WO2018025560A1 - 高電圧発生装置、及びこれを用いたx線高電圧装置 - Google Patents

高電圧発生装置、及びこれを用いたx線高電圧装置 Download PDF

Info

Publication number
WO2018025560A1
WO2018025560A1 PCT/JP2017/024625 JP2017024625W WO2018025560A1 WO 2018025560 A1 WO2018025560 A1 WO 2018025560A1 JP 2017024625 W JP2017024625 W JP 2017024625W WO 2018025560 A1 WO2018025560 A1 WO 2018025560A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
voltage generator
high voltage
conductor member
Prior art date
Application number
PCT/JP2017/024625
Other languages
English (en)
French (fr)
Inventor
市村 智
智 初見
美奈 小川
友晴 猪野
裕 森田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018025560A1 publication Critical patent/WO2018025560A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/12Power supply arrangements for feeding the X-ray tube with dc or rectified single-phase ac or double-phase

Definitions

  • the present invention relates to a high voltage generator for generating a DC high voltage and an X-ray high voltage apparatus using the same, and more particularly to a dielectric strength technology of the high voltage generator.
  • Patent Document 1 JP 2010-244741 A (Patent Document 1).
  • a metal conductor member is inserted between each of the divided DC generator circuits. It is disclosed that the insulation reliability can be improved by applying a potential of.
  • Patent Document 1 does not disclose means for further improving the insulation reliability in each divided DC generation circuit. Similarly, a means for improving insulation reliability in a high voltage generator having only a single DC generator circuit is not disclosed.
  • an object of the present invention is to provide a high voltage generator capable of improving the insulation reliability even with a single DC generation circuit, and an X-ray high voltage apparatus using the same.
  • the present invention provides a high voltage generator having a DC generation circuit that outputs an AC voltage as a DC voltage, wherein the DC generation circuit includes at least a DC element to which a DC voltage is applied, and the DC A component member to which an AC voltage is applied between the element and a conductor member installed between the DC element and the component member, wherein the conductor member is electrically connected to one end of the DC element. It is connected and electrically insulated from the other end.
  • the block diagram which showed a part of X-ray high voltage apparatus to which the high voltage generator of this invention was applied The figure which showed one operation
  • the figure which showed the voltage value of each part of the smoothing capacitor 501 in the operation condition of FIG.2 and FIG.3 The top view which showed the component mounting method of the principal part in Example 1 in detail Schematic diagram illustrating the effect of improving insulation reliability according to the present invention.
  • FIG. 1 is a configuration diagram illustrating a part of an X-ray high voltage apparatus to which the high voltage generation apparatus according to the first embodiment is applied.
  • the X-ray high-voltage device shown in FIG. 1 includes a DC power supply 301, an inverter circuit 302, and a high-voltage generator 300, and is composed of an anode 305a and a filament 305b that generate X-rays as a load.
  • the tube apparatus 305 is connected.
  • the high voltage generator 300 includes a high voltage transformer 303, a DC generator circuit 304, and a tank 1001 in which these are enclosed and filled with insulating oil 1002.
  • As the direct current generating circuit 304 a two-stage symmetrical cockcroft-Walton circuit is employed.
  • the DC voltage output from the DC power supply 301 is converted into an AC voltage having a predetermined frequency by the inverter circuit 302, and the converted AC voltage is boosted by the high voltage transformer 303.
  • the boosted AC voltage is further boosted to a voltage four times and converted into a DC voltage by a DC generation circuit 304 which is a two-stage symmetrical Cockcroft-Walton circuit, and is supplied to an X-ray tube device 305 which is a load.
  • the high voltage transformer 303 includes an iron core 403, a primary winding 400 wound around the iron core 403 with an electric wire, a first secondary winding 401 wound around the primary winding 400 with an electric wire, 2 secondary windings 402.
  • the DC generation circuit 304 forms a bridge circuit composed of multiple capacitors 601 and 602 for doubling the voltage input to the circuit and a plurality of diodes 801 to 804 for rectifying an AC voltage into a DC voltage.
  • a first stage Cockcroft-Walton circuit comprising a smoothing capacitor 501 for smoothing the rectified DC voltage, multiple capacitors 701 and 702, and a high voltage rectifier 900 having diodes 901 to 904, It is composed of a second stage Cockcroft-Walton circuit composed of a smoothing capacitor 502.
  • the first stage Cockcroft-Walton circuit and the second stage Cockcroft-Walton circuit have the same configuration.
  • a two-stage symmetric Cockcroft-Walton circuit is adopted as the DC generation circuit 304 that receives an AC voltage and outputs a DC voltage.
  • the present invention is not limited to this. Depending on the voltage value required by the X-ray tube apparatus 305, it may be one stage or three stages or more. Further, a full bridge rectifier circuit or a half-wave rectifier circuit may be used instead of the Cockcroft-Walton circuit.
  • One electrode of the multiple capacitors 601 and 602 is connected to both terminal portions of the secondary windings 401 and 402 connected in series in the high voltage generator 300, and the other electrode of the multiple capacitors 601 and 602 is Each is connected to the anode of the diode 801 and the anode of the diode 802.
  • the diodes 801 and 803 and the diodes 802 and 804 are connected in series, and a bridge circuit is formed by connecting the cathode of the diode 801 and the cathode of the diode 802, and the anode of the diode 803 and the anode of the diode 804, respectively. .
  • a smoothing capacitor 501 is connected between the cathode of the diode 801 and the anode of the diode 803.
  • the connection part of the secondary windings 401 and 402 and the cathode of the diode 801 are both grounded to the ground 1003.
  • One electrode of the multiple capacitors 701 and 702 is connected to the anode of the diode 801 and the anode of the diode 802, respectively, and the other electrode of the multiple capacitors 701 and 702 is connected to the anode of the diode 901 and the anode of the diode 902, respectively. Is done.
  • the diodes 901 and 903 and the diodes 902 and 904 are connected in series, and a bridge circuit is formed by connecting the cathode of the diode 901 and the cathode of the diode 902, and the anode of the diode 903 and the anode of the diode 904, respectively. .
  • a smoothing capacitor 502 is connected between the cathode of the diode 901 and the anode of the diode 903.
  • the anode of the diode 901 is connected to the anode of the diode 801, and the anode of the diode 903 is connected to the filament 305 b in the X-ray tube device 305.
  • the anode 305 a in the X-ray tube device 305 is grounded to the ground 1003.
  • FIG. 2 is a diagram showing one operation of the X-ray high voltage apparatus shown in FIG.
  • the direction of the voltage applied to each diode of the high voltage rectifier 800 and the high voltage rectifier 900 is the diode Reference numerals 801, 804, 901, and 904 indicate the forward direction, and diodes 802, 803, 902, and 903 indicate the reverse direction.
  • the voltage value at both terminals of the diode 801 is 0 (V)
  • the voltage value at both terminals of the diodes 804 and 901 is ⁇ 70 (kV)
  • the voltage value at both terminals of the diode 904 is ⁇ 140 (kV).
  • a DC voltage of ⁇ 140 (kV) is applied to the cathode 305b of the X-ray tube apparatus.
  • the voltage value at one end connected to the diode 801 is 0 (V), and the voltage value at the other end connected to the diode 804 is -70 (kV).
  • the voltage value at one end connected to the diode 901 is -70 (V), and the voltage value at the other end connected to the diode 904 is -140 (kV).
  • FIG. 4 is a diagram showing the voltage values of the respective parts of the multiple capacitor 601 in one operation state of FIG.
  • the multiple capacitor 601 shown in FIG. 4 includes a plurality of low-voltage capacitors 601a to 601g having the same capacity connected in series, and the voltage value of one electrode of the capacitor 601a corresponding to both ends of the plurality of series-connected capacitors is +35 ( kV), and the voltage value of the other electrode of the capacitor 601g is 0 (V).
  • resistors 611a to 611g are connected in parallel to the capacitors 601a to 601g, respectively, so that the voltage is uniformly distributed to the capacitors. As one electrode of 601a goes to the other electrode of capacitor 601g, the voltage value at the connection point of each capacitor decreases by 5 kV. Focusing on the capacitor 601f, the voltage value of one electrode is +10 (kV), and the voltage value of the other electrode is +5 (kV).
  • the multiple capacitors 602, 701, and 702 other than the multiple capacitor 601 are each composed of a plurality of low-voltage capacitors of the same capacity connected in series.
  • FIG. 3 is a diagram showing another operation of the X-ray high voltage apparatus shown in FIG. 1 .
  • the voltage value at each part of the X-ray high voltage apparatus shown in FIG. 3 is the voltage value when the voltage values at both ends of the secondary windings 401 and 402 are ⁇ 35 (kV) and +35 (kV), respectively. This is a case where the voltage values at both ends of the secondary windings 401 and 402 shown are reversed.
  • the voltage value is based on the ground 1003 (0 (V)).
  • the direction of the voltage applied to each diode of the high voltage rectifier 800 and the high voltage rectifier 900 is a diode. 802, 803, 902, and 903 are forward directions, and the diodes 801, 804, 901, and 904 are reverse directions.
  • the voltage value at both terminals of the diode 802 is 0 (V)
  • the voltage value at both terminals of the diodes 803 and 902 is -70 (kV)
  • the voltage value at both terminals of the diode 903 is -140 (kV).
  • a DC voltage of ⁇ 140 (kV) is applied to the cathode 305b of the X-ray tube apparatus.
  • the voltage value at one end connected to the diode 802 is 0 (V)
  • the voltage value at the other end connected to the diode 803 is -70 (kV)
  • the smoothing capacitor 502 is
  • the voltage value at one end connected to the diode 902 is ⁇ 70 (V)
  • the voltage value at the other end connected to the diode 903 is ⁇ 140 (kV).
  • the voltage value is the same as that shown in FIG.
  • FIG. 5 is a diagram showing the voltage values of the respective parts of the multiple capacitor 601 in the other operating state of FIG.
  • the voltage value of one electrode of the capacitor 601a shown in FIG. 5 is ⁇ 35 (kV), and the voltage value of the other electrode of the capacitor 601g is ⁇ 70 (kV).
  • the voltage value at the connection point of each capacitor decreases by 5 kV. Focusing on the capacitor 601f, the voltage value of one electrode is ⁇ 60 (kV), and the voltage value of the other electrode is ⁇ 65 (kV).
  • FIG. 6 is a diagram showing the voltage values of the respective parts of the smoothing capacitor 501 in the operation states of both FIG. 2 and FIG.
  • the smoothing capacitor 501 shown in FIG. 6 includes a plurality of low-voltage element capacitors 501a to 501g having the same capacity connected in series, and the voltage value of one electrode of the element capacitor 501a corresponding to both ends of the plurality of series-connected capacitors is 0. (V), the voltage value of the other electrode of the element capacitor 501g is -70 (kV).
  • resistors 511a to 511g are connected in parallel to the element capacitors 501a to 501g, respectively, so that a voltage is uniformly distributed to each element capacitor. As it goes from one electrode of the element capacitor 501a to the other electrode of the element capacitor 501g, the voltage value at the connection point of each element capacitor decreases by 10 kV. Focusing on the element capacitor 501d, the voltage value of one electrode is ⁇ 30 (kV), and the voltage value of the other electrode is ⁇ 40 (kV). Further, although not particularly shown, the smoothing capacitor 502 is also composed of a plurality of low-capacitance element capacitors of the same capacity connected in series and resistors connected in parallel to the element capacitors.
  • FIG. 7 is a plan view showing in detail the component mounting method of the multiple capacitor 601 and the smoothing capacitor 501 in this embodiment.
  • a plurality of low withstand voltage capacitors constituting the multiple capacitor 601 and resistors connected in parallel to the respective low withstand voltage capacitors are disposed on the printed circuit board 1100, and lead wires extending from both ends of each circuit element are disposed on the substrate 1100. Through the through-hole and soldered to a conductive pattern disposed on the back surface of the substrate.
  • the right end of the element capacitor 601e, the right end of the resistor 611e, the left end of the element capacitor 601f, and the left end of the resistor 611f are soldered and electrically connected to the conductive pattern 621f.
  • the right end of the element capacitor 601f, the right end of the resistor 611f, the left end of the element capacitor 601g, and the left end of the resistor 611g are soldered and electrically connected to the conductive pattern 621g.
  • a plurality of low withstand voltage element capacitors constituting the smoothing capacitor 501 and resistors connected in parallel to the respective low withstand voltage element capacitors are arranged on the printed circuit board 1100 and come out from both ends of each circuit element.
  • the lead wire is soldered to the conductive pattern disposed on the back surface of the substrate through the through hole of the substrate 1100 and is electrically connected.
  • the right end of the element capacitor 501c, the right end of the resistor 511c, the left end of the element capacitor 501d, and the left end of the resistor 511d are soldered and electrically connected to the conductive pattern 521d.
  • the right end of the element capacitor 501d, the right end of the resistor 511d, the left end of the element capacitor 501e, and the left end of the resistor 511e are soldered and electrically connected to the conductive pattern 521e.
  • the element capacitor 501 c and the resistor 611 e, the element capacitor 501 d and the resistor 611 f, and the element capacitor 501 e and the resistor 611 g are arranged adjacent to each other.
  • a conductor member having a dimension slightly larger than the dimension between the terminals in the DC application direction dimension of the element capacitor, that is, the dimension in the direction in which the DC electric field is generated is disposed between the element capacitor and the resistor arranged adjacent to each other. That is, a conductor member 531c is disposed between the element capacitor 501c and the resistor 611e, a conductor member 531d is disposed between the element capacitor 501d and the resistor 611f, and a conductor member 531e is disposed between the element capacitor 501e and the resistor 611g. Has been.
  • One end of the conductor member 531d is soldered and electrically connected to a conductive pattern 521d disposed on the back surface of the substrate through a through hole of the substrate 1100.
  • one end of the conductor member 531e is soldered and electrically connected to a conductive pattern 521e disposed on the back surface of the substrate through a through hole of the substrate 1100.
  • FIG. 8 is a schematic diagram illustrating the effect of improving the insulation reliability according to the first embodiment.
  • FIG. 9 is a schematic diagram for explaining the prior art.
  • a state is considered in which a DC voltage 11 is applied to both ends of the DC element 10 and an AC voltage 21 is applied between other adjacent constituent members 20.
  • a DC electric field is generated in the DC element 10 in the direction indicated by the white arrow. Since the AC voltage 21 is applied to the other component member 20 disposed adjacent to the DC element 10, the direction indicated by the shaded arrow is between the DC element 10 and the other component member 20. AC electric field is generated.
  • the element capacitor 501d is replaced with the DC element 10 and the resistor 611f is replaced with another element when the conductor member 531d is not present. It corresponds to the component member 20.
  • the DC element 10 is a member to which one of positive and negative voltages is always applied.
  • the smoothing capacitors 501, 502 and the constituent capacitors and resistors constituting them, and the multiple capacitors 601, 602, 701, 702 and element capacitors and resistors constituting them correspond to this.
  • a void or a gap may exist between the exterior material covering the outer surface of the capacitor and the capacitor body material.
  • the conductor member 30 (corresponding to the conductor member 531d in comparison with the mounting form of the present embodiment shown in FIG.
  • the AC electric field indicated by the shaded arrow is generated between the conductor member 30 and the other component member 20 when electrically connected to one end of the DC element 10 and electrically insulated from the other end. It is limited between the conductor member 30 and the DC element 10.
  • the material of the conductor member is copper that can be easily soldered, and the length and height are each slightly larger than that of the element capacitor 501d.
  • a DC electric field indicated by a white arrow is generated between the conductor member 30 and the DC element 10.
  • the magnitude of the DC electric field increases from one end of the DC element 10 to which the conductor member 30 is connected to the other end, and is larger than the magnitude of the DC electric field when the conductor member 30 shown in FIG. 9 does not exist. It will be a thing. However, when a DC electric field is applied to a void or gap and a partial discharge occurs once, positive and negative charges generated by the partial discharge move in opposite directions in the void and gap, respectively, and charge the surface. Since the DC electric field in the gap is reduced, the partial discharge does not continue, and long-term insulation reliability can be improved as compared with the case where an AC electric field is applied.
  • FIGS. 7 to 9 are explanations of a cylindrical type DC element, it can be applied to a DISC type, a chip type, a flat type, etc., and is not limited to a cylindrical type.
  • FIG. 10 is a diagram showing a modified embodiment of FIG.
  • the conductor member 531d and the conductive member 531e are each disposed adjacent to the direct current element.
  • As a conductor member disposed between the constituent members and electrically connected to one end of the DC element it plays a role of reducing the AC electric field between the element capacitor 501d and the resistor 611f.
  • the AC electric field cannot be completely eliminated in the vicinity of the center of the capacitor 501d.
  • the magnitude of the AC electric field can be reduced.
  • the conductive member 531d can be easily held by the conductive pattern 521d.
  • FIG. 11 is a plan view showing in detail the component mounting method of the smoothing capacitor 501 in the present embodiment.
  • FIG. 12 is a front view showing in detail the component mounting method of the multiple capacitor 601 and the smoothing capacitor 501 in the present embodiment.
  • a plurality of low withstand voltage element capacitors constituting the smoothing capacitor 501 and resistors connected in parallel to the respective low withstand voltage element capacitors are disposed on the printed circuit board 1101, Lead wires coming out from both ends are soldered and electrically connected to a conductive pattern disposed on the back surface of the substrate through a through hole of the substrate 1101.
  • a plurality of low withstand voltage element capacitors constituting the multiple capacitor 601 and resistors connected in parallel to the respective low withstand voltage element capacitors are arranged on a printed board 1102 different from the board 1101.
  • the lead wires coming out from both ends of each circuit element are soldered and fixed to a conductive pattern disposed on the back surface of the substrate through a through hole of the substrate 1102.
  • the positional relationship with the circuit elements constituting the multiple capacitor 601 is as follows: the element capacitor 501c and the element capacitor 601e, the resistor 511c and the resistor 611e, the element capacitor 501d and the element capacitor 601f, the resistor 511d and the resistor 611f, An element capacitor 501e and an element capacitor 601f, and a resistor 511e and a resistor 611g are arranged adjacent to each other in the vertical direction. That is, the substrate on which the smoothing capacitor 501 is arranged and the substrate on which the multiple capacitor 601 is arranged are arranged so as to be laminated.
  • the conductive pattern 521d and the conductive pattern 521e are respectively arranged adjacent to the DC element.
  • a conductor member that is disposed between the element capacitor 501d and electrically connected to one end of the DC element it plays a role of reducing the AC electric field between the element capacitor 501d and the element capacitor 601f.
  • FIG. 13 is a plan view showing in detail the component mounting method of the smoothing capacitor 501 in the present embodiment.
  • FIG. 14 is a front view showing in detail the component mounting method of the multiple capacitor 601 and the smoothing capacitor 501 in the present embodiment.
  • the conductive member pattern 521e is transferred to the surface of the substrate 1101 and the conductive member patterns 521d and 521e are expanded to the left and right from the configuration of the third embodiment shown in FIGS.
  • the AC electric field near the center of the element capacitor 501d can be almost eliminated.
  • the multiple capacitor 601 is mounted on the back side of the substrate 1102, and the conductive patterns 621f and 621g have the same configuration as the conductive member patterns 521d and 521e, so that an alternating electric field is also applied to the element capacitor 601f. It can be almost eliminated.
  • the smoothing capacitor 501 and the multiple capacitor 601 are arranged on one substrate, and the examples are arranged on different substrates and each substrate is three-dimensionally laminated. Although shown, both arrangement examples may be combined.
  • the smoothing capacitor 501 and the multiple capacitor 601 may be installed on the same substrate, the multiple capacitor 702 may be installed on different substrates, and the two substrates may be stacked.
  • the conductor member 30 may be disposed between the DC elements 10 disposed on the same substrate, and the conductive pattern may be disposed between the substrates.
  • the present invention is not limited to each example given for explanation, and the material, size, shape, number of elements arranged, and the like may be appropriately changed as necessary.
  • FIG. 15 is a plan view showing in detail the component mounting method of the smoothing capacitor 501 in the present embodiment.
  • FIG. 16 is a cross-sectional view showing in detail a component mounting method of the smoothing capacitor 501d in the present embodiment.
  • FIG. 17 is a side view showing in detail the component mounting method of the smoothing capacitor 501d in the present embodiment.
  • the printed circuit board 1100 is removed from the configuration of the first embodiment shown in FIG. 7, and the conductive member patterns 521d, 521e, 621f, and 621g are removed in the range shown in FIG.
  • Sleeves 551d, 551e, 651f, and 651g formed of a conductor member are disposed instead of the conductive member patterns 521d, 521e, 621f, and 621g, respectively.
  • the lead wires at the right end of the element capacitor 601e, the right end of the resistor 611e, the left end of the element capacitor 601f, and the left end of the resistor 611f are caulked together by a sleeve 651f formed of a conductor member and are electrically connected.
  • the lead wires of the right end of the element capacitor 601f, the right end of the resistor 611f, the left end of the element capacitor 601g, and the left end of the resistor 611g are integrally caulked by a sleeve 651g and electrically connected.
  • the right end of the element capacitor 501c, the right end of the resistor 511c, the left end of the element capacitor 501d, and the left end of the resistor 511d are caulked by a sleeve 551d and electrically connected.
  • the right end of the element capacitor 501d, the right end of the resistor 511d, the left end of the element capacitor 501e, and the left end of the resistor 511e are caulked by a sleeve 551e and are electrically connected.
  • the shape of the conductor member 531 is changed to a cylindrical shape surrounding the element capacitor 501 and is held via the insulating member 541, and the left lead of the element capacitor 501 is Soldered and electrically connected.
  • the printed circuit board is not used, and the multiple capacitor 601 and smoothing capacitor 501 components are mounted using the rigidity of the lead wires of the components.
  • FIG. 18 is a plan view showing in detail the component mounting method of the smoothing capacitor 501 in this embodiment.
  • FIG. 19 is a cross-sectional view showing in detail the component mounting method of the smoothing capacitor 501d in the present embodiment.
  • FIG. 20 is a side view showing in detail the component mounting method of the smoothing capacitor 501d in the present embodiment.
  • the printed circuit board 1100 is removed from the configuration of the embodiment 2 shown in FIG. 10, and the conductive member patterns 521d, 521e, 621f, and 621g are removed in the range shown in FIG.
  • sleeves 551d, 551e, 651f, and 651g are provided.
  • the conductor members 531d and 531e are changed to general-purpose covered electric wires covered with insulating coatings 541d and 541e, respectively, and wound around the circumferential direction of the element capacitor. Is retained.
  • the right end of the element capacitor 601e, the right end of the resistor 611e, the left end of the element capacitor 601f, and the left end of the resistor 611f are caulked together by a sleeve 651f and electrically connected.
  • the lead wires of the right end of the element capacitor 601f, the right end of the resistor 611f, the left end of the element capacitor 601g, and the left end of the resistor 611g are integrally caulked by a sleeve 651g and electrically connected.
  • the right end of the element capacitor 501c, the right end of the resistor 511c, the left end of the element capacitor 501d, the left end of the resistor 511d, and the conductor member 531d are caulked by a sleeve 551d and electrically connected.
  • An insulating member 541d is disposed between the conductor member 531d and the element capacitors 501c and 501d.
  • the right end of the element capacitor 501d, the right end of the resistor 511d, the left end of the element capacitor 501e, the left end of the resistor 511e, and the conductor member 531e are caulked by a sleeve 551e and are electrically connected.
  • An insulating member 541e is disposed between the conductor member 531e and the element capacitors 501d and 501e.
  • FIGS. 19 and 20 by this change, by using a general-purpose electric wire as the conductor member 531 without using a printed board in this embodiment, FIG. 10 of Embodiment 2 or FIG. 11 of Embodiment 3 is used. 12 can be obtained. Further, by fixing the components of the multiple capacitor 601 and the smoothing capacitor 501 using the rigidity of the lead wires of the wires and components, it is advantageous in terms of vibration resistance, anti-centrifugal force, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • X-Ray Techniques (AREA)

Abstract

直流発生回路の絶縁信頼性を向上可能な高電圧発生装置及びこれを用いたX線高電圧装置を提供する。そのために、入力された交流電圧(21)を直流電圧(11)に整流して出力する直流発生回路を有する高電圧発生装置において、前記直流発生回路の一部を構成し、両端に直流電圧(11)が印加される直流素子(10)であって、該直流素子(10)に隣接配置された他の構成部材(20)との間に交流電圧(21)が印加されるものにおいて、前記直流素子(10)と、前記隣接配置された他の構成部材(20)との間に導体部材(30)を配設し、該導体部材(30)を前記直流素子(10)の一端と電気的に接続させる。

Description

高電圧発生装置、及びこれを用いたX線高電圧装置
 本発明は直流高電圧を発生する高電圧発生装置、及びこれを用いたX線高電圧装置に関し、特に高電圧発生装置の絶縁耐圧技術に関する。
 本技術分野の背景技術として、特開2010-244741号公報(特許文献1)がある。この公報には、高電圧発生装置を複数の直流発生回路に分割し、直列に接続することにより高電圧を発生する回路において、分割した各直流発生回路の間に金属導体部材を挿入し、任意の電位を与えることにより絶縁信頼性を向上することが開示されている。
特開2010-244741号公報
 特許文献1に記載の従来技術においては、分割後の個々の直流発生回路において更に絶縁信頼性を向上する手段について開示されていない。同様に、単一の直流発生回路のみを有する高電圧発生装置において絶縁信頼性を向上する手段について開示されていない。
 そこで、本発明の目的は、単一の直流発生回路であっても絶縁信頼性を向上可能な高電圧発生装置及びこれを用いたX線高電圧装置を提供することである。
 上記目的を達成するために、本発明は、交流電圧を直流電圧にして出力する直流発生回路を有する高電圧発生装置において、前記直流発生回路は少なくとも直流電圧が印加される直流素子と、該直流素子との間に交流電圧が印加される構成部材と、前記直流素子と前記構成部材との間に設置された導体部材と、を備え、前記導体部材は、前記直流素子の一端と電気的に接続され、他端と電気的に絶縁されていることを特徴とする。
 本発明によれば、個々の直流発生回路の絶縁信頼性を向上可能な高電圧発生装置及びこれを用いたX線高電圧装置を提供することができる。
本発明の高電圧発生装置を適用したX線高電圧装置の一部を示した構成図 図1に示すX線高電圧装置の一動作を示した図 図1に示すX線高電圧装置の他の動作を示した図 図2の一動作状況における多倍コンデンサ601の各部電圧値を示した図 図3の他の動作状況における多倍コンデンサ601の各部電圧値を示した図 図2及び図3の動作状況における平滑コンデンサ501の各部電圧値を示した図 実施例1における要部の部品実装方法を詳細に示した平面図 本発明による絶縁信頼性の向上効果を説明する模式図 従来技術を説明する模式図 実施例2における要部の部品実装方法を詳細に示した平面図 実施例3における要部の部品実装方法を詳細に示した平面図 実施例3における要部の部品実装方法を詳細に示した正面図 実施例4における要部の部品実装方法を詳細に示した平面図 実施例4における要部の部品実装方法を詳細に示した正面図 実施例5における要部の部品実装方法を詳細に示した平面図 実施例5における要部の部品実装方法を詳細に示した正面図 実施例5における要部の部品実装方法を詳細に示した側面図 実施例6における要部の部品実装方法を詳細に示した平面図 実施例6における要部の部品実装方法を詳細に示した正面図 実施例6における要部の部品実装方法を詳細に示した側面図
 以下、図面を用いて本発明の高電圧発生装置及びこれを用いたX線高電圧装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 実施例1について図1乃至9を用いて説明する。図1は、実施例1の高電圧発生装置を適用したX線高電圧装置の一部を示した構成図である。
 図1に示すX線高電圧装置は、直流電源301と、インバータ回路302と、高電圧発生装置300と、を備え、負荷にはX線を発生する陽極305aとフィラメント305bとから構成されるX線管装置305を接続している。高電圧発生装置300は、高電圧変圧器303と直流発生回路304と、これらを封入配置し内部を絶縁油1002で充填したタンク1001を有して構成される。直流発生回路304としては2段構成の対称型コッククロフト・ウォルトン回路を採用している。
 直流電源301から出力する直流電圧は、インバータ回路302により所定の周波数の交流電圧に変換し、該変換した交流電圧を高電圧変圧器303により昇圧する。該昇圧した交流電圧は2段構成の対称型コッククロフト・ウォルトン回路である直流発生回路304により、さらに4倍の電圧に昇圧すると共に直流電圧に変換し、負荷であるX線管装置305に供給する。前記高電圧変圧器303は、鉄心403と鉄心403の周囲を電線で巻いた1次巻線400と、1次巻線400の周囲を電線で巻いた第1の2次巻線401と、第2の2次巻線402からなる。
 また、前記直流発生回路304は、該回路に入力される電圧を倍化する多倍コンデンサ601、602と、交流電圧を直流電圧に整流する複数のダイオード801~804により構成されるブリッジ回路を形成する高電圧整流器800と、該整流した直流電圧を平滑する平滑コンデンサ501からなる1段目のコッククロフト・ウォルトン回路と、多倍コンデンサ701、702と、ダイオード901~904を有する高電圧整流器900と、平滑コンデンサ502からなる2段目のコッククロフト・ウォルトン回路から構成される。なお、1段目のコッククロフト・ウォルトン回路と2段目のコッククロフト・ウォルトン回路とは同一構成としている。コッククロフト・ウォルトン回路を2段構成とすることにより、1段構成の場合より、より高電圧の直流電圧をX線管装置305に出力することができる。
 本実施形態では交流電圧が入力され、直流電圧が出力される直流発生回路304として2段構成の対称型コッククロフト・ウォルトン回路を採用しているが、当然これに限定するものではない。X線管装置305が必要とする電圧値に応じて1段としてもいいし、3段以上としてもよい。また、コッククロフト・ウォルトン回路ではなくフルブリッジ整流回路や半波整流回路としてもよい。
 次に、高電圧発生装置300の内部回路構成についてより詳細に説明する。 
 高電圧発生装置300内の直列接続した2次巻線401、402の両端子部には、多倍コンデンサ601、602の一方の電極がそれぞれ接続され、多倍コンデンサ601、602の他方の電極はそれぞれダイオード801のアノードと、ダイオード802のアノードに接続される。ダイオード801と803、ダイオード802と804、はそれぞれ直列に接続され、さらにダイオード801のカソードとダイオード802のカソード、ダイオード803のアノードとダイオード804のアノードをそれぞれ接続することでブリッジ回路を形成している。ダイオード801のカソードとダイオード803のアノード間には平滑コンデンサ501が接続される。2次巻線401と402の接続部と、ダイオード801のカソードは共にグランド1003に接地される。
 ダイオード801のアノードとダイオード802のアノードにはそれぞれ多倍コンデンサ701、702の一方の電極が接続され、多倍コンデンサ701、702の他方の電極はそれぞれダイオード901のアノードと、ダイオード902のアノードに接続される。
ダイオード901と903、ダイオード902と904、はそれぞれ直列に接続され、さらにダイオード901のカソードとダイオード902のカソード、ダイオード903のアノードとダイオード904のアノードをそれぞれ接続することでブリッジ回路を形成している。
 ダイオード901のカソードとダイオード903のアノード間に平滑コンデンサ502が接続される。ダイオード901のアノードはダイオード801のアノードと接続され、ダイオード903のアノードはX線管装置305内のフィラメント305bに接続される。また、X線管装置305内の陽極305aはグランド1003に接地される。
 次に、図2を用いて図1に示すX線高電圧装置の一動作について説明する。図2は、図1に示すX線高電圧装置の一動作について示した図である。
 図2に示すX線高電圧装置の各部における電圧値は2次巻線401、402の両端の電圧値がそれぞれ+35(kV)、-35(kV)の場合の電圧値である。また該電圧値はグランド1003(0(V)とする)を基準としている。
 2次巻線401、402の両端の電圧値がそれぞれ+35(kV)、-35(kV)の場合、高電圧整流器800、及び高電圧整流器900の各ダイオードに印加される電圧の向きは、ダイオード801、804、901、904が順方向、ダイオード802、803、902、903が逆方向となる。この場合、ダイオード801の両端子の電圧値は0(V)、ダイオード804、901の両端子の電圧値は-70(kV)、ダイオード904の両端子の電圧値は-140(kV)、となり、X線管装置の陰極305bには-140(kV)の直流電圧が印加される。
 なお、平滑コンデンサ501については、ダイオード801と接続されている一端の電圧値は0(V)、ダイオード804と接続されている他端の電圧値は-70(kV)となる。また、平滑コンデンサ502については、ダイオード901と接続されている一端の電圧値は-70(V)、ダイオード904と接続されている他端の電圧値は-140(kV)となる。
 次に、図4を用いて図2の動作状況における多倍コンデンサ601の各部電圧値について詳説する。図4は、図2の一動作状況における多倍コンデンサ601の各部電圧値について示した図である。図4に示す多倍コンデンサ601は複数の同一容量の直列接続した低耐圧のコンデンサ601a~601gからなり、該複数の直列接続したコンデンサの両端部にあたるコンデンサ601aの一方の電極の電圧値は+35(kV)、コンデンサ601gの他方の電極の電圧値は0(V)となる。
 なお、コンデンサ601a~601gには抵抗611a~611gが各々並列に接続されており、各コンデンサに均一に電圧が分担される様に構成されている。601aの一方の電極からコンデンサ601gの他方の電極に行くにつれ、各コンデンサの接続箇所の電圧値は5kVずつ下がっていく。コンデンサ601fに着目すると、一方の電極の電圧値は+10(kV)、他方の電極の電圧値は+5(kV)となる。また、特に図示しないが多倍コンデンサ601以外の多倍コンデンサ602、701、702についてもそれぞれ複数の同一容量の直列接続した低耐圧のコンデンサから構成される。
 次に、図3を用いて図1に示すX線高電圧装置の他の動作について説明する。図3は、図1に示すX線高電圧装置の他の動作について示した図である。
 図3に示すX線高電圧装置の各部における電圧値は2次巻線401、402の両端の電圧値がそれぞれ-35(kV)、+35(kV)の場合の電圧値であり、図2に示した2次巻線401、402の両端の電圧値と反転した場合のものである。該電圧値はグランド1003(0(V)とする)を基準としている。2次巻線401、402の両端の電圧値がそれぞれ-35(kV)、+35(kV)の場合、高電圧整流器800、及び高電圧整流器900の各ダイオードに印加される電圧の向きは、ダイオード802、803、902、903が順方向、ダイオード801、804、901、904が逆方向となる。
 この場合、ダイオード802の両端子の電圧値は0(V)、ダイオード803、902の両端子の電圧値は-70(kV)、ダイオード903の両端子の電圧値は-140(kV)、となり、X線管装置の陰極305bには-140(kV)の直流電圧が印加される。なお、平滑コンデンサ501については、ダイオード802と接続されている一端の電圧値は0(V)、ダイオード803と接続されている他端の電圧値は-70(kV) となり、平滑コンデンサ502については、ダイオード902と接続されている一端の電圧値は-70(V)、ダイオード903と接続されている他端の電圧値は-140(kV)
 となって、図2に示した場合と同一の電圧値となる。
 次に、図5を用いて図3の動作状況における多倍コンデンサ601の各部電圧値について詳説する。図5は、図3の他の動作状況における多倍コンデンサ601の各部電圧値について示した図である。図5に示すコンデンサ601aの一方の電極の電圧値は-35(kV)、コンデンサ601gの他方の電極の電圧値は-70(kV)となる。コンデンサ601aの一方の電極からコンデンサ601gの他方の電極に行くにつれ、各コンデンサの接続箇所の電圧値は5kVずつ下がっていく。コンデンサ601fに着目すると、一方の電極の電圧値は-60(kV)、他方の電極の電圧値は-65(kV)となる。
 次に、図6を用いて図2及び図3の動作状況における平滑コンデンサ501の各部電圧値について詳説する。図6は、図2及び図3の双方の動作状況における平滑コンデンサ501の各部電圧値について示した図である。図6に示す平滑コンデンサ501は複数の同一容量の直列接続した低耐圧の要素コンデンサ501a~501gからなり、該複数の直列接続したコンデンサの両端部にあたる要素コンデンサ501aの一方の電極の電圧値は0(V)、要素コンデンサ501gの他方の電極の電圧値は-70(kV)となる。
 なお、要素コンデンサ501a~501gには抵抗511a~511gが各々並列に接続されており、各要素コンデンサに均一に電圧が分担される様に構成されている。要素コンデンサ501aの一方の電極から要素コンデンサ501gの他方の電極に行くにつれ、各要素コンデンサの接続箇所の電圧値は10kVずつ下がっていく。要素コンデンサ501dに着目すると、一方の電極の電圧値は-30(kV)、他方の電極の電圧値は-40(kV)となる。また、特に図示しないが平滑コンデンサ502についても複数の同一容量の直列接続した低耐圧の要素コンデンサ及び各々の要素コンデンサに並列に接続された抵抗から構成される。
 次に、図7を用いて高電圧発生装置300を構成する各部の実装形態について説明する。図7は、本実施例における多倍コンデンサ601と平滑コンデンサ501の部品実装方法に対し詳細に示した平面図である。多倍コンデンサ601を構成する複数の低耐圧コンデンサと、各々の低耐圧コンデンサに並列に接続される抵抗がプリント基板1100上に配設され、各々の回路素子の両端から出たリード線が基板1100のスルーホールを通って基板裏面に配設された導電パターンにはんだ付けされ固定されている。
 図7に示された範囲においては、要素コンデンサ601eの右端、抵抗611eの右端、要素コンデンサ601fの左端及び抵抗611fの左端が導電パターン621fにはんだ付けされ、電気的に接続されている。また、要素コンデンサ601fの右端、抵抗611fの右端、要素コンデンサ601gの左端及び抵抗611gの左端が導電パターン621gにはんだ付けされ、電気的に接続されている。
 同様に平滑コンデンサ501を構成する複数の低耐圧の要素コンデンサと、各々の低耐圧の要素コンデンサに並列に接続される抵抗がプリント基板1100上に配設され、各々の回路素子の両端から出たリード線が基板1100のスルーホールを通って基板裏面に配設された導電パターンにはんだ付けされ、電気的に接続されている。図7に示された範囲においては、要素コンデンサ501cの右端、抵抗511cの右端、要素コンデンサ501dの左端及び抵抗511dの左端が導電パターン521dにはんだ付けされ、電気的に接続されている。
 また、要素コンデンサ501dの右端、抵抗511dの右端、要素コンデンサ501eの左端及び抵抗511eの左端が導電パターン521eにはんだ付けされ、電気的に接続されている。なお、多倍コンデンサ601を構成する回路素子との位置関係としては、要素コンデンサ501cと抵抗611eが、要素コンデンサ501dと抵抗611fが、要素コンデンサ501eと抵抗611gが、各々隣接配置されている。
 上記隣接配置された要素コンデンサと抵抗の間には、要素コンデンサの直流印加方向寸法の端子間の寸法、すなわち直流電界を生じる方向の寸法より若干大きな寸法の導体部材が配設されている。即ち、要素コンデンサ501cと抵抗611eの間には導体部材531cが、要素コンデンサ501dと抵抗611fの間には導体部材531dが、要素コンデンサ501eと抵抗611gの間には導体部材531eが、各々配設されている。そして、導体部材531dの一端は、基板1100のスルーホールを通って基板裏面に配設された導電パターン521dにはんだ付けされ、電気的に接続されている。また、導体部材531eの一端は、基板1100のスルーホールを通って基板裏面に配設された導電パターン521eにはんだ付けされ、電気的に接続されている。
 次に、図8、9を用いて本実施例の要部における発明効果を説明する。図8は、実施例1による絶縁信頼性の向上効果を説明する模式図である。また、図9は、従来技術を説明する模式図である。
 図9に示すように、直流素子10の両端には直流電圧11が印加され、隣接する他の構成部材20との間に交流電圧21が印加された状態を考える。この状態では直流素子10に白抜き矢印で示した向きに直流電界が生じている。この直流素子10に対し、隣接配置された他の構成部材20には交流電圧21が印加されているため、直流素子10と他の構成部材20との間には、陰影つき矢印で示した方向に交流電界が生じている。
 この様な状況は、図7に示した本実施例の実装形態との対比においては、例えば、導体部材531dが存在しなかった場合における要素コンデンサ501dが直流素子10に、同じく抵抗611fが他の構成部材20に相当する。直流素子10は常に正負いずれか一方の電圧が印加されている部材であって、図1であれば平滑コンデンサ501、502およびこれらを構成する要素コンデンサや抵抗、及び、多倍コンデン601、602、701、702およびこれらを構成する要素コンデンサや抵抗がこれに相当する。
 そして、要素コンデンサ501dとして一般的な直流用コンデンサを使用した場合、コンデンサの外面を覆っている外装材料とコンデンサ本体材料との間に、ボイドや間隙が存在していることがある。
 このボイドや間隙に交流電界が加わると、部分放電が継続的に生じてコンデンサ本体材料が劣化し、最終的に絶縁破壊が生じることになる。これに対し、図8に示したごとく導体部材30(図7に示した本実施例の実装形態との対比においては導体部材531dに相当)を、直流素子10と他の構成部材20との間に配設し、直流素子10の一端と電気的に接続させ、他端と電気的に絶縁した場合には、陰影つき矢印で示した交流電界は、導体部材30と他の構成部材20との間に限定され、導体部材30と直流素子10との間には抑制される。これにより部分放電が継続的に生じてコンデンサ本体材料が劣化して絶縁破壊が生じる可能性を低減することができる。本実施例において導体部材の材質は、はんだ付けが容易な銅であり、長さおよび高さ寸法は各々、要素コンデンサ501dのそれより若干大きいものとしている。
 なお、導体部材30と直流素子10との間には白抜き矢印で示した直流電界が生じる。
この直流電界の大きさは、導体部材30が接続された直流素子10の一端から他端に向かうほど大きくなり、図9に示された導体部材30が存在しない場合の直流電界の大きさよりも大きなものとなる。しかしながら、直流電界がボイドや間隙に加わって部分放電が1度発生すると、部分放電により生じた正負の電荷が、ボイドや間隙内を各々反対方向に移動して表面に帯電し、これによりボイドや間隙内の直流電界が減じることから部分放電は継続せず、交流電界が加わる場合と比べて長期的な絶縁信頼性を向上することができる。
 なお、図7から図9は、円筒タイプの直流素子についての説明であったが、DISCタイプ、チップタイプ、偏平タイプなどにも適用可能で、円筒タイプに限定されるものではない。
 本発明の実施例について図10を用いて説明する。
 図10は、図7の変形実施例を示した図である。本実施例においては、直流素子として要素コンデンサ501dに、隣接配置された他の構成部材として抵抗611fに着目した場合、導体部材531dと導体部材531eが各々、直流素子と、隣接配置された他の構成部材との間に配設され、直流素子の一端と電気的に接続された導体部材として、要素コンデンサ501dと抵抗611fとの間の交流電界を減じる役割を担っている。
 本実施例ではコンデンサ501dの中央付近で交流電界を完全に無くすことはできないが、導体部材531dと導体部材531eが存在しない場合との比較においては、交流電界の大きさを小さくすることができる。また、実施例1との比較においては、例えば導電パターン521dによる導体部材531dの保持が容易になっている。
 本発明の実施例について図11、12を用いて説明する。
 図11は、本実施例における平滑コンデンサ501の部品実装方法を詳細に示した平面図である。図12は、本実施例における多倍コンデンサ601と平滑コンデンサ501の部品実装方法を詳細に示した正面図である。本実施例においては、平滑コンデンサ501を構成する複数の低耐圧の要素コンデンサと、各々の低耐圧の要素コンデンサに並列に接続される抵抗がプリント基板1101上に配設され、各々の回路素子の両端から出たリード線が基板1101のスルーホールを通って基板裏面に配設された導電パターンにはんだ付けされ、電気的に接続されている。
 一方で、多倍コンデンサ601を構成する複数の低耐圧の要素コンデンサと、各々の低耐圧の要素コンデンサに並列に接続される抵抗は、前記基板1101とは別のプリント基板1102上に配設され、各々の回路素子の両端から出たリード線が基板1102のスルーホールを通って基板裏面に配設された導電パターンにはんだ付けされ固定されている。
 なお、多倍コンデンサ601を構成する回路素子との位置関係としては、要素コンデンサ501cと要素コンデンサ601eが、抵抗511cと抵抗611eが、要素コンデンサ501dと要素コンデンサ601fが、抵抗511dと抵抗611fが、要素コンデンサ501eと要素コンデンサ601fが、抵抗511eと抵抗611gが、各々上下方向に隣接配置されている。すなわち平滑コンデンサ501が配置された基板と、多倍コンデンサ601が配置された基板とが積層されたように配置されている。
 本実施例においては、直流素子として要素コンデンサ501dに、隣接配置された他の構成部材として要素コンデンサ601fに着目した場合、導電パターン521dと導電パターン521eが各々、直流素子と、隣接配置された他の構成部材との間に配設され、直流素子の一端と電気的に接続された導体部材として、要素コンデンサ501dと要素コンデンサ601fとの間の交流電界を減じる役割を担っている。実施例2との比較においては、導体部材531dや導体部材531eを別途付加する必要が無く、構造が簡単になるという効果がある。
 本発明の実施例について図13、14を用いて説明する。
 図13は、本実施例における平滑コンデンサ501の部品実装方法を詳細に示した平面図である。図14は、本実施例における多倍コンデンサ601と平滑コンデンサ501の部品実装方法を詳細に示した正面図である。本実施例においては、図11、12に示した実施例3の構成から、導電部材パターン521eが基板1101の表面に移設されるとともに、導電部材パターン521dと521eが左右に拡張されている。
 この変更により本実施例では要素コンデンサ501dの中央付近での交流電界をほぼ無くすことができる。また、多倍コンデンサ601については、基板1102の裏側に実装するとともに、導電パターン621fと621gを、導電部材パターン521dと521eと同様の構成とすることにより、要素コンデンサ601fに対しても交流電界をほぼ無くすことができる。
 また、上述の実施例では、平滑コンデンサ501と多倍コンデンサ601とが一つの基板上に配置される例と、異なる基板上に配置されそれぞれの基板が立体的に積層されて配置される例を示したが、両方の配置例が組み合わされていてもよい。すなわち平滑コンデンサ501と多倍コンデンサ601が同一基板上に設置され、多倍コンデンサ702が異なる基板上に設置され、二つの基板が積層されるように配置されていてもよい。その場合は、同一基板上に配置された直流素子10の間に導体部材30を配置し、かつ基板間にも導電パターンが介在するように配置すればよい。
また、本発明は、説明のために挙げた各実施例に限られるものではなく、材質、大きさ、形状、素子の配置数などは、必要に応じて適宜変更されてよい。
 本発明の実施例について図15乃至17を用いて説明する。
 図15は、本実施例における平滑コンデンサ501の部品実装方法を詳細に示した平面図である。図16は、本実施例における平滑コンデンサ501dの部品実装方法を詳細に示した断面図である。図17は、本実施例における平滑コンデンサ501dの部品実装方法を詳細に示した側面図である。本実施例においては、図7に示した実施例1の構成から、プリント基板1100が取り除かれ、また、図7に示した範囲においては導電部材パターン521d、521e、621f、621gが取り除かれる一方で、導電部材パターン521d、521e、621f、621gの代りに導体部材で形成されたスリーブ551d、551e、651f、651gが各々配設されている。そして、要素コンデンサ601eの右端、抵抗611eの右端、要素コンデンサ601fの左端及び抵抗611fの左端のリード線が一体として、導体部材から形成されたスリーブ651fでかしめられ、電気的に接続されている。また、要素コンデンサ601fの右端、抵抗611fの右端、要素コンデンサ601gの左端及び抵抗611gの左端のリード線が一体として、スリーブ651gでかしめられ、電気的に接続されている。同様に、要素コンデンサ501cの右端、抵抗511cの右端、要素コンデンサ501dの左端及び抵抗511dの左端がスリーブ551dでかしめられ、電気的に接続されている。また、要素コンデンサ501dの右端、抵抗511dの右端、要素コンデンサ501eの左端及び抵抗511eの左端がスリーブ551eでかしめられ、電気的に接続されている。
 更に、図16、17に詳細に示された通り、導体部材531の形状が要素コンデンサ501を取り囲む円筒形状に変更されて絶縁部材541を介して保持されるとともに、要素コンデンサ501の左側リード線にはんだ付けされ、電気的に接続されている。これにより実施例1の図8と同様の効果を得る。また、この変更により、本実施例ではプリント基板を用いず、部品のリード線の剛性を用いて多倍コンデンサ601と平滑コンデンサ501の部品を実装している。
 本発明の実施例について図18乃至20を用いて説明する。
 図18は、本実施例における平滑コンデンサ501の部品実装方法を詳細に示した平面図である。図19は、本実施例における平滑コンデンサ501dの部品実装方法を詳細に示した断面図である。図20は、本実施例における平滑コンデンサ501dの部品実装方法を詳細に示した側面図である。本実施例においては、図10に示した実施例2の構成から、プリント基板1100が取り除かれ、また、図10に示した範囲においては導電部材パターン521d、521e、621f、621gが取り除かれる一方で、導電部材パターン521d、521e、621f、621gの代りにスリーブ551d、551e、651f、651gが各々配設されている。また、図19、20に詳細に示された通り、導体部材531d、531eが各々、絶縁被覆541d、541eで覆われた汎用的な被覆電線に変更され、要素コンデンサの周方向に巻きつけられて保持されている。そして、要素コンデンサ601eの右端、抵抗611eの右端、要素コンデンサ601fの左端及び抵抗611fの左端のリード線が一体として、スリーブ651fでかしめられ、電気的に接続されている。また、要素コンデンサ601fの右端、抵抗611fの右端、要素コンデンサ601gの左端及び抵抗611gの左端のリード線が一体として、スリーブ651gでかしめられ、電気的に接続されている。一方、要素コンデンサ501cの右端、抵抗511cの右端、要素コンデンサ501dの左端、抵抗511dの左端及び導体部材531dがスリーブ551dでかしめられ、電気的に接続されている。なお、導体部材531dと要素コンデンサ501c、501dとの間には絶縁部材541dが配置される。また、要素コンデンサ501dの右端、抵抗511dの右端、要素コンデンサ501eの左端、抵抗511eの左端及び導体部材531eがスリーブ551eでかしめられ、電気的に接続されている。なお、導体部材531eと要素コンデンサ501d、501eの間には絶縁部材541eが配置されている。
 図19、20に示すように、この変更により、本実施例ではプリント基板を用いず、導体部材531として汎用的な電線を用いることで、実施例2の図10あるいは実施例3の図11、12と同様の効果を得ることができる。また電線や部品のリード線の剛性を用いて多倍コンデンサ601と平滑コンデンサ501の部品を固定することで耐振、対遠心力などの点で優位である。
 10 直流素子
 11 直流電圧
 20 隣接する他の構成部材(交流素子)
 21 交流電圧
 30 導体部材
 300 高電圧発生装置
 301 直流電源
 302 インバータ回路
 303 高電圧変圧器
 304 直流発生回路
 305 X線管装置
 305a 陽極
 305b フィラメント(陰極)
 400 1次巻線
 401 第1の2次巻線
 402 第2の2次巻線
 403 鉄心
 800 高電圧整流器
 900 高電圧整流器
 1100~1102 基板
 1001 タンク
 1002 絶縁油
 1003 グランド
 501、502 平滑コンデンサ
 601、602、701、702 多倍コンデンサ
 501a~501g 平滑コンデンサ501を構成する低耐圧の要素コンデンサ
 601a~601g 多倍コンデンサ601を構成する低耐圧の要素コンデンサ
 801~804、901~904 ダイオード
 511a~511g、611a~611g 抵抗
 521d、521e、621f、621g 導体部材(導電パターン)
 531c、531d、531e 導体部材
 541c、541d、541e 絶縁部材
 551d、551e、651f、651g 導体部材(スリーブ)

Claims (7)

  1.  交流電圧を直流電圧にして出力する直流発生回路を有する高電圧発生装置において、
     前記直流発生回路は少なくとも、
     直流電圧が印加される直流素子と、
     該直流素子との間に交流電圧が印加される構成部材と、
     前記直流素子と前記構成部材との間に設置された導体部材と、
     を備え、
     前記導体部材は、前記直流素子の一端と電気的に接続され、他端と電気的に絶縁されている
     ことを特徴とする高電圧発生装置。
  2.  前記直流素子の直流電圧印加方向における前記導体部材の寸法が、前記直流電圧印加方向における前記直流素子の寸法よりも大きい
     ことを特徴とする請求項1記載の高電圧発生装置。
  3.  前記導体部材を2つ配設し、1つの導体部材を前記直流素子の一端と電気的に接続し、他の1つの導体部材を前記直流素子の他端と電気的に接続した
     ことを特徴とする請求項1に記載の高電圧発生装置。
  4.  前記導体部材のそれぞれの寸法が直流素子の直流電圧印加方向の寸法の半分以上である
     ことを特徴とする請求項3記載の高電圧発生装置。
  5.  前記導体部材が基板上に配設された導電パターンであって、前記直流素子の一端と電気的に接続され、前記導電パターンの寸法が前記直流素子の直流電圧印加方向の寸法の半分以上である
     ことを特徴とする請求項1に記載の高電圧発生装置。
  6.  請求項1に記載の高電圧発生装置であって、
     前記直流発生回路は、
     複数段のコッククロフト・ウォルトン回路であって、
     前記コッククロフト・ウォルトン回路は、
     直流電圧が印加される平滑コンデンサと、
     平滑コンデンサとの間に交流電圧が印加される多倍コンデンサと、
    を有し、
     前記平滑コンデンサおよび前記多倍コンデンサは、
     少なくとも二つ以上の要素コンデンサが直列に接続されて構成され、
     前記直流素子は前記平滑コンデンサを構成する前記要素コンデンサである
     ことを特徴とする高電圧発生装置。
  7.  直流電源と、
     前記直流電源の出力直流電圧を所定の周波数の交流電圧に変換するインバータ回路と、該交流電圧を昇圧すると共に直流電圧に整流し、X線を発生するX線管装置に該直流電圧を出力する高電圧発生装置と、を備えたX線高電圧発生装置であって、
     前記高電圧発生装置に請求項1に記載の高電圧発生装置を用いる
     ことを特徴とするX線高電圧装置。
PCT/JP2017/024625 2016-08-01 2017-07-05 高電圧発生装置、及びこれを用いたx線高電圧装置 WO2018025560A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150919 2016-08-01
JP2016150919A JP6670704B2 (ja) 2016-08-01 2016-08-01 高電圧発生装置、及びこれを用いたx線高電圧装置

Publications (1)

Publication Number Publication Date
WO2018025560A1 true WO2018025560A1 (ja) 2018-02-08

Family

ID=61073578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024625 WO2018025560A1 (ja) 2016-08-01 2017-07-05 高電圧発生装置、及びこれを用いたx線高電圧装置

Country Status (2)

Country Link
JP (1) JP6670704B2 (ja)
WO (1) WO2018025560A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209875B2 (ja) * 2020-01-24 2023-01-20 三菱電機株式会社 昇圧回路および電圧発生装置
KR102328720B1 (ko) * 2021-03-10 2021-11-22 어썸레이 주식회사 전자기파 발생 장치 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548345U (ja) * 1978-09-22 1980-03-29
JP2010244741A (ja) * 2009-04-02 2010-10-28 Hitachi Medical Corp X線ct用高電圧発生装置
JP2011198527A (ja) * 2010-03-18 2011-10-06 Hitachi Medical Corp 高電圧発生装置、及びこれを用いたx線高電圧装置
WO2015005380A1 (ja) * 2013-07-11 2015-01-15 株式会社日立メディコ 高電圧発生装置およびx線発生装置
JP2015220261A (ja) * 2014-05-14 2015-12-07 株式会社東芝 変換器用変圧器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548345U (ja) * 1978-09-22 1980-03-29
JP2010244741A (ja) * 2009-04-02 2010-10-28 Hitachi Medical Corp X線ct用高電圧発生装置
JP2011198527A (ja) * 2010-03-18 2011-10-06 Hitachi Medical Corp 高電圧発生装置、及びこれを用いたx線高電圧装置
WO2015005380A1 (ja) * 2013-07-11 2015-01-15 株式会社日立メディコ 高電圧発生装置およびx線発生装置
JP2015220261A (ja) * 2014-05-14 2015-12-07 株式会社東芝 変換器用変圧器

Also Published As

Publication number Publication date
JP2018022550A (ja) 2018-02-08
JP6670704B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
US7903432B2 (en) High-voltage power generation system and package
US9369060B2 (en) Power generation system and package
WO2018025560A1 (ja) 高電圧発生装置、及びこれを用いたx線高電圧装置
JPH0514408B2 (ja)
KR102615119B1 (ko) 복수의 컨버터 모듈을 구비하는 dc/dc 컨버터
JP5490994B2 (ja) X線発生装置
CN105846680B (zh) 变压器和开关电源装置
JP6530987B2 (ja) 電力変換装置
JPS58129799A (ja) X線発生器用高電圧供給装置
JPH1041093A (ja) X線用高電圧発生装置
JP6527952B2 (ja) センタータップ付きの変圧器を有する回路装置及び出力電圧の測定
JP5586284B2 (ja) 高電圧発生装置、及びこれを用いたx線高電圧装置
US10917088B1 (en) Power conversion device
US20160262250A1 (en) Power generation system and package
JP6127287B2 (ja) 回路ユニット
JP6146739B2 (ja) 直流高電圧電源装置
JP3021122B2 (ja) 直流高電圧発生装置およびそれを用いたx線装置
JP4778310B2 (ja) 電子管用高電圧発生装置
US10978953B2 (en) Flyback power supply, inverter and electrically powered vehicle
JP2004281170A (ja) X線管用高電圧装置
JP7209875B2 (ja) 昇圧回路および電圧発生装置
JP2013172583A (ja) スイッチング電源装置
JPH0710175B2 (ja) 多段式絶縁変圧器型高電圧発生装置
JP6731993B2 (ja) 電力変換装置
KR102122209B1 (ko) 전원장치 및 제전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836667

Country of ref document: EP

Kind code of ref document: A1