WO2018023986A1 - 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法 - Google Patents

水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法 Download PDF

Info

Publication number
WO2018023986A1
WO2018023986A1 PCT/CN2017/078239 CN2017078239W WO2018023986A1 WO 2018023986 A1 WO2018023986 A1 WO 2018023986A1 CN 2017078239 W CN2017078239 W CN 2017078239W WO 2018023986 A1 WO2018023986 A1 WO 2018023986A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic hybrid
water
foam material
foamed
rigid foam
Prior art date
Application number
PCT/CN2017/078239
Other languages
English (en)
French (fr)
Inventor
王洪波
李强
Original Assignee
常州聚博节能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州聚博节能科技有限公司 filed Critical 常州聚博节能科技有限公司
Publication of WO2018023986A1 publication Critical patent/WO2018023986A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3897Low-molecular-weight compounds having heteroatoms other than oxygen containing heteroatoms other than oxygen, halogens, nitrogen, sulfur, phosphorus or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group

Definitions

  • the invention belongs to the field of flame-retardant polyurethane energy-saving material production and building energy-saving technology, and particularly relates to a water-foamed polyurethane rigid foam material and a manufacturing method thereof.
  • the insulation energy-saving materials used in China mainly include the following: foam insulation materials, composite silicate insulation materials, and thermal insulation materials for calcium silicate insulation products.
  • the foam insulation materials used in China are mainly EPS insulation materials; while the polyurethane (PU) insulation materials have lower thermal conductivity than EPS insulation materials, and the thermal insulation effect of 50mm thick PU rigid foams is equivalent to 80-100mm thick.
  • EPS polyurethane
  • Ordinary rigid polyurethane foams generally use low-boiling hydrocarbon compounds such as chlorofluorocarbons (F11, 141B) as blowing agents.
  • hydrocarbon compounds such as chlorofluorocarbons (F11, 141B)
  • F11, 141B chlorofluorocarbons
  • Hydrochlorofluorocarbons (HCFCs) also have a certain ozone removal function and produce a greenhouse effect, so the original polyurethane foaming system must be replaced, so the full water foaming technology is more and more popular.
  • ordinary full-water foamed rigid polyurethane foam has many disadvantages, such as too large viscosity of the system, poor fluidity, uneven foaming, large cell pores, large thermal conductivity, and brittle foam.
  • the present invention provides a water-foamed melamine poly Urethane hard foam material and method of producing the same.
  • Preparing a full-water foamed B1 flame-retardant melamine polyurethane sheet spraying and casting a combined polyether, and then foaming with isocyanate MDI on a plate machine, a spraying machine, and a casting machine, thereby obtaining the environmentally-friendly full-water foaming B1 resistance of the present invention.
  • Inorganic hybrid melamine polyurethane rigid foam material Preparing a full-water foamed B1 flame-retardant melamine polyurethane sheet, spraying and casting a combined polyether, and then foaming with isocyanate MD
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the emulsifier is a silicone oil, and the silicone oil is a hard foam silicone oil.
  • the composite catalyst is potassium acetate, pentamethyldiethylenetriamine, 1,3,5-tris(dimethylaminopropyl)hexahydrotriazine, trimethyl-N-2 hydroxypropylhexanoic acid. Two or more of triethylenediamine, N,N-dimethylaniline or dibutyltin dilaurate.
  • the flame retardant is a phosphate ester
  • the phosphate ester is one or two of tris(1-chloro-2-propyl) phosphate and tris(2,3-dichloropropyl) phosphate.
  • the viscosity of the phosphate is less than 300 Pa ⁇ s.
  • the molecular structure of the inorganic hybrid melamine resin polyol is as follows:
  • X in the molecular structure is an inorganic hybrid element, including one of B or Sb;
  • R in the molecular structure is -(CH 2 ) n OH or -(CH 2 ) m O(CH 2 ) m OH or
  • the molecular structure of the inorganic hybrid polyol etherified melamine resin is as follows:
  • X in the molecular structure is an inorganic hybrid element, including one of B or Sb;
  • R in the molecular structure is -(CH 2 ) n OH or -(CH 2 ) m O(CH 2 ) m OH or
  • a method for producing a water-foamed inorganic hybrid melamine polyurethane rigid foam material comprising the following specific steps:
  • the formula ingredients in claim 1 are separately added to the mixing kettle, stirred at room temperature for 2-4 hours, and a trace of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate in a weight ratio of 1: (1-1.8), and foamed on a plate machine, a spray machine, and a casting machine to obtain Water-foamed inorganic hybrid melamine polyurethane rigid foam material.
  • the rigid foam material of the invention does not contain low-boiling hydrocarbon compounds such as chlorofluorocarbons and hydrochlorofluorocarbons, foams with water, does not destroy the ozone layer, does not produce a greenhouse effect, and is environmentally friendly.
  • the material is prepared using inorganic Hybrid melamine resin polyol, the introduction of inorganic hybrid elements improves the flame retardant performance, compared with the resin before the hybridization, the high temperature resistance is improved by 50 ° C or more, and the flame retardant performance is improved by at least 20%.
  • the flame retardant performance is excellent, and its oxygen index is more than 30%, which meets the requirements of Class B1 of GB8624-2012.
  • the manufacturing method of the invention utilizes a low-viscosity phosphate ester to effectively dilute the water-foamed B1 flame-retardant melamine polyurethane composite polyether, and overcomes the water-foamed polyurethane composite polyether having too large viscosity, poor fluidity and uneven foaming.
  • the cells are coarse, the thermal conductivity is large, the foam is brittle, and the strength is low.
  • the phosphorus source of the phosphorus-nitrogen flame retardant system is provided, and the flame retardant performance of the full water foaming melamine polyurethane foam material is improved.
  • the invention utilizes low viscosity phosphate ester to effectively improve the viscosity of the full water foaming B1 flame retardant melamine polyurethane composite polyether, so that the full water foaming B1 flame retardant melamine polyurethane rigid foam material of the invention can be sprayed, It can be cast by a casting machine and can be formed by a high-pressure sheet machine to make an insulation material.
  • the polyurethane rigid foam material manufactured by the invention patent does not need to use an expensive high flame retardant phosphate flame retardant, so that the foam cost is greatly reduced, the temperature is reduced by more than 30%, and the economy is more reasonable.
  • the foamed material of the invention has obvious technical advantages and economic advantages, and provides an environmentally-friendly, B1-class flame-retardant and invention-integrated insulation material for building energy conservation. It can be widely used in the fields of construction, petrochemical industry, cold storage and cold storage. It will generate great economic benefits. At the same time, it will have great social benefits for the country to implement the Montreal Protocol, reduce the atmospheric greenhouse effect and protect the atmospheric ozone layer.
  • Water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming of inorganic hybrid melamine polyurethane composite polyether and polymeric isocyanate, inorganic hybrid melamine polyurethane composite polyether, by weight ratio,
  • the recipe is as follows:
  • the composite catalyst is potassium acetate and pentamethyldiethylenetriamine.
  • the flame retardant is a phosphate ester
  • the phosphate ester is tris(1-chloro-2-propyl) phosphate
  • the phosphate ester has a viscosity of 290 Pa ⁇ s.
  • the inorganic hybrid melamine resin polyol is specifically a boron hybrid melamine resin propylene glycol, and its molecular structure formula and preparation method are as follows:
  • the residual methanol was distilled off under the conditions of a vacuum of 0.090 MPa and a temperature of 95 ° C, and the mixture was cooled to room temperature to obtain a boron-hybrid melamine resin propylene glycol in a yield of 99.0%.
  • the inorganic hybrid melamine polyurethane combined polyether formula component is separately added to the mixing kettle, stirred at room temperature for 2 hours, and a trace amount of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate according to a weight ratio of 1:1, and is foamed on a plate machine, a spraying machine and a casting machine to obtain a water-foamed inorganic substance.
  • Hybrid melamine polyurethane rigid foam material is used.
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the composite catalyst is pentamethyldiethylenetriamine, 1,3,5-tris(dimethylaminopropyl)hexahydrotriazine, trimethyl-N-2 hydroxypropylhexanoic acid and dilauric acid Butyltin.
  • the flame retardant is a phosphate ester
  • the phosphate ester is tris(2,3-dichloropropyl) phosphate
  • the viscosity of the phosphate ester is 285 Pa ⁇ s.
  • Inorganic hybrid melamine resin polyol specifically molybdenum hybrid melamine resin glycerol
  • the residual methanol was distilled off under the conditions of a vacuum of 0.1 MPa and a temperature of 105 ° C, and the mixture was cooled to room temperature to obtain an inorganic hybrid melamine resin polyol in a yield of 98.0%.
  • the inorganic hybrid melamine polyurethane combined polyether formula component is separately added to the mixing kettle, stirred at room temperature for 4 hours, and a trace amount of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate at a weight ratio of 1:1.8, and foamed on a plate machine, a spray machine, and a casting machine to obtain a water-foamed inorganic substance.
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the composite catalyst was 1,3,5-tris(dimethylaminopropyl)hexahydrotriazine, triethylenediamine and N,N-dimethylaniline.
  • the flame retardant is a phosphate ester
  • the phosphate ester is tris(1-chloro-2-propyl) phosphate and tris(2,3-dichloropropyl) phosphate
  • the viscosity of the phosphate ester is 269 Pa ⁇ s.
  • the inorganic hybrid polyol etherified melamine resin is specifically a doped diethylene glycol etherified melamine resin, and its molecular structure formula and preparation method are as follows:
  • the inorganic hybrid melamine polyurethane combined polyether formula component is separately added to the mixing kettle, stirred at room temperature for 3 hours, and a trace amount of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate at a weight ratio of 1:1.4, and foamed on a plate machine, a spray machine, and a casting machine to obtain a water-foamed inorganic substance.
  • Hybrid melamine polyurethane rigid foam material is used.
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the composite catalyst is 1,3,5-tris(dimethylaminopropyl)hexahydrotriazine, trimethyl-N-2 hydroxypropylhexanoic acid, triethylenediamine, N,N-dimethylaniline And dibutyltin dilaurate
  • the flame retardant is a phosphate ester
  • the phosphate ester is tris(2,3-dichloropropyl) phosphate
  • the phosphate ester has a viscosity of 280 Pa ⁇ s.
  • the inorganic hybrid melamine resin polyol is specifically a boron hybrid melamine resin pentaerythritol, and the molecular structure and preparation method thereof are as follows:
  • the hexamethylol melamine and methanol were added to the reaction kettle in the above ratio, and the pH was adjusted to 3.5 by adding hydrochloric acid.
  • the stirring speed was 70 rpm at 55 ° C, and the etherification reaction was carried out for 80 min to obtain an etherified melamine resin. ;
  • the inorganic hybrid compound and water were added to the reaction vessel, and the mixture was heated to 105 ° C for 1 hour. Under the condition of 90 ° C, methanol was distilled off under normal pressure, and the water was distilled off under the condition of a vacuum degree of 0.090 MPa at 100 ° C. , to a water content of less than 0.5%;
  • the residual methanol was distilled off under the conditions of a vacuum of 0.090 MPa and a temperature of 100 ° C, and the mixture was cooled to room temperature to obtain an inorganic hybrid melamine resin polyol in a yield of 98.0%.
  • the inorganic hybrid melamine polyurethane combined polyether formula component is separately added to the mixing kettle, stirred at room temperature for 2 hours, and a trace amount of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate according to a weight ratio of 1:1, and is foamed on a plate machine, a spraying machine and a casting machine to obtain a water-foamed inorganic substance.
  • Hybrid melamine polyurethane rigid foam material is used.
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the composite catalyst is potassium acetate, trimethyl-N-2 hydroxypropyl hexanoic acid, triethylenediamine, and N,N-dimethylaniline.
  • the flame retardant is a phosphate ester
  • the phosphate ester is tris(1-chloro-2-propyl) phosphate and tris(2,3-dichloropropyl) phosphate.
  • the viscosity of the ester and phosphate ester was 289 Pa ⁇ s.
  • the inorganic hybrid polyol etherified melamine resin is specifically a doped diethylene glycol etherified melamine resin, and the molecular structure and preparation method thereof are as follows:
  • the inorganic hybrid melamine polyurethane combined polyether formula component is separately added to the mixing kettle, stirred at room temperature for 3 hours, and a trace amount of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate at a weight ratio of 1:1.5, and foamed on a plate machine, a spray machine, and a casting machine to obtain a water-foamed inorganic substance.
  • Hybrid melamine polyurethane rigid foam material is used.
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • a water-foamed inorganic hybrid melamine polyurethane rigid foam material which is a rigid foam material formed by foaming an inorganic hybrid melamine polyurethane composite polyether with a polymeric isocyanate, and is characterized by:
  • the inorganic hybrid melamine polyurethane composite polyether is formulated as follows by weight ratio:
  • the composite catalyst is potassium acetate, trimethyl-N-2 hydroxypropyl hexanoic acid and triethylenediamine.
  • the flame retardant is a phosphate ester
  • the phosphate ester is tris(1-chloro-2-propyl) phosphate
  • the viscosity of the phosphate ester is 276 Pa ⁇ s.
  • Inorganic hybrid polyol etherified melamine resin is specifically
  • the residual glycerin added in the step (1) is distilled off under the condition of a vacuum degree of 0.1 MPa and a temperature of 120 ° C;
  • the inorganic hybrid melamine polyurethane combined polyether formula component is separately added to the mixing kettle, stirred at room temperature for 4 hours, and a trace amount of mechanical impurities are filtered to obtain a water-foamed inorganic hybrid melamine polyurethane composite polyether;
  • the water-foamed inorganic hybrid melamine polyurethane composite polyether obtained in the step (1) is mixed with the polymerized isocyanate at a weight ratio of 1:1.8, and foamed on a plate machine, a spray machine, and a casting machine to obtain a water-foamed inorganic substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法,属于阻燃聚氨酯节能材料生产及建筑节能技术领域,以耐高温无机杂化三聚氰胺树脂多元醇或无机杂化多元醇醚化三聚氰胺树脂、乳化剂、复合催化剂、磷酸酯阻燃剂、发泡剂,如水或水玻璃为主要原材料,经搅拌分散,分别制备组合聚醚,然后与异氰酸酯MDI在板材机、喷涂机、浇注机上发泡,即得本发明的环保型全水发泡B1级阻燃无机杂化三聚氰胺聚氨酯硬泡材料。本发明专利的硬泡材料不含有低沸点烃类化合物氟氯烃和氢氯氟烃类化合物,用水发泡,不破坏臭氧层、不产生温室效应,环保,阻燃性能提高了至少20%,在保证物理性能的同时,阻燃性能优异,其氧指数大于30%。

Description

水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法 技术领域
本发明属于阻燃聚氨酯节能材料生产及建筑节能技术领域,特别涉及水发泡聚氨酯硬泡材料以及其制造方法。
背景技术
我国是一个气候特征复杂的大国,如严寒的东北地区,夏热冬寒的长江中游地区,这使得我国建筑建材的能耗非常大。北方地区的冬季保暖等,其能耗占全国总能耗的27.3%。但是由于材料、技术和工艺的问题,我国传统建筑单位面积采暖能耗是国际上气候条件相近的发达国家的2-3倍。国家颁布的《节能中长期专项规划》规定“十三.五”期间新建建筑要严格执行节能标准,同时对现有建筑要逐步施行绝热保温改造。全面实行65%的节能标准,一线城市实行75%的节能标准。
目前我国使用的保温节能材料主要包括以下几种:泡沫型保温材料、复合硅酸盐保温材料、硅酸钙绝热制品保温材料。
在国内使用的泡沫型保温材料主要是EPS保温材料;而聚氨酯(PU)保温材料与EPS保温材料相比,导热系数更低,50mm厚的PU硬质泡沫塑料的保温效果相当于80-100mm厚的EPS。特别是在北方寒冷地区实现节能65%时,EPS接缝漏水,存在严重的冻融现象,脱落现象严重。
普通硬质聚氨酯泡沫塑料一般采用低沸点烃类化合物氟氯烃(F11、141B)作为发泡剂,然而近年来发现该类化合物是破坏地球臭氧层的元凶。氢氯氟烃(HCFC)类也具有一定的臭氧除去功能和产生温室效应,所以原有的聚氨酯发泡系统必须被替代,因此全水发泡技术越来越受到了人们的青睐。
而普通全水发泡硬质聚氨酯泡沫塑料存在许多不足,如体系粘度太大,流动性差,发泡不均而导致泡孔粗大,导热系数偏大,泡沫体发脆等。
发明内容
为了解决现有技术存在的上述问题,本发明提供了一种水发泡三聚氰胺聚 氨酯硬泡材料及其制造方法。以耐高温无机杂化三聚氰胺树脂多元醇或无机杂化多元醇醚化三聚氰胺树脂、乳化剂、复合催化剂、磷酸酯阻燃剂、发泡剂,如水或水玻璃为主要原材料,经搅拌分散,分别制备全水发泡B1级阻燃三聚氰胺聚氨酯板材、喷涂、浇注组合聚醚,然后与异氰酸酯MDI在板材机、喷涂机、浇注机上发泡,即得本发明的环保型全水发泡B1级阻燃无机杂化三聚氰胺聚氨酯硬泡材料。
本发明所采用的技术方案如下:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000001
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000002
所述乳化剂为硅油,所述硅油为硬泡硅油。
所述复合催化剂为醋酸钾、五甲基二亚乙基三胺、1,3,5-三(二甲胺基丙基)六氢三嗪、三甲基-N-2羟丙基己酸、三亚乙基二胺、N,N-二甲基苯胺或二月桂酸二丁基锡中的两种或几种。
所述阻燃剂为磷酸酯,所述磷酸酯为磷酸三(1-氯-2-丙基)酯、磷酸三(2,3-二氯丙基)酯中的一种或两种,所述磷酸酯的粘度小于300Pa·s。
所述的无机杂化三聚氰胺树脂多元醇分子结构如下:
Figure PCTCN2017078239-appb-000003
所述分子结构中的X为无机杂化元素,包括B或Sb中的一种;
所述分子结构中的R为-(CH2)nOH或-(CH2)mO(CH2)mOH或
-(OCH2CH2CH2CH3)kOH或-O(CH2)pCH(OH)CH2OH其中2≤n≤6,2≤m≤6,2≤p≤6,2≤k≤41。
所述的无机杂化多元醇醚化三聚氰胺树脂分子结构如下:
Figure PCTCN2017078239-appb-000004
所述分子结构中的X为无机杂化元素,包括B或Sb中的一种;
所述分子结构中的R为-(CH2)nOH或-(CH2)mO(CH2)mOH或
-(OCH2CH2CH2CH3)kOH或-O(CH2)pCH(OH)CH2OH,其中2≤n≤6,2≤m≤6,2≤p≤6,2≤k≤41。
水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将权利要求1中配方成分分别加入到混合釜中,常温搅拌分散2-4小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:(1-1.8)进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
本发明的上述技术方案与现有技术相比,具有以下优点:
1、本发明专利的硬泡材料不含有低沸点烃类化合物氟氯烃和氢氯氟烃类化合物,用水发泡,不破坏臭氧层、不产生温室效应,环保,同时该材料制备时采用了无机杂化的三聚氰胺树脂多元醇,无机杂化元素的引入提高了阻燃性能,与未杂化之前的树脂相比,耐高温性能提高50℃以上,阻燃性能提高了至少20%,在保证物理性能的同时,阻燃性能优异,其氧指数大于30%,符合GB8624-2012标准B1级要求。
2、本发明的制造方法利用低粘度磷酸酯对水发泡B1级阻燃三聚氰胺聚氨酯组合聚醚进行有效的稀释,克服了水发泡聚氨酯组合聚醚粘度太大,流动性差,发泡不均而导致泡孔粗大,导热系数偏大,泡沫体发脆、强度低等缺陷。同时提供磷-氮阻燃体系的磷源,提高了全水发泡三聚氰胺聚氨酯泡沫材料的阻燃性能。
3、本发明利用低粘度磷酸酯,有效的改进了全水发泡B1级阻燃三聚氰胺聚氨酯组合聚醚的粘度,使得本发明的全水发泡B1级阻燃三聚氰胺聚氨酯硬泡材料可以喷涂、可以用浇注机浇注、可以用高压板材机成型,制成保温材料。
4、本发明专利制造的聚氨酯硬泡材料,不需要使用价格昂贵的高阻燃磷酸酯阻燃剂,使泡沫成本大为的降低,降低了30%以上,经济性更合理。
5、本发明的发泡材料和同类产品相比具有明显的技术优势和经济优势,为建筑节能提供了环保、B1级阻燃、发明防水一体化的保温材料。可在建筑领域、石油化工领域、冷库保冷等领域中广泛使用,将产生极大的经济效益,同时对国家完成执行蒙特利尔协议计划,减少大气温室效应,保护大气臭氧层具有巨大的社会效益。
具体实施方式
下面结合具体实施例详细说明本发明,但本发明并不局限于具体实施例。
实施例1
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000005
复合催化剂为醋酸钾和五甲基二亚乙基三胺。
阻燃剂为磷酸酯,磷酸酯为磷酸三(1-氯-2-丙基)酯,磷酸酯的粘度为290Pa·s。
无机杂化三聚氰胺树脂多元醇具体为硼杂化三聚氰胺树脂丙二醇,其分子结构式及制备方法如下:
Figure PCTCN2017078239-appb-000006
原料配比:
Figure PCTCN2017078239-appb-000007
(1)醚化反应
按上述比例将六羟甲基三聚氰胺和甲醇加入反应釜中,加酸调节pH为2.5,在35℃的条件下,搅拌速度为60转/分钟,保温120min进行醚化反应,得到醚化三聚氰胺树脂;
(2)碱中和
在转速40转/分钟条件下搅拌,加碱调节pH为8.0,该碱中和过程保持温度低于50℃;
(3)杂化反应
向反应釜中加入四水八硼酸钠和水,升温到100℃反应2小时,在80℃的条件下,常压蒸出甲醇,在100℃的条件下,在真空度为0.090MPa条件下蒸出水,至含水量达到0.5%以下;
(4)冷却过滤
冷却到60℃,加入2%硅藻土助滤剂,用过滤机过滤出盐,得到硼杂化醚化三聚氰胺树脂;
(5)醚交换反应
加入丙二醇,及盐酸,在100℃下,进行醚交换反应,常压下不断蒸出生成的甲醇,至计量蒸出的甲醇质量达到理论量,醚交换完成;
(6)蒸馏脱除残留的甲醇
在真空度0.090MPa,温度95℃的条件下,蒸出残存的甲醇,冷却到室温,即得到硼杂化三聚氰胺树脂丙二醇,收率99.0%。
上述水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将上述无机杂化三聚氰胺聚氨酯组合聚醚配方成分分别加入到混合釜中,常温搅拌分散2小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:1进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
实施例2
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000008
复合催化剂为五甲基二亚乙基三胺、1,3,5-三(二甲胺基丙基)六氢三嗪、三甲基-N-2羟丙基己酸和二月桂酸二丁基锡。
阻燃剂为磷酸酯,磷酸酯为磷酸三(2,3-二氯丙基)酯,磷酸酯的粘度为285Pa·s。
无机杂化三聚氰胺树脂多元醇具体为钼杂化三聚氰胺树脂丙三醇
分子结构式:
Figure PCTCN2017078239-appb-000009
原料配比:
Figure PCTCN2017078239-appb-000010
(1)醚化反应
按上述比例将六羟甲基三聚氰胺和甲醇加入反应釜中,加硝酸调节pH为5.0,在50℃的条件下,搅拌速度为70转/分钟,保温100min进行醚化反应,得到醚化三聚氰胺树脂;
(2)碱中和
在转速70转/分钟条件下搅拌,加碱调节pH为8.6,该碱中和过程保持温度低于50℃;
(3)杂化反应
向反应釜中加入钼酸钠和水,升温到105℃反应1.5小时,在90℃的条件下,常压蒸出甲醇,在105℃的条件下,在真空度为0.095MPa条件下蒸出水,至含水量达到0.5%以下;
(4)冷却过滤
冷却到70℃,加入2.5%硅藻土助滤剂,用过滤机过滤出盐,得到钼杂化醚化三聚氰胺树脂;
(5)醚交换反应
加入丙三醇,及硝酸,在105℃下,进行醚交换反应,常压下不断蒸出生成的甲醇,至计量蒸出的甲醇质量达到理论量,醚交换完成;
(6)蒸馏脱除残留的甲醇
在真空度0.1MPa,温度105℃的条件下,蒸出残存的甲醇,冷却到室温,即得到无机杂化三聚氰胺树脂多元醇,收率98.0%。
上述水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将上述无机杂化三聚氰胺聚氨酯组合聚醚配方成分分别加入到混合釜中,常温搅拌分散4小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:1.8进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
实施例3
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000011
复合催化剂为1,3,5-三(二甲胺基丙基)六氢三嗪、三亚乙基二胺和N,N-二甲基苯胺。
阻燃剂为磷酸酯,磷酸酯为磷酸三(1-氯-2-丙基)酯和磷酸三(2,3-二氯丙基)酯,磷酸酯的粘度为269Pa·s。
无机杂化多元醇醚化三聚氰胺树脂具体为锑杂化二乙二醇醚化三聚氰胺树脂,其分子结构式和制备方法如下:
分子结构式:
Figure PCTCN2017078239-appb-000012
原料配比:
Figure PCTCN2017078239-appb-000013
(1)醚化反应
按上述比例将六羟甲基三聚氰胺和二乙二醇加入反应釜中,加酸调节pH为5.5,在65℃的条件下,搅拌速度为80转/分钟,保温30min进行醚化反应,得到二乙二醇醚化三聚氰胺树脂;
(2)碱中和
在转速80转/分钟条件下进行搅拌,加碱调节pH为9.0,该碱中和过程保持温度低于50℃;
(3)杂化反应
向反应釜中加入三氧化二锑和水,升温到110℃反应0.5小时,杂化反应完成;
(4)蒸馏脱除残留的多元醇
在真空度0.1MPa,温度100℃的条件下,蒸出步骤(1)中加入的残存的二乙二醇;
(5)冷却过滤
冷却到80℃,加入2.5%硅藻土助滤剂,用过滤机过滤出盐,得到锑杂化二乙二醇醚化三聚氰胺树脂,收率98.5%。
上述水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将上述无机杂化三聚氰胺聚氨酯组合聚醚配方成分分别加入到混合釜中,常温搅拌分散3小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:1.4进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
实施例4
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000014
复合催化剂为1,3,5-三(二甲胺基丙基)六氢三嗪、三甲基-N-2羟丙基己酸、三亚乙基二胺、N,N-二甲基苯胺和二月桂酸二丁基锡
阻燃剂为磷酸酯,磷酸酯为磷酸三(2,3-二氯丙基)酯,磷酸酯的粘度为280Pa·s。
无机杂化三聚氰胺树脂多元醇具体为硼杂化三聚氰胺树脂季戊四醇,其分子结构和制备方法如下:
分子结构式:
Figure PCTCN2017078239-appb-000015
原料配比:
Figure PCTCN2017078239-appb-000016
(1)醚化反应
按上述比例将六羟甲基三聚氰胺和甲醇加入反应釜中,加盐酸调节pH为3.5,在55℃的条件下,搅拌速度为70转/分钟,保温80min进行醚化反应,得到醚化三聚氰胺树脂;
(2)碱中和
在转速60转/分钟条件下搅拌,加碱调节pH为8.5,该碱中和过程保持温度低于50℃;
(3)杂化反应
向反应釜中加入无机杂化化合物和水,升温到105℃反应1小时,在90℃的条件下,常压蒸出甲醇,在100℃的条件下,在真空度为0.090MPa条件下蒸出水,至含水量达到0.5%以下;
(4)冷却过滤
冷却到70℃,加入2%硅藻土助滤剂,用过滤机过滤出盐,得到硼杂化醚化三聚氰胺树脂;
(5)醚交换反应
加入季戊四醇,及盐酸在105℃下,进行醚交换反应,常压下不断蒸出生成的甲醇,至计量蒸出的甲醇质量达到理论量,醚交换完成;
(6)蒸馏脱除残留的甲醇
在真空度0.090MPa,温度100℃的条件下,蒸出残存的甲醇,冷却到室温,即得到无机杂化三聚氰胺树脂多元醇,收率98.0%。
上述水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将上述无机杂化三聚氰胺聚氨酯组合聚醚配方成分分别加入到混合釜中,常温搅拌分散2小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:1进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
实施例5
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000017
复合催化剂为醋酸钾、三甲基-N-2羟丙基己酸、三亚乙基二胺和N,N-二甲基苯胺。
阻燃剂为磷酸酯,磷酸酯为磷酸三(1-氯-2-丙基)酯和磷酸三(2,3-二氯丙基) 酯,磷酸酯的粘度为289Pa·s。
无机杂化多元醇醚化三聚氰胺树脂具体为锑杂化二乙二醇醚化三聚氰胺树脂,其分子结构和制备方法如下:
分子结构式:
Figure PCTCN2017078239-appb-000018
原料配比:
Figure PCTCN2017078239-appb-000019
(1)醚化反应
按上述比例将六羟甲基三聚氰胺和二乙二醇加入反应釜中,加酸调节pH为5.5,在65℃的条件下,搅拌速度为80转/分钟,保温30min进行醚化反应,得到二乙二醇醚化三聚氰胺树脂;
(2)碱中和
在转速80转/分钟条件下进行搅拌,加碱调节pH为9.0,该碱中和过程保持温度低于50℃;
(3)杂化反应
向反应釜中加入三氧化二锑和水,升温到110℃反应0.5小时,杂化反应完成;
(4)蒸馏脱除残留的多元醇
在真空度0.1MPa,温度100℃的条件下,蒸出步骤(1)中加入的残存的二乙二醇;
(5)冷却过滤
冷却到80℃,加入2.5%硅藻土助滤剂,用过滤机过滤出盐,得到锑杂化二乙二醇醚化三聚氰胺树脂,收率98.5%。
上述水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将上述无机杂化三聚氰胺聚氨酯组合聚醚配方成分分别加入到混合釜中,常温搅拌分散3小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:1.5进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
实施例6
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
Figure PCTCN2017078239-appb-000020
复合催化剂为醋酸钾、三甲基-N-2羟丙基己酸和三亚乙基二胺。
阻燃剂为磷酸酯,磷酸酯为磷酸三(1-氯-2-丙基)酯,磷酸酯的粘度为276Pa·s。
无机杂化多元醇醚化三聚氰胺树脂具体为
钼杂化丙三醇醚化三聚氰胺树脂的制备
分子结构式:
Figure PCTCN2017078239-appb-000021
原料配比:
Figure PCTCN2017078239-appb-000022
(1)醚化反应
按上述比例将六羟甲基三聚氰胺和丙三醇加入反应釜中,加酸调节pH为4.5,在40℃的条件下,搅拌速度为65转/分钟,保温90min进行醚化反应,得到丙三醇醚化三聚氰胺树脂;
(2)碱中和
在转速70转/分钟条件下进行搅拌,加碱调节pH为8.5,该碱中和过程保持温度低于50℃;
(3)杂化反应
向反应釜中加入钼酸钠和水,升温到105℃反应1.5小时,杂化反应完成;
(4)蒸馏脱除残留的多元醇
在真空度0.1MPa,温度120℃的条件下,蒸出步骤(1)中加入的残存的丙三醇;
(5)冷却过滤
冷却到75℃,加入2%硅藻土助滤剂,用过滤机过滤出盐,得到钼杂化丙三醇醚化三聚氰胺树脂,收率98.2%。
上述水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
(1)制备组合聚醚
将上述无机杂化三聚氰胺聚氨酯组合聚醚配方成分分别加入到混合釜中,常温搅拌分散4小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
(2)发泡
将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:1.8进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。

Claims (7)

  1. 水发泡无机杂化三聚氰胺聚氨酯硬泡材料,该材料是由无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯发泡形成的硬泡材料,其特征在于:
    所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
    Figure PCTCN2017078239-appb-100001
    所述无机杂化三聚氰胺聚氨酯组合聚醚,按重量份数比,配方如下:
    Figure PCTCN2017078239-appb-100002
  2. 如权利要求1所述的水发泡无机杂化三聚氰胺聚氨酯硬泡材料,其特征在于:所述乳化剂为硅油,所述硅油为硬泡硅油。
  3. 如权利要求1所述的水发泡无机杂化三聚氰胺聚氨酯硬泡材料,其特征在于:所述复合催化剂为醋酸钾、五甲基二亚乙基三胺、1,3,5-三(二甲胺基丙基)六氢三嗪、三甲基-N-2羟丙基己酸、三亚乙基二胺、N,N-二甲基苯胺或二月桂酸二丁基锡中的两种或几种。
  4. 如权利要求1所述的水发泡无机杂化三聚氰胺聚氨酯硬泡材料,其特征在于:所述阻燃剂为磷酸酯,所述磷酸酯为磷酸三(1-氯-2-丙基)酯、磷酸三(2,3-二氯丙基)酯中的一种或两种,所述磷酸酯的粘度小于300Pa·s。
  5. 如权利要求1所述的水发泡无机杂化三聚氰胺聚氨酯硬泡材料,其特征 在于:所述的无机杂化三聚氰胺树脂多元醇分子结构如下:
    Figure PCTCN2017078239-appb-100003
    所述分子结构中的X为无机杂化元素,包括B或Sb中的一种;
    所述分子结构中的R为-(CH2)nOH或-(CH2)mO(CH2)mOH或
    -(OCH2CH2CH2CH3)kOH或-O(CH2)pCH(OH)CH2OH其中2≤n≤6,2≤m≤6,2≤p≤6,2≤k≤41。
  6. 如权利要求1所述的水发泡无机杂化三聚氰胺聚氨酯硬泡材料,其特征在于:所述的无机杂化多元醇醚化三聚氰胺树脂分子结构如下:
    Figure PCTCN2017078239-appb-100004
    Figure PCTCN2017078239-appb-100005
    所述分子结构中的X为无机杂化元素,包括B或Sb中的一种;
    所述分子结构中的R为-(CH2)nOH或-(CH2)mO(CH2)mOH或
    -(OCH2CH2CH2CH3)kOH或-O(CH2)pCH(OH)CH2OH,其中2≤n≤6,2≤m≤6,2≤p≤6,2≤k≤41。
  7. 如权利要求1所述的水发泡无机杂化三聚氰胺聚氨酯硬泡材料的制造方法,其特征在于:包括以下具体步骤:
    (1)制备组合聚醚
    将权利要求1中配方成分分别加入到混合釜中,常温搅拌分散2-4小时,过滤出微量机械杂质,得到水发泡无机杂化三聚氰胺聚氨酯组合聚醚;
    (2)发泡
    将步骤(1)中得到的水发泡无机杂化三聚氰胺聚氨酯组合聚醚与聚合异氰酸酯按照重量比1:(1-1.8)进行配比,在板材机、喷涂机、浇注机上进行发泡,得到水发泡无机杂化三聚氰胺聚氨酯硬泡材料。
PCT/CN2017/078239 2016-08-01 2017-03-26 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法 WO2018023986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610626700.0A CN106243302B (zh) 2016-08-01 2016-08-01 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法
CN201610626700.0 2016-08-01

Publications (1)

Publication Number Publication Date
WO2018023986A1 true WO2018023986A1 (zh) 2018-02-08

Family

ID=57607171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078239 WO2018023986A1 (zh) 2016-08-01 2017-03-26 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法

Country Status (2)

Country Link
CN (1) CN106243302B (zh)
WO (1) WO2018023986A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732816A (zh) * 2020-06-18 2020-10-02 浙江亚迪纳新材料科技股份有限公司 轻质高锁水改性三聚氰胺泡沫塑料的制备工艺
CN115109218A (zh) * 2022-06-26 2022-09-27 瀚寅(苏州)新材料科技有限公司 一种阻燃型组合聚醚及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106243302B (zh) * 2016-08-01 2018-04-17 常州聚博节能科技有限公司 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法
CN106432672A (zh) * 2016-09-07 2017-02-22 张家港迪蒙德节能科技有限公司 一种全水发泡聚氨酯硬泡材料及其制造方法
CN108752033A (zh) * 2018-05-20 2018-11-06 滨州市神华建材有限公司 新型煤岩体无机复合硬泡材料
CN109749037A (zh) * 2018-11-19 2019-05-14 扬州恒丰塑胶有限责任公司 一种高阻燃聚醚多元醇、聚氨酯硬泡及其制备方法和应用
CN113354794A (zh) * 2021-05-25 2021-09-07 苏州恒利峰节能建材科技有限公司 一种全水发泡的阻燃聚氨酯和泡沫陶瓷的复合保温材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400547B1 (de) * 2002-09-23 2007-03-14 HILTI Aktiengesellschaft Zweikomponenten-Schaumsystem für die Herstellung von Bauschäumen und deren Verwendung
CN101812174A (zh) * 2010-04-01 2010-08-25 湖州创新聚氨酯科技有限公司 高固含量、低黏度难燃聚合物聚醚多元醇及制备方法与应用
CN102295616A (zh) * 2011-05-18 2011-12-28 杨彦威 具有多羟基结构的氨基树脂及其制备方法
US20140066532A1 (en) * 2012-09-06 2014-03-06 Bayer Materialscience Llc Rigid foams suitable for wall insulation
CN104130368A (zh) * 2014-07-21 2014-11-05 万华节能科技集团股份有限公司 一种阻燃聚氨酯浇注硬质泡沫塑料板材
CN104262566A (zh) * 2014-09-09 2015-01-07 上海应用技术学院 一种含氮本征结构的阻燃聚氨酯硬泡及其制备方法
CN104987484A (zh) * 2015-05-29 2015-10-21 张家港迪蒙德节能科技有限公司 一种无机材料杂化硬质三聚氰胺聚氨酯泡沫保温材料及其制备方法和用于其中的组合聚醚
CN106243302A (zh) * 2016-08-01 2016-12-21 常州聚博节能科技有限公司 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法
CN106432672A (zh) * 2016-09-07 2017-02-22 张家港迪蒙德节能科技有限公司 一种全水发泡聚氨酯硬泡材料及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700661B2 (en) * 2005-05-05 2010-04-20 Sleep Innovations, Inc. Prime foam containing vegetable oil polyol
CN103739821A (zh) * 2013-12-20 2014-04-23 苏州市万泰真空炉研究所有限公司 一种新型碳纤维增强型聚氨酯硬质泡沫塑料的制备方法
CN104262567B (zh) * 2014-09-09 2017-01-11 上海应用技术学院 一种以三聚氰胺为基本征的阻燃聚氨酯硬质泡沫及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400547B1 (de) * 2002-09-23 2007-03-14 HILTI Aktiengesellschaft Zweikomponenten-Schaumsystem für die Herstellung von Bauschäumen und deren Verwendung
CN101812174A (zh) * 2010-04-01 2010-08-25 湖州创新聚氨酯科技有限公司 高固含量、低黏度难燃聚合物聚醚多元醇及制备方法与应用
CN102295616A (zh) * 2011-05-18 2011-12-28 杨彦威 具有多羟基结构的氨基树脂及其制备方法
US20140066532A1 (en) * 2012-09-06 2014-03-06 Bayer Materialscience Llc Rigid foams suitable for wall insulation
CN104130368A (zh) * 2014-07-21 2014-11-05 万华节能科技集团股份有限公司 一种阻燃聚氨酯浇注硬质泡沫塑料板材
CN104262566A (zh) * 2014-09-09 2015-01-07 上海应用技术学院 一种含氮本征结构的阻燃聚氨酯硬泡及其制备方法
CN104987484A (zh) * 2015-05-29 2015-10-21 张家港迪蒙德节能科技有限公司 一种无机材料杂化硬质三聚氰胺聚氨酯泡沫保温材料及其制备方法和用于其中的组合聚醚
CN106243302A (zh) * 2016-08-01 2016-12-21 常州聚博节能科技有限公司 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法
CN106432672A (zh) * 2016-09-07 2017-02-22 张家港迪蒙德节能科技有限公司 一种全水发泡聚氨酯硬泡材料及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111732816A (zh) * 2020-06-18 2020-10-02 浙江亚迪纳新材料科技股份有限公司 轻质高锁水改性三聚氰胺泡沫塑料的制备工艺
CN115109218A (zh) * 2022-06-26 2022-09-27 瀚寅(苏州)新材料科技有限公司 一种阻燃型组合聚醚及其制备方法

Also Published As

Publication number Publication date
CN106243302B (zh) 2018-04-17
CN106243302A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018023986A1 (zh) 水发泡无机杂化三聚氰胺聚氨酯硬泡材料及其制造方法
CN102030977B (zh) 组合聚醚,聚氨酯原料组合物,聚氨酯泡沫及其用途
CN102079803B (zh) 一种全水型组合聚醚及使用方法,聚氨酯硬质泡沫组合物
CN102229697B (zh) 一种太阳能聚氨酯保温材料
CN101161699B (zh) 一种用于制备无氟聚氨酯硬质泡沫塑料的聚醚多元醇及其制取方法
CN106193437B (zh) 浇注聚氨酯夹芯彩钢保温板及其制造成型方法
CN106167538B (zh) 浇注聚氨酯自保温墙体及其制造成型方法
CN106432672A (zh) 一种全水发泡聚氨酯硬泡材料及其制造方法
CN109422907B (zh) 包含多胺和醇胺盐的发泡剂及用于聚氨酯连续板泡沫体材料中的用途
CN106437017B (zh) 浇注聚氨酯夹芯自保温墙板及其制造成型方法
CN115093553B (zh) 四溴双酚a聚醚酯多元醇及制备方法、聚氨酯硬泡及制备方法
CN103739808A (zh) 一种聚氨酯保温材料及其制备方法
CN106832212B (zh) 储水式电热水器用聚氨酯硬泡材料及其制备方法
CN105061715A (zh) 一种用于板材聚氨酯塑料的HFC-245eb型组合聚醚及其制备方法
CN109422911B (zh) 包含原甲酸醇胺盐和丙醇胺盐的发泡剂及用于聚氨酯冰箱冰柜泡沫体材料的用途
WO2018023984A1 (zh) 无机杂化多元醇醚化三聚氰胺树脂及其制备方法
CN109422912B (zh) 碱性多胺醇胺发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN109422914B (zh) 多胺乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
CN106700118B (zh) 发泡剂组合物和聚氨酯硬质泡沫
CN109422900B (zh) 仲胺和乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
WO2018023985A1 (zh) 无机杂化三聚氰胺树脂多元醇及其制备方法
CN109422895B (zh) 叔胺和醇胺碱性发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途
CN109422905B (zh) 叔胺和乙醇胺碱性发泡剂和用于制备聚氨酯太阳能泡沫体材料的用途
CN109422915B (zh) 包含原甲酸醇胺盐和乙醇胺盐的发泡剂及用于聚氨酯间歇板泡沫体材料的用途
CN109422909B (zh) 原甲酸醇胺盐和碳酸醇胺盐碱性发泡剂和用于制备聚氨酯喷涂泡沫体材料的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836170

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/07/2019)