WO2022193223A1 - Scheduling network communication services using semi-persistent scheduling - Google Patents

Scheduling network communication services using semi-persistent scheduling Download PDF

Info

Publication number
WO2022193223A1
WO2022193223A1 PCT/CN2021/081503 CN2021081503W WO2022193223A1 WO 2022193223 A1 WO2022193223 A1 WO 2022193223A1 CN 2021081503 W CN2021081503 W CN 2021081503W WO 2022193223 A1 WO2022193223 A1 WO 2022193223A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
transmission
sps
mbs
occasion
Prior art date
Application number
PCT/CN2021/081503
Other languages
French (fr)
Inventor
Shuaihua KOU
Chenchen Zhang
Xing Liu
Peng Hao
Xingguang WEI
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2021/081503 priority Critical patent/WO2022193223A1/en
Priority to CN202180077293.1A priority patent/CN116491077A/en
Publication of WO2022193223A1 publication Critical patent/WO2022193223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This document is directed generally to wireless communications.
  • Wireless communication technologies are moving the world toward an increasingly connected and networked society.
  • the rapid growth of wireless communications and advances in technology has led to greater demand for capacity and connectivity.
  • Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios.
  • next generation systems and wireless communication techniques will provide support for unicast, multicast and broadcast services to an increased number of users and devices.
  • This document relates to methods, systems, and devices for scheduling network communication services using semi-persistent scheduling (SPS) in mobile communication technology, including 5th Generation (5G) and New Radio (NR) communication systems.
  • SPS semi-persistent scheduling
  • 5G 5th Generation
  • NR New Radio
  • a wireless communication method includes configuring, by a network node, one or more semi-persistent scheduling configurations with multiple beams, and performing, based on the configuring, a transmission of data using the one or more semi-persistent scheduling configurations over the multiple beams to at least a wireless device in a cell served by the network node.
  • a wireless communication method includes receiving, by a wireless device from a network node, data configured using one or more semi-persistent scheduling configurations over one of multiple beams, and transmitting, in response to the receiving, an acknowledgement feedback message.
  • the above-described methods are embodied in the form of processor-executable code and stored in a computer-readable program medium.
  • a device that is configured or operable to perform the above-described methods is disclosed.
  • FIG. 1 shows an example of a base station (BS) and user equipment (UE) in wireless communication, in accordance with some embodiments of the presently disclosed technology.
  • BS base station
  • UE user equipment
  • FIG. 2 shows an example of an SPS physical downlink shared channel (PDSCH) .
  • PDSCH physical downlink shared channel
  • FIG. 3 shows an example of PDSCH occasions with repetition.
  • FIG. 4 shows an example of a multiple SPS configuration.
  • FIG. 5 shows an example of an SPS transmission using a transmission window.
  • FIG. 6 shows another example of an SPS transmission.
  • FIG. 7 shows yet another example of an SPS transmission supporting three multicast broadcast services (MBS) .
  • MMS multicast broadcast services
  • FIGS. 8A and 8B show examples of wireless communication methods, in accordance with some embodiments of the presently disclosed technology.
  • FIG. 9 is a block diagram representation of a portion of an apparatus, in accordance with some embodiments of the presently disclosed technology.
  • SPS semi-persistent scheduling
  • MIMO multiple-input-multiple-output
  • MBS multicast-broadcast service
  • beam-sweeping is used to cover all the wireless devices being served in a cell, but using MBS remains incompatible with semi-persistent scheduling, which can only use a single beam.
  • MBS multicast-broadcast service
  • multiple beams are used to improve the reliability for transmissions between the network and the UE.
  • Embodiments of the disclosed technology advantageously enable, amongst other features and benefits, the SPS PDSCH to be transmitted for an MBS or a unicast service in different beams, a redundant transmission to be identified in a SPS transmission, and an SPS to be associated with multiple MBS.
  • FIG. 1 shows an example of a wireless communication system (e.g., an LTE, 5G or New Radio (NR) cellular network) that includes a BS 120 and one or more user equipment (UE) 111, 112 and 113.
  • the downlink transmissions (141, 142, 143) include transmissions of data using one or more SPS data channels over multiple beams.
  • at least one of the UEs transmit (131, 132, 133) a hybrid automatic repeat request (HARQ) acknowledgement (ACK) message to the BS 120.
  • HARQ hybrid automatic repeat request
  • the UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, a terminal, a mobile device, an Internet of Things (IoT) device, a device to device (D2D) device, an vehicle to vehicle (V2V) device, and so on.
  • M2M machine to machine
  • IoT Internet of Things
  • D2D device to device
  • V2V vehicle to vehicle
  • the present document uses section headings and sub-headings for facilitating easy understanding and not for limiting the scope of the disclosed techniques and embodiments to certain sections. Accordingly, embodiments disclosed in different sections can be used with each other. Furthermore, the present document uses examples from the 3GPP New Radio (NR) network architecture and 5G protocol only to facilitate understanding and the disclosed techniques and embodiments may be practiced in other wireless systems that use different communication protocols than the 3GPP protocols.
  • NR 3GPP New Radio
  • semi-persistent scheduling (SPS) configuration are configured with multiple beams.
  • An SPS configuration includes a plurality of transmission occasions with a period. Multiple beams can be configured for each of these occasions by the network. Each occasion is associated with (e.g., corresponds to) a beam.
  • a PDSCH transmission on an occasion is transmitted by using the corresponding beam.
  • multiple transmission configuration indicator (TCI) states (e.g., a TCI state list) and/or the order of the multiple TCI states are configured for the SPS.
  • TCI state includes a downlink (DL) reference signal (RS) and the corresponding quasi co-location (QCL) parameter.
  • DL RS includes channel state information reference signal (CSI-RS) and a synchronization signal and physical broadcast channel block (SS/PBCH block, or an SSB) .
  • CSI-RS channel state information reference signal
  • SS/PBCH block synchronization signal and physical broadcast channel block
  • control information can be configured to activate the SPS transmission.
  • the transmission occasions are associated with the TCI states cyclically from the first TCI state, and based on the order of the multiple TCI states. For example, the first transmission occasion after activation is associated with the first TCI state, the second transmission occasion after activation is associated with the second TCI state, and so on.
  • the next transmission occasion after the transmission associated with the last TCI state is associated with the first TCI state, i.e., based on the cyclic association of the TCI states.
  • the control information indicates an active TCI state for the SPS transmission and activates the SPS transmission, wherein the active TCI state is one of the multiple TCI states.
  • the transmission occasions are associated with the TCI states cyclically from the indicated active TCI and based on the order of the multiple TCI states. For example, the first occasion after activation is associated with the indicated TCI state, the second transmission occasion after activation is associated with the next TCI state after the indicated active TCI state, and so on.
  • the transmission on each of the subsequent transmission occasions carry the same data (or transport block) until the next occasion associated with the specific TCI state.
  • the specific TCI state is the first TCI state in the TCI state list or is indicated by the network.
  • the UE For transmissions carrying the same data, the UE only transmits one hybrid automatic repeat request (HARQ) acknowledge (ACK) feedback message. More specifically, the UE only transmits HARQ-ACK information corresponding to one of these transmissions. For example, the UE only transmits HARQ-ACK feedback corresponding to the transmission with the TCI state that is indicated by the network or indicated in the control information. Alternatively, the UE only transmits HARQ-ACK feedback corresponding to some transmission occasions that are indicated by the network. For transmissions associated with other TCI states that are not indicated by the network or transmission occasions that are not configured by the network, the UE does not transmit a corresponding HARQ-ACK feedback message.
  • HARQ hybrid automatic repeat request
  • ACK hybrid automatic repeat request
  • the UE only transmits HARQ
  • FIG. 2 illustrates an example of an SPS PDSCH.
  • the SPS includes several PDSCH occasions, labeled as PDSCH 1, PDSCH 2, PDSCH 3, PDSCH 4, and PDSCH 5.
  • the TCI states configured for the SPS are TCI state 1, TCI state 2, TCI state 3, and TCI state 4, and the order of these TCI states are TCI state 1, TCI state 2, TCI state 3, TCI state 4.
  • the first PDSCH occasion (PDSCH 1) is associated with the TCI state 1
  • PDSCH 2 is associated with TCI state 2
  • PDSCH 3 is associated with TCI state 3
  • PDSCH 4 is associated with TCI state 4
  • PDSCH 5 is associated with TCI state 1 (based on the cyclic association described above) .
  • the transmission associated with the first TCI state (e.g., TCI state 1) and the transmissions on subsequent transmission occasions carry the same data (or transport block) until the next occasion with the first TCI state. Therefore, in this example, PDSCH 1, PDSCH 2, PDSCH 3 and PDSCH 4 carry the same transport block, and PDSCH 5, PDSCH 6, PDSCH 7, PDSCH 8 (not all illustrated in FIG. 2) carry another transport block.
  • the network can configure the UE to only transmit HARQ-ACK feedback for the PDSCH with TCI state 2. In this case, the UE only transmits HARQ-ACK feedback corresponding to PDSCH 2 and PDSCH 6. In another example, the network can configure the UE to only transmit HARQ-ACK feedback for the PDSCH every four occasions from the first occasion (e.g., the first occasion, the fifth occasion, the ninth occasion, and so on) . In this case, the UE only transmits HARQ-ACK feedback corresponding to PDSCH 1 and PDSCH 5.
  • the DCI activates the SPS and indicates TCI state 3 for the SPS PDSCH transmission, which results in first PDSCH occasion (PDSCH 1) being associated with TCI state 3.
  • PDSCH 2 is associated with TCI state 4
  • PDSCH 3 is associated with TCI state 1
  • PDSCH 4 is associated with TCI state 2
  • PDSCH 5 is associated with TCI state 3, and so on.
  • the UE only transmits HARQ-ACK feedback corresponding to the PDSCH associated with the TCI state (e.g., TCI state 3) indicated in the DCI. In this case, the UE only transmits HARQ-ACK feedback corresponding to PDSCH 1 and PDSCH 5.
  • an SPS is configured with PDSCH repetition and a plurality of beams. Each repetition is associated with (e.g., corresponds to) a beam. A PDSCH repetition is transmitted by using the corresponding beam. In this case, the PDSCH is repeatedly transmitted with different beams.
  • multiple transmission configuration indicator (TCI) states e.g., a TCI state list
  • TCI transmission configuration indicator
  • the PDSCH repetition is configured for the SPS.
  • Each PDSCH repetition (e.g., PDSCH repetition occasion) is associated with a TCI state.
  • the PDSCH on the repetition occasion is transmitted by using the associated TCI state.
  • the PDSCH repetitions are associated with the TCI states starting with the first TCI state.
  • the PDSCH repetitions are associated with the TCI state cyclically from the first TCI state.
  • every D PDSCH repetitions are associated with a TCI states from the first TCI state.
  • the total number of PDSCH repetitions are E and the total number of TCI states are F.
  • every or PDSCH repetitions are associated with a TCI state starting with the first TCI state.
  • the first or PDSCH repetitions are associated with the first TCI state
  • the second or PDSCH repetitions are associated with the second TCI state, and so on.
  • the active TCI state in the control information activating the SPS is not valid. In other words, it does not change the association relationship between the PDSCH repetitions and the TCI states above. This results in the UE ignoring the indicated active TCI state in the control information activating the SPS.
  • the network indicates one of the multiple TCI states to the UE and the UE only receives (e.g., detects, decodes) the PDSCH repetitions associated with the one of the multiple TCI states.
  • FIG. 3 illustrates an example of an SPS PDSCH with repetitions.
  • the SPS includes several PDSCH occasions with repetition, labeled as PDSCH 1A, PDSCH 1B, PDSCH 1C, PDSCH 1D, PDSCH 2A, PDSCH 2B, PDSCH 2C, and PDSCH 2D.
  • PDSCH 1A, PDSCH 1B, PDSCH 1C, and PDSCH 1D are a first bundle of transmissions.
  • the transport block is transmitted repeatedly on the PDSCH 1A, PDSCH 1B, PDSCH 1C, PDSCH 1D.
  • PDSCH 2A, PDSCH 2B, PDSCH 2C, and PDSCH 2D are a second bundle of transmissions.
  • the transport block is transmitted repeatedly on the PDSCH 2A, PDSCH 2B, PDSCH 2C, and PDSCH 2D.
  • the configured TCI states include TCI state 1 and TCI state 2.
  • PDSCH 1A is associated with TCI state 1
  • PDSCH 1B is associated with TCI state 2
  • PDSCH 1C is associated with TCI state 1
  • PDSCH 1D is associated with TCI state 2.
  • PDSCH 2A is associated with TCI state 1
  • PDSCH 2B is associated with TCI state 2
  • PDSCH 2C is associated with TCI state 1
  • PDSCH 2D is associated with TCI state 2.
  • PDSCH 1A and PDSCH 1B are associated with TCI state 1
  • PDSCH 1C and PDSCH 1D are associated with TCI state 2
  • PDSCH 2A and PDSCH 2B are associated with TCI state 1
  • PDSCH 2C and PDSCH 2D are associated with TCI state 2.
  • a multicast-broadcast service is associated with multiple SPS configurations, wherein the multiple SPS transmissions carry data corresponding to the associated MBS.
  • multiple SPS configurations are configured for the transmission of the same transport block for a unicast service. These SPS configurations have the same periodicity, and each SPS configuration is activated by a control information with a TCI state. Accordingly, each SPS configuration may have different TCI states. After activation, the transmission occasions of these SPS configuration may have different time domain resource.
  • the network can indicate that a SPS configuration is used for the first (or initial) transmission of a transport block.
  • the PDSCH transmitted on the transmission occasion that is after and temporally adjacent to a transmission occasion of the indicated SPS configuration (i.e., indicated to be the first or initial transmission) carry the same transport block as that carried by the PDSCH on the transmission occasion of the indicated SPS configuration.
  • the UE For multiple PDSCH carrying the same transport block, the UE only transmits HARQ-ACK feedback corresponding to one of the multiple PDSCH.
  • the network can indicate whether the UE needs to transmit HARQ-ACK feedback for the PDSCH of a SPS configuration via Radio Resource Control (RRC) signaling, a Medium Access Control (MAC) Control Element (CE) , or an activation DCI.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • the PUCCH resource indicator field in an activation DCI can be used to indicate whether the UE transmits the HARQ-ACK feedback for the SPS PDSCH that the activation DCI activates.
  • a value of all 1s in the PUCCH resource indicator field indicates that the UE should transmit the HARQ-ACK feedback, whereas a value of all 0s in the PUCCH resource indicator field indicates that the UE should not transmit the HARQ-ACK feedback.
  • the network indicates only one of the multiple SPS configurations includes a PUCCH resource for HARQ-ACK feedback while other SPS configurations do not include PUCCH resource for that purpose. In this case, the UE only transmits HARQ-ACK feedback for the PDSCH of the SPS configuration with the configured PUCCH resource.
  • FIG. 4 illustrates an example of multiple SPS configurations. As shown therein, there are four SPS configuration denoted SPS 0, SPS 1, SPS 2, and SPS 3. These four SPS configurations have the same period P. These four SPS are associated with a common MBS or used for a unicast service.
  • SPS 0 is activated by DCI 0 with TCI state 0, and the PDSCH is transmitted by using TCI state 0 on the occasions 0A, 0B, and 0C.
  • SPS 1 is activated by DCI 1 with TCI state 1 with the PDSCH being transmitted by using TCI state 1 on the occasions 1A, 1B, and 1C
  • SPS 2 is activated by DCI 2 with TCI state 2 with the PDSCH being transmitted by using TCI state 2 on the occasions 2A, 2B, and 2C
  • SPS 3 is activated by DCI 3 with TCI state 3 with the PDSCH being transmitted by using TCI state 3 on the occasions 3A, 3B, and 3C.
  • the network indicates that SPS 0 is used for the first transmission of a transport block. Therefore, the PDSCH transmitted on occasion 0A carries a transport block and this is the first transmission of the transport block.
  • the transmission occasions that are after and temporally adjacent to occasion 0A are occasions 1A, 2A, 3A, respectively. Therefore, the PDSCH transmitted on occasions 1A, 2A, and 3A carry the same transport block.
  • the PDSCH transmitted on occasions 0B, 1B, 2B, and 3B carry the same transport block with the first transmission being on occasion 0B
  • the PDSCH transmitted on the occasion 0C, 1C, 2C, and 3C carry the same transport block with the first transmission being on occasion 0C.
  • the network can indicate that the UE only transmits HARQ-ACK feedback for the PDSCH of SPS 1. Therefore, the UE only transmits HARQ-ACK feedback for the PDSCH transmitted on occasions 0A, 0B, and 0C. For the other PDSCH, the UE does not transmit HARQ-ACK feedback.
  • a transmission window can be used to determine and/or configure the transmission.
  • the PDSCH transmitted within a transmission window carry the same transport block.
  • the start of the transmission window is the first symbol of the PDSCH carrying the first transmission of a transport block or the start of the slot of the PDSCH carrying the first transmission of a transport block.
  • the end of the transmission window is the symbol before the first symbol of the PDSCH carrying the first transmission of a next transport block or the end of the slot before the slot of the PDSCH carrying the first transmission of a next transport block. This enables the transmission window to indicate the period of transmission. Furthermore, transmitting the same transport block within the same transmission window enables a receiver to combine multiple copies of the transport block to boost decoding performance.
  • FIG. 5 illustrates an example of an SPS transmission using a transmission window.
  • the PDSCH transmitted on occasion 1 and the occasion 2 carry the same transport block and the first transmission is on occasion 1.
  • the PDSCH transmitted on occasion 3 and occasion 4 carry another transport block and the first transmission is on occasion 3. Therefore, the start boundary of the first transmission window (e.g., window 1 in FIG. 5) is the start of the occasion 1 and the end boundary is the start of the occasion 3 as illustrated in FIG. 5.
  • This framework similarly applies to window 3 and window 4 shown in FIG. 5.
  • a DCI schedules a PDSCH carrying a retransmission of the MBS (shown in the upper right portion of FIG. 5) , wherein the DCI or the scheduled PDSCH is within a first transmission window and the previous transmission is an SPS transmission.
  • a field in the DCI is configured to indicate the window for the corresponding previous transmission. That is, the DCI schedules a PDSCH carrying a retransmission of a particular transport block, and a field in the DCI provides an indication of the transmission window of the original transport block that this retransmission corresponds to.
  • a value ‘0’ of in the DCI field indicates that the previous transmission and the retransmission are both in the first transmission window.
  • the DCI scheduling a PDSCH that carries the retransmission of the MBS is within window 4, and a value of ‘0’ in the DCI field indicates that the previous transmission is also within that window, i.e., window 4.
  • a value ‘1’ in the DCI field indicates that the previous transmission is in the transmission window before the first transmission window. In the context of FIG. 5, this indicates the previous transmission is in window 3.
  • a value of ‘2’ in the DCI field indicates the second transmission window before the first transmission window includes the previous transmission, and so on. In the context of FIG. 5, it indicates that the previous transmission is in window 2.
  • this DCI field is a dedicated field.
  • an existing field in the DCI can be reconfigured to indicate the transmission window.
  • the HARQ process number (HPN) field can be used to indicate the transmission window.
  • the HARQ process number field is used to indicate the transmission window.
  • the HARQ process number field is used, as intended, to indicate the HARQ process number. It is noted that each transmission window is associated with its own distinct HPN, as will be described in the next embodiment.
  • the start of the transmission window is the first symbol of the PDSCH carrying the first transmission of a transport block or the start of the slot of the PDSCH carrying the first transmission of a transport block
  • the end of the transmission window is the last symbol of the PDSCH carrying the last transmission of the same transport block or the end of the slot of the PDSCH carrying the last transmission of the same transport block.
  • a transmission windows is configured by the network.
  • a starting point and/or a duration are configured in units of milliseconds, symbols, sub-slots, slots, sub-frames, frames, etc.
  • the transmission windows are contiguous in the time-domain.
  • the starting point indicates the start of the first transmission window.
  • the PDSCH carrying the same transport block within the same transmission window have the same HARQ process number (HPN) .
  • the HARQ process number (or HARQ process ID) is determined based on the first transmission occasion or the last transmission occasion for transmitting the same transport block.
  • the HARQ process number of the PDSCH is determined using the following equation:
  • HARQ Process ID [floor (CURRENT_slot ⁇ 10 / (numberOfSlotsPerFrame ⁇ periodicity ⁇ N) ) ] modulo nrofHARQ-Processes
  • CURRENT_slot is the slot number of the PDSCH occasion
  • numberOfSlotsPerFrame is the number of the slots per system frame
  • periodicity is the period of the SPS transmission
  • N is the number of configured TCI states for the MBS transmission or the number of transmission occasions within a transmission window or is configured by the network via RRC signaling, MAC CE, or control information
  • nrofHARQ-Processes is the number of the HARQ processes.
  • FIG. 6 illustrates an example of the SPS transmission, wherein PDSCH 1 is the first transmission of a transport block, and PDSCH 2, PDSCH 3 and PDSCH 4 carry the same transport block.
  • the HARQ process number is determined according to its PDSCH resource, and can be determined to be 0.
  • the HARQ process number is determined based on the PDSCH 1 resource since PDSCH 1 is the first transmission of the transport block that PDSCH 2 carries. Therefore, the HARQ process number of PDSCH 2 is also 0.
  • the HARQ process numbers of PDSCH 3 and PDSCH 4 are also 0.
  • an SPS is associated with a MBS.
  • a DCI activating and deactivating the SPS can be received (or detected) by more than one UE.
  • This DCI is called group common DCI, and a specific RNTI can be configured for the SPS configuration.
  • the group common DCI with a CRC scrambled by the specific RNTI is used to activate or deactivate the SPS configuration.
  • the RNTI is used to indicate (or identify) the SPS configuration that the group common DCI activates or deactivates.
  • a first SPS is associated with MBS 1 and RNTI 1 is configured for the first SPS or MBS 1
  • a second SPS is associated with MBS 2 and RNTI 2 is configured for the second SPS or MBS 2
  • a third SPS is associated with MBS 3 and RNTI 3 is configured for the third SPS or MBS 3.
  • a DCI activating and deactivating the SPS can be received (or detected) by only one UE.
  • This DCI is called UE-specific DCI
  • the HARQ process number field in the UE-specific DCI is used to indicate (or identify) the SPS configuration that the UE-specific DCI activates or deactivates.
  • the HARQ process number field in the UE-specific DCI indicates the SPS index.
  • the network configures the association between a SPS index and an RNTI or the association between a SPS index and an MBS via RRC signaling, MAC CE, or DCI. Based on the association, the corresponding SPS transmission is activated or deactivated when a UE receives a UE-specific DCI.
  • UE 1 may only receive MBS 1 and MBS 3.
  • the network configures SPS index 1 to be associated with RNTI 1 and SPS index 2 to be associated with RNTI 3.
  • SPS index 2 When UE 1 receives a UE-specific activation DCI with HARQ process number field indicating SPS index 2, then the third SPS is activated based on the association.
  • UE 1 receives a UE-specific deactivation DCI with HARQ process number field indicating SPS index 1 then the first SPS is deactivated based on the association.
  • the network can configure an SPS configuration to be associated with multiple MBS.
  • the network can further configure the association between the SPS transmission occasion and the MBS, wherein a SPS transmission occasion is associated with one of the multiple MBS. This results in MBS data being transmitted on the associated SPS transmission occasion.
  • the network can configure a transmission pattern that includes multiple MBS and multiple SPS transmission occasions such that the first MBS is associated with the first SPS transmission occasion, the second MBS is associated with the second SPS transmission occasion, and so on.
  • the transmission pattern repeats in the time domain from the first transmission occasion.
  • FIG. 7 illustrates an example of an SPS transmission supporting multiple MBS.
  • a SPS with four transmission occasions is associated with three MBS (denoted MBS A, MBS B, and MBS C) such that the first occasion is associated with MBS A, the second occasion is associated with MBS B, the third occasion is associated with MBS A, and the fourth occasion is associated with MBS C. Therefore, MBS A is transmitted on SPS occasion 1, MBS B is transmitted on SPS occasion 2, MBS A is transmitted on SPS occasion 3, MBS C is transmitted on SPS occasion 4, MBS A is transmitted on SPS occasion 5, MBS B is transmitted on SPS occasion 6, and so on.
  • MBS A is transmitted on SPS occasion 1
  • MBS B is transmitted on SPS occasion 2
  • MBS A is transmitted on SPS occasion 3
  • MBS C is transmitted on SPS occasion 4
  • MBS A is transmitted on SPS occasion 5
  • MBS B is transmitted on SPS occasion 6, and so on.
  • each MBS is configured with a first scrambling ID, which results in the PDSCH carrying that MBS to be scrambled by the configured first scrambling ID.
  • each MBS may be configured with a demodulation reference signal (DMRS) sequence, wherein the network configures a second scrambling ID for the PDSCH DMRS for that MBS.
  • DMRS demodulation reference signal
  • the second scrambling ID can be used for PDSCH DMRS sequence generation.
  • the MBS is transmitted with the configured DMRS sequence.
  • MBS A and MBS B are associated with SPS 1.
  • the PDSCH of SPS 1 can carry the data of MBS A and MBS B.
  • PDSCH scrambling ID X is configured for MBS A
  • PDSCH scrambling ID Y is configured for MBS B. If the PDSCH of SPS 1 carries the data of MBS A, the PDSCH is scrambled by scrambling ID X, and if the PDSCH of SPS 1 carries the data of MBS B, the PDSCH is scrambled by scrambling ID Y.
  • a UE When a UE receives a PDSCH of SPS 1, and is able to decode the PDSCH successfully with scrambling ID X, it can determine that the data carried by the PDSCH is for MBS A. However, if the UE decodes the PDSCH successfully with scrambling ID Y, it can determine that the data carried by the PDSCH is for MBS B.
  • DMRS sequence 1 (or scrambling ID M) is configured for MBS A and DMRS sequence 2 (or scrambling ID N) is configured for MBS B. If the PDSCH of SPS 1 carries the data of MBS A, sequence 1 is used for the PDSCH DMRS (or the PDSCH DMRS sequence is generated based on scrambling ID M) . If the PDSCH of SPS 1 carries the data of MBS B, sequence 2 is used for the PDSCH DMRS (or the PDSCH DMRS sequence is generated based on scrambling ID N) .
  • a UE receives a PDSCH of SPS 1.
  • a UE detects the PDSCH DMRS sequence is sequence 1 (or the PDSCH DMRS is scrambled by scrambling ID M) , it can determine that the data carried by the PDSCH is for MBS A, and if the UE detects the PDSCH DMRS sequence is sequence 2 (or the PDSCH DMRS is scrambled by scrambling ID N) , it can determine that the data carried by the PDSCH is for MBS B.
  • Embodiments of the disclosed technology include, amongst other features and benefits, the following methods and techniques that provide technical solutions to the problem of SPS configurations in existing systems not being able to support multiple beams.
  • the SPS PDSCH is transmitted for a MBS service in different beams
  • a field in the DCI scheduling the retransmission indicate the transmission window in which the previous transmission.
  • the SPS transmission carrying the same transport block have the same HPN and the HPN is determined based on the SPS transmission occasion of the first transmission or the last transmission of the transport block. The previous transmission is indicated by the HPN.
  • An SPS is associated with multiple MBS
  • Each SPS occasion is associated with a MBS and the MBS data is transmitted on the associated SPS occasion.
  • Each MBS is configured with a scrambling ID for PDSCH or PDSCH DMRS sequence.
  • the UE determine the MBS according to the scrambling ID or PDSCH DMRS.
  • FIG. 8A shows an example of a wireless communication method 800 for scheduling network communication services using semi-persistent scheduling (SPS) in mobile communication technology.
  • the method 800 includes, at operation 802, configuring, by a network node, one or more semi-persistent scheduling configurations with multiple beams.
  • the method 800 includes, at operation 804, performing, based on the configuring, a transmission of data using the one or more semi-persistent scheduling configurations over the multiple beams to at least a wireless device in a cell served by the network node.
  • FIG. 8B shows another example of a wireless communication method 850 for scheduling network communication services using semi-persistent scheduling (SPS) in mobile communication technology.
  • the method 850 includes, at operation 852, receiving, by a wireless device from a network node, data configured using one or more semi-persistent scheduling configurations over one of multiple beams.
  • SPS semi-persistent scheduling
  • the method 850 includes, at operation 854, transmitting, in response to the receiving, an acknowledgement feedback message.
  • the one or more semi-persistent scheduling configurations is associated with a semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) carrying a unicast service or at least one multicast service, and the at least one multicast service comprises at least one multicast and broadcast service (MBS) .
  • SPS semi-persistent scheduling
  • PDSCH physical downlink shared channel
  • MBS multicast and broadcast service
  • the data from a single multicast and broadcast service or a unicast service is transmitted using the SPS configuration over the multiple beams to a plurality of wireless devices served by the network node.
  • the SPS configuration comprises multiple PDSCH transmission occasions
  • the network node is further configured to configure, for each of the multiple PDSCH transmission occasions, an association between the corresponding transmission PDSCH occasion and a respective transmission configuration indicator (TCI) state.
  • TCI transmission configuration indicator
  • the wireless device is configured to receive an indication, from the network node, indicative of a TCI state, and wherein the wireless device is further configured to transmit the acknowledgement feedback message for a PDSCH transmission occasion corresponding to the indicated TCI state.
  • multiple SPS transmissions using the SPS configuration are associated with a single MBS, and each of the multiple SPS transmissions comprises a common period and is configured with a transmission configuration indicator (TCI) state.
  • TCI transmission configuration indicator
  • the TCI state comprises a downlink reference signal (DL-RS) and a corresponding quasi co-location (QCL) parameter.
  • DL-RS downlink reference signal
  • QCL quasi co-location
  • the DL-RS comprises a channel state information reference signal (CSI-RS) or a synchronization signal and physical broadcast channel (SS/PBCH) block.
  • CSI-RS channel state information reference signal
  • SS/PBCH physical broadcast channel
  • the SPS configuration comprises multiple PDSCH transmission occasions, and the data transmitted over each of the multiple beams in each of the multiple PDSCH transmission occasions comprises a common transport block.
  • the SPS configuration comprises multiple PDSCH transmission occasions within a first transmission window.
  • the data transmitted over each of the multiple PDSCH transmission occasions within the first transmission window comprises a common transport block.
  • the wireless device is configured to receive a downlink control information (DCI) comprising an indication of a retransmission of the data of the MBS.
  • DCI downlink control information
  • the indication indicates a temporal position of the first transmission window relative to a second transmission window
  • the second transmission window comprises a PDSCH transmission occasion carrying the retransmission of the data
  • each of the multiple PDSCH transmission occasions within the first transmission window is associated with a common value of a hybrid automatic repeat request (HARQ) process number field.
  • HARQ hybrid automatic repeat request
  • the value of the HARQ process number (HPN) field is determined based on a first PDSCH transmission occasion or a last PDSCH transmission occasion of the multiple PDSCH transmission occasions within the first transmission window.
  • the value of the HPN is based on a current slot index of a PDSCH transmission occasion, a number of slots per frame, a periodicity of the SPS transmission, a number of transmission configuration indicator (TCI) states configured for the MBS, and a number of HARQ processes.
  • TCI transmission configuration indicator
  • the data from multiple MBS is transmitted over the SPS PDSCH in the multiple beams to a plurality of wireless devices served by the network node.
  • each MBS of the multiple MBS is configured with a scrambling identification for the PDSCH or a demodulation reference signal (DMRS) .
  • DMRS demodulation reference signal
  • the wireless device is configured to identify an MBS based on the corresponding scrambling identification for the PDSCH or the corresponding DMRS.
  • FIG. 9 is a block diagram representation of a portion of an apparatus, in accordance with some embodiments of the presently disclosed technology.
  • An apparatus 905 such as a base station or a wireless device (or UE) , can include processor electronics 910 such as a microprocessor that implements one or more of the techniques presented in this document.
  • the apparatus 905 can include transceiver electronics 915 to send and/or receive wireless signals over one or more communication interfaces such as antenna (s) 920.
  • the apparatus 905 can include other communication interfaces for transmitting and receiving data.
  • Apparatus 905 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions.
  • the processor electronics 910 can include at least a portion of the transceiver electronics 915. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the apparatus 905.
  • a computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media.
  • program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
  • a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board.
  • the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the various components or sub-components within each module may be implemented in software, hardware or firmware.
  • the connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for scheduling multicast and broadcast services using semi-persistent scheduling in mobile communication technology are described. An example method for wireless communication includes receiving, by a wireless device from a network node, data configured using one or more semi-persistent scheduling (SPS) configurations over one of multiple beams, and transmitting, in response to the receiving, an acknowledgement feedback message. The disclosed technology advantageously enables, amongst other features and benefits, the SPS Physical Downlink Shared Channel to be transmitted for an multicast-broadcast service or a unicast service in different beams, a redundant transmission to be identified in a SPS transmission, and an SPS to be associated with multiple multicast-broadcast services.

Description

SCHEDULING NETWORK COMMUNICATION SERVICES USING SEMI-PERSISTENT SCHEDULING TECHNICAL FIELD
This document is directed generally to wireless communications.
BACKGROUND
Wireless communication technologies are moving the world toward an increasingly connected and networked society. The rapid growth of wireless communications and advances in technology has led to greater demand for capacity and connectivity. Other aspects, such as energy consumption, device cost, spectral efficiency, and latency are also important to meeting the needs of various communication scenarios. In comparison with the existing wireless networks, next generation systems and wireless communication techniques will provide support for unicast, multicast and broadcast services to an increased number of users and devices.
SUMMARY
This document relates to methods, systems, and devices for scheduling network communication services using semi-persistent scheduling (SPS) in mobile communication technology, including 5th Generation (5G) and New Radio (NR) communication systems.
In one exemplary aspect, a wireless communication method is disclosed. The method includes configuring, by a network node, one or more semi-persistent scheduling configurations with multiple beams, and performing, based on the configuring, a transmission of data using the one or more semi-persistent scheduling configurations over the multiple beams to at least a wireless device in a cell served by the network node.
In another exemplary aspect, a wireless communication method is disclosed. The method includes receiving, by a wireless device from a network node, data configured using one or more semi-persistent scheduling configurations over one of multiple beams, and transmitting, in response to the receiving, an acknowledgement feedback message.
In yet another exemplary aspect, the above-described methods are embodied in the form of processor-executable code and stored in a computer-readable program medium.
In yet another exemplary embodiment, a device that is configured or operable to  perform the above-described methods is disclosed.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an example of a base station (BS) and user equipment (UE) in wireless communication, in accordance with some embodiments of the presently disclosed technology.
FIG. 2 shows an example of an SPS physical downlink shared channel (PDSCH) .
FIG. 3 shows an example of PDSCH occasions with repetition.
FIG. 4 shows an example of a multiple SPS configuration.
FIG. 5 shows an example of an SPS transmission using a transmission window.
FIG. 6 shows another example of an SPS transmission.
FIG. 7 shows yet another example of an SPS transmission supporting three multicast broadcast services (MBS) .
FIGS. 8A and 8B show examples of wireless communication methods, in accordance with some embodiments of the presently disclosed technology.
FIG. 9 is a block diagram representation of a portion of an apparatus, in accordance with some embodiments of the presently disclosed technology.
DETAILED DESCRIPTION
In existing 5G NR systems or future wireless systems, semi-persistent scheduling (SPS) is designed to reduce the control channel overhead for certain services, e.g., VoIP-based services, by using a longer periodicity with configuration, activation, transmission, and release procedures. In upcoming 5G NR systems that support multiple-input-multiple-output (MIMO) and beamforming capabilities, SPS transmissions can only use a single beam. For a multicast-broadcast service (MBS) , beam-sweeping is used to cover all the wireless devices being served in a cell, but using MBS remains incompatible with semi-persistent scheduling, which can only use a single beam. For a unicast service, multiple beams are used to improve the reliability for transmissions between the network and the UE.
Embodiments of the disclosed technology advantageously enable, amongst other features and benefits, the SPS PDSCH to be transmitted for an MBS or a unicast service in different beams, a redundant transmission to be identified in a SPS transmission, and an SPS to  be associated with multiple MBS.
FIG. 1 shows an example of a wireless communication system (e.g., an LTE, 5G or New Radio (NR) cellular network) that includes a BS 120 and one or more user equipment (UE) 111, 112 and 113. In some embodiments, the downlink transmissions (141, 142, 143) include transmissions of data using one or more SPS data channels over multiple beams. In response, at least one of the UEs transmit (131, 132, 133) a hybrid automatic repeat request (HARQ) acknowledgement (ACK) message to the BS 120. The UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, a terminal, a mobile device, an Internet of Things (IoT) device, a device to device (D2D) device, an vehicle to vehicle (V2V) device, and so on.
The present document uses section headings and sub-headings for facilitating easy understanding and not for limiting the scope of the disclosed techniques and embodiments to certain sections. Accordingly, embodiments disclosed in different sections can be used with each other. Furthermore, the present document uses examples from the 3GPP New Radio (NR) network architecture and 5G protocol only to facilitate understanding and the disclosed techniques and embodiments may be practiced in other wireless systems that use different communication protocols than the 3GPP protocols.
Embodiment 1
In some embodiments, semi-persistent scheduling (SPS) configuration are configured with multiple beams. An SPS configuration includes a plurality of transmission occasions with a period. Multiple beams can be configured for each of these occasions by the network. Each occasion is associated with (e.g., corresponds to) a beam. A PDSCH transmission on an occasion is transmitted by using the corresponding beam.
In some embodiments, multiple transmission configuration indicator (TCI) states (e.g., a TCI state list) and/or the order of the multiple TCI states are configured for the SPS. Each transmission occasion is associated with a TCI state, and the PDSCH on an occasion is transmitted with the associated TCI state. A TCI state includes a downlink (DL) reference signal (RS) and the corresponding quasi co-location (QCL) parameter. A transmission associated with a TCI state has the same or similar QCL parameter with the DL RS in the TCI state. The DL RS includes channel state information reference signal (CSI-RS) and a synchronization signal and physical broadcast channel block (SS/PBCH block, or an SSB) .
In some embodiments, control information can be configured to activate the SPS transmission. After activation, the transmission occasions are associated with the TCI states cyclically from the first TCI state, and based on the order of the multiple TCI states. For example, the first transmission occasion after activation is associated with the first TCI state, the second transmission occasion after activation is associated with the second TCI state, and so on. The next transmission occasion after the transmission associated with the last TCI state is associated with the first TCI state, i.e., based on the cyclic association of the TCI states.
In some embodiments, the control information indicates an active TCI state for the SPS transmission and activates the SPS transmission, wherein the active TCI state is one of the multiple TCI states. After the activation, the transmission occasions are associated with the TCI states cyclically from the indicated active TCI and based on the order of the multiple TCI states. For example, the first occasion after activation is associated with the indicated TCI state, the second transmission occasion after activation is associated with the next TCI state after the indicated active TCI state, and so on.
In some embodiments, from the transmission occasion associated with a specific TCI state, the transmission on each of the subsequent transmission occasions carry the same data (or transport block) until the next occasion associated with the specific TCI state. The specific TCI state is the first TCI state in the TCI state list or is indicated by the network. For transmissions carrying the same data, the UE only transmits one hybrid automatic repeat request (HARQ) acknowledge (ACK) feedback message. More specifically, the UE only transmits HARQ-ACK information corresponding to one of these transmissions. For example, the UE only transmits HARQ-ACK feedback corresponding to the transmission with the TCI state that is indicated by the network or indicated in the control information. Alternatively, the UE only transmits HARQ-ACK feedback corresponding to some transmission occasions that are indicated by the network. For transmissions associated with other TCI states that are not indicated by the network or transmission occasions that are not configured by the network, the UE does not transmit a corresponding HARQ-ACK feedback message.
FIG. 2 illustrates an example of an SPS PDSCH. As shown therein, the SPS includes several PDSCH occasions, labeled as PDSCH 1, PDSCH 2, PDSCH 3, PDSCH 4, and PDSCH 5. The TCI states configured for the SPS are TCI state 1, TCI state 2, TCI state 3, and TCI state 4, and the order of these TCI states are TCI state 1, TCI state 2, TCI state 3, TCI state 4.
When the downlink control information (DCI) activates the SPS and as indicated by the DCI, the first PDSCH occasion (PDSCH 1) is associated with the TCI state 1, PDSCH 2 is associated with TCI state 2, PDSCH 3 is associated with TCI state 3, PDSCH 4 is associated with TCI state 4, and PDSCH 5 is associated with TCI state 1 (based on the cyclic association described above) .
The transmission associated with the first TCI state (e.g., TCI state 1) and the transmissions on subsequent transmission occasions carry the same data (or transport block) until the next occasion with the first TCI state. Therefore, in this example, PDSCH 1, PDSCH 2, PDSCH 3 and PDSCH 4 carry the same transport block, and PDSCH 5, PDSCH 6, PDSCH 7, PDSCH 8 (not all illustrated in FIG. 2) carry another transport block.
In an example, the network can configure the UE to only transmit HARQ-ACK feedback for the PDSCH with TCI state 2. In this case, the UE only transmits HARQ-ACK feedback corresponding to PDSCH 2 and PDSCH 6. In another example, the network can configure the UE to only transmit HARQ-ACK feedback for the PDSCH every four occasions from the first occasion (e.g., the first occasion, the fifth occasion, the ninth occasion, and so on) . In this case, the UE only transmits HARQ-ACK feedback corresponding to PDSCH 1 and PDSCH 5.
In some embodiments, the DCI activates the SPS and indicates TCI state 3 for the SPS PDSCH transmission, which results in first PDSCH occasion (PDSCH 1) being associated with TCI state 3. Then, PDSCH 2 is associated with TCI state 4, PDSCH 3 is associated with TCI state 1, PDSCH 4 is associated with TCI state 2, PDSCH 5 is associated with TCI state 3, and so on. The UE only transmits HARQ-ACK feedback corresponding to the PDSCH associated with the TCI state (e.g., TCI state 3) indicated in the DCI. In this case, the UE only transmits HARQ-ACK feedback corresponding to PDSCH 1 and PDSCH 5.
Embodiment 2
In some embodiments, an SPS is configured with PDSCH repetition and a plurality of beams. Each repetition is associated with (e.g., corresponds to) a beam. A PDSCH repetition is transmitted by using the corresponding beam. In this case, the PDSCH is repeatedly transmitted with different beams.
In some embodiments, multiple transmission configuration indicator (TCI) states (e.g., a TCI state list) and/or the order of the multiple TCI states are configured for the SPS. The  PDSCH repetition is configured for the SPS. Each PDSCH repetition (e.g., PDSCH  repetition occasion) is associated with a TCI state. The PDSCH on the repetition occasion is transmitted by using the associated TCI state.
Starting with the first PDSCH repetition, the PDSCH repetitions are associated with the TCI states starting with the first TCI state. In one example, the PDSCH repetitions are associated with the TCI state cyclically from the first TCI state. In another example, from the first PDSCH repetition, every D PDSCH repetitions are associated with a TCI states from the first TCI state. In an example, the total number of PDSCH repetitions are E and the total number of TCI states are F. Starting with the first PDSCH repetition, every
Figure PCTCN2021081503-appb-000001
or
Figure PCTCN2021081503-appb-000002
PDSCH repetitions are associated with a TCI state starting with the first TCI state. In this example, the first
Figure PCTCN2021081503-appb-000003
or
Figure PCTCN2021081503-appb-000004
PDSCH repetitions are associated with the first TCI state, the second 
Figure PCTCN2021081503-appb-000005
or
Figure PCTCN2021081503-appb-000006
PDSCH repetitions are associated with the second TCI state, and so on. Herein, the active TCI state in the control information activating the SPS is not valid. In other words, it does not change the association relationship between the PDSCH repetitions and the TCI states above. This results in the UE ignoring the indicated active TCI state in the control information activating the SPS. The network indicates one of the multiple TCI states to the UE and the UE only receives (e.g., detects, decodes) the PDSCH repetitions associated with the one of the multiple TCI states.
FIG. 3 illustrates an example of an SPS PDSCH with repetitions. As shown therein, the SPS includes several PDSCH occasions with repetition, labeled as PDSCH 1A, PDSCH 1B, PDSCH 1C, PDSCH 1D, PDSCH 2A, PDSCH 2B, PDSCH 2C, and PDSCH 2D. PDSCH 1A, PDSCH 1B, PDSCH 1C, and PDSCH 1D are a first bundle of transmissions. The transport block is transmitted repeatedly on the PDSCH 1A, PDSCH 1B, PDSCH 1C, PDSCH 1D. PDSCH 2A, PDSCH 2B, PDSCH 2C, and PDSCH 2D are a second bundle of transmissions. The transport block is transmitted repeatedly on the PDSCH 2A, PDSCH 2B, PDSCH 2C, and PDSCH 2D. The configured TCI states include TCI state 1 and TCI state 2.
In one example, for the first bundle of transmissions, PDSCH 1A is associated with TCI state 1, PDSCH 1B is associated with TCI state 2, PDSCH 1C is associated with TCI state 1, and PDSCH 1D is associated with TCI state 2. For the second bundle of transmissions, PDSCH 2A is associated with TCI state 1, PDSCH 2B is associated with TCI state 2, PDSCH 2C is associated with TCI state 1, and PDSCH 2D is associated with TCI state 2. In another example,  for the first bundle of transmissions, PDSCH 1A and PDSCH 1B are associated with TCI state 1, PDSCH 1C and PDSCH 1D are associated with TCI state 2, and for the second bundle of transmissions, PDSCH 2A and PDSCH 2B are associated with TCI state 1, and PDSCH 2C and PDSCH 2D are associated with TCI state 2.
Embodiment 3
In some embodiments, a multicast-broadcast service (MBS) is associated with multiple SPS configurations, wherein the multiple SPS transmissions carry data corresponding to the associated MBS. In other embodiments, multiple SPS configurations are configured for the transmission of the same transport block for a unicast service. These SPS configurations have the same periodicity, and each SPS configuration is activated by a control information with a TCI state. Accordingly, each SPS configuration may have different TCI states. After activation, the transmission occasions of these SPS configuration may have different time domain resource.
In some embodiments, the network can indicate that a SPS configuration is used for the first (or initial) transmission of a transport block. For the other SPS configurations, the PDSCH transmitted on the transmission occasion that is after and temporally adjacent to a transmission occasion of the indicated SPS configuration (i.e., indicated to be the first or initial transmission) carry the same transport block as that carried by the PDSCH on the transmission occasion of the indicated SPS configuration.
For multiple PDSCH carrying the same transport block, the UE only transmits HARQ-ACK feedback corresponding to one of the multiple PDSCH. Herein, the network can indicate whether the UE needs to transmit HARQ-ACK feedback for the PDSCH of a SPS configuration via Radio Resource Control (RRC) signaling, a Medium Access Control (MAC) Control Element (CE) , or an activation DCI.
In an example, the PUCCH resource indicator field in an activation DCI can be used to indicate whether the UE transmits the HARQ-ACK feedback for the SPS PDSCH that the activation DCI activates. A value of all 1s in the PUCCH resource indicator field indicates that the UE should transmit the HARQ-ACK feedback, whereas a value of all 0s in the PUCCH resource indicator field indicates that the UE should not transmit the HARQ-ACK feedback. In another example, the network indicates only one of the multiple SPS configurations includes a PUCCH resource for HARQ-ACK feedback while other SPS configurations do not include PUCCH resource for that purpose. In this case, the UE only transmits HARQ-ACK feedback for  the PDSCH of the SPS configuration with the configured PUCCH resource.
FIG. 4 illustrates an example of multiple SPS configurations. As shown therein, there are four SPS configuration denoted SPS 0, SPS 1, SPS 2, and SPS 3. These four SPS configurations have the same period P. These four SPS are associated with a common MBS or used for a unicast service. In this example, SPS 0 is activated by DCI 0 with TCI state 0, and the PDSCH is transmitted by using TCI state 0 on the occasions 0A, 0B, and 0C. Similarly, SPS 1 is activated by DCI 1 with TCI state 1 with the PDSCH being transmitted by using TCI state 1 on the  occasions  1A, 1B, and 1C, SPS 2 is activated by DCI 2 with TCI state 2 with the PDSCH being transmitted by using TCI state 2 on the  occasions  2A, 2B, and 2C, and SPS 3 is activated by DCI 3 with TCI state 3 with the PDSCH being transmitted by using TCI state 3 on the  occasions  3A, 3B, and 3C.
In this example, the network indicates that SPS 0 is used for the first transmission of a transport block. Therefore, the PDSCH transmitted on occasion 0A carries a transport block and this is the first transmission of the transport block. For SPS 1, SPS 2 and SPS 3, the transmission occasions that are after and temporally adjacent to occasion 0A are  occasions  1A, 2A, 3A, respectively. Therefore, the PDSCH transmitted on  occasions  1A, 2A, and 3A carry the same transport block. Similarly, the PDSCH transmitted on  occasions  0B, 1B, 2B, and 3B carry the same transport block with the first transmission being on occasion 0B, and the PDSCH transmitted on the  occasion  0C, 1C, 2C, and 3C carry the same transport block with the first transmission being on occasion 0C.
The network can indicate that the UE only transmits HARQ-ACK feedback for the PDSCH of SPS 1. Therefore, the UE only transmits HARQ-ACK feedback for the PDSCH transmitted on occasions 0A, 0B, and 0C. For the other PDSCH, the UE does not transmit HARQ-ACK feedback.
Embodiment 4
In some embodiments, a transmission window can be used to determine and/or configure the transmission. In these scenarios, the PDSCH transmitted within a transmission window carry the same transport block. The start of the transmission window is the first symbol of the PDSCH carrying the first transmission of a transport block or the start of the slot of the PDSCH carrying the first transmission of a transport block. The end of the transmission window is the symbol before the first symbol of the PDSCH carrying the first transmission of a next  transport block or the end of the slot before the slot of the PDSCH carrying the first transmission of a next transport block. This enables the transmission window to indicate the period of transmission. Furthermore, transmitting the same transport block within the same transmission window enables a receiver to combine multiple copies of the transport block to boost decoding performance.
FIG. 5 illustrates an example of an SPS transmission using a transmission window. The PDSCH transmitted on occasion 1 and the occasion 2 carry the same transport block and the first transmission is on occasion 1. Similarly, the PDSCH transmitted on occasion 3 and occasion 4 carry another transport block and the first transmission is on occasion 3. Therefore, the start boundary of the first transmission window (e.g., window 1 in FIG. 5) is the start of the occasion 1 and the end boundary is the start of the occasion 3 as illustrated in FIG. 5. This framework similarly applies to window 3 and window 4 shown in FIG. 5.
In some embodiments, a DCI schedules a PDSCH carrying a retransmission of the MBS (shown in the upper right portion of FIG. 5) , wherein the DCI or the scheduled PDSCH is within a first transmission window and the previous transmission is an SPS transmission. A field in the DCI is configured to indicate the window for the corresponding previous transmission. That is, the DCI schedules a PDSCH carrying a retransmission of a particular transport block, and a field in the DCI provides an indication of the transmission window of the original transport block that this retransmission corresponds to.
In an example, a value ‘0’ of in the DCI field indicates that the previous transmission and the retransmission are both in the first transmission window. In the context of FIG. 5, the DCI scheduling a PDSCH that carries the retransmission of the MBS is within window 4, and a value of ‘0’ in the DCI field indicates that the previous transmission is also within that window, i.e., window 4. In another example, a value ‘1’ in the DCI field indicates that the previous transmission is in the transmission window before the first transmission window. In the context of FIG. 5, this indicates the previous transmission is in window 3. Similarly, a value of ‘2’ in the DCI field indicates the second transmission window before the first transmission window includes the previous transmission, and so on. In the context of FIG. 5, it indicates that the previous transmission is in window 2.
In some embodiments, this DCI field is a dedicated field. In other embodiments, an existing field in the DCI can be reconfigured to indicate the transmission window. In an example,  the HARQ process number (HPN) field can be used to indicate the transmission window. In this example, for a DCI scheduling a retransmission where the previous transmission was an SPS transmission, the HARQ process number field is used to indicate the transmission window. But for a DCI scheduling a transmission that is not a retransmission where the previous transmission is SPS transmission, the HARQ process number field is used, as intended, to indicate the HARQ process number. It is noted that each transmission window is associated with its own distinct HPN, as will be described in the next embodiment.
In some embodiments, the start of the transmission window is the first symbol of the PDSCH carrying the first transmission of a transport block or the start of the slot of the PDSCH carrying the first transmission of a transport block, and the end of the transmission window is the last symbol of the PDSCH carrying the last transmission of the same transport block or the end of the slot of the PDSCH carrying the last transmission of the same transport block.
In some embodiments, a transmission windows is configured by the network. In an example, a starting point and/or a duration are configured in units of milliseconds, symbols, sub-slots, slots, sub-frames, frames, etc. The transmission windows are contiguous in the time-domain. The starting point indicates the start of the first transmission window.
Embodiment 5
In some embodiments, the PDSCH carrying the same transport block within the same transmission window (e.g., PDSCH 1 and PDSCH 2 in window 1 as shown in FIG. 5) have the same HARQ process number (HPN) . For a PDSCH carrying a transport block, the HARQ process number (or HARQ process ID) is determined based on the first transmission occasion or the last transmission occasion for transmitting the same transport block. In an example, the HARQ process number of the PDSCH is determined using the following equation:
HARQ Process ID = [floor (CURRENT_slot × 10 / (numberOfSlotsPerFrame ×periodicity×N) ) ] modulo nrofHARQ-Processes
Herein, CURRENT_slot is the slot number of the PDSCH occasion, numberOfSlotsPerFrame is the number of the slots per system frame, periodicity is the period of the SPS transmission, N is the number of configured TCI states for the MBS transmission or the number of transmission occasions within a transmission window or is configured by the network via RRC signaling, MAC CE, or control information, and nrofHARQ-Processes is the number of the HARQ processes.
FIG. 6 illustrates an example of the SPS transmission, wherein PDSCH 1 is the first transmission of a transport block, and PDSCH 2, PDSCH 3 and PDSCH 4 carry the same transport block. For PDSCH 1, the HARQ process number is determined according to its PDSCH resource, and can be determined to be 0. For PDSCH 2, the HARQ process number is determined based on the PDSCH 1 resource since PDSCH 1 is the first transmission of the transport block that PDSCH 2 carries. Therefore, the HARQ process number of PDSCH 2 is also 0.Similarly, the HARQ process numbers of PDSCH 3 and PDSCH 4 are also 0.
Embodiment 6
In some embodiments, an SPS is associated with a MBS. A DCI activating and deactivating the SPS can be received (or detected) by more than one UE. This DCI is called group common DCI, and a specific RNTI can be configured for the SPS configuration. Thus, the group common DCI with a CRC scrambled by the specific RNTI is used to activate or deactivate the SPS configuration. The RNTI is used to indicate (or identify) the SPS configuration that the group common DCI activates or deactivates.
In an example, a first SPS is associated with MBS 1 and RNTI 1 is configured for the first SPS or MBS 1, a second SPS is associated with MBS 2 and RNTI 2 is configured for the second SPS or MBS 2, and a third SPS is associated with MBS 3 and RNTI 3 is configured for the third SPS or MBS 3. When a UE receive a activation DCI with CRC scrambled by RNTI 2, the second SPS is activated. When a UE receive a deactivation DCI with CRC scrambled by RNTI 3, third SPS is deactivated.
In some embodiments, a DCI activating and deactivating the SPS can be received (or detected) by only one UE. This DCI is called UE-specific DCI, and the HARQ process number field in the UE-specific DCI is used to indicate (or identify) the SPS configuration that the UE-specific DCI activates or deactivates. In an example, the HARQ process number field in the UE-specific DCI indicates the SPS index. For a UE, the network configures the association between a SPS index and an RNTI or the association between a SPS index and an MBS via RRC signaling, MAC CE, or DCI. Based on the association, the corresponding SPS transmission is activated or deactivated when a UE receives a UE-specific DCI.
Continuing with the above example, UE 1 may only receive MBS 1 and MBS 3. The network configures SPS index 1 to be associated with RNTI 1 and SPS index 2 to be associated with RNTI 3. When UE 1 receives a UE-specific activation DCI with HARQ process number  field indicating SPS index 2, then the third SPS is activated based on the association. When UE 1 receives a UE-specific deactivation DCI with HARQ process number field indicating SPS index 1, then the first SPS is deactivated based on the association.
Embodiment 7
In some embodiments, the network can configure an SPS configuration to be associated with multiple MBS. The network can further configure the association between the SPS transmission occasion and the MBS, wherein a SPS transmission occasion is associated with one of the multiple MBS. This results in MBS data being transmitted on the associated SPS transmission occasion.
In an example, the network can configure a transmission pattern that includes multiple MBS and multiple SPS transmission occasions such that the first MBS is associated with the first SPS transmission occasion, the second MBS is associated with the second SPS transmission occasion, and so on. The transmission pattern repeats in the time domain from the first transmission occasion.
FIG. 7 illustrates an example of an SPS transmission supporting multiple MBS. As shown therein, a SPS with four transmission occasions is associated with three MBS (denoted MBS A, MBS B, and MBS C) such that the first occasion is associated with MBS A, the second occasion is associated with MBS B, the third occasion is associated with MBS A, and the fourth occasion is associated with MBS C. Therefore, MBS A is transmitted on SPS occasion 1, MBS B is transmitted on SPS occasion 2, MBS A is transmitted on SPS occasion 3, MBS C is transmitted on SPS occasion 4, MBS A is transmitted on SPS occasion 5, MBS B is transmitted on SPS occasion 6, and so on.
In some embodiments, for the multiple MBS associated with an SPS, each MBS is configured with a first scrambling ID, which results in the PDSCH carrying that MBS to be scrambled by the configured first scrambling ID. Furthermore, each MBS may be configured with a demodulation reference signal (DMRS) sequence, wherein the network configures a second scrambling ID for the PDSCH DMRS for that MBS. In an example, the second scrambling ID can be used for PDSCH DMRS sequence generation. In another example, the MBS is transmitted with the configured DMRS sequence. When a UE receives an SPS transmission, it determines (or identifies) the received MBS based on the scrambling ID or the DMRS sequence.
In an example, MBS A and MBS B are associated with SPS 1. The PDSCH of SPS 1 can carry the data of MBS A and MBS B. PDSCH scrambling ID X is configured for MBS A and PDSCH scrambling ID Y is configured for MBS B. If the PDSCH of SPS 1 carries the data of MBS A, the PDSCH is scrambled by scrambling ID X, and if the PDSCH of SPS 1 carries the data of MBS B, the PDSCH is scrambled by scrambling ID Y. When a UE receives a PDSCH of SPS 1, and is able to decode the PDSCH successfully with scrambling ID X, it can determine that the data carried by the PDSCH is for MBS A. However, if the UE decodes the PDSCH successfully with scrambling ID Y, it can determine that the data carried by the PDSCH is for MBS B.
In another example, DMRS sequence 1 (or scrambling ID M) is configured for MBS A and DMRS sequence 2 (or scrambling ID N) is configured for MBS B. If the PDSCH of SPS 1 carries the data of MBS A, sequence 1 is used for the PDSCH DMRS (or the PDSCH DMRS sequence is generated based on scrambling ID M) . If the PDSCH of SPS 1 carries the data of MBS B, sequence 2 is used for the PDSCH DMRS (or the PDSCH DMRS sequence is generated based on scrambling ID N) . A UE receives a PDSCH of SPS 1. If a UE detects the PDSCH DMRS sequence is sequence 1 (or the PDSCH DMRS is scrambled by scrambling ID M) , it can determine that the data carried by the PDSCH is for MBS A, and if the UE detects the PDSCH DMRS sequence is sequence 2 (or the PDSCH DMRS is scrambled by scrambling ID N) , it can determine that the data carried by the PDSCH is for MBS B.
Exemplary methods for the disclosed technology
Embodiments of the disclosed technology include, amongst other features and benefits, the following methods and techniques that provide technical solutions to the problem of SPS configurations in existing systems not being able to support multiple beams.
1. The SPS PDSCH is transmitted for a MBS service in different beams
(a) An association between the TCI state and the PDSCH transmission occasion is configured. The PDSCH is transmitted on an occasion by using the associated TCI state.
(b) Multiple SPS with the same period for the SPS PDSCH are associated with a MBS service. Each SPS is configured with a TCI state.
(c) SPS transmissions with different beams carry the same transport block.
2. Indications of a previous transmission in a SPS transmission
(a) A field in the DCI scheduling the retransmission indicate the transmission  window in which the previous transmission.
(b) The SPS transmission carrying the same transport block have the same HPN and the HPN is determined based on the SPS transmission occasion of the first transmission or the last transmission of the transport block. The previous transmission is indicated by the HPN.
3. An SPS is associated with multiple MBS
(a) Each SPS occasion is associated with a MBS and the MBS data is transmitted on the associated SPS occasion.
(b) Each MBS is configured with a scrambling ID for PDSCH or PDSCH DMRS sequence. The UE determine the MBS according to the scrambling ID or PDSCH DMRS.
FIG. 8A shows an example of a wireless communication method 800 for scheduling network communication services using semi-persistent scheduling (SPS) in mobile communication technology. The method 800 includes, at operation 802, configuring, by a network node, one or more semi-persistent scheduling configurations with multiple beams.
The method 800 includes, at operation 804, performing, based on the configuring, a transmission of data using the one or more semi-persistent scheduling configurations over the multiple beams to at least a wireless device in a cell served by the network node.
FIG. 8B shows another example of a wireless communication method 850 for scheduling network communication services using semi-persistent scheduling (SPS) in mobile communication technology. The method 850 includes, at operation 852, receiving, by a wireless device from a network node, data configured using one or more semi-persistent scheduling configurations over one of multiple beams.
The method 850 includes, at operation 854, transmitting, in response to the receiving, an acknowledgement feedback message.
In some embodiments, the one or more semi-persistent scheduling configurations is associated with a semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) carrying a unicast service or at least one multicast service, and the at least one multicast service comprises at least one multicast and broadcast service (MBS) .
In some embodiments, the data from a single multicast and broadcast service or a unicast service is transmitted using the SPS configuration over the multiple beams to a plurality of wireless devices served by the network node.
In some embodiments, the SPS configuration comprises multiple PDSCH  transmission occasions, and wherein the network node is further configured to configure, for each of the multiple PDSCH transmission occasions, an association between the corresponding transmission PDSCH occasion and a respective transmission configuration indicator (TCI) state.
In some embodiments, the wireless device is configured to receive an indication, from the network node, indicative of a TCI state, and wherein the wireless device is further configured to transmit the acknowledgement feedback message for a PDSCH transmission occasion corresponding to the indicated TCI state.
In some embodiments, multiple SPS transmissions using the SPS configuration are associated with a single MBS, and each of the multiple SPS transmissions comprises a common period and is configured with a transmission configuration indicator (TCI) state.
In some embodiments, the TCI state comprises a downlink reference signal (DL-RS) and a corresponding quasi co-location (QCL) parameter.
In some embodiments, the DL-RS comprises a channel state information reference signal (CSI-RS) or a synchronization signal and physical broadcast channel (SS/PBCH) block.
In some embodiments, the SPS configuration comprises multiple PDSCH transmission occasions, and the data transmitted over each of the multiple beams in each of the multiple PDSCH transmission occasions comprises a common transport block.
In some embodiments, the SPS configuration comprises multiple PDSCH transmission occasions within a first transmission window.
In some embodiments, the data transmitted over each of the multiple PDSCH transmission occasions within the first transmission window comprises a common transport block.
In some embodiments, the wireless device is configured to receive a downlink control information (DCI) comprising an indication of a retransmission of the data of the MBS.
In some embodiments, the indication indicates a temporal position of the first transmission window relative to a second transmission window, and the second transmission window comprises a PDSCH transmission occasion carrying the retransmission of the data.
In some embodiments, each of the multiple PDSCH transmission occasions within the first transmission window is associated with a common value of a hybrid automatic repeat request (HARQ) process number field.
In some embodiments, the value of the HARQ process number (HPN) field is  determined based on a first PDSCH transmission occasion or a last PDSCH transmission occasion of the multiple PDSCH transmission occasions within the first transmission window.
In some embodiments, the value of the HPN is based on a current slot index of a PDSCH transmission occasion, a number of slots per frame, a periodicity of the SPS transmission, a number of transmission configuration indicator (TCI) states configured for the MBS, and a number of HARQ processes.
In some embodiments, the data from multiple MBS is transmitted over the SPS PDSCH in the multiple beams to a plurality of wireless devices served by the network node.
In some embodiments, each MBS of the multiple MBS is configured with a scrambling identification for the PDSCH or a demodulation reference signal (DMRS) .
In some embodiments, the wireless device is configured to identify an MBS based on the corresponding scrambling identification for the PDSCH or the corresponding DMRS.
Implementations for the disclosed technology
FIG. 9 is a block diagram representation of a portion of an apparatus, in accordance with some embodiments of the presently disclosed technology. An apparatus 905, such as a base station or a wireless device (or UE) , can include processor electronics 910 such as a microprocessor that implements one or more of the techniques presented in this document. The apparatus 905 can include transceiver electronics 915 to send and/or receive wireless signals over one or more communication interfaces such as antenna (s) 920. The apparatus 905 can include other communication interfaces for transmitting and receiving data. Apparatus 905 can include one or more memories (not explicitly shown) configured to store information such as data and/or instructions. In some implementations, the processor electronics 910 can include at least a portion of the transceiver electronics 915. In some embodiments, at least some of the disclosed techniques, modules or functions are implemented using the apparatus 905.
Some of the embodiments described herein are described in the general context of methods or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium, including computer-executable instructions, such as program code, executed by computers in networked environments. A computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory  storage media. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
Some of the disclosed embodiments can be implemented as devices or modules using hardware circuits, software, or combinations thereof. For example, a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board. Alternatively, or additionally, the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device. Some implementations may additionally or alternatively include a digital signal processor (DSP) that is a specialized microprocessor with an architecture optimized for the operational needs of digital signal processing associated with the disclosed functionalities of this application. Similarly, the various components or sub-components within each module may be implemented in software, hardware or firmware. The connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or a variation of a sub-combination. Similarly, while  operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this disclosure.

Claims (22)

  1. A method of wireless communication, comprising:
    configuring, by a network node, one or more semi-persistent scheduling configurations with multiple beams; and
    performing, based on the configuring, a transmission of data using the one or more semi-persistent scheduling configurations over the multiple beams to at least a wireless device in a cell served by the network node.
  2. A method of wireless communication, comprising:
    receiving, by a wireless device from a network node, data configured using one or more semi-persistent scheduling configurations over one of multiple beams; and
    transmitting, in response to the receiving, an acknowledgement feedback message.
  3. The method of claim 1 or 2, wherein the one or more semi-persistent scheduling configurations is associated with a semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) carrying a unicast service or at least one multicast service, and wherein the at least one multicast service comprises at least one multicast and broadcast service (MBS) .
  4. The method of claim 3, wherein the data from a single MBS is transmitted using the SPS configuration over the multiple beams to a plurality of wireless devices served by the network node.
  5. The method of claim 4, wherein the SPS configuration comprises multiple PDSCH transmission occasions, and wherein the network node is further configured to configure, for each of the multiple PDSCH transmission occasions, an association between the corresponding transmission PDSCH occasion and a respective transmission configuration indicator (TCI) state.
  6. The method of claim 5, wherein the wireless device is configured to receive an indication, from the network node, indicative of a TCI state, and wherein the wireless device is further configured to transmit the acknowledgement feedback message for a PDSCH transmission occasion corresponding to the indicated TCI state.
  7. The method of claim 4, wherein multiple SPS transmissions using the SPS configuration are associated with a single MBS, and wherein each of the multiple SPS transmissions comprises a common period and is configured with a transmission configuration indicator (TCI) state.
  8. The method of any of claims 5 to 7, wherein the TCI state comprises a downlink reference signal (DL-RS) and a corresponding quasi co-location (QCL) parameter.
  9. The method of claim 8, wherein the DL-RS comprises a channel state information reference signal (CSI-RS) or a synchronization signal and physical broadcast channel (SS/PBCH) block.
  10. The method of claim 4, wherein the SPS configuration comprises multiple PDSCH transmission occasions, and wherein the data transmitted over each of the multiple beams in each of the multiple PDSCH transmission occasions comprises a common transport block.
  11. The method of claim 3, wherein the SPS configuration comprises multiple PDSCH transmission occasions within a first transmission window.
  12. The method of claim 11, wherein the data transmitted over each of the multiple PDSCH transmission occasions within the first transmission window comprises a common transport block.
  13. The method of claim 11, wherein the wireless device is configured to receive a downlink control information (DCI) comprising an indication of a retransmission of the data of the MBS.
  14. The method of claim 13, wherein the indication indicates a temporal position of the first transmission window relative to a second transmission window, and wherein the second transmission window comprises a PDSCH transmission occasion carrying the retransmission of the data.
  15. The method of claim 11, wherein each of the multiple PDSCH transmission occasions within the first transmission window is associated with a common value of a hybrid automatic repeat request (HARQ) process number field.
  16. The method of claim 15, wherein the value of the HARQ process number (HPN) field is determined based on a first PDSCH transmission occasion or a last PDSCH transmission occasion of the multiple PDSCH transmission occasions within the first transmission window.
  17. The method of claim 15 or 16, wherein the value of the HPN is based on a current slot index of a PDSCH transmission occasion, a number of slots per frame, a periodicity of the SPS transmission, a number of transmission configuration indicator (TCI) states configured for the MBS, and a number of HARQ processes.
  18. The method of claim 3, wherein the data from multiple MBS is transmitted over the SPS PDSCH in the multiple beams to a plurality of wireless devices served by the network node.
  19. The method of claim 18, wherein each MBS of the multiple MBS is configured with a scrambling identification for the PDSCH or a demodulation reference signal (DMRS) .
  20. The method of claim 19, wherein the wireless device is configured to identify an MBS based on the corresponding scrambling identification for the PDSCH or the corresponding DMRS.
  21. A wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory and implement a method recited in any of claims 1 to 20.
  22. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 20.
PCT/CN2021/081503 2021-03-18 2021-03-18 Scheduling network communication services using semi-persistent scheduling WO2022193223A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/081503 WO2022193223A1 (en) 2021-03-18 2021-03-18 Scheduling network communication services using semi-persistent scheduling
CN202180077293.1A CN116491077A (en) 2021-03-18 2021-03-18 Network communication service scheduling using semi-persistent scheduling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081503 WO2022193223A1 (en) 2021-03-18 2021-03-18 Scheduling network communication services using semi-persistent scheduling

Publications (1)

Publication Number Publication Date
WO2022193223A1 true WO2022193223A1 (en) 2022-09-22

Family

ID=83321317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081503 WO2022193223A1 (en) 2021-03-18 2021-03-18 Scheduling network communication services using semi-persistent scheduling

Country Status (2)

Country Link
CN (1) CN116491077A (en)
WO (1) WO2022193223A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565854A (en) * 2016-08-03 2019-04-02 Lg 电子株式会社 The method of the terminal of uplink communication and the terminal using this method are executed in a wireless communication system
WO2020034569A1 (en) * 2019-01-10 2020-02-20 Zte Corporation Signaling of quasi-co-location information in wireless systems
CN111954986A (en) * 2018-04-13 2020-11-17 高通股份有限公司 Method and apparatus for uplink multi-beam operation
US20200396752A1 (en) * 2019-06-14 2020-12-17 Qualcomm Incorporated Techniques for beam sweep based semi-persistent scheduling / configured grant activation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565854A (en) * 2016-08-03 2019-04-02 Lg 电子株式会社 The method of the terminal of uplink communication and the terminal using this method are executed in a wireless communication system
CN111954986A (en) * 2018-04-13 2020-11-17 高通股份有限公司 Method and apparatus for uplink multi-beam operation
WO2020034569A1 (en) * 2019-01-10 2020-02-20 Zte Corporation Signaling of quasi-co-location information in wireless systems
US20200396752A1 (en) * 2019-06-14 2020-12-17 Qualcomm Incorporated Techniques for beam sweep based semi-persistent scheduling / configured grant activation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY LENOVO: "Random access response in multi-beam operation", 3GPP DRAFT; R1-1705550, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 25 March 2017 (2017-03-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051251994 *

Also Published As

Publication number Publication date
CN116491077A (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US11129161B2 (en) Method and apparatus for beam indication in next generation wireless systems
US11871429B2 (en) Determination of search space sets for physical downlink control channel (PDCCH) monitoring
EP3720026B1 (en) Data transmission method and device, and computer storage medium
CN112715011B (en) Apparatus and method for data repetition
JP7077330B2 (en) NR-SS burst set design method and equipment
US10547494B2 (en) Unlicensed spectrum coverage enhancement for industrial internet of things
US11206578B2 (en) Method and apparatus for handling collisions in next generation communication system
US11889552B2 (en) Method and apparatus for setting downlink control channel reception time in wireless communication system
KR102476993B1 (en) Resource allocation for repetitions of transmissions in a communication system
CN107210903B (en) Transmission of downlink control channel for low cost user equipment
US10980007B2 (en) Uplink resource configuration method and apparatus in wireless communication system
CN109792718B (en) Method and apparatus for selecting resources and transmitting PSSCH in wireless communication system
CN113767698A (en) Determination of Physical Downlink Control Channel (PDCCH) allocation in power save mode
JP5579942B2 (en) Acknowledging multiple wireless communication devices
JP2019092193A (en) PDCCH initialization suitable for MTC devices
WO2020225692A1 (en) Dynamic indication of multi-trp pdsch transmission schemes
KR102411031B1 (en) Prioritized rts-cts resources
CN114902598B (en) Beam indication method in wireless communication system
CN108141850B (en) Terminal device, base station and operating method thereof for wireless telecommunication system
WO2022193223A1 (en) Scheduling network communication services using semi-persistent scheduling
US20180198666A1 (en) Transmission of system information
WO2023010425A1 (en) Methods and devices for scheduling codebook
WO2023115515A1 (en) Configuration method and device for semi-static transmission
WO2022205452A1 (en) Reference signal configuration for multi-beam communication in wireless networks
WO2022236534A1 (en) Hybrid automatic repeat request acknowledgement codebook generation techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077293.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930815

Country of ref document: EP

Kind code of ref document: A1