WO2018025800A1 - 希土類リン酸塩粒子、それを用いた散乱性向上方法 - Google Patents

希土類リン酸塩粒子、それを用いた散乱性向上方法 Download PDF

Info

Publication number
WO2018025800A1
WO2018025800A1 PCT/JP2017/027689 JP2017027689W WO2018025800A1 WO 2018025800 A1 WO2018025800 A1 WO 2018025800A1 JP 2017027689 W JP2017027689 W JP 2017027689W WO 2018025800 A1 WO2018025800 A1 WO 2018025800A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth phosphate
phosphate particles
particles
scattering
Prior art date
Application number
PCT/JP2017/027689
Other languages
English (en)
French (fr)
Inventor
佳弘 米田
顕治 田村
純一 伊東
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US16/318,231 priority Critical patent/US20190233298A1/en
Priority to KR1020197001190A priority patent/KR102166364B1/ko
Priority to EP17836905.4A priority patent/EP3495319A4/en
Priority to CN201780044180.5A priority patent/CN109476485B/zh
Priority to JP2018531881A priority patent/JP6605148B2/ja
Publication of WO2018025800A1 publication Critical patent/WO2018025800A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to rare earth phosphate particles.
  • the present invention also relates to a method for improving scattering properties using the rare earth phosphate particles.
  • a light scattering sheet containing inorganic particles in a transparent resin includes a backlight module of a liquid crystal display device, a screen of an image display device such as a projection television, a transparent screen used for a head-up display, etc. It is used in various optical devices such as instruments. Such a light scattering sheet is required to have excellent light scattering properties while ensuring transparency. For this reason, inorganic materials having a high refractive index such as titania, silica, zirconia, and zinc oxide are used as the inorganic particles.
  • Patent Document 1 proposes a curable resin composition containing zinc oxide as a transparent high refractive index material.
  • an object of the present invention is to provide particles capable of improving the light scattering property while ensuring the transparency of the base material when placed inside or on the surface of the base material.
  • the present invention relates to LnPO 4 (wherein Ln is at least one selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Consisting of aggregate particles in which a plurality of primary particles of the rare earth phosphate represented by The aggregate particle has a volume cumulative particle diameter D 50 in the cumulative volume 50% by volume by laser diffraction scattering particle size distribution measurement method is at 0.1 ⁇ m or 20 ⁇ m or less, The present invention solves the above-mentioned problems by providing rare-earth phosphate particles that are disposed inside or on the surface of a substrate and used to cause light scattering.
  • the present invention also provides a scattering improvement method for adding the rare earth phosphate particles to a resin sheet substrate to improve the scattering property of the resin sheet substrate.
  • the present invention also provides a method for improving the scattering property by arranging the rare earth phosphate particles on the surface of the substrate to improve the scattering property of the substrate.
  • the rare earth phosphate particles of the present invention are used to cause light scattering by being disposed inside or on the surface of a substrate.
  • the rare earth phosphate particles of the present invention are arranged in a state of being uniformly dispersed inside the substrate, or are arranged in a state of being unevenly distributed on one surface side of the substrate among the inside of the substrate, It is used to cause scattering of light incident on the base material by being arranged in a state of being uniformly dispersed inside a coating layer provided on the surface of the base material.
  • scattering of incident light includes forward scattering and backscattering.
  • the rare earth phosphate particles of the present invention are used for either or both forward scattering and backscattering.
  • scattering includes both forward scattering and backscattering.
  • light means light including the wavelength region of visible light.
  • the rare earth phosphate particle of the present invention is an aggregate of aggregate particles formed by aggregating a plurality of primary particles composed of a rare earth phosphate represented by LnPO 4 .
  • Ln represents at least one element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu.
  • the term “aggregate particle” may refer to a powder that is an aggregate of aggregate particles or an individual aggregate particle constituting the powder, depending on the context.
  • Rare earth phosphate is a material having a high refractive index. For this reason, when the rare earth phosphate particles of the present invention are dispersed in the interior or surface of the substrate, large light scattering occurs.
  • Rare earth phosphate is also a material generally having a high Abbe number.
  • the present inventors have made various studies on optical characteristics other than the Abbe number.
  • the rare earth phosphate has a wavelength dependency of the refractive index compared to other high Abbe number materials such as zirconia. Turned out to be small. That is, it has been found that the variation in the degree of refraction is small when light having various wavelengths is incident. As a result, scattered light with strong contrast can be obtained by using the rare earth phosphate particles of the present invention.
  • the rare earth element in the rare earth phosphate represented by LnPO 4 is as described above. Among these, since the wavelength dependence of the refractive index is small, at least selected from Y, La, Gd, Yb and Lu It is preferable to use a kind of rare earth element.
  • a rare earth element can be used individually by 1 type or in combination of 2 or more types.
  • the rare earth phosphate used in the present invention may be crystalline or amorphous (amorphous). In general, when rare earth phosphate particles are produced by the method described later, crystalline rare earth phosphate is obtained. When the rare earth phosphate is crystalline, it is preferable from the viewpoint of increasing the refractive index.
  • the rare earth phosphate particles of the present invention are composed of aggregate particles of primary particles.
  • Aggregate particles of primary particles are generally called secondary particles.
  • the primary particle is an object recognized as a minimum unit as a particle as judged from an apparent geometric form.
  • the primary particles may be rare earth phosphate polycrystals or single crystals.
  • the agglomerate particles are composed of aggregates of two or more primary particles. Aggregation of primary particles is caused by, for example, intermolecular force, chemical bonding, or binding by a binder. When rare earth phosphate particles are produced by the method described later, primary particles are aggregated by intermolecular forces and / or chemical bonds.
  • the aggregate particles advantageously have a volume cumulative particle diameter D 50 of 0.1 ⁇ m or more and 20 ⁇ m or less at a cumulative volume of 50% by volume measured by a laser diffraction / scattering particle size distribution measurement method.
  • D 50 of the aggregate particles is more preferably from 0.3 ⁇ m to 20 ⁇ m, and more preferably from 0.3 ⁇ m to 10 ⁇ m. More preferably, it is more preferably 0.3 ⁇ m or more and 3 ⁇ m or less.
  • Aggregate particles having such a particle size can be suitably produced, for example, by a method described later.
  • Cumulative volume particle diameter D 50 is measured by the following method. Rare earth phosphate particles are mixed with water and dispersed for 1 minute using a general ultrasonic bath. The apparatus is measured using LS13 320 manufactured by Beckman Coulter.
  • the shape is not critical in the present invention.
  • the shape of the aggregate particles is various. Generally speaking, the closer the shape of the aggregate particle is to a spherical shape, the higher the scattering property, and also in the resin composition constituting the resin sheet substrate described later and in the resin composition constituting the surface coat layer of the substrate The dispersibility tends to be good.
  • the particle size distribution of the aggregate particles can be evaluated using the value of D 99 / D 50 as a scale.
  • D 99 represents a volume cumulative particle diameter at a cumulative volume of 99 vol% according to a laser diffraction / scattering particle size distribution measurement method. The closer the value of D 99 / D 50 is to 1, the sharper the particle size distribution of the aggregate particles.
  • the value of D 99 / D 50 is preferably 10 or less, more preferably 5 or less, and even more preferably 2.5 or less.
  • D 99 can be measured in the same manner as D 50.
  • the aggregate particles are aggregates of primary particles of rare earth phosphate, there are pores between the primary particles.
  • the aggregate particles had one or more peaks in the range of 0.2 ⁇ m or more and 10 ⁇ m or less from the viewpoint of further improving the scattering property.
  • having only one peak in this range is advantageous from the viewpoint of further improving the scattering property.
  • the average pore diameter of the pores is preferably 0.2 ⁇ m or more and 10 ⁇ m or less from the viewpoint of further improving the scattering property.
  • the average pore diameter is 0.2 ⁇ m or more and 8 ⁇ m or less, it is particularly preferable that the average pore diameter is 0.5 ⁇ m or more and 6 ⁇ m or less because the scattering property is further enhanced.
  • the aggregate particles may be manufactured by a method described later. Further, the pore size distribution and average pore size of the aggregate particles can be measured, for example, by the following method. It can be measured with a mercury intrusion porosimeter for pore distribution measurement (for example, Auto Pore IV, manufactured by Micromeritics).
  • the particle size of the primary particles of the individual rare earth phosphates constituting the aggregate particles is one of the factors affecting the particle size of the aggregate particles.
  • the particle size of the primary particles is preferably 10 nm or more and 100 nm or less, more preferably 12 nm or more and 50 nm or less, and further preferably 12 nm or more and 25 nm or less.
  • the particle size of the primary particles referred to in the present specification is the primary particle size in terms of BET specific surface area.
  • the primary particle diameter in terms of BET specific surface area is measured by the following method.
  • the BET specific surface area can be measured by a nitrogen adsorption method using “Flowsorb 2300” manufactured by Shimadzu Corporation.
  • the amount of the powder to be measured is 0.3 g, and the preliminary degassing condition is 10 minutes at 120 ° C. under atmospheric pressure.
  • the primary particle diameter is calculated by the following equation assuming that the particle shape is spherical.
  • d 6000 / (A ⁇ ⁇ )
  • d is the primary particle diameter [nm] calculated by calculation
  • A is the specific surface area [m 2 / g] measured by the BET single point method
  • is the density [g / cm 3 ] of the measurement target.
  • the crystallinity of the primary particles is the ratio between the crystallite size of the rare earth phosphate particles and the primary particle diameter converted to the BET specific surface area [crystallite size of the rare earth phosphate particles / primary particle diameter converted to the BET specific surface area]. Can be evaluated as a scale. The closer this value is to 1, the higher the crystallinity of the rare earth phosphate primary particles, and the closer to a single crystal.
  • the value of [crystallite size of rare earth phosphate particles / primary particle diameter in terms of BET specific surface area] is preferably 0.45 or more, more preferably 0.50 or more, More preferably, it is 0.53 or more.
  • the crystallite size of the rare earth phosphate particles can be measured by the following method.
  • X-ray diffractometer (Rigaku Corporation RINT-TTR II was used, filled with rare earth phosphate in a dedicated glass holder, and applied with 50kV-300mA voltage-current.
  • Sampling angle 0 Measured under the conditions of 0.02 ° and a scanning speed of 4.0 ° / min, the crystallite size is determined by XRD analysis software JADE using the measurement results.
  • the rare earth phosphate particles of the present invention comprising aggregate particles of primary particles have a high whiteness L *
  • the resin composition containing the resin and the rare earth phosphate particles is colored. It is preferable because it is difficult to do.
  • the whiteness L * is preferably 70 or more, more preferably 80 or more, and still more preferably 90 or more.
  • the lightness of the powder is directly measured using a spectrocolorimeter (manufactured by Konica Minolta, CM-2600d) according to JIS Z8729 “Method of displaying object color by U * V * W * system”. be able to.
  • the rare earth phosphate particles of the present invention are contained in the resin composition constituting the resin sheet substrate described later and in the resin composition constituting the surface coat layer of the substrate to the extent that the effects of the present invention are not lost.
  • the surface can be subjected to lipophilic treatment.
  • the lipophilic treatment include treatment with various coupling agents.
  • the coupling agent include organometallic compounds. Specifically, a silane coupling agent, a zirconium coupling agent, a titanium coupling agent, an aluminum coupling agent, or the like can be used.
  • Silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy Propylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-a Nopropyltrimethoxysilane, N-2
  • Titanium coupling agents include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, tetramethyl titanate, titanium acetylacetonate, titanium tetraacetylacetonate, titanium ethylacetoacetate, titanium octane
  • Examples include diolate, titanium lactate, titanium triethanolamate, and polyhydroxytitanium stearate.
  • Zirconium coupling agents include zirconium normal propyrate, zirconium normal butyrate, zirconium tetraacetylacetonate, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, Examples thereof include zirconium acetate and zirconium monostearate.
  • Aluminum coupling agents include aluminum isopropylate, mono sec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum di Isopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), aluminum monoisopropoxymonooleoxyethylacetoacetate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide octylate, cyclic aluminum oxide stearate Rate and so on.
  • silane coupling agent When a silane coupling agent is used as the coupling agent, the surface of the rare earth phosphate particles is coated with a silane compound.
  • the silane compound preferably has a lipophilic group such as an alkyl group or a substituted alkyl group.
  • the alkyl group may be linear or branched. In any case, the alkyl group preferably has 1 to 20 carbon atoms from the viewpoint of good affinity with the resin.
  • an amino group, vinyl group, epoxy group, styryl group, methacryl group, acrylic group, ureido group, mercapto group, sulfide group, isocyanate group and the like can be used as the substituent.
  • the amount of the silane compound that coats the surface of the rare earth phosphate particles is 0.01 to 200% by mass, particularly 0.1 to 100% by mass, based on the mass of the rare earth phosphate particles. It is preferable from the viewpoint of good properties.
  • the rare earth phosphate particles of the present invention can be added to a resin to form a resin composition, which can be used to improve the scattering property of the resin composition.
  • a resin composition which can be used to improve the scattering property of the resin composition.
  • the form of the resin composition there is no particular limitation on the form of the resin composition, but if the form of the resin sheet, that is, the form in which the rare earth phosphate particles of the present invention are dispersed and arranged in the substrate made of the resin sheet, This is advantageous because it can be applied easily.
  • grains of this invention can improve the scattering property of the base material which consists of resin sheets by adding this particle
  • the type of resin to which the rare earth phosphate particles of the present invention are added is not particularly limited, and can be molded thermoplastics. Resins and thermosetting resins can be used. In particular, it is preferable to use a thermoplastic resin because it can be easily formed into a sheet form.
  • thermoplastic resins include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polycarbonate, polyacrylic acids such as polyacrylic acid or esters thereof, polymethacrylic acid or esters thereof, etc. Examples thereof include resins, polyvinyl resins such as polystyrene and polyvinyl chloride, and cellulose resins such as triacetyl cellulose.
  • the ratio of the rare earth phosphate particles contained in the light scattering sheet takes into consideration the balance between transparency and light scattering properties.
  • the total amount of the light scattering sheet is preferably 0.05% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 10% by mass or less, and further preferably 0.1% by mass or less. More preferably, the content is 5% by mass or less.
  • the thickness of the light scattering sheet is preferably 20 ⁇ m or more and 3000 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less, considering light scattering properties, handling properties, and the like.
  • a light scattering sheet composed of a resin composition containing the rare earth phosphate particles of the present invention and a resin for example, after kneading the rare earth phosphate particles of the present invention into a molten resin, What is necessary is just to shape
  • molding methods such as an inflation method, a T-die method, a solution casting method, and a calendar method.
  • the rare earth phosphate particles of the present invention can improve the scattering property of the substrate by arranging the particles on the surface of the substrate.
  • the method for disposing the rare earth phosphate particles of the present invention on the surface of the substrate is, for example, preparing a coating liquid by mixing the composition containing the rare earth phosphate particles of the present invention, an organic solvent, and a binder resin, What is necessary is just to apply or spray this coating liquid on the surface of a base material using a roller, a spray gun, etc.
  • a light scattering member is obtained in which a coating layer composed of the resin composition containing the rare earth phosphate particles and the resin of the present invention is provided on the surface of the substrate.
  • Another method for disposing the rare earth phosphate particles of the present invention on the surface of the base material is to use sputtering or the like, without using a binder such as a resin on the surface of the base material. Acid salt particles can also be placed directly.
  • a light scattering member (for example, light in which a coat layer is provided on the surface of a sheet-like base material) is provided on the surface of the base material with a coat layer composed of the resin composition containing the rare earth phosphate particles and the resin of the present invention.
  • the type of resin contained in the coat layer is not particularly limited, and a general resin can be used as the binder resin.
  • resins include polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate, and polyacrylic acid such as polyacrylic acid or its ester or polymethacrylic acid or its ester.
  • Resin, polyvinyl resin such as polystyrene and polyvinyl chloride, and cellulose resin such as triacetyl cellulose.
  • the ratio of the rare earth phosphate particles contained in the coat layer is in consideration of the balance between transparency and light scattering. It is preferable to set it as 0.01 to 90 mass% with respect to the total mass of this coat layer, and it is still more preferable to set it as 0.1 to 65 mass%.
  • the light scattering sheet and the light scattering member obtained by such a method are, for example, a transparent screen used for a display, an illumination member, a window member, an electrical decoration member, a light guide plate member, a projector screen, a head-up display, etc. It can be suitably manufactured as an agricultural material such as a greenhouse. Further, the light scattering sheet can be used by being incorporated in an optical device. Examples of such an optical device include mobile devices such as a liquid crystal TV, a personal computer, a tablet, and a smartphone.
  • an aqueous solution containing one or more rare earth element sources and an aqueous solution containing a phosphate group are mixed to produce one or more rare earth phosphorus.
  • precipitation of rare earth phosphate is caused by adding an aqueous solution containing phosphate radicals to an aqueous solution containing one or more rare earth element sources.
  • a production method suitable for the present invention it is possible to synthesize particles having a desired shape by drying the aforementioned precipitate by spray drying or the like, followed by firing.
  • the rare earth phosphate particles By carrying out the above-described step of obtaining a precipitate in a heated state, particles having a desired shape and extremely high crystallinity can be obtained. Since water may remain in the rare earth phosphate particles, it is preferable to heat the rare earth phosphate particles at a relatively low temperature for the purpose of removing the water.
  • the specific heating temperature is preferably 80 ° C. or higher and 800 ° C. or lower, for example.
  • the degree of heating of the aqueous solution containing the rare earth element source is preferably 50 ° C. or higher and 100 ° C. or lower, and more preferably 70 ° C. or higher and 95 ° C. or lower.
  • aggregated particles having a desired D50 and primary particle diameter can be obtained.
  • aggregate particles having desired primary particle crystallinity, pore size distribution, average pore size, and whiteness can be obtained.
  • the aqueous solution containing the rare earth element source has a rare earth element concentration in the aqueous solution of 0.01 to 1.5 mol / liter, particularly 0.01 to 1 mol / liter, especially 0.01 to 0.5 mol / liter. Is preferably used.
  • the rare earth element is preferably in a trivalent ion state or in a complex ion state in which a ligand is coordinated to the trivalent ion.
  • a rare earth oxide for example, Ln 2 O 3 or the like
  • the total concentration of phosphoric acid species in the aqueous solution is 0.01 to 3 mol / liter, particularly 0.01 to 1 mol / liter, especially 0.01 to 0.5 mol / liter. It is preferable to do.
  • An alkali species can also be added for pH adjustment.
  • the alkali species for example, basic compounds such as ammonia, ammonium hydrogen carbonate, ammonium carbonate, sodium hydrogen carbonate, sodium carbonate, ethylamine, propylamine, sodium hydroxide and potassium hydroxide can be used.
  • the aqueous solution containing the rare earth element source and the aqueous solution containing the phosphate radical are mixed so that the molar ratio of phosphate ions / rare earth element ions is 0.5 to 10, particularly 1 to 10, especially 1 to 5. This is preferable because a precipitated product is often obtained.
  • rare earth phosphate particles comprising aggregate particles are obtained as described above, this is subjected to solid-liquid separation according to a conventional method and then washed with water once or a plurality of times. Washing with water is preferably performed until the electrical conductivity of the liquid reaches, for example, 2000 ⁇ S / cm or less.
  • Example 1 aggregate particles made of lanthanum phosphate were produced.
  • the manufacturing procedure is as described below. 600 g of water is weighed into the glass container 1 and 61.7 g of 60% nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 26.6 g of La 2 O 3 (manufactured by Nippon Yttrium Co., Ltd.) are added and heated to 80 ° C. to dissolve. I let you. In another glass container 2, 600 g of water and 18.8 g of 85% phosphoric acid were added. The contents of the glass container 2 were added to the glass container 1 and aged for 1 hour.
  • 60% nitric acid manufactured by Wako Pure Chemical Industries, Ltd.
  • 26.6 g of La 2 O 3 manufactured by Nippon Yttrium Co., Ltd.
  • the obtained precipitate was washed by decantation washing until the conductivity of the supernatant was 100 ⁇ S / cm or less. After washing, it was separated into solid and liquid by vacuum filtration, dried in air at 120 ° C. for 5 hours, and then fired in air at 450 ° C. for 3 hours.
  • Example 2 aggregate particles made of gadolinium phosphate were produced.
  • the production procedure was the same as that in Example 1 except that 29.6 g of Gd 2 O 3 (manufactured by Japan Yttrium Co.) was used instead of La 2 O 3 in the Examples.
  • Example 3 In this example, aggregate particles made of yttrium phosphate were produced. The production procedure was the same as that in Example 1 except that 18.8 g of Y 2 O 3 (manufactured by Japan Yttrium Co.) was used instead of La 2 O 3 in Example 1.
  • Example 4 In Example 3, the production procedure was the same as Example 3 except that the firing temperature in the atmosphere was changed from 450 ° C to 800 ° C.
  • Example 5 aggregate particles made of yttrium phosphate were produced.
  • the manufacturing procedure is as follows. In the same manner as in Example 4, aggregate particles composed of yttrium phosphate were obtained. Then, 10 g of yttrium phosphate and 20 g of pure water were mixed, and the resulting slurry was pulverized for 5 hours using a paint shaker. After pulverization, the cake obtained by solid-liquid separation was vacuum dried.
  • Example 6 In this example, aggregate particles made of lutetium phosphate were produced. The production procedure was the same as in Example 3 except that 33.1 g of Lu 2 O 3 (manufactured by Japan Yttrium Co.) was used instead of Y 2 O 3 in Example 3.
  • Lu 2 O 3 manufactured by Japan Yttrium Co.
  • Example 7 In this example, aggregate particles made of ytterbium phosphate were produced. The production procedure was the same as that in Example 3 except that 32.8 g of Yb 2 O 3 (manufactured by Japan Yttrium Co.) was used instead of Y 2 O 3 in Example 3.
  • Example 8 In this example, aggregate particles made of dysprodium phosphate were produced. The production procedure was the same as that in Example 3 except that 31.1 g of Dy 2 O 3 (manufactured by Japan Yttrium Co.) was used instead of Y 2 O 3 in Example 3.
  • Dy 2 O 3 manufactured by Japan Yttrium Co.
  • Example 9 In this example, aggregate particles made of europium phosphate were produced. The production procedure was the same as that in Example 3 except that 29.3 g of Eu 2 O 3 (manufactured by Japan Yttrium Co.) was used instead of Y 2 O 3 in Example 3.
  • the solution in the glass container 1 and the solution in the glass container 2 were each sent to a homogenizer at 10 mL / min, and were simultaneously added and mixed in the homogenizer.
  • the rotation speed of the homogenizer was set to 20000 rpm.
  • the precipitate was washed by decantation washing until the supernatant conductivity was 100 ⁇ S / cm or less.
  • solid-liquid separation was performed by vacuum filtration.
  • the obtained precipitate was dried in air at 120 ° C. for 5 hours and further calcined in air at 800 ° C. for 5 hours.
  • the main difference between the production method of Example 1 and the production method of Comparative Example 1 is in the method of obtaining a precipitate of rare earth phosphate and the firing conditions of the precipitate after solid-liquid separation.
  • Comparative Example 2 In this comparative example, aggregate particles made of yttrium phosphate were produced. The production procedure was the same as in Example 1 except that 4.2 g of Y 2 O 3 was used instead of Lu 2 O 3 in the example.
  • X-ray diffractometer (RINT-TTR II manufactured by Rigaku Corporation) was used to fill a dedicated glass holder with rare earth phosphate and apply a voltage-current of 50 kV-300 mA to generate a sampling angle of 0
  • the crystallite size was measured by the XRD analysis software JADE using the measurement results under the conditions of 0.02 ° and a scanning speed of 4.0 ° / min.
  • the primary particle diameter in terms of BET specific surface area was measured.
  • the BET specific surface area was measured by a nitrogen adsorption method using “Flowsorb 2300” manufactured by Shimadzu Corporation.
  • the amount of the measured powder was 0.3 g, and the preliminary degassing conditions were 10 minutes at 120 ° C. under atmospheric pressure.
  • the primary particle diameter was calculated by the following formula, assuming that the particle shape is spherical.
  • d 6000 / (A ⁇ ⁇ )
  • d is the primary particle diameter [nm] calculated by calculation
  • A is the specific surface area [m 2 / g] measured by the BET single point method
  • is the density [g / cm 3 ] of the measurement target.
  • the rare earth phosphate aggregate particles obtained in each Example are used, the permeability is higher than that of zirconia and titania, which are conventionally known high refractive index materials. It can be seen that the scattering property can be improved without loss. Therefore, it turns out that the rare earth phosphate particle
  • the light scattering properties can be improved while ensuring the transparency of the substrate by arranging the particles inside or on the surface of the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本発明の希土類リン酸塩粒子は、LnPO(式中、Lnは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuからなる群より選ばれる少なくとも一種の元素を表す。)で表される希土類リン酸塩の一次粒子が複数凝集した凝集体粒子からなる。凝集体粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.1μm以上20μm以下である。本発明の希土類リン酸塩粒子は、基材の内部又は表面に配置されて光散乱を生じさせるために用いられる。

Description

希土類リン酸塩粒子、それを用いた散乱性向上方法
 本発明は、希土類リン酸塩粒子に関する。また本発明は、この希土類リン酸塩粒子を用いた散乱性向上方法に関する。
 透明な樹脂中に無機粒子が含有されてなる光散乱シートは、液晶表示装置のバックライトモジュールや、プロジェクションテレビジョン等の画像表示装置のスクリーンや、ヘッドアップディスプレイ等に用いられる透明スクリーンや、照明器具等の様々な光学デバイスで用いられている。このような光散乱シートには、透明性を確保しつつ光散乱性に優れる特性が求められている。このことから、無機粒子としては、チタニア、シリカ、ジルコニア及び酸化亜鉛等の屈折率が高い無機材料が用いられている。例えば特許文献1には、透明な高屈折率材料として、酸化亜鉛を含む硬化性樹脂組成物が提案されている。
特開2010-138270号公報
 しかしながら、特許文献1に記載の無機粒子を用いた光散乱シートは、透明性及び光散乱性を有するものではあるものの、表示装置に当該光散乱シートを実際に用いた場合には、光散乱性が十分とは言えないため、鮮明な画像が得られ難く、改善の余地があった。
 そこで、本発明の課題は、基材の内部又は表面に配置した場合に、該基材の透明性を確保しつつ光散乱性を向上させ得る粒子を提供することにある。
 本発明は、LnPO(式中、Lnは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuからなる群より選ばれる少なくとも一種の元素を表す。)で表される希土類リン酸塩の一次粒子が複数凝集した凝集体粒子からなり、
 前記凝集体粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.1μm以上20μm以下であり、
 基材の内部又は表面に配置されて光散乱を生じさせるために用いられる希土類リン酸塩粒子を提供することにより前記の課題を解決したものである。
 また本発明は、前記の希土類リン酸塩粒子を樹脂シート基材に添加して、該樹脂シート基材の散乱性を向上させる散乱性向上方法を提供するものである。
 また本発明は、前記の希土類リン酸塩粒子を基材の表面に配置して、該基材の散乱性を向上させる散乱性向上方法を提供するものである。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明の希土類リン酸塩粒子は、基材の内部又は表面に配置されて光散乱を生じさせるために用いられるものである。詳細には、本発明の希土類リン酸塩粒子は、基材の内部に均一に分散した状態で配置されたり、基材の内部のうち基材の片側表面側に偏在した状態で配置されたり、基材の表面に設けられたコート層の内部に均一に分散した状態で配置されたりして、該基材に入射した光に散乱を生じさせるために用いられるものである。入射した光の散乱には一般に前方散乱と後方散乱とがある。光を散乱させることに関し、本発明の希土類リン酸塩粒子は、前方散乱及び後方散乱のいずれか又は双方に用いられる。以下の説明において単に「散乱」というときには、前方散乱及び後方散乱の双方を包含する。また、以下の説明において「光」というときには、可視光の波長領域を含む光のことを意味する。
 本発明の希土類リン酸塩粒子は、LnPOで表される希土類リン酸塩からなる一次粒子が複数凝集してなる凝集体粒子の集合体である。式中、Lnは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuからなる群より選ばれる少なくとも一種の元素を表す。以下の説明において、「凝集体粒子」というときには、文脈に応じ、凝集体粒子の集合体である粉末を指す場合と、該粉末を構成する個々の凝集体粒子を指す場合とがある。
 希土類リン酸塩は高屈折率を有する材料である。このことに起因して、本発明の希土類リン酸塩粒子を基材の内部又は表面に分散させて配置すると、光の大きな散乱が生じる。
 希土類リン酸塩は一般に高アッベ数を有する材料でもある。希土類リン酸塩に関し、アッベ数以外の光学特性について本発明者が種々の検討を行ったところ、希土類リン酸塩は、他の高アッベ数材料、例えばジルコニアに比べて、屈折率の波長依存性が小さいことが判明した。つまり様々な波長を含む光が入射した場合に、屈折の程度のばらつきが小さいことが判明した。その結果、本発明の希土類リン酸塩粒子を用いることでコントラストの強い散乱光を得ることができる。
 LnPO4で表される希土類リン酸塩における希土類元素は上述のとおりであるところ、これらのうち、屈折率の波長依存性が小さいことから、Y、La、Gd、Yb及びLuから選択される少なくとも一種の希土類元素を用いることが好ましい。希土類元素は、一種を単独で、又は二種以上を組み合わせて用いることができる。
 本発明で用いる希土類リン酸塩は、結晶質のものであってもよく、あるいはアモルファス(非晶質)のものであってもよい。一般に、後述する方法で希土類リン酸塩粒子を製造すると、結晶質の希土類リン酸塩が得られる。希土類リン酸塩が結晶質のものである場合、屈折率が高くなる点から好ましい。
 本発明の希土類リン酸塩粒子は、一次粒子の凝集体粒子からなる。一次粒子の凝集体粒子は一般に二次粒子とも呼ばれる。本明細書において一次粒子とは、外見上の幾何学的形態から判断して、粒子としての最小単位と認められる物体のことである。一次粒子は、希土類リン酸塩の多結晶体又は単結晶体であり得る。
 前記の凝集体粒子は、一次粒子が2個以上凝集したものから構成されている。一次粒子の凝集は、例えば分子間力、化学結合、又はバインダによる結合等に起因して生じるものである。後述する方法で希土類リン酸塩粒子を製造すると、一次粒子どうしが分子間力及び又は化学結合によって凝集する。
 凝集体粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.1μm以上20μm以下であることが有利である。本発明者の検討の結果、凝集体粒子のD50をこの範囲に設定することによって、該凝集体粒子を基材の内部又は表面に配置して、光散乱を生じさせる場合に、基材の透明性を維持しつつ、散乱の程度を高くし得ることが判明した。基材の透明性を維持しつつ、散乱の程度を一層大きくする観点から、凝集体粒子のD50は0.3μm以上20μm以下であることが更に好ましく、0.3μm以上10μm以下であることが更に好ましく、0.3μm以上3μm以下であることが一層好ましい。このような粒径を有する凝集体粒子は、例えば後述する方法によって好適に製造することができる。
 体積累積粒径D50は次の方法で測定される。希土類リン酸塩粒子を水と混合し、一般的な超音波バスを用いて1分間分散処理を行う。装置はベックマンコールター社製LS13 320を用いて測定する。
 凝集体粒子は体積累積粒径D50が上述の範囲を満たす限り、その形状は本発明において臨界的なものではない。各凝集体粒子においては、凝集している一次粒子の数も異なれば、一次粒子の大きさ及び形状も異なるので、凝集体粒子の形状は様々である。一般的に言えば、凝集体粒子の形状が球状に近づくほど散乱性が高くなり、また後述する樹脂シート基材を構成する樹脂組成物中及び基材の表面コート層を構成する樹脂組成物中の分散性が良好になる傾向にある。
 本発明者の検討の結果、凝集体粒子はその粒度分布がシャープであるほど散乱性が一層高くなることが判明した。凝集体粒子の粒度分布はD99/D50の値を尺度に評価することができる。D99はレーザー回折散乱式粒度分布測定法による累積体積99容量%における体積累積粒径を表す。D99/D50の値が1に近づくほど、凝集体粒子はその粒度分布がシャープになる。本発明においては、D99/D50の値は10以下であることが好ましく、5以下であることが更に好ましく、2.5以下であることが一層好ましい。D99はD50と同様の方法で測定することができる。
 凝集体粒子は、希土類リン酸塩の一次粒子の凝集体であることから、一次粒子間に細孔を有する。この細孔径の分布を測定したときに、凝集体粒子は、0.2μm以上10μm以下の範囲に1個以上のピークを有することが、散乱性を一層高める観点から有利であることが判明した。特にこの範囲にピークを1個のみ有することが、散乱性を更に一層高める観点から有利である。この範囲にピークを1個のみ有し、且つこの範囲外にピークを1個以上有してもよい。
 凝集体粒子の細孔に関連し、該細孔の平均細孔径は、0.2μm以上10μm以下であることが、散乱性を一層高める観点から好ましい。特に平均細孔径が0.2μm以上8μm以下であると、とりわけ0.5μm以上6μm以下であると、散乱性が更に一層高くなるので好ましい。
 凝集体粒子の細孔径分布や平均細孔径を上述のとおりに設定するには、例えば後述する方法で凝集体粒子を製造すればよい。また、凝集体粒子の細孔径分布や平均細孔径は、例えば次の方法で測定することができる。細孔分布測定用水銀圧入ポロシメーター(例えば、マイクロメリティックス社製、Auto Pore IV)により測定することができる。
 凝集体粒子を構成する個々の希土類リン酸塩の一次粒子の粒径は、凝集体粒子の粒径等に影響する要因の一つである。本発明者の検討の結果、一次粒子の粒径は10nm以上100nm以下であることが好ましく、12nm以上50nm以下であることが更に好ましく、12nm以上25nm以下であることが一層好ましい。本明細書に言う一次粒子の粒径とは、BET比表面積換算の一次粒子径のことである。
 BET比表面積換算の一次粒子径は次の方法で測定される。
 BET比表面積の測定は、島津製作所社製の「フローソーブ2300」を用い、窒素吸着法で測定することができる。測定粉末の量は0.3gとし、予備脱気条件は大気圧下、120℃で10分間とする。
 そして、測定されたBET比表面積より、一次粒子径は、粒子形状が球形と仮定して、次式にて計算される。
 d=6000/(A・ρ)
 ここでdが計算により算出される一次粒子径[nm]、AはBET一点法で測定される比表面積[m/g]、ρは測定対象の密度[g/cm]である。
 希土類リン酸塩の一次粒子に関し、該一次粒子は結晶性が高いことが、屈折率をより高め、ひいては散乱性を一層高める観点から有利であると考えられる。一次粒子の結晶性は、希土類リン酸塩粒子の結晶子サイズとBET比表面積換算の一次粒子径との比である〔希土類リン酸塩粒子の結晶子サイズ/BET比表面積換算の一次粒子径〕の値を尺度として評価できる。この値が1に近づくほど、希土類リン酸塩の一次粒子はその結晶性が高くなり、単結晶体に近づく。本発明においては、〔希土類リン酸塩粒子の結晶子サイズ/BET比表面積換算の一次粒子径〕の値は、0.45以上であることが好ましく、0.50以上であることが更に好ましく、0.53以上であることが一層好ましい。
 希土類リン酸塩粒子の結晶子サイズは、次の方法で測定することができる。X線回折装置(リガク社製 RINT-TTR IIを用い、専用のガラスホルダーに希土類リン酸塩を充填し、50kV-300mAの電圧-電流を印加して発生させたCu Kα線によって、サンプリング角0.02°、走査速度4.0°/minの条件で測定する。測定結果を用いてXRD解析ソフトウエアJADEにより結晶子サイズを求める。
 一次粒子の凝集体粒子からなる本発明の希土類リン酸塩粒子は、その白色度L*が高いことが、樹脂に配合した場合に、該樹脂と希土類リン酸塩粒子を含む樹脂組成物が着色されづらい点から好ましい。具体的には、白色度L*は70以上であることが好ましく、80以上であることが更に好ましく、90以上であることが一層好ましい。
 白色度L*は、例えば、分光測色計(コニカミノルタ製、CM-2600d)を用いてJIS Z8729「U*V*W*系による物体色の表示方法」に従って直接粉体の明度を測定することができる。
 また、本発明の希土類リン酸塩粒子は、本発明の効果を失わない程度において、後述する樹脂シート基材を構成する樹脂組成物中及び基材の表面コート層を構成する樹脂組成物中の分散性を良好にする目的で、その表面が親油性処理することができる。親油性処理としては、例えば各種のカップリング剤による処理などが挙げられる。カップリング剤としては、例えば有機金属化合物が挙げられる。具体的にはシランカップリング剤、ジルコニウムカップリング剤、チタンカップリング剤、アルミニウムカップリング剤などを用いることができる。
 シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシランなどが挙げられる。
 チタンカップリング剤としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、テトラメチルチタネート、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンラクテート、チタントリエタノールアミネート、ポリヒドロキシチタンステアレートなどが挙げられる。ジルコニウムカップリング剤としては、ジルコニウムノルマルプロピレート、ジルコニウムノルマルブチレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレートなどが挙げられる。
 アルミニウムカップリング剤としては、アルミニウムイソプロピレート、モノsec-ブトキシアルミニウムジイソプロピレート、アルミニウムsec-ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノイソプロポキシモノオレオキシエチルアセトアセテート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドステアレートなどが挙げられる。
 以上の各種カップリング剤は1種を単独で又は2種以上を組み合わせて用いることができる。カップリング剤としてシランカップリング剤を用いた場合には、希土類リン酸塩粒子の表面はシラン化合物で被覆されることになる。このシラン化合物は親油基、例えばアルキル基又は置換アルキル基を有していることが好ましい。アルキル基は直鎖のものでもよく、あるいは分岐鎖のものでもよい。いずれの場合であってもアルキル基の炭素数は1~20であることが、樹脂との親和性が良好となる点から好ましい。アルキル基が置換されている場合、置換基としてはアミノ基、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などを用いることができる。希土類リン酸塩粒子の表面を被覆するシラン化合物の量は、希土類リン酸塩粒子質量に対して0.01~200質量%、特に0.1~100質量%であることが、樹脂との親和性が良好となる点から好ましい。
 本発明の希土類リン酸塩粒子は、これを例えば樹脂に添加して樹脂組成物となし、該樹脂組成物の散乱性を向上させるために用いることができる。樹脂組成物の形態に特に制限はないが、樹脂シートの形態、すなわち樹脂シートからなる基材中に本発明の希土類リン酸塩粒子が分散して配置した形態であると、光散乱シートへの適用を容易に行えることから有利である。このように、本発明の希土類リン酸塩粒子は、該粒子を樹脂シートからなる基材に添加することによって、樹脂シートからなる基材の散乱性を向上させることができる。
 本発明の希土類リン酸塩粒子を樹脂に添加して光散乱シートとなした場合、本発明の希土類リン酸塩粒子の添加の対象となる樹脂の種類に特に制限はなく、成形可能な熱可塑性樹脂及び熱硬化性樹脂を用いることができる。特に、シートの形態への成形が容易である点から、熱可塑性樹脂を用いることが好ましい。熱可塑性樹脂の例としては、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートやポリカーボネート等のポリエステル系樹脂、ポリアクリル酸又はそのエステルやポリメタクリル酸又はそのエステル等のポリアクリル酸系樹脂、ポリスチレンやポリ塩化ビニル等のポリビニル系樹脂、トリアセチルセルロース等のセルロース系樹脂などが挙げられる。
 本発明の希土類リン酸塩粒子を樹脂に添加して光散乱シートとなした場合、該光散乱シートに含まれる希土類リン酸塩粒子の割合は、透過性と光散乱性とのバランスを考慮して、該光散乱シートの総質量に対して0.05質量%以上10質量%以下とすることが好ましく、0.1質量%以上10質量%以下とすることが更に好ましく、0.1質量%以上5質量%以下とすることが一層好ましい。光散乱シートの厚みは、光散乱性や取り扱い性等を考慮すると、20μm以上3000μm以下とすることが好ましく、50μm以上200μm以下とすることが一層好ましい。
 本発明の希土類リン酸塩粒子と樹脂とを含む樹脂組成物から構成される光散乱シート等を得るためには、例えば溶融状態の樹脂に本発明の希土類リン酸塩粒子を練り込んだ後、インフレーション法、Tダイ法、溶液流延法、及びカレンダー法等の公知のシート成形方法によって成形すればよい。
 また、本発明の希土類リン酸塩粒子は、該粒子を基材の表面に配置させることによって、基材の散乱性を向上させることもできる。本発明の希土類リン酸塩粒子を基材の表面に配置する方法は、例えば、本発明の希土類リン酸塩粒子と有機溶媒とバインダ樹脂とを含む組成物を混合してコート液を作製し、該コート液をローラーやスプレーガン等を用いて基材の表面に塗工又は噴霧すればよい。この場合には、本発明の希土類リン酸塩粒子及び樹脂を含む樹脂組成物から構成されるコート層が、基材の表面に設けられてなる光散乱部材が得られる。また、本発明の希土類リン酸塩粒子を基材の表面に配置する別の方法としては、スパッタ等を用いて、基材の表面に、樹脂等のバインダを用いることなく、本発明の希土類リン酸塩粒子を直接配置させることもできる。
 本発明の希土類リン酸塩粒子及び樹脂を含む樹脂組成物から構成されるコート層を基材の表面に設けて光散乱部材(例えば、シート状の基材の表面にコート層が設けられた光散乱部材)とした場合、コート層に含まれる樹脂の種類に特に制限はなく、バインダ樹脂として一般的な樹脂を用いることができる。このような樹脂の例としては、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート、ポリカーボネート等のポリエステル系樹脂、ポリアクリル酸若しくはそのエステル又はポリメタクリル酸若しくはそのエステル等のポリアクリル酸系樹脂、ポリスチレンやポリ塩化ビニル等のポリビニル系樹脂、トリアセチルセルロース等のセルロース系樹脂などが挙げられる。
 上述のように、コート層を基材の表面に設けた光散乱部材とした場合、コート層に含まれる希土類リン酸塩粒子の割合は、透過性と光散乱性とのバランスを考慮して、該コート層の総質量に対して、0.01質量%以上90質量%以下とすることが好ましく、0.1質量%以上65質量%以下とすることが更に好ましい。
 このような方法で得られた光散乱シートや光散乱部材は、例えば、ディスプレイ、照明用部材、窓用部材、電飾部材、導光板部材、プロジェクタのスクリーン、ヘッドアップディスプレイ等に用いられる透明スクリーン、ビニールハウス等の農業用資材、などとして好適に製造することができる。また、光散乱シートを光学デバイスに組み込んで使用することもできる。そのような光学デバイスとしては、例えば、液晶TV、パソコン、タブレット、スマートフォン等のモバイル機器などが挙げられる。
 次に、本発明の希土類リン酸塩粒子の好適な製造方法について説明する。本発明の希土類リン酸塩粒子を製造するには、先ず1種又は2種以上の希土類元素源を含む水溶液と、リン酸根を含む水溶液とを混合して、1種又は2種以上の希土類リン酸塩の沈殿を生じさせる。例えば1種又は2種以上の希土類元素源を含む水溶液に、リン酸根を含む水溶液を添加することで希土類リン酸塩の沈殿を生じさせる。本発明に適した製造方法の一例として、前述の沈殿物をスプレードライ等により乾燥した後、焼成をすることで所望の形状の粒子を合成することが可能である。更に、前述の沈殿を得る工程を加熱状態で実施することで、所望の形状であり、且つ非常に高結晶性の粒子を得ることができる。希土類リン酸塩粒子中に水が残存していることがあるので、この水を除去する目的で希土類リン酸塩粒子を比較的低温下に加熱することが好ましい。具体的な加熱温度は例えば80℃以上800℃以下であることが好ましい。希土類元素源を含む水溶液の加熱の程度は50℃以上100℃以下とすることが好ましく、70℃以上95℃以下とすることが更に好ましい。この温度範囲で加熱した状態下に反応を行うことで、所望のD50及び一次粒子径を有する凝集体粒子が得られる。また、所望の一次粒子の結晶性や細孔径分布や平均細孔径、及び白色度を有する凝集体粒子が得られる。
 希土類元素源を含む水溶液としては、該水溶液中における希土類元素の濃度が、0.01~1.5mol/リットル、特に0.01~1mol/リットル、とりわけ0.01~0.5mol/リットルのものを用いることが好ましい。この水溶液中において希土類元素は三価のイオンの状態になっているか、又は三価のイオンに配位子が配位した錯イオンの状態になっていることが好ましい。希土類元素源を含む水溶液を調製するためには、例えば硝酸水溶液に希土類酸化物(例えばLn23等)を添加してこれを溶解させればよい。
 リン酸根を含む水溶液においては、該水溶液中におけるリン酸化学種の合計の濃度を、0.01~3mol/リットル、特に0.01~1mol/リットル、とりわけ0.01~0.5mol/リットルとすることが好ましい。pH調整のために、アルカリ種を添加することもできる。アルカリ種としては、例えばアンモニア、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸ナトリウム、エチルアミン、プロピルアミン、水酸化ナトリウム、水酸化カリウム等の塩基性化合物を用いることができる。
 希土類元素源を含む水溶液とリン酸根を含む水溶液は、リン酸イオン/希土類元素イオンのモル比が0.5~10、特に1~10、とりわけ1~5となるように混合することが、効率よく沈殿生成物が得られる点から好ましい。
 以上のようにして凝集体粒子からなる希土類リン酸塩粒子が得られたら、これを常法に従い固液分離した後、1回又は複数回水洗する。水洗は、液の導電率が例えば2000μS/cm以下になるまで行うことが好ましい。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」及び「部」はそれぞれ「質量%」及び「質量部」を意味する。
  〔実施例1〕
 本実施例では、リン酸ランタンからなる凝集体粒子を製造した。製造の手順は以下に述べるとおりである。
 ガラス容器1に水600gを計量し、60%硝酸(和光純薬工業社製)61.7g、La(日本イットリウム社製)26.6gを添加し、80℃に加温して溶解させた。別のガラス容器2に水600g、85%リン酸18.8gを添加した。
 ガラス容器1へガラス容器2の内容物を添加し、1時間エージングを行った。得られた沈殿物をデカンテーション洗浄により、上澄みの導電率が100μS/cm以下になるまで洗浄を行った。洗浄後、減圧濾過で固液分離し、大気中で120℃×5時間乾燥させたのち、大気中で450℃×3時間焼成した。
  〔実施例2〕
 本実施例では、リン酸ガドリニウムからなる凝集体粒子を製造した。製造の手順は、実施例において、Laに代えて29.6gのGd(日本イットリウム社製)を用いた以外は実施例1と同様とした。
  〔実施例3〕
 本実施例では、リン酸イットリウムからなる凝集体粒子を製造した。製造の手順は、実施例1において、Laに代えて18.8gのY(日本イットリウム社製)を用いた以外は実施例1と同様とした。
  〔実施例4〕
 実施例3において、製造の手順を、大気中での焼成温度を450℃から800℃に変更した以外は実施例3と同様とした。
  〔実施例5〕
 本実施例では、リン酸イットリウムからなる凝集体粒子を製造した。製造の手順を次に示す。実施例4と同様にしてリン酸イットリウムからなる凝集体粒子を得た。そして、リン酸イットリウム10gと純水20gと混合し、それによって得られたスラリーを、ペイントシェイカーを用いて、5時間にわたりリン酸イットリウムの粉砕を行った。粉砕後、固液分離して得られたケーキを真空乾燥した。
  〔実施例6〕
 本実施例では、リン酸ルテチウムからなる凝集体粒子を製造した。製造の手順は、実施例3において、Yに代えて33.1gのLu(日本イットリウム社製)を用いた以外は実施例3と同様とした。
  〔実施例7〕
 本実施例では、リン酸イッテルビウムからなる凝集体粒子を製造した。製造の手順は、実施例3において、Yに代えて32.8gのYb(日本イットリウム社製)を用いた以外は実施例3と同様とした。
  〔実施例8〕
 本実施例では、リン酸ジスプロジウムからなる凝集体粒子を製造した。製造の手順は、実施例3において、Yに代えて31.1gのDy(日本イットリウム社製)を用いた以外は実施例3と同様とした。
  〔実施例9〕
 本実施例では、リン酸ユウロピウムからなる凝集体粒子を製造した。製造の手順は、実施例3において、Yに代えて29.3gのEu(日本イットリウム社製)を用いた以外は実施例3と同様とした。
  〔比較例1〕
 本比較例では、リン酸ルテチウムからなる凝集体粒子を製造した。製造の手順は以下に述べるとおりである。
 ガラス容器1に水370gを計量し、80℃に加温し、60%硝酸(和光純薬工業社製)14.4gを添加した。更にLu23(日本イットリウム社製)7.4gを添加し、完全に溶解させた。次に別のガラス容器2に水390g、85%リン酸5.3g、25%アンモニア水9.3gを添加した。ガラス容器1の溶液とガラス容器2の溶液とをそれぞれ10mL/minでホモジナイザーへ送液し、ホモジナイザー中に同時添加して混合した。ホモジナイザーの回転数は20000rpmに設定した。混合終了後、沈殿物をデカンテーション洗浄により、上澄みの導電率が100μS/cm以下になるまで洗浄を行った。洗浄終了後、減圧濾過で固液分離した。得られた沈殿物を大気中で120℃×5h乾燥させ、更に大気中800℃×5h焼成した。
 なお、実施例1の製造方法と比較例1の製造方法との主な違いは、希土類リン酸塩の沈殿物を得る方法と、固液分離後の沈殿物の焼成条件にある。
  〔比較例2〕
 本比較例では、リン酸イットリウムからなる凝集体粒子を製造した。製造の手順は、実施例において、Luに代えて4.2gのYを用いた以外は実施例1と同様とした。
  〔比較例3〕
 本比較例では、和光純薬工業社製の酸化ジルコニウム粒子を用いた。
  〔比較例4〕
 本比較例では、和光純薬工業社製の酸化チタン(アナターゼ型)を用いた。
  〔評価〕
 実施例及び比較例で得られた凝集体粒子について、D50、D99/D50、結晶子サイズ、一次粒子径、白色度L*、細孔径分布のピーク位置及び平均細孔径を以下の方法で測定した。また、以下の方法で散乱性及び透過性を評価した。それらの結果を以下の表1に示す。
  〔D50及びD99の測定並びにD99/D50の算出〕
 希土類リン酸塩粒子0.1gを水10mlと混合し、超音波分散器(アズワン社製、ASU-10)を用いて1分間分散処理を行った。装置はベックマンコールター社製LS13 320を用いて、D50及びD99を測定し、D99/D50を算出した。
  〔結晶子サイズの測定〕
 X線回折装置(リガク社製 RINT-TTR IIを用い、専用のガラスホルダーに希土類リン酸塩を充填し、50kV-300mAの電圧-電流を印加して発生させたCu Kα線によって、サンプリング角0.02°、走査速度4.0°/minの条件で測定した。測定結果を用いてXRD解析ソフトウエアJADEにより結晶子サイズを求めた。
  〔一次粒子径の測定〕
 BET比表面積換算の一次粒子径を測定した。
 BET比表面積の測定は、島津製作所社製の「フローソーブ2300」を用い、窒素吸着法で測定した。測定粉末の量は0.3gとし、予備脱気条件は大気圧下、120℃で10分間とした。
 そして、測定されたBET比表面積より、一次粒子径は、粒子形状が球形と仮定して、次式にて計算した。
 d=6000/(A・ρ)
 ここでdが計算により算出される一次粒子径[nm]、AはBET一点法で測定される比表面積[m/g]、ρは測定対象の密度[g/cm]である。
  〔白色度の測定〕
 分光測色計(コニカミノルタ製、CM-2600d)を用いてJIS Z8729「U*V*W*系による物体色の表示方法」に従って直接粉体の明度を測定した。
  〔細孔径分布のピーク位置及び平均細孔の測定〕
 細孔分布測定用水銀圧入ポロシメーター(マイクロメリティックス社製、Auto Pore IV)により測定した。2つの数値が記載されている例は、ピークが2つ観察されたことを意味する。
  〔散乱性及び透過性の評価〕
 アクリル樹脂(三菱レイヨン社製、品名:ダイヤナールLR-167)の固形分100部に対して、実施例及び比較例の粒子を100部添加し、固形分率が50%になるように、トルエン及び1-ブタノールとからなる混合溶媒で希釈し、ペイントシェイカーで60分間混合して、塗工液を調製した。
 次に、この塗工液を、ポリカーボネートシート(タキロン社製、厚み:2mm)にバーコーター(#3)を用いて塗工し、80℃で5分間乾燥させ、光散乱層とポリカーボネート基材層とからなる光散乱シートを得た。
 当該光散乱シートの散乱性は、レーザーポインタを光散乱シートに向けて照射し、光散乱シートに映ったポイント画像の鮮明性を下記基準により目視により評価した。
[散乱性の評価基準]
 ○:ポイント画像が鮮明である。
 ×:ポイント画像がぼやけており、不鮮明である。
 また、当該光散乱シートの透明性は、下記基準により目視により評価した。
[透明性の評価基準]
 ○:透明
 ×:白濁又は半透明
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、各実施例で得られた希土類リン酸塩の凝集体粒子を用いると、従来知られていた高屈折率材料であるジルコニアやチタニアに比べて、透過性を損なうことなく散乱性を高めることができることが判る。したがって本発明の希土類リン酸塩粒子は、優れた透過性及び散乱性が要求される透明スクリーン用途として有用であることが判る。
 本発明の希土類リン酸塩粒子によれば、該粒子を基材の内部又は表面に配置することで、該基材の透明性を確保しつつ光散乱性を向上させることができる。

Claims (14)

  1.  LnPO(式中、Lnは、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuからなる群より選ばれる少なくとも一種の元素を表す。)で表される希土類リン酸塩の一次粒子が複数凝集した凝集体粒子からなり、
     前記凝集体粒子は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50が0.1μm以上20μm以下であり、
     基材の内部又は表面に配置されて光散乱を生じさせるために用いられる希土類リン酸塩粒子。
  2.  前記凝集体粒子のレーザー回折散乱式粒度分布測定法による累積体積99容量%における体積累積粒径D99と、前記D50との比であるD99/D50の値が10以下である請求項1に記載の希土類リン酸塩粒子。
  3.  BET比表面積換算の一次粒子径が10nm以上100nm以下である請求項1又は2に記載の希土類リン酸塩粒子。
  4.  前記希土類リン酸塩粒子の結晶子サイズ/BET比表面積換算の一次粒子径の値が0.45以上である請求項1ないし3のいずれか一項に記載の希土類リン酸塩粒子。
  5.  白色度L*が70以上である請求項1ないし4のいずれか一項に記載の希土類リン酸塩粒子。
  6.  細孔径分布において0.2μm以上10μm以下の範囲に1個以上のピークを有する請求項1ないし5のいずれか一項に記載の希土類リン酸塩粒子。
  7.  細孔径分布において0.2μm以上10μm以下の範囲にピークを1個のみ有する請求項6に記載の希土類リン酸塩粒子。
  8.  平均細孔径が0.2μm以上10μm以下である請求項1ないし7のいずれか一項に記載の希土類リン酸塩粒子。
  9.  請求項1ないし8のいずれか一項に記載の希土類リン酸塩粒子を樹脂シート基材に添加して、該樹脂シート基材の散乱性を向上させる散乱性向上方法。
  10.  請求項1ないし8のいずれか一項に記載の希土類リン酸塩粒子を基材の表面に配置して、該基材の散乱性を向上させる散乱性向上方法。
  11.  請求項1ないし8のいずれか一項に記載の希土類リン酸塩粒子及び樹脂を含む樹脂組成物。
  12.  請求項1ないし8のいずれか一項に記載の希土類リン酸塩粒子及び樹脂を含む樹脂組成物から構成される光散乱シート。
  13.  請求項1ないし8のいずれか一項に記載の希土類リン酸塩粒子及び樹脂を含む樹脂組成物から構成されるコート層が基材の表面に設けられた光散乱部材。
  14.  請求項12に記載の光散乱シート又は請求項13に記載の光散乱部材を備えた光学デバイス。
PCT/JP2017/027689 2016-08-02 2017-07-31 希土類リン酸塩粒子、それを用いた散乱性向上方法 WO2018025800A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/318,231 US20190233298A1 (en) 2016-08-02 2017-07-31 Rare earth phosphate particles, method for improving scattering property using same
KR1020197001190A KR102166364B1 (ko) 2016-08-02 2017-07-31 희토류 인산염 입자, 그것을 이용한 산란성 향상 방법
EP17836905.4A EP3495319A4 (en) 2016-08-02 2017-07-31 RARE EARTH PHOSPHATE PARTICLES, METHOD FOR IMPROVING BROADCASTING PROPERTY USING THE SAME
CN201780044180.5A CN109476485B (zh) 2016-08-02 2017-07-31 稀土磷酸盐颗粒、使用其的散射性提高方法
JP2018531881A JP6605148B2 (ja) 2016-08-02 2017-07-31 希土類リン酸塩粒子、それを用いた散乱性向上方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152342 2016-08-02
JP2016-152342 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025800A1 true WO2018025800A1 (ja) 2018-02-08

Family

ID=61073720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027689 WO2018025800A1 (ja) 2016-08-02 2017-07-31 希土類リン酸塩粒子、それを用いた散乱性向上方法

Country Status (6)

Country Link
US (1) US20190233298A1 (ja)
EP (1) EP3495319A4 (ja)
JP (1) JP6605148B2 (ja)
KR (1) KR102166364B1 (ja)
CN (1) CN109476485B (ja)
WO (1) WO2018025800A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031598A1 (ja) * 2018-08-07 2020-02-13 三井金属鉱業株式会社 光拡散部材、並びにこれを用いた光拡散構造体及び発光構造体
WO2020095566A1 (ja) 2018-11-06 2020-05-14 リケンテクノス株式会社 光拡散層形成用塗料、プロジェクションスクリーン用フィルム、及びプロジェクションスクリーン

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176366A (ja) * 1995-12-22 1997-07-08 Nippon Shokubai Co Ltd 光拡散性樹脂組成物
JP2010138270A (ja) 2008-12-11 2010-06-24 Kaneka Corp 金属酸化物微粒子含有硬化性樹脂組成物、その硬化物、及び光拡散材
JP2010256480A (ja) * 2009-04-22 2010-11-11 Teijin Dupont Films Japan Ltd 液晶表示装置用反射フィルム
JP2014015617A (ja) * 2006-07-28 2014-01-30 Rhodia Operations 発光体及びコア−シェル発光体前駆体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027299B2 (ja) * 1994-05-30 2000-03-27 信越化学工業株式会社 希土類元素燐酸塩粒子およびその製造方法
US6946417B2 (en) 2003-05-21 2005-09-20 Saint-Gobain Ceramics & Plastics, Inc. Light-colored ESD safe ceramics
FR2859922B1 (fr) * 2003-09-18 2007-01-05 Rhodia Elect & Catalysis Dispersion colloidale d'un phosphate de terre rare, son procede de preparation et materiau transparent luminescent obtenu a partir de cette dispersion
FR2931143B1 (fr) * 2008-05-15 2011-01-07 Rhodia Operations Phosphate de lanthane et d'au moins une terre rare choisie parmi le cerium et le terbium sous forme d'une suspension, procede de preparation et utilisation comme luminophore
PL2322473T3 (pl) * 2009-10-15 2013-03-29 Sued Chemie Ip Gmbh & Co Kg Sposób usuwania rozdrobnionego materiału zanieczyszczającego z rozdrobnionego materiału mieszanego fosforanu litu i metalu
FR2958639B1 (fr) * 2010-04-12 2014-01-31 Rhodia Operations Phosphate de lanthane, de cerium et de terbium de type coeur/coquille, luminophore a stabilite thermique amelioree comprenant ce phosphate.
JP2013014497A (ja) * 2011-04-28 2013-01-24 Mitsui Mining & Smelting Co Ltd 水性分散液及びその製造方法
JP2014237572A (ja) * 2013-06-10 2014-12-18 三井金属鉱業株式会社 油性分散液及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176366A (ja) * 1995-12-22 1997-07-08 Nippon Shokubai Co Ltd 光拡散性樹脂組成物
JP2014015617A (ja) * 2006-07-28 2014-01-30 Rhodia Operations 発光体及びコア−シェル発光体前駆体
JP2010138270A (ja) 2008-12-11 2010-06-24 Kaneka Corp 金属酸化物微粒子含有硬化性樹脂組成物、その硬化物、及び光拡散材
JP2010256480A (ja) * 2009-04-22 2010-11-11 Teijin Dupont Films Japan Ltd 液晶表示装置用反射フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495319A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031598A1 (ja) * 2018-08-07 2020-02-13 三井金属鉱業株式会社 光拡散部材、並びにこれを用いた光拡散構造体及び発光構造体
JPWO2020031598A1 (ja) * 2018-08-07 2021-03-18 三井金属鉱業株式会社 光拡散部材、並びにこれを用いた光拡散構造体及び発光構造体
KR20210040362A (ko) 2018-08-07 2021-04-13 미쓰이금속광업주식회사 광 확산 부재, 그리고 이것을 사용한 광 확산 구조체 및 발광 구조체
WO2020095566A1 (ja) 2018-11-06 2020-05-14 リケンテクノス株式会社 光拡散層形成用塗料、プロジェクションスクリーン用フィルム、及びプロジェクションスクリーン
KR20210087455A (ko) 2018-11-06 2021-07-12 리껭테크노스 가부시키가이샤 광 확산층 형성용 도료, 프로젝션 스크린용 필름 및 프로젝션 스크린
EP3879340A4 (en) * 2018-11-06 2022-08-10 Riken Technos Corporation COATING MATERIAL FOR FORMING LIGHT DIFFUSING LAYER, FILM FOR PROJECTION SCREEN, AND PROJECTION SCREEN

Also Published As

Publication number Publication date
JP6605148B2 (ja) 2019-11-13
EP3495319A4 (en) 2020-01-29
KR102166364B1 (ko) 2020-10-15
US20190233298A1 (en) 2019-08-01
JPWO2018025800A1 (ja) 2019-02-28
CN109476485B (zh) 2022-04-12
EP3495319A1 (en) 2019-06-12
CN109476485A (zh) 2019-03-15
KR20190017980A (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
EP2428491B1 (en) Dispersion liquid of fine particles of core-shell type inorganic oxide, method for producing the dispersion liquid, and coating composition containing the dispersion liquid
JP5157143B2 (ja) 反射防止膜付き基体
JP2000169133A (ja) シリカ−フッ化マグネシウム水和物複合ゾル及びその製造法
JP6605148B2 (ja) 希土類リン酸塩粒子、それを用いた散乱性向上方法
US10082605B2 (en) Manufacturing method of antireflection article, antireflection article, cover glass, and image display device
JP6533879B2 (ja) 光散乱シート
KR101163620B1 (ko) 광확산 특성이 우수한 중공 복합체, 그 제조 방법, 중공 복합체를 함유하는 광확산제 및 응용
JP2015044922A (ja) 熱線遮蔽分散体、熱線遮蔽分散体形成用塗布液および熱線遮蔽体
CN111433639B (zh) 粒子混合体、使用了其的光散射性提高方法、以及包含其的光散射构件及光学设备
JP2015193757A (ja) 塗料組成物、ハードコート層およびハードコート層付き光学基材ならびにこれらの製造方法
EP2650341B1 (en) Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
JP6128799B2 (ja) 光学材料及びその製造方法並びに水性分散液
JP2015017012A (ja) 油性分散液並びに薄膜及びその製造方法
JP6232310B2 (ja) 塗料組成物、塗膜および塗膜付き光学物品
KR102659182B1 (ko) 희토류 인산염 입자, 그것을 사용한 광산란성 향상 방법, 그리고 그것을 포함하는 광산란 부재 및 광학 디바이스
JP2010111787A (ja) コーティング剤およびそれを用いたハードコート部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531881

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001190

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836905

Country of ref document: EP

Effective date: 20190304