling instruction mode as the scheduling instruction mode of the terminal;
  • the terminal determine at least one recommended scheduling indication mode among at least two scheduling indication modes supported by the terminal and send it to a network device; and select the network device among the at least one recommended scheduling indication mode.
  • the scheduling instruction mode of the terminal as the scheduling instruction mode of the terminal.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the data transmission method described above are implemented.
  • an embodiment of the present disclosure further provides a network device, including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
  • a network device including a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor.
  • the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal;
  • an uplink transmission mode is indicated to the terminal.
  • At least one uplink transmission mode is selected from a plurality of pre-configured uplink transmission modes to indicate to the terminal;
  • the transmission information is at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and the transmission capability of the terminal
  • at least one uplink transmission is selected according to the transmission capability of the terminal Mode indication to the terminal;
  • the transmission information is at least one recommended uplink transmission mode corresponding to the transmission capability of the terminal, among the at least one recommended uplink transmission mode, at least one uplink transmission mode is selected to be indicated to the terminal.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and position information between any two antenna panels, and the position information includes amplitude and / or phase weighting factor;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the first uplink transmission mode is indicated to the terminal ;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, indicating the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, indicating the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, instructing the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, indicate the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • M is a positive integer greater than 1.
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • one of the at least two scheduling instruction modes supported by the terminal is selected as the scheduling instruction mode of the terminal, and is indicated to the terminal;
  • At least one recommended scheduling indication mode is selected from the at least two scheduling indication modes supported by the terminal and indicated to the terminal;
  • one of the at least one recommended scheduling indication manner sent by the terminal is selected as the scheduling indication manner of the terminal, and is instructed to the terminal.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the data transmission method described above are implemented.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission, including:
  • a first acquisition module configured to acquire a target uplink transmission mode corresponding to the transmission capability of the terminal
  • the sending module is configured to send the data layer of the uplink data on at least one antenna panel of the terminal according to the correspondence between the data layer of the uplink data in the target uplink transmission mode and the antenna panel of the terminal.
  • the first acquisition module is configured to select at least one uplink transmission method among the multiple pre-configured multiple uplink transmission methods as the target uplink transmission method according to the transmission capability of the terminal.
  • the uplink The correspondence between the layer data of the data and the antenna panel of the terminal is different;
  • it is used to report the transmission capability of the terminal to a network device; obtain an uplink transmission method indicated by the network device according to the transmission capability of the terminal, and determine the target uplink transmission method according to the uplink transmission method indicated by the network device ;
  • the uplink transmission mode selected in the network and determining the target uplink transmission mode according to the uplink transmission mode selected by the network device;
  • it is configured to report the transmission capability of the terminal to a network device; obtain at least one recommended uplink transmission method indicated by the network device according to the terminal's transmission capability, and among the at least one recommended uplink transmission method Selecting the target uplink transmission mode.
  • an embodiment of the present disclosure further provides a network device, including:
  • a second acquisition module configured to acquire transmission information reported by the terminal, where the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal;
  • An instruction module configured to indicate an uplink transmission mode to the terminal according to the transmission information.
  • the indication module is configured to select at least one uplink transmission mode to indicate to the terminal from among a plurality of pre-configured multiple uplink transmission modes when the transmission information is the transmission capacity of the terminal; or,
  • the transmission information is at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and the transmission capability of the terminal
  • at least one uplink transmission is selected according to the transmission capability of the terminal Mode indication to the terminal;
  • the transmission information is at least one recommended uplink transmission mode corresponding to the transmission capability of the terminal, among the at least one recommended uplink transmission mode, at least one uplink transmission mode is selected to be indicated to the terminal.
  • one antenna panel may be used according to the correspondence between the data layer of the uplink data in the target transmission mode and the antenna panel of the terminal. Send the data layer of the uplink data to save the terminal's transmit power and reduce the transmission complexity.
  • the data layer of the uplink data can also be transmitted through multiple antenna panels to increase the transmission rate.
  • FIG. 1 is a schematic diagram of weighting forming an intermediate frequency signal in analog beamforming in the related art
  • FIG. 2 is a schematic diagram of weighted shaping of a radio frequency signal in analog beamforming in the related art
  • FIG. 3 is a schematic diagram of digital-analog mixed beamforming in related technologies
  • FIG. 5 is a schematic diagram of a first uplink transmission manner according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a second uplink transmission manner according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a third uplink transmission manner provided by an embodiment of the present disclosure.
  • FIG. 8 is a second schematic flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a structural block diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present disclosure.
  • MIMO Multiple-Input Multiple-Output
  • LTE Long-Term Evolution
  • LTE-Advanced, LTE- A Enhanced Long-Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • Rel-8 In LTE Rel-8, it can support up to 4 layers of MIMO transmission. Rel-9 focuses on enhancements to Multi-User Multiple Input Multiple Output (MU-MIMO) technology. Transmission Mode (TM) -8 MU-MIMO transmission can support up to 4 downlink data layers. .
  • TM Multi-User Multiple Input Multiple Output
  • MU-MIMO Transmission Mode
  • Rel-10 introduced support for 8 antenna ports to further improve the spatial resolution of channel state information, and further extended the single-user multiple-input multiple-output (Single-User MIMO (SU-MIMO)) transmission capacity to a maximum of eight data layers.
  • Rel-13 and Rel-14 introduced FD-MIMO technology to support 32 ports to achieve full-dimensional and vertical beamforming.
  • a large-scale antenna technology is introduced in a mobile communication system.
  • a fully digital large-scale antenna can have up to 128/256/512 antenna elements and up to 128/256/512 transceivers, each antenna element being connected to a transceiver.
  • pilot signals of up to 128/256/512 antenna ports
  • the terminal measures channel state information and feeds it back.
  • an antenna array with up to 32/64 antenna elements can also be configured.
  • a huge beamforming gain is obtained to compensate for signal attenuation caused by path loss.
  • the path loss makes the coverage of wireless signals extremely limited.
  • the coverage of wireless signals can be extended to a practical range.
  • each antenna element has an independent transceiver, which will greatly increase the size, cost and power consumption of the device.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • the reduction of power consumption and performance improvement are relatively limited.
  • a technical solution based on analog beamforming is proposed. As shown in Figure 1 and Figure 2.
  • the main feature of analog beamforming is the weighted shaping of intermediate frequency (Figure 1) or radio frequency signals ( Figure 2) by phase shifters.
  • FIG. 3 a digital-analog hybrid beamforming transceiver architecture solution is proposed, as shown in FIG. 3.
  • the sender and receiver have with Transceivers, number of transmitting antennas Number of receiving antennas
  • the maximum number of parallel transport streams supported by beamforming is
  • the hybrid beamforming structure in Figure 3 balances the flexibility of digital beamforming with the low complexity of analog beamforming.
  • Both analog beamforming and digital-analog mixed beamforming need to adjust the analog beamforming weights at the transmitting and receiving ends so that the beams formed by them can be aligned with the opposite end of the communication.
  • the beamforming weights sent by the base station side and the beamforming weights received by the terminal side need to be adjusted, while for uplink transmissions, the beamforming weights sent by the terminal side and received by the base station side need to be adjusted.
  • Beamforming weights are usually obtained by sending training signals.
  • the base station sends a downlink beam training signal
  • the terminal measures the downlink beam training signal, selects the best base station to transmit the beam, and feeds back the beam-related information to the base station. At the same time, it selects the corresponding best receiving beam and stores it locally.
  • the UE may have multiple antenna panels for uplink transmission.
  • the single antenna panel transmission and the multiple antenna panel transmission are described below.
  • a single panel UE can be configured with an SRS resource set for transmit beam scanning.
  • Each SRS resource set includes multiple SRS resources, and different SRS resources can be shaped using different beams. Since each panel can only form one analog beam at the same time, different SRS resources (corresponding to different beams) in an SRS resource set are transmitted at different times.
  • the base station gNB determines the optimal transmission beam (that is, the SRS resource with the best reception quality) by receiving the SRS resource set, and instructs the UE.
  • GNB can then configure a second SRS resource set for channel state information CSI acquisition, which contains multiple SRS resources, and can use the same or different analog beams (based on previous beam scans).
  • the gNB sends an SRI indication in the PUSCH scheduling grant to the second SRS resource set (the SRS resource set used for CSI acquisition) according to the channel estimation situation.
  • the UE performs PUSCH transmission according to the beam indicated by the SRI.
  • multiple SRS resource sets can be configured for the simulated beam training, where each SRS set corresponds to one panel.
  • Different SRS resources of the same SRS resource set (corresponding to a panel) are transmitted at different times.
  • SRS resources of different SRS resource sets can be sent at the same or different times.
  • the SRS overhead varies linearly with the number of antenna panels. For terminals with a large number of antenna panels (such as vehicles, balloons, and other aircraft with less power and size restrictions), the amount of SRS overhead may be very large.
  • an embodiment of the present disclosure provides a data transmission method applied to a terminal.
  • the terminal is configured with at least two antenna panels for uplink transmission.
  • the transmission method includes:
  • Step 401 Obtain a target uplink transmission mode corresponding to the transmission capability of the terminal.
  • the terminal supports simultaneous transmission of uplink data from at least two antenna panels, and the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal that can perform simultaneous uplink transmission (or the number of SRS resource sets supported by the terminal that can be used for beam management);
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and an amplitude and / or phase weighting factor between any two antenna panels;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • Step 402 According to the correspondence between the data layer of the uplink data in the target uplink transmission mode and the antenna panel of the terminal, send the data layer of the uplink data on at least one antenna panel of the terminal.
  • all data layers of the uplink data are sent on at least one antenna panel of the terminal.
  • the above uplink data is a physical uplink shared channel PUSCH
  • the PUSCH includes L data layers, where L is a positive integer greater than 1.
  • L data layers correspond to two antenna panels. Specifically, layers 1 to K of the L data layers correspond to the antenna panel 1 of the terminal, and K + 1 to L layers correspond to the antenna panel 2 of the terminal.
  • the terminal transmits layers 1 to K of the PUSCH on the antenna panel 1, and transmits K + 1 to L layers of the PUSCH on the antenna panel 2, where K is a positive integer greater than 1 and less than L.
  • the L data layers correspond to one antenna panel, then one antenna panel is selected according to the terminal capability among the multiple antenna panels provided with the terminal, and the L data layers of PUSCH are selected on the selected antenna. Send on the panel.
  • one antenna panel can be used according to the correspondence between the data layer of the uplink data in the target transmission mode and the antenna panel of the terminal. Send the data layer of the uplink data to save the terminal's transmit power and reduce the transmission complexity.
  • the data layer of the uplink data can also be transmitted through multiple antenna panels to increase the transmission rate.
  • obtaining the target uplink transmission method corresponding to the transmission capability of the terminal in the above step 401 includes:
  • At least one uplink transmission method is selected as the target uplink transmission method among a plurality of pre-configured uplink transmission methods.
  • the layer data of the uplink data and the antenna panel of the terminal are different. The correspondence relationship between them is different;
  • report the transmission capability of the terminal to a network device obtain an uplink transmission mode indicated by the network device according to the terminal's transmission capability, and determine the target uplink transmission mode according to the uplink transmission mode indicated by the network device;
  • At least one uplink transmission mode is selected as a recommended uplink transmission mode from a plurality of pre-configured uplink transmission modes and sent to a network device; and the network device is selected from the recommended uplink transmission modes.
  • report the transmission capability of the terminal to a network device obtain at least one recommended uplink transmission method indicated by the network device according to the terminal's transmission capability, and select one of the at least one recommended uplink transmission method.
  • the target uplink transmission method is described.
  • the multiple uplink transmission modes configured in advance include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel.
  • the uplink data is a PUSCH.
  • the PUSCH includes L data layers, where L is a positive integer greater than 1, and the terminal is configured with an antenna panel 1 and an antenna panel 2. As shown in FIG. 5, one antenna panel is selected from the two antenna panels. It is assumed that the antenna panel 1 is selected, and the L data layers of the PUSCH are transmitted on the antenna panel 1.
  • the above-mentioned first uplink transmission method can save terminal transmission power and has low complexity, and does not require calibration between antenna panel panels.
  • the above-mentioned second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately.
  • all data layers of uplink data are mapped to each antenna panel for transmission through precoding.
  • the L data layers of PUSCH are transmitted on antenna panel 1 and antenna panel 2 respectively.
  • each antenna panel panel can maintain a small time domain error, frequency domain error, amplitude error, and / or phase error through calibration to meet the requirements of coherent transmission.
  • the above third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and transmitting each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is all The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the L data layers are divided into 2 groups, 1 to K layers are a group, K + 1 to L layers are a group, 1 to K are transmitted on the antenna panel 1, and K + 1 to L layers are in Send on antenna panel 2.
  • selecting at least one uplink transmission method as the target uplink transmission method among a plurality of pre-configured multiple uplink transmission methods according to the transmission capability of the terminal includes:
  • the target uplink transmission mode is the first An uplink transmission mode.
  • the uplink resource set used for beam management is an SRS resource set.
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, it is determined that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode.
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • M is a positive integer greater than 1.
  • the transmission method that can be used largely depends on the transmission capability of the UE. Therefore, in the embodiment of the present disclosure, the transmission capacity and the transmission mode between the terminal are set. Correspondence can further select an appropriate transmission mode to transmit uplink data according to the terminal capability.
  • the transmission capability of the terminal includes a scheduling indication manner supported by the terminal
  • the scheduling indication manner supported by the terminal includes at least two scheduling indication manners
  • the above-mentioned Before selecting at least one uplink transmission mode among the uplink transmission modes as the target uplink transmission mode, the method further includes:
  • the transmission capability of the terminal is reported to the network device; a scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal is used as the scheduling indication method of the terminal ;
  • report the transmission capability of the terminal to the network device obtain at least one recommended scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal; Selecting a scheduling instruction mode from the scheduling instruction modes, and using the scheduling instruction mode as the scheduling instruction mode of the terminal;
  • the terminal determine at least one recommended scheduling indication mode among at least two scheduling indication modes supported by the terminal and send it to a network device; and select the network device among the at least one recommended scheduling indication mode.
  • the scheduling instruction mode of the terminal as the scheduling instruction mode of the terminal.
  • the scheduling instruction mode of the terminal when determining the scheduling instruction mode of the terminal, it can be implemented by using the foregoing solutions, thereby facilitating subsequent selection of a corresponding uplink transmission mode according to the scheduling instruction mode of the terminal.
  • an embodiment of the present disclosure further provides a data transmission method, which is applied to a network device.
  • the network device may be specifically a base station.
  • the transmission method includes:
  • Step 801 Obtain transmission information reported by the terminal, where the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication modes supported by the terminal include at least one of the following scheduling indication modes:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and an amplitude and / or phase weighting factor between any two antenna panels;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the above-mentioned recommended uplink transmission mode is selected by the terminal from a plurality of pre-configured uplink transmission modes.
  • the pre-configured multiple uplink transmission modes include a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode.
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • Step 802 According to the transmission information, indicate an uplink transmission mode to the terminal.
  • the uplink transmission method includes a correspondence between a data layer of uplink data and an antenna panel of the terminal.
  • the network device indicates the uplink transmission mode to the terminal according to the transmission information reported by the terminal, so that the terminal determines the target uplink transmission mode according to the uplink transmission mode indicated by the network device, and according to the data of the uplink data in the target uplink transmission mode Correspondence between the layers and the antenna panel of the terminal, and a data layer of uplink data is sent on at least one antenna panel of the terminal.
  • step 802 of indicating the uplink transmission mode to the terminal according to the transmission information includes:
  • At least one uplink transmission mode is selected from a plurality of pre-configured multiple uplink transmission modes to indicate to the terminal according to the transmission capacity of the terminal; or,
  • the transmission information is at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and the transmission capability of the terminal
  • at least one uplink transmission is selected according to the transmission capability of the terminal Mode indication to the terminal;
  • the transmission information is at least one recommended uplink transmission mode corresponding to the transmission capability of the terminal, among the at least one recommended uplink transmission mode, at least one uplink transmission mode is selected to be indicated to the terminal.
  • selecting at least one uplink transmission mode from a plurality of pre-configured multiple uplink transmission modes to indicate to the terminal according to the transmission capability of the terminal includes:
  • the first uplink transmission mode is indicated to the terminal ;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, indicating the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, indicating the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, instructing the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, indicate the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • M is a positive integer greater than 1.
  • the transmission capability of the terminal includes a scheduling indication mode supported by the terminal
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • the method further includes:
  • one of the at least two scheduling instruction modes supported by the terminal is selected as the scheduling instruction mode of the terminal, and is indicated to the terminal;
  • At least one recommended scheduling indication mode is selected from the at least two scheduling indication modes supported by the terminal and indicated to the terminal;
  • one of the at least one recommended scheduling indication manner sent by the terminal is selected as the scheduling indication manner of the terminal, and is instructed to the terminal.
  • a network device indicates an uplink transmission mode to a terminal according to transmission information reported by the terminal, so that the terminal determines a target uplink transmission mode according to the uplink transmission mode indicated by the network device, and uplinks the target uplink transmission mode according to Correspondence between a data layer of data and an antenna panel of a terminal, and a data layer of uplink data is sent on at least one antenna panel of the terminal.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission, including: a transceiver 910, a memory 920, a processor 900, and a storage device.
  • a transceiver 910 configured with at least two antenna panels for uplink transmission
  • a memory 920 configured with at least two antenna panels for uplink transmission
  • a processor 900 a storage device.
  • the data layer of the uplink data is sent on the at least one antenna panel of the terminal through the transceiver.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 910 may be multiple elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices over a transmission medium.
  • the user interface 930 may also be an interface capable of externally connecting and connecting the required devices.
  • the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 900 when performing operations.
  • the processor 900 is further configured to read the program in the memory 920 and execute the following steps:
  • At least one uplink transmission method is selected as the target uplink transmission method among a plurality of pre-configured uplink transmission methods.
  • the layer data of the uplink data and the antenna panel of the terminal are different. The correspondence relationship between them is different;
  • report the transmission capability of the terminal to a network device obtain an uplink transmission mode indicated by the network device according to the terminal's transmission capability, and determine the target uplink transmission mode according to the uplink transmission mode indicated by the network device;
  • At least one uplink transmission mode is selected as a recommended uplink transmission mode from a plurality of pre-configured uplink transmission modes and sent to a network device; and the network device is selected from the recommended uplink transmission modes.
  • report the transmission capability of the terminal to a network device obtain at least one recommended uplink transmission method indicated by the network device according to the terminal's transmission capability, and select one of the at least one recommended uplink transmission method.
  • the target uplink transmission method is described.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication mode supported by the terminal includes at least one of the following scheduling indication modes:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and an amplitude and / or phase weighting factor between any two antenna panels;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the processor 900 is further configured to read the program in the memory 920 and execute the following steps:
  • the target uplink transmission mode is the first An uplink transmission mode
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • M is a positive integer greater than 1.
  • the transmission capability of the terminal includes a scheduling indication mode supported by the terminal
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • the processor 900 is further configured to read a program in the memory 920 and execute the following steps:
  • the transmission capability of the terminal is reported to the network device; a scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal is used as the scheduling indication method of the terminal ;
  • report the transmission capability of the terminal to the network device obtain at least one recommended scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal; Selecting a scheduling instruction mode from the scheduling instruction modes, and using the scheduling instruction mode as the scheduling instruction mode of the terminal;
  • the terminal determine at least one recommended scheduling indication mode among at least two scheduling indication modes supported by the terminal and send it to a network device; and select the network device among the at least one recommended scheduling indication mode.
  • the scheduling instruction mode of the terminal as the scheduling instruction mode of the terminal.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the data layer of the uplink data in the target uplink transmission mode is sent on at least one antenna panel of the terminal.
  • an embodiment of the present disclosure further provides a terminal configured with at least two antenna panels for uplink transmission, including:
  • a first acquisition module 1001 configured to acquire a target uplink transmission mode corresponding to a transmission capability of a terminal
  • the sending module 1002 is configured to send the data layer of the uplink data on at least one antenna panel of the terminal according to the correspondence between the data layer of the uplink data in the target uplink transmission mode and the antenna panel of the terminal.
  • the first obtaining module is configured to select at least one uplink transmission mode as the target uplink transmission mode among a plurality of pre-configured multiple uplink transmission modes according to the transmission capability of the terminal, where different The correspondence between the layer data of the uplink data and the antenna panel of the terminal in the uplink transmission mode is different;
  • it is used to report the transmission capability of the terminal to a network device; obtain an uplink transmission method indicated by the network device according to the transmission capability of the terminal, and determine the target uplink transmission method according to the uplink transmission method indicated by the network device ;
  • the uplink transmission mode selected in the network and determining the target uplink transmission mode according to the uplink transmission mode selected by the network device;
  • it is configured to report the transmission capability of the terminal to a network device; obtain at least one recommended uplink transmission method indicated by the network device according to the terminal's transmission capability, and among the at least one recommended uplink transmission method Selecting the target uplink transmission mode.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and an amplitude and / or phase weighting factor between any two antenna panels;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the plurality of pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the number of the first acquisition module used for simultaneous uplink transmission supported by the terminal is 1 or the number of uplink resource sets supported by the terminal that can be used for beam management. When it is 1, determine that the target uplink transmission mode is the first uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, determining that the target uplink transmission mode is the first uplink transmission mode or the third uplink transmission mode;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, determining that the target uplink transmission mode is the first uplink transmission mode or the second uplink transmission mode;
  • M is a positive integer greater than 1.
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • a determining module configured to: before the first obtaining module selects at least one uplink transmission method as the target uplink transmission method among a plurality of pre-configured multiple uplink transmission methods according to the transmission capability of the terminal, Selecting one of the at least two scheduling indication modes supported as the scheduling indication mode of the terminal;
  • the transmission capability of the terminal is reported to the network device; a scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal is used as the scheduling indication method of the terminal ;
  • report the transmission capability of the terminal to the network device obtain at least one recommended scheduling indication method selected by the network device among at least two scheduling indication methods supported by the terminal according to the transmission capability of the terminal; Selecting a scheduling instruction mode from the scheduling instruction modes, and using the scheduling instruction mode as the scheduling instruction mode of the terminal;
  • the terminal determine at least one recommended scheduling indication mode among at least two scheduling indication modes supported by the terminal and send it to a network device; and select the network device among the at least one recommended scheduling indication mode.
  • the scheduling instruction mode of the terminal as the scheduling instruction mode of the terminal.
  • uplink when the terminal supports joint transmission of uplink data from at least two antenna panels, according to the correspondence between the data layer of the uplink data in the target transmission mode and the antenna panel of the terminal, uplink can be sent through one antenna panel.
  • the data layer of data to save the transmission power of the terminal and reduce the transmission complexity.
  • the data layer of uplink data can also be transmitted through multiple antenna panels to increase the transmission rate.
  • an embodiment of the present disclosure further provides a network device.
  • the network device is specifically a base station and includes a memory 1120, a processor 1100, a transceiver 1110, a bus interface, and a bus interface stored in the memory 1120 and can be processed.
  • a computer program running on a processor 1100, the processor 1100 is configured to read the program in the memory 1120, and execute the following processes:
  • the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal;
  • an uplink transmission mode is indicated to the terminal.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1110 may be a plurality of elements, including a transmitter and a transceiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 when performing operations.
  • processor 1100 executes the computer program
  • steps may also be implemented:
  • At least one uplink transmission mode is selected from a plurality of pre-configured multiple uplink transmission modes to indicate to the terminal according to the transmission capacity of the terminal; or,
  • the transmission information is at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and the transmission capability of the terminal
  • at least one uplink transmission is selected according to the transmission capability of the terminal Mode indication to the terminal;
  • the transmission information is at least one recommended uplink transmission mode corresponding to the transmission capability of the terminal, among the at least one recommended uplink transmission mode, at least one uplink transmission mode is selected to be indicated to the terminal.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication mode supported by the terminal includes at least one of the following scheduling indication modes:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and position information between any two antenna panels, and the position information includes amplitude and / or phase weighting factor;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include: a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • processor 1100 executes the computer program
  • steps may also be implemented:
  • the first uplink transmission mode is indicated to the terminal ;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, indicating the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, indicating the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, instructing the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, indicate the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • M is a positive integer greater than 1.
  • the transmission capability of the terminal includes a scheduling indication mode supported by the terminal
  • the scheduling indication mode supported by the terminal includes at least two scheduling indication modes
  • one of the at least two scheduling instruction modes supported by the terminal is selected as the scheduling instruction mode of the terminal, and is indicated to the terminal;
  • At least one recommended scheduling indication mode is selected from the at least two scheduling indication modes supported by the terminal and indicated to the terminal;
  • a scheduling instruction mode is selected as the scheduling instruction mode of the terminal from at least one recommended scheduling instruction mode sent by the terminal, and the terminal is instructed.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are implemented:
  • the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal;
  • an uplink transmission mode is indicated to the terminal.
  • an embodiment of the present disclosure further provides a network device, including:
  • the second obtaining module 1201 is configured to obtain transmission information reported by the terminal, where the transmission information includes at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and / or the transmission capability of the terminal;
  • the instruction module 1202 is configured to indicate an uplink transmission mode to the terminal according to the transmission information.
  • the instruction module is configured to select at least one uplink transmission mode indication according to the transmission capacity of the terminal when the transmission information is a terminal's transmission capacity. To the terminal; or,
  • the transmission information is at least one recommended uplink transmission method corresponding to the transmission capability of the terminal and the transmission capability of the terminal
  • at least one uplink transmission is selected according to the transmission capability of the terminal Mode indication to the terminal;
  • the transmission information is at least one recommended uplink transmission mode corresponding to the transmission capability of the terminal, among the at least one recommended uplink transmission mode, at least one uplink transmission mode is selected to be indicated to the terminal.
  • the transmission capability of the terminal includes at least one of the following:
  • the number of antenna panels supported by the terminal capable of simultaneous uplink transmission is the number of antenna panels supported by the terminal capable of simultaneous uplink transmission
  • the number of antenna panels supported by the terminal capable of coherent transmission is the number of antenna panels supported by the terminal capable of coherent transmission
  • a scheduling indication mode supported by the terminal is A scheduling indication mode supported by the terminal.
  • the scheduling indication manner supported by the terminal includes at least one of the following scheduling indication manners:
  • a first scheduling instruction mode where the first scheduling instruction mode refers to that each antenna panel of the terminal indicates target information
  • a second scheduling instruction mode where the second scheduling instruction mode refers to that each antenna panel of the terminal indicates target information and position information between any two antenna panels, and the position information includes amplitude and / or phase weighting factor;
  • a third scheduling indication mode where the third scheduling indication mode refers to all antenna panels configured by the terminal jointly indicating target information
  • the target information includes sending a precoding matrix index TRMI and / or sending a rank index TRI.
  • the pre-configured multiple uplink transmission modes include a first uplink transmission mode, a second uplink transmission mode, and a third uplink transmission mode;
  • the first uplink transmission mode refers to selecting one antenna panel among at least two antenna panels configured by the terminal, and transmitting all data layers of uplink data on the selected antenna panel;
  • the second uplink transmission mode means that all data layers of uplink data are transmitted on each antenna panel of the terminal separately;
  • the third uplink transmission method refers to dividing all data layers of the uplink data into N groups, and sending each group of data layers on an antenna panel, where each group of data layers corresponds to the antenna panel one by one, and N is The number of antenna panels of the terminal, and N is a positive integer greater than 1.
  • the number of the antenna panel used by the instruction module for simultaneous uplink transmission supported by the terminal is 1 or the number of uplink resource sets supported by the terminal that can be used for beam management is At 1 o'clock, indicating the first uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is 1, indicating the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the number of antenna panels supported by the terminal capable of coherent transmission is When the number is M, indicating the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the first When scheduling the indication mode, instructing the first uplink transmission mode or the third uplink transmission mode to the terminal;
  • the number of antenna panels capable of simultaneous uplink transmission supported by the terminal or the number of uplink resource sets supported by the terminal that can be used for beam management is M, and the scheduling indication method supported by the terminal is the second When the scheduling instruction mode or the third scheduling instruction mode is used, indicate the first uplink transmission mode or the second uplink transmission mode to the terminal;
  • M is a positive integer greater than 1.
  • the network device includes a transmission capability of the terminal including a scheduling indication manner supported by the terminal, and the scheduling indication manner supported by the terminal includes at least two scheduling indication manners;
  • the network device further includes:
  • a selection module is configured to instruct the terminal to select at least one uplink transmission method among multiple pre-configured multiple uplink transmission methods to instruct the terminal according to the terminal's transmission capability, and at least two types of scheduling supported by the terminal according to the terminal's transmission capability
  • a scheduling instruction mode selected from the indication modes is used as a terminal's scheduling instruction mode and is indicated to the terminal;
  • At least one recommended scheduling indication mode is selected from the at least two scheduling indication modes supported by the terminal and indicated to the terminal;
  • one of the at least one recommended scheduling indication manner sent by the terminal is selected as the scheduling indication manner of the terminal, and is instructed to the terminal.
  • the network device indicates the uplink transmission mode to the terminal according to the transmission information reported by the terminal, so that the terminal determines the target uplink transmission mode according to the uplink transmission mode indicated by the network device, and according to the data of the uplink data in the target uplink transmission mode Correspondence between the layers and the antenna panel of the terminal, and a data layer of uplink data is sent on at least one antenna panel of the terminal.
  • An embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the electronic hardware may include, but is not limited to, electronic circuits, Application Specific Integrated Circuits (ASICs), programmable logic devices, programmable processors, and the like.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.

Abstract

提供了一种数据传输方法、终端及网络设备。本公开的传输方法包括:获取与终端的传输能力对应的目标上行传输方式;根据目标上行传输方式中上行数据的数据层与终端的天线面板间的对应关系,在终端的至少一个天线面板上发送上行数据的数据层。

Description

数据传输方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年8月17日在中国提交的中国专利申请号No.201810942469.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种数据传输方法、终端及网络设备。
背景技术
相关技术中备有多个发射天线的用户设备或者终端(User Equipment,UE)能够执行上行波束赋形。为了确定上行UL波束赋形矩阵,处于无线资源控制连接(RRC_CONNECTED)状态的UE可以被半静态地配置有多个UE专属上行链路探测参考信号(Sounding Reference Signal,SRS)资源。每个SRS资源上传输的SRS信号都用特定的波束赋形矩阵进行波束赋形。UE在上行链路中发送这些SRS资源。发送接收点(transmission and reception point,TRP)测量不同SRS资源的信号质量,并选择优选的SRS资源。TRP经由下行控制信息(Downlink Control Information,DCI)将所选SRS资源的索引(SRS资源指示符(SRS resource indicator,SRI))发送给UE。UE从SRI能够推断TRP推荐哪个上行波束赋形矩阵(例如SRS资源)用于将来的上行链路传输。UE然后可以使用由SRI指示的上行链路波束赋形矩阵用于将来的上行链路传输。
UE可以具有多个用于上行链路传输的天线面板。每个天线面板由一组天线单元组成。天线面板的确切数量,天线单元的数量以及每个面板内的天线单元的布置根据具体实现方式确定,并且不同的UE可以有不同的实现方式。UE可以一次从一个面板发送一个数据层。UE也可以同时从天线面板的子集(包括多于一个天线面板)发送一个数据层,这里的描述同样适用于SRS资源(SRS信号的传输)。但相关技术中的规范在终端支持从多天线面板联合传 输数据的情况下,如何通过终端的天线面板进行上行数据的传输还未相关描述。
发明内容
本公开的目的在于提供一种数据传输方法、终端及网络设备,用以解决相关技术中的规范在终端支持从多天线面板联合传输数据的情况下,如何通过终端的天线面板进行上行数据的传输还未相关描述的问题。
为了实现上述目的,本公开提供了一种数据传输方法,应用于终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
获取与终端的传输能力对应的目标上行传输方式;
根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
其中,获取与终端的传输能力对应的目标上行传输方式,包括:
根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
或者,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
其中,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
其中,所述根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,包括:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终 端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
其中,M为大于1的正整数。
其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
在根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式之前,还包括:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方式。
为了实现上述目的,本公开实施例还提供了一种数据传输方法,应用于网络设备,包括:
获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
根据所述传输信息,向终端指示上行传输方式。
其中,根据所述传输信息,向终端指示上行传输方式,包括:
在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
其中,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的位置信息,所述位置信息包括幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第 二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
其中,所述根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端,包括:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
其中,M为大于1的正整数。
其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
在根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端之前,还包括:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取至少一种推荐调度指示方式并指示给终端;
或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式,并指示给终端。
为了实现上述目的,本公开实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,所述终端包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
获取与终端的传输能力对应的目标上行传输方式;
根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
其中,所述处理器执行所述程序时还实现以下步骤:
根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
或者,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
其中,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
其中,所述处理器执行所述程序时还实现以下步骤:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
其中,M为大于1的正整数。
其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
所述处理器执行所述程序时还实现以下步骤:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方式。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述数据传输方法的步骤。
为了实现上述目的,本公开实施例还提供了一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
通过收发机获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
根据所述传输信息,向终端指示上行传输方式。
其中,所述处理器执行所述程序时还实现以下步骤:
在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
其中,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面 板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的位置信息,所述位置信息包括幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
其中,所述处理器执行所述程序时还实现以下步骤:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终 端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
其中,M为大于1的正整数。
其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
所述处理器执行所述程序时还实现以下步骤:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取至少一种推荐调度指示方式并指示给终端;
或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式,并指示给终端。
为了实现上述目的,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述数据传输方法的步骤。
为了实现上述目的,本公开实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
第一获取模块,用于获取与终端的传输能力对应的目标上行传输方式;
发送模块,用于根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
其中,所述第一获取模块用于根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应 关系不同;
或者,用于将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
或者,用于根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
或者,用于将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
为了实现上述目的,本公开实施例还提供了一种网络设备,包括:
第二获取模块,用于获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
指示模块,用于根据所述传输信息,向终端指示上行传输方式。
其中,所述指示模块用于在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,在终端支持从至少两个天线面板联合传输上行数据时,根据目标传输方式中上行数据的数据层与终端的天线面板之间的对应关系,可通过一个天线面板发送上行数据的数据层,以节省终端发送功率并降低传输复杂度,也可通过多个天线面板联合传输上行数据的数据 层,以提高传输速率。
附图说明
图1为相关技术中的模拟波束赋形中对中频信号进行加权赋形的示意图;
图2为相关技术中的模拟波束赋形中对射频信号进行加权赋形的示意图;
图3为相关技术中的数模混合波束赋形示意图;
图4为本公开实施例提供的数据传输方法的流程示意图之一;
图5为本公开实施例提供的第一上行传输方式的示意图;
图6为本公开实施例提供的第二上行传输方式的示意图;
图7为本公开实施例提供的第三上行传输方式的示意图。
图8为本公开实施例提供的数据传输方法的流程示意图之二;
图9为本公开实施例提供的终端的结构框图;
图10为本公开实施例提供的终端的模块示意图;
图11为本公开实施例提供的网络设备的结构框图;
图12为本公开实施例提供的网络设备的模块示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例及附图进行详细描述。
为使本领域技术人员能够更好地理解本公开实施例的技术方案,先进行如下说明。
鉴于多输入多输出(Multiple-Input Multiple-Output,MIMO)技术对于提高峰值速率与系统频谱利用率的重要作用,长期演进(Long Term Evolution,LTE)或增强型长期演进(LTE-Advanced,LTE-A)等无线接入技术标准都是以MIMO+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。MIMO技术的性能增益来自于多天线系统所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对多用户 多输入多输出(Multi-User MIMO,MU-MIMO)技术进行了增强,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则引入支持8天线端口进一步提高了信道状态信息的空间分辨率,并进一步将单用户多输入多输出(Single-User MIMO,SU-MIMO)的传输能力扩展至最多8个数据层。Rel-13和Rel-14引入了FD-MIMO技术支持到32端口,实现全维度以及垂直方向的波束赋形。
为了进一步提升MIMO技术,移动通信系统中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线振子,以及高达128/256/512个收发信机,每个天线振子连接一个收发信机。通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。对于终端,也可以配置高达32/64个天线振子的天线阵列。通过基站和终端两侧的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以实用的范围内。
全数字天线阵列,每个天线振子都有独立的收发信机,将会使得设备的尺寸、成本和功耗大幅度上升。特别是对于收发信机的模数转换器(Analog-to-Digital Converter,ADC)和数模转换器(Digital-to-Analog Converter,DAC),功耗降低和性能提升都比较有限。为了降低设备的尺寸、成本和功耗,基于模拟波束赋形的技术方案被提出。如图1和图2所示。模拟波束赋形的主要特点是通过移相器对中频(图1)或射频信号(图2)进行加权赋形。
为了进一步提升模拟波束赋形性能,一种数字模拟混合波束赋形收发架构方案被提出,如图3所示。在图3中,发送端和接收端分别有
Figure PCTCN2019098618-appb-000001
Figure PCTCN2019098618-appb-000002
个收发信机,发送端天线振子数
Figure PCTCN2019098618-appb-000003
接收端天线振子数
Figure PCTCN2019098618-appb-000004
波束赋形支持的最大并行传输流数量为
Figure PCTCN2019098618-appb-000005
图3的混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡。
模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使其所形成的波束能对准通信的对端。对于下行传输,需要调整基站侧发送的波束赋形权值和终端侧接收的波束赋形权值,而对于上行传输, 需要调整终端侧发送的和基站侧接收的波束赋形权值。波束赋形的权值通常通过发送训练信号获得。下行方向,基站发送下行波束训练信号,终端测量下行波束训练信号,选择出最佳的基站发送波束,并将波束相关的信息反馈给基站,同时选择出对应的最佳接收波束,保存在本地。
UE可以具有多个用于上行链路传输的天线面板,下面分别对单天线面板传输和多天线面板传输进行说明。
(1)单天线面板panel传输
一个单panel UE可以被配置一个SRS资源集用于发射波束扫描。每个SRS资源集合包含多个SRS资源,不同的SRS资源可以使用不同的波束进行赋形。由于每个panel同时只能形成一个模拟波束,一个SRS资源集合中的不同SRS资源(对应于不同的波束)在不同时刻发送。基站gNB通过对SRS资源集合的接收确定最优的发射波束(即接收质量最好的SRS资源),并向UE进行指示。
随后gNB可以配置第二个SRS资源集用于信道状态信息CSI获取,其中包含多个SRS资源,并可以使用相同或不同的模拟波束(基于之前的波束扫描)。gNB根据信道估计情况,在PUSCH的调度许可中发送一个指向第二SRS资源集合(用于CSI获取的SRS资源集合)的SRI指示。UE根据SRI指示的波束进行PUSCH传输。
(2)多天线面板panel传输
与之类似,如果UE有多个panel,可以为其配置多个SRS资源集用于模拟波束训练,其中每个SRS集合对应于一个panel。同一个SRS资源集合(对应于一个panel)的不同SRS资源在不同的时刻发送。因为不同的SRS资源集合被映射到不同的panel,因此不同SRS资源集合的SRS资源可以在相同或不同的时刻发送。这种情况下,SRS的开销随天线panel数量线性变化。对于配置了大量天线panel的终端(如功率和尺寸限制较少的车辆、气球及其他飞行器等),SRS开销量可能会非常大。
但相关技术中的规范在终端支持从多天线面板联合传输数据的情况下,如何通过终端的天线面板进行上行数据的传输还未相关描述。
针对上述问题,如图4所示,本公开实施例提供了一种数据传输方法, 应用于终端,所述终端配置有至少两个用于上行链路传输的天线面板,该传输方法,包括:
步骤401:获取与终端的传输能力对应的目标上行传输方式。
这里,上述终端支持从至少两个天线面板上同时传输上行数据,终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量(或者,终端支持的能够用于波束管理的SRS资源集合的数量);
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
步骤402:根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
具体的,根据目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据所有的数据层。
例如,上述上行数据为物理上行共享信道PUSCH,该PUSCH包括L个数据层,L为大于1的正整数。该目标上行传输方式中L个数据层与两个天线面板对应,具体的,L个数据层中的1至K层与终端的天线面板1对应,K+1至L层与终端的天线面板2对应,则终端在天线面板1上传输PUSCH的1至K层,并在天线面板2上传输PUSCH的K+1至L层,K为大于1且小于L的正整数。或者,该目标上行传输方式中L个数据层与一个天线面板 对应,则在终端配有的多个天线面板中根据终端能力选取一个天线面板,并将PUSCH的L个数据层在所选取的天线面板上发送。
本公开实施例的数据传输方法,在终端支持从至少两个天线面板联合传输上行数据时,根据目标传输方式中上行数据的数据层与终端的天线面板之间的对应关系,可通过一个天线面板发送上行数据的数据层,以节省终端发送功率并降低传输复杂度,也可通过多个天线面板联合传输上行数据的数据层,以提高传输速率。
进一步地,上述步骤401中获取与终端的传输能力对应的目标上行传输方式,包括:
根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
或者,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
本公开实施例中,预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输。
假设上行数据为PUSCH,该PUSCH包括L个数据层,L为大于1的正整数,且终端配置有天线面板1和天线面板2。如图5所示,在两个天线面板中选取一个天线面板,假定选取天线面板1,PUSCH的L个数据层均在该天 线面板1上发送。
这里,上述第一上行传输方式,可以节省终端发送功率并具有较低的复杂度,同时也不要求天线面板panel之间进行校准。
上述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输。
具体的,将上行数据的所有数据层通过预编码映射至每一个天线面板进行传输,如图6所示,将PUSCH的L个数据层分别在天线面板1和天线面板2上进行发送。
这里,上述第二上行传输方式,要求各个天线面板panel之间能够通过校准保持较小的时域误差、频域误差、幅度误差和/或相位误差,以满足相干传输的要求。
上述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
如图7所示,将L个数据层分成2组,1至K层为一组,K+1至L层为一组,1至K在天线面板1上发送,K+1至L层在天线面板2上发送。
该第三上行传输方式中,不要求panel之间具有良好的校准。
进一步地,上述步骤402中根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,包括:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式。
具体的,上述用于波束管理的上行资源集合为SRS资源集合。
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式。
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的 能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
其中,M为大于1的正整数。
本公开实施例中,终端在进行上行传输时,能够使用的传输方式在很大程度上取决于UE的传输能力,因此,本公开实施例中通过设定终端的传输能力与传输方式之间的对应关系,进而能够根据终端能力选取合适的传输方式来传输上行数据。
进一步地,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时,上述在根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式之前,所述方法还包括:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确 定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方式。
本公开实施例中,在确定终端的调度指示方式时,可通过上述几种方案来实现,进而便于后续根据终端的调度指示方式选取相应的上行传输方式。
如图8所示,本公开的实施例还提供了一种数据传输方法,应用于网络设备,该网络设备可具体为基站,该传输方法包括:
步骤801:获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力。
终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
其中,终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
上述推荐上行传输方式为终端从预先配置的多种上行传输方式中选取的,预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
步骤802:根据所述传输信息,向终端指示上行传输方式。
该上行传输方式中包含有上行数据的数据层与终端的天线面板之间的对应关系。
本公开实施例中,网络设备根据终端上报的传输信息,向终端指示上行传输方式,以便于终端根据网络设备指示的上行传输方式确定目标上行传输方式,并根据目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
进一步地,上述步骤802中根据所述传输信息,向终端指示上行传输方式,包括:
在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
具体的,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端,包括:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
其中,M为大于1的正整数。
进一步地,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
在根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端之前,所述方法还包括:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取至少一种推荐调度指示方式并指示给终端;
或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式,并指示给终端。
本公开实施例的数据传输方法,网络设备根据终端上报的传输信息,向终端指示上行传输方式,以便于终端根据网络设备指示的上行传输方式确定目标上行传输方式,并根据目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
如图9所示,本公开的实施例还提供了一种终端,所述终端配置有至少 两个用于上行链路传输的天线面板,包括:收发机910、存储器920、处理器900及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取与终端的传输能力对应的目标上行传输方式;
根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,通过收发机在所述终端的至少一个天线面板上发送上行数据的数据层。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口930还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
可选的,处理器900还用于读取存储器920中的程序,执行如下步骤:
根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
或者,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据 所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
可选的,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
可选的,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
可选的,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
可选的,处理器900还用于读取存储器920中的程序,执行如下步骤:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终 端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
其中,M为大于1的正整数。
可选的,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
处理器900还用于读取存储器920中的程序,执行如下步骤:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确 定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方式。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
获取与终端的传输能力对应的目标上行传输方式;
根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
该程序被处理器执行时能实现上述应用于终端侧的数据传输方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图10所示,本公开的实施例还提供了一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
第一获取模块1001,用于获取与终端的传输能力对应的目标上行传输方式;
发送模块1002,用于根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
本公开实施例的终端,所述第一获取模块用于根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
或者,用于将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
或者,用于根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
或者,用于将所述终端的传输能力上报给网络设备;获取所述网络设备 根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
本公开实施例的终端,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
本公开实施例的终端,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
本公开实施例的终端,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
本公开实施例的终端,所述第一获取模块用于在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
其中,M为大于1的正整数。
本公开实施例的终端,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
本公开实施例的终端,还包括:
确定模块,用于在第一获取模块根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式之前,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度 指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方式。
本公开实施例的终端,在终端支持从至少两个天线面板联合传输上行数据时,根据目标传输方式中上行数据的数据层与终端的天线面板之间的对应关系,可通过一个天线面板发送上行数据的数据层,以节省终端发送功率并降低传输复杂度,也可通过多个天线面板联合传输上行数据的数据层,以提高传输速率。
如图11所示,本公开的实施例还提供了一种网络设备,该网络设备具体为基站,包括存储器1120、处理器1100、收发机1110、总线接口及存储在存储器1120上并可在处理器1100上运行的计算机程序,所述处理器1100用于读取存储器1120中的程序,执行下列过程:
通过收发机获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
根据所述传输信息,向终端指示上行传输方式。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
可选的,所述处理器1100执行所述计算机程序时还可实现以下步骤:
在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
可选的,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
可选的,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的位置信息,所述位置信息包括幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
可选的,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
可选的,所述处理器1100执行所述计算机程序时还可实现以下步骤:
在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
其中,M为大于1的正整数。
可选的,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
所述处理器1100执行所述计算机程序时还可实现以下步骤:
根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取至少一种推荐调度指示方式并指示给终端;
或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方 式作为所述终端的调度指示方式,并指示给终端。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
根据所述传输信息,向终端指示上行传输方式。
该程序被处理器执行时能实现上述应用于网络设备侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图12所示,本公开的实施例还提供了一种网络设备,包括:
第二获取模块1201,用于获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
指示模块1202,用于根据所述传输信息,向终端指示上行传输方式。
本公开实施例的网络设备,所述指示模块用于在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
本公开实施例的网络设备,所述终端的传输能力包括以下至少一项:
所述终端支持的能够同时进行上行传输的天线面板的数量;
所述终端支持的能够用于波束管理的上行资源集合的数量;
所述终端支持的能够进行相干传输的天线面板的数量;
所述终端支持的调度指示方式。
本公开实施例的网络设备,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面 板均指示目标信息;
第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的位置信息,所述位置信息包括幅度和/或相位加权因子;
第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
本公开实施例的网络设备,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
本公开实施例的网络设备,所述指示模块用于在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的 调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
其中,M为大于1的正整数。
本公开实施例的网络设备,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
所述网络设备还包括:
选取模块,用于在指示模块根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端之前,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取至少一种推荐调度指示方式并指示给终端;
或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式,并指示给终端。
本公开实施例的网络设备,根据终端上报的传输信息,向终端指示上行传输方式,以便于终端根据网络设备指示的上行传输方式确定目标上行传输方式,并根据目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结 合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。电子硬件可以包括但不限于电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程的逻辑器件、可编程的处理器等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (34)

  1. 一种数据传输方法,应用于终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
    获取与终端的传输能力对应的目标上行传输方式;
    根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
  2. 根据权利要求1所述的数据传输方法,其中,获取与终端的传输能力对应的目标上行传输方式,包括:
    根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
    或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
    或者,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
    或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
  3. 根据权利要求2所述的数据传输方法,其中,所述终端的传输能力包括以下至少一项:
    所述终端支持的能够同时进行上行传输的天线面板的数量;
    所述终端支持的能够用于波束管理的上行资源集合的数量;
    所述终端支持的能够进行相干传输的天线面板的数量;
    所述终端支持的调度指示方式。
  4. 根据权利要求3所述的数据传输方法,其中,所述终端支持的调度指 示方式包括以下至少一种调度指示方式:
    第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
    第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
    第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
    所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
  5. 根据权利要求3或4所述的数据传输方法,其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
    其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
    所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
    所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
  6. 根据权利要求5所述的数据传输方法,其中,所述根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,包括:
    在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终 端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
    其中,M为大于1的正整数。
  7. 根据权利要求2所述的数据传输方法,其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
    在根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式之前,还包括:
    根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
    或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
    或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
    或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方 式。
  8. 一种数据传输方法,应用于网络设备,包括:
    获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
    根据所述传输信息,向终端指示上行传输方式。
  9. 根据权利要求8所述的数据传输方法,其中,根据所述传输信息,向终端指示上行传输方式,包括:
    在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
    在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
    在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
  10. 根据权利要求9所述的数据传输方法,其中,所述终端的传输能力包括以下至少一项:
    所述终端支持的能够同时进行上行传输的天线面板的数量;
    所述终端支持的能够用于波束管理的上行资源集合的数量;
    所述终端支持的能够进行相干传输的天线面板的数量;
    所述终端支持的调度指示方式。
  11. 根据权利要求10所述的数据传输方法,其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
    第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
    第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的位置信息,所述位置信息包括幅度和/或相位加权因子;
    第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天 线面板联合指示目标信息;
    所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
  12. 根据权利要求10或11所述的数据传输方法,其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
    其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
    所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
    所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
  13. 根据权利要求12所述的数据传输方法,其中,所述根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端,包括:
    在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述 第三上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
    其中,M为大于1的正整数。
  14. 根据权利要求9所述的数据传输方法,其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
    在根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端之前,还包括:
    根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
    或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选取至少一种推荐调度指示方式并指示给终端;
    或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式,并指示给终端。
  15. 一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,所述终端包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    获取与终端的传输能力对应的目标上行传输方式;
    根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
  16. 根据权利要求15所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
    或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据 所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
    或者,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
    或者,将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
  17. 根据权利要求16所述的终端,其中,所述终端的传输能力包括以下至少一项:
    所述终端支持的能够同时进行上行传输的天线面板的数量;
    所述终端支持的能够用于波束管理的上行资源集合的数量;
    所述终端支持的能够进行相干传输的天线面板的数量;
    所述终端支持的调度指示方式。
  18. 根据权利要求17所述的终端,其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
    第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
    第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的幅度和/或相位加权因子;
    第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
    所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
  19. 根据权利要求17或18所述的终端,其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
    其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
    所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
    所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
  20. 根据权利要求19所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第三上行传输方式;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,确定所述目标上行传输方式为所述第一上行传输方式或所述第二上行传输方式;
    其中,M为大于1的正整数。
  21. 根据权利要求16所述的终端,其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度 指示方式时;
    所述处理器执行所述程序时还实现以下步骤:
    根据终端的传输能力,在终端支持的至少两种调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式;
    或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的一种调度指示方式,并作为所述终端的调度指示方式;
    或者,将终端的传输能力上报给网络设备;获取网络设备根据所述终端的传输能力在终端支持的至少两种调度指示方式中选取的至少一种推荐调度指示方式;在所述至少一种推荐调度指示方式中选取一种调度指示方式,并作为所述终端的调度指示方式;
    或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中确定至少一种推荐调度指示方式并发送给网络设备;将所述网络设备在所述至少一种推荐调度指示方式中选取的调度指示方式作为所述终端的调度指示方式。
  22. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求1至7中任一项所述数据传输方法的步骤。
  23. 一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    通过收发机获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
    根据所述传输信息,向终端指示上行传输方式。
  24. 根据权利要求23所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
    在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
    在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
  25. 根据权利要求24所述的网络设备,其中,所述终端的传输能力包括以下至少一项:
    所述终端支持的能够同时进行上行传输的天线面板的数量;
    所述终端支持的能够用于波束管理的上行资源集合的数量;
    所述终端支持的能够进行相干传输的天线面板的数量;
    所述终端支持的调度指示方式。
  26. 根据权利要求25所述的网络设备,其中,所述终端支持的调度指示方式包括以下至少一种调度指示方式:
    第一调度指示方式,所述第一调度指示方式是指所述终端的每个天线面板均指示目标信息;
    第二调度指示方式,所述第二调度指示方式是指所述终端的每个天线面板均指示目标信息以及任意两个天线面板之间的位置信息,所述位置信息包括幅度和/或相位加权因子;
    第三调度指示方式,所述第三调度指示方式是指所述终端配置的所有天线面板联合指示目标信息;
    所述目标信息包括发送预编码矩阵索引TRMI和/或发送秩索引TRI。
  27. 根据权利要求25或26所述的网络设备,其中,所述预先配置的多种上行传输方式包括:第一上行传输方式、第二上行传输方式和第三上行传输方式;
    其中,所述第一上行传输方式是指在终端配置的至少两个天线面板中选取一个天线面板,并将上行数据的所有数据层在选取的所述天线面板上传输;
    所述第二上行传输方式是指上行数据的所有数据层分别在所述终端的每一个天线面板上传输;
    所述第三上行传输方式是指将所述上行数据的所有数据层分成N组,并将每组数据层在一个天线面板上发送,其中,每组数据层与天线面板一一对应,N为所述终端的天线面板的个数,且N为大于1的正整数。
  28. 根据权利要求27所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在所述终端支持的能够同时进行上行传输的天线面板的数量为1或者所述终端支持的能够用于波束管理的上行资源集合的数量为1时,将所述第一上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为1时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的能够进行相干传输的天线面板的数量为M时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第一调度指示方式时,将所述第一上行传输方式或所述第三上行传输方式指示给终端;
    在所述终端支持的能够同时进行上行传输的天线面板的数量或者所述终端支持的能够用于波束管理的上行资源集合的数量为M,且所述终端支持的调度指示方式为所述第二调度指示方式或所述第三调度指示方式时,将所述第一上行传输方式或所述第二上行传输方式指示给终端;
    其中,M为大于1的正整数。
  29. 根据权利要求24所述的网络设备,其中,在所述终端的传输能力包括终端支持的调度指示方式,且所述终端支持的调度指示方式包括至少两种调度指示方式时;
    所述处理器执行所述程序时还实现以下步骤:
    根据终端的传输能力,在终端支持的至少两种调度指示方式中选取的一种调度指示方式作为终端的调度指示方式,并指示给终端;
    或者,根据终端的传输能力,在终端支持的至少两种调度指示方式中选 取至少一种推荐调度指示方式并指示给终端;
    或者,在终端发送的至少一种推荐调度指示方式中选取一种调度指示方式作为所述终端的调度指示方式,并指示给终端。
  30. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如权利要求8至14中任一项所述数据传输方法的步骤。
  31. 一种终端,所述终端配置有至少两个用于上行链路传输的天线面板,包括:
    第一获取模块,用于获取与终端的传输能力对应的目标上行传输方式;
    发送模块,用于根据所述目标上行传输方式中上行数据的数据层与终端的天线面板之间的对应关系,在所述终端的至少一个天线面板上发送上行数据的数据层。
  32. 根据权利要求31所述的终端,其中,所述第一获取模块用于根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为所述目标上行传输方式,其中,不同的上行传输方式中上行数据的层数据与终端的天线面板之间的对应关系不同;
    或者,用于将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的上行传输方式,并根据网络设备指示的上行传输方式确定所述目标上行传输方式;
    或者,用于根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式作为推荐上行传输方式并发送给网络设备;获取所述网络设备在所述推荐上行传输方式中选取的上行传输方式,并根据所述网络设备选取的上行传输方式,确定所述目标上行传输方式;
    或者,用于将所述终端的传输能力上报给网络设备;获取所述网络设备根据所述终端的传输能力指示的至少一种推荐上行传输方式,并在所述至少一种推荐上行传输方式中选取所述目标上行传输方式。
  33. 一种网络设备,包括:
    第二获取模块,用于获取终端上报的传输信息,所述传输信息包括与终端的传输能力对应的至少一种推荐上行传输方式和/或终端的传输能力;
    指示模块,用于根据所述传输信息,向终端指示上行传输方式。
  34. 根据权利要求33所述的网络设备,其中,所述指示模块用于在所述传输信息为终端的传输能力时,根据终端的传输能力,在预先配置的多种上行传输方式中选取至少一种上行传输方式指示给终端;或者,
    在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式和终端的传输能力时,在所述至少一种推荐上行传输方式中,根据终端的传输能力选取至少一种上行传输方式指示给终端;或者,
    在所述传输信息为与终端的传输能力对应的至少一种推荐上行传输方式时,在所述至少一种推荐上行传输方式中,选取至少一种上行传输方式指示给终端。
PCT/CN2019/098618 2018-08-17 2019-07-31 数据传输方法、终端及网络设备 WO2020034842A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19850657.8A EP3840242A4 (en) 2018-08-17 2019-07-31 DATA TRANSMISSION METHOD AND TERMINAL AND NETWORK DEVICE
JP2021507953A JP2021534674A (ja) 2018-08-17 2019-07-31 データ伝送方法、端末及びネットワーク機器
KR1020217007828A KR20210044272A (ko) 2018-08-17 2019-07-31 데이터 전송 방법, 단말 및 네트워크 기기
US17/268,051 US11910376B2 (en) 2018-08-17 2019-07-31 Data transmission method, and terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942469.5 2018-08-17
CN201810942469.5A CN110838857B (zh) 2018-08-17 2018-08-17 一种数据传输方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2020034842A1 true WO2020034842A1 (zh) 2020-02-20

Family

ID=69525146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098618 WO2020034842A1 (zh) 2018-08-17 2019-07-31 数据传输方法、终端及网络设备

Country Status (7)

Country Link
US (1) US11910376B2 (zh)
EP (1) EP3840242A4 (zh)
JP (1) JP2021534674A (zh)
KR (1) KR20210044272A (zh)
CN (1) CN110838857B (zh)
TW (1) TWI732261B (zh)
WO (1) WO2020034842A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021184327A1 (en) * 2020-03-20 2021-09-23 Qualcomm Incorporated Association of transmission layers and codewords to enable uplink transmission with multiple codewords
CN112688866B (zh) * 2020-12-22 2023-03-21 上海金卓科技有限公司 一种数据发送、数据接收方法、电子设备及存储介质
CN116569624A (zh) * 2020-12-24 2023-08-08 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115150817B (zh) * 2021-03-31 2023-07-04 中国电信股份有限公司 多天线相干性能力上报方法、终端、基站以及存储介质
CN117676549A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 一种能力上报的方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026224A1 (ko) * 2016-08-03 2018-02-08 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말
US20180062724A1 (en) * 2016-09-01 2018-03-01 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink csi acquisition
CN107888246A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
CN108260133A (zh) * 2016-12-28 2018-07-06 维沃移动通信有限公司 一种波束测量上报的方法、网络侧设备及移动终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
CN106612136A (zh) * 2015-10-20 2017-05-03 电信科学技术研究院 一种下行数据传输方法、设备及系统
CN107294578B (zh) * 2016-04-01 2021-01-29 华为技术有限公司 数据传输方法和装置
US10511364B2 (en) 2016-08-03 2019-12-17 Lg Electronics Inc. Method for transmitting signals in wireless communication system and apparatus therefor
WO2018031869A1 (en) * 2016-08-11 2018-02-15 Docomo Innovations, Inc. Method for uplink transmission
CN107733505B (zh) * 2016-08-12 2020-02-28 电信科学技术研究院 一种波束赋形训练方法、终端和基站
US10749584B2 (en) * 2016-12-22 2020-08-18 Samsung Electronics Co., Ltd. Uplink MIMO codebook for advanced wireless communication systems
US11038566B2 (en) * 2017-01-06 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array
US10560851B2 (en) * 2017-01-13 2020-02-11 Samsung Electronics Co., Ltd. Method and apparatus for uplink beam management in next generation wireless systems
CN108112075B (zh) * 2017-05-05 2023-05-02 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法
CN109150439B (zh) 2017-06-16 2021-02-05 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
CN116346299A (zh) 2017-08-09 2023-06-27 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
CN109600208B (zh) 2017-09-30 2021-06-04 电信科学技术研究院 一种上行传输、配置方法、终端及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026224A1 (ko) * 2016-08-03 2018-02-08 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 통신 수행 방법 및 상기 방법을 이용하는 단말
US20180062724A1 (en) * 2016-09-01 2018-03-01 Samsung Electronics Co., Ltd. Method and apparatus for downlink and uplink csi acquisition
CN107888246A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
CN108260133A (zh) * 2016-12-28 2018-07-06 维沃移动通信有限公司 一种波束测量上报的方法、网络侧设备及移动终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on UL multi-panel/TRP operation", 3GPP TSG RAN WG1 MEETING #90 R1-1714345, vol. RAN WG1, 20 August 2017 (2017-08-20), XP051317130 *
LG ELECTRONICS: "Discussion on cooperative transmission", 3GPP TSG RAN WG1 MEETING #89 R1-1707603, vol. RAN WG1, 14 May 2017 (2017-05-14), XP051272811 *
See also references of EP3840242A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture

Also Published As

Publication number Publication date
JP2021534674A (ja) 2021-12-09
US20210321431A1 (en) 2021-10-14
CN110838857B (zh) 2022-01-07
CN110838857A (zh) 2020-02-25
EP3840242A1 (en) 2021-06-23
EP3840242A4 (en) 2022-03-09
US11910376B2 (en) 2024-02-20
TWI732261B (zh) 2021-07-01
TW202010342A (zh) 2020-03-01
KR20210044272A (ko) 2021-04-22

Similar Documents

Publication Publication Date Title
JP7258123B2 (ja) データ伝送方法、端末及びネットワーク機器
WO2020034842A1 (zh) 数据传输方法、终端及网络设备
KR102329571B1 (ko) 업링크 송신빔 확정 방법 및 장치
CN110838860B (zh) 一种信号传输方法、装置、终端及网络侧设备
TWI673964B (zh) 一種波束處理方法、基地台及移動終端
CN110838862B (zh) 一种波束处理方法、装置、终端及网络侧设备
CN108631842B (zh) 一种确定设备波束互易性的方法、装置和电子设备
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2018059003A1 (zh) 一种波束训练方法、终端及基站
US20200395992A1 (en) Beam control method, base station and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217007828

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019850657

Country of ref document: EP

Effective date: 20210317