WO2018021648A1 - 전자기파 차폐시트용 조성물 및 전자기파 차폐시트 - Google Patents

전자기파 차폐시트용 조성물 및 전자기파 차폐시트 Download PDF

Info

Publication number
WO2018021648A1
WO2018021648A1 PCT/KR2017/002815 KR2017002815W WO2018021648A1 WO 2018021648 A1 WO2018021648 A1 WO 2018021648A1 KR 2017002815 W KR2017002815 W KR 2017002815W WO 2018021648 A1 WO2018021648 A1 WO 2018021648A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
styrene
composition
butadiene
shielding sheet
Prior art date
Application number
PCT/KR2017/002815
Other languages
English (en)
French (fr)
Inventor
유다영
정승문
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2018021648A1 publication Critical patent/WO2018021648A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials

Definitions

  • It relates to a composition for producing an electromagnetic wave shielding sheet and an electromagnetic wave shielding sheet made of the composition.
  • EME electromagnetic interference
  • One embodiment of the present invention provides a composition for electromagnetic wave shielding sheet which can obtain an electromagnetic shielding sheet having excellent electromagnetic shielding performance and improved moldability and processability.
  • Another embodiment of the present invention is prepared from the composition for electromagnetic wave shield sheet to provide an electromagnetic shielding sheet with excellent electromagnetic shielding performance, excellent flexibility and durability of the sheet.
  • the binder resin comprises a styrene-butadiene-based rubber resin containing an acid anhydride group, the magnetic particles based on 100 parts by weight of solids
  • a composition for electromagnetic wave shielding sheet including 90 parts by weight or more and less than 100 parts by weight.
  • an electromagnetic wave shielding sheet comprising at least one layer prepared from the composition for electromagnetic wave shielding sheet.
  • the composition for electromagnetic wave shielding sheet provides excellent durability and moldability to the electromagnetic wave shielding sheet manufactured therefrom, and at the same time, it may give an improved electromagnetic wave shielding performance. In addition, it may exhibit improved processability in the process of manufacturing the electromagnetic wave shielding sheet from the composition for electromagnetic wave shielding sheet.
  • FIG. 1 is a schematic cross-sectional view of an electromagnetic shielding sheet according to an embodiment of the present invention.
  • the binder resin comprises a styrene-butadiene-based rubber resin containing an acid anhydride group, the magnetic particles based on 100 parts by weight of solid content
  • a composition for electromagnetic wave shielding sheet containing 80 parts by weight or more and less than 100 parts by weight.
  • Conventional electromagnetic shielding materials can be divided into ferrite sheet and organic-inorganic composite sheet.
  • the ferrite sheet was formed by sintering magnetic particles at a high temperature into a sheet shape, and the manufacturing process was not only difficult, but also the brittleness of the prepared sheet was difficult to handle, and the workability and moldability were also poor.
  • Organic-inorganic composite sheet is to improve this problem of the ferrite sheet, it is prepared by adding a polymer to the magnetic particles.
  • the organic-inorganic composite sheet can be added to the polymer to lower the brittleness and improve the processability and formability, but there is a problem that the shielding performance is significantly reduced.
  • the electromagnetic shielding mechanism has a large reflection and absorption, in the case of the ferrite sheet to implement the shielding function by absorbing the electromagnetic wave, the absorbed electromagnetic wave is converted into heat to increase the internal temperature of the device to which the sheet is applied. Therefore, since the heat dissipation sheet is necessarily required, there is a problem in that the product structure becomes thick and heavy.
  • the material for shielding electromagnetic waves by using a reflection mechanism is mainly metal, and in the case of metal, there is a problem in that its utilization is low due to low workability and heavy disadvantages.
  • the electromagnetic wave shielding sheet composition according to an embodiment of the present invention is a composition for manufacturing an electromagnetic wave shielding sheet, and solves the disadvantages and problems of the existing electromagnetic wave shielding material, absorbs electromagnetic waves effectively and at the same time has a high electrical conductivity. Also, the mechanism for reflecting electromagnetic waves can be provided, and at the same time, it can implement a heat dissipation function by itself without a separate heat dissipation sheet and can exhibit excellent processability and formability.
  • the composition for electromagnetic wave shield sheet includes a binder resin, magnetic particles and carbon-based inorganic particles. That is, when the electromagnetic wave shielding sheet of a single layer is formed using the composition for electromagnetic wave shielding sheet, all of the binder resin, magnetic particles, and carbon-based inorganic particles are contained in the single layer, and chemically or physically appropriately interact with each other. May be dispersed and mixed.
  • the composition includes all of the binder resin, the magnetic particles, and the carbon-based inorganic particles, while the electromagnetic wave shielding sheet formed therefrom is thin in thickness, thereby securing both the heat dissipation function and the electromagnetic wave shielding function by itself without the incidental heat dissipation sheet. It can have an advantage.
  • the composition for electromagnetic wave shielding sheet is excellent in the electromagnetic wave shielding sheet prepared from the composition, although the magnetic particles are contained in a relatively high content by including a binder resin containing a styrene-butadiene-based rubber resin containing an acid anhydride group Flexibility, formability and processability can be imparted.
  • the binder resin includes a styrene-butadiene rubber resin containing an acid anhydride group.
  • the styrene-butadiene-based rubber resin containing the acid anhydride group has a chemical structure containing an acid anhydride group as a side chain in the main chain of the styrene-butadiene-based copolymer.
  • the binder resin contains an acid anhydride group
  • adhesion properties with the magnetic particles and the carbon-based inorganic particles may be excellent, thereby making the inorganic particles excellent in dispersibility in the composition, thereby preventing the final physical properties of the electromagnetic wave shielding sheet, for example, shielding. Performance and electrical conductivity can be improved.
  • the styrene-butadiene-based rubber resin containing the acid anhydride group may contain about 1% by weight to about 5% by weight of an acid anhydride group.
  • an acid anhydride group When the content of the acid anhydride group in the resin satisfies the above range, adhesion performance of the binder resin to the magnetic particles may be properly secured, and flexibility and moldability of the electromagnetic wave shielding sheet may be improved.
  • the content of the acid anhydride group in the resin is too high, it is also vulnerable to external moisture and there is a fear that impurities due to the self reaction.
  • the styrene-butadiene rubber resin containing the acid anhydride group may have a weight average molecular weight (Mw) of about 20,000 to about 150,000, for example, about 40,000 to about 80,000.
  • Mw weight average molecular weight
  • the composition for electromagnetic wave shielding sheet may secure an appropriate viscosity, and may be more advantageous in view of coating property and processability.
  • the acid anhydride group may include one selected from the group consisting of maleic anhydride group, itaconic anhydride group, succinic anhydride group, and a combination thereof.
  • the binder resin can exhibit appropriate adhesion with the magnetic particles and the carbon-based inorganic particles, it is possible to easily implement an excellent shielding effect through securing dispersion stability.
  • the styrene-butadiene rubber resin is a copolymer formed from a monomer mixture containing two or more monomers, including styrene and butadiene.
  • the composition for the electromagnetic wave shielding sheet is heat-compression in the process of manufacturing the electromagnetic wave shielding sheet from the composition by using a resin having a styrene-butadiene rubber resin as a binder resin as a main chain structure, as compared with the case of using other types of resins. It is advantageous to control the temperature of the process, it is possible to improve the moisture permeability of the electromagnetic shielding sheet, it is possible to effectively secure the heat resistance and wear resistance properties.
  • the styrene-butadiene-based rubber resin is styrene-ethylene-butadiene-styrene (SEBS, Styrene-ethylene-butadiene-styrene) resin, styrene-butadiene-styrene (SBS, Styrene-butadiene-styrene) resin, styrene- It may include one selected from the group consisting of acrylonitrile-butadiene (ABS) resin, styrene-butadiene (SB, Styrene-butadiene) resin, and combinations thereof.
  • SEBS Styrene-ethylene-butadiene-styrene
  • SBS Styrene-butadiene-styrene
  • ABS acrylonitrile-butadiene
  • SB Styrene-butadiene
  • the styrene-butadiene-based rubber resin may include styrene-ethylene-butadiene-styrene (SEBS) resin, in this case, compared with other types of styrene-butadiene-based rubber resin It may be easy to secure flexibility and control the molecular weight.
  • SEBS styrene-ethylene-butadiene-styrene
  • the composition for electromagnetic wave shielding sheet may include about 5 to about 20 parts by weight of the binder resin based on 100 parts by weight of solids.
  • the content of the binder resin satisfies the aforementioned range, the magnetic particles and the carbon-based inorganic particles can be appropriately bound to each other, the durability of the sheet can be improved, and the density can be ensured in an appropriate range.
  • the electromagnetic wave shielding sheet composition includes magnetic particles together with the binder resin, and includes the magnetic particles in an amount of about 80 parts by weight or more and less than about 100 parts by weight based on 100 parts by weight of solids, for example, about 85 to about 95 parts by weight. Contains by weight.
  • the conventional electromagnetic wave shielding material has a limit to contain more than a certain amount of brittleness increases by increasing the content of the magnetic particles.
  • the composition for electromagnetic wave shielding sheet according to an embodiment of the present invention even though the magnetic particles are contained in a high content by containing the magnetic particles together with a binder resin containing a styrene-butadiene-based rubber resin containing an acid anhydride group It is possible to obtain an electromagnetic wave shielding sheet having low brittleness and excellent moldability and workability.
  • the magnetic particles are mainly to absorb the electromagnetic waves generated from electronic devices or electronic components to implement a shielding effect, for example, iron-silicon-aluminum alloy, iron-silicon-chromium alloy, iron-silicon alloy, Iron-chromium alloy, cobalt-iron-nickel alloy, and combinations thereof.
  • the magnetic particles may include an iron-silicon-aluminum alloy or an iron-silicon-chromium alloy, in which case it may be easy to simultaneously obtain a high permeability and a low loss rate as compared to other types of magnetic particles. .
  • the magnetic particles have a flake shape, that is, a plate shape. Magnetic particles of this shape may be present in the electromagnetic shielding sheet so that the surface direction thereof and the surface direction of the electromagnetic shielding sheet are substantially parallel. As a result, the electromagnetic shielding sheet may evenly implement the electromagnetic shielding effect over the entire area, and may be used together with the carbon-based inorganic particles having a layered structure to realize a significant improvement in securing additional heat radiation.
  • the average particle size of the magnetic particles may be about 40 ⁇ m to about 120 ⁇ m, for example, about 60 ⁇ m to about 80 ⁇ m.
  • the magnetic particles may be uniformly dispersed in the composition for electromagnetic wave shielding sheet by having an average particle size in the above range, and may improve compatibility with the binder resin, even when contained in a relatively high content excellent workability and formability It may have advantageous advantages to implement.
  • the average particle size of the magnetic particles may be measured as the number average diameter of the planar cross-sectional area of the plate-like structure by TEM / SEM image analysis.
  • the electromagnetic wave shielding sheet composition includes carbon-based inorganic particles together with the binder resin and magnetic particles, and the carbon-based inorganic particles realize high electrical conductivity to realize reflection performance of electromagnetic waves, and at the same time, exhibit excellent heat dissipation effect. Do it.
  • the composition for electromagnetic wave shielding sheet may include about 0.1 to 15 parts by weight of the carbon-based inorganic particles, for example, about 0.3 to 5 parts by weight based on 100 parts by weight of solids.
  • the content of the carbon-based inorganic particles satisfy the above range, while ensuring a permeability of a predetermined level or more, and at the same time, excellent electromagnetic shielding performance and heat dissipation performance through a reflection mechanism can be realized.
  • the carbon-based inorganic particles may include one selected from the group consisting of graphite, graphene, carbon nanotubes (CNT), graphene oxide, and combinations thereof.
  • the electromagnetic shielding sheet may be advantageous to implement physical properties even in the surface direction from the entire area. That is, the carbon-based inorganic particles may be advantageous when it includes graphite or graphene.
  • the composition for electromagnetic wave shielding sheet may further include a solvent together with the binder resin, magnetic particles, and carbon-based inorganic particles.
  • the solvent ensures an appropriate viscosity to coat the composition, and serves to appropriately disperse the binder resin, magnetic particles and carbon-based inorganic particles.
  • the solvent may include one selected from the group consisting of methyl ethyl ketone (MEK), toluene, acetone, ethanol, dimethylformamide (DMF) and combinations thereof. Can be.
  • MEK methyl ethyl ketone
  • DMF dimethylformamide
  • the solvent may be used by mixing methyl ethyl ketone (MEK) and toluene (Toluene), in this case easy viscosity control, high drying efficiency, the styrene-butadiene rubber containing the acid anhydride group Excellent compatibility with the binder resin containing the resin can be exhibited.
  • MEK methyl ethyl ketone
  • Toluene toluene
  • the electromagnetic wave shielding sheet composition may have a viscosity of about 4,000 cPs to about 10,000 cPs at about 25 ° C.
  • the coating property of the composition for electromagnetic wave shielding sheet may be improved by viscosity of the composition in which all the components are mixed, and the electromagnetic wave shielding sheet manufactured therefrom may have a uniform thickness despite a thin thickness. .
  • an electromagnetic wave shielding sheet comprising at least one layer prepared from the composition for electromagnetic wave shielding sheet.
  • the electromagnetic wave shielding sheet may include one layer of a sheet manufactured from the composition for electromagnetic wave shielding sheet, and may have a structure in which several layers are laminated and compressed as necessary.
  • the sheet prepared from the composition for electromagnetic wave shielding sheet is laminated and compressed into layers, the boundary of the interlayer interface disappears and is realized as one layer. That is, in this case, the electromagnetic wave shielding sheet includes a sheet made from the composition for electromagnetic wave shielding sheet as a single layer.
  • the electromagnetic shielding sheet may be formed in various thicknesses according to a specific application, and may have a thickness of about 150 ⁇ m to about 400 ⁇ m, for example. When having a thickness in the above range, it is possible to implement excellent heat dissipation function with the electromagnetic shielding performance, the durability of the electromagnetic shielding sheet can be improved.
  • the electromagnetic wave shielding sheet may have a density of about 2 g / cm 3 to about 6 g / cm 3, for example, about 3 g / cm 3 to about 4 g / cm 3.
  • the density of the electromagnetic wave shielding sheet satisfies the above range, defects such as bubbles may be reduced, thereby obtaining an advantage of implementing an excellent shielding effect.
  • FIG. 1 schematically illustrates a cross section of an electromagnetic shielding sheet 100 according to an embodiment of the present invention.
  • the electromagnetic wave shielding sheet 100 includes a binder resin 10, magnetic particles 20, and carbon-based inorganic particles 30.
  • FIG. 1 illustrates that the carbon-based inorganic particles 30 have a layered structure. Graphite is shown as an example.
  • the magnetic particles 20 and the carbon-based inorganic particles 30 included therein may have a single orientation. More specifically, the carbon-based inorganic particles 30 of the electromagnetic wave shielding sheet 100 may have a layered structure, and the alignment of the layered structure and the orientation of the magnetic particles 20 may be the same.
  • the magnetic particles and the carbon-based inorganic particles have a single orientation, or that the orientation is the same, as shown in Figure 1, the longitudinal direction in which the magnetic particles are arranged and the arrangement of the carbon-based inorganic particles of the layered structure It means that the angles formed in the longitudinal direction to each other are, for example, less than 10 °, for example, less than 5 °, for example, less than 2 °.
  • the orientation of the magnetic particles and the carbon-based inorganic particles are the same, and the orientation direction corresponds to the plane direction of the electromagnetic shielding sheet, so that the electromagnetic shielding sheet may have excellent heat dissipation and electromagnetic shielding functions even at a thin thickness. It may be advantageous to implement even physical properties over the entire surface of the electromagnetic shielding sheet.
  • the method for manufacturing the electromagnetic wave shielding sheet from the composition for electromagnetic wave shielding sheet specifically, coating the composition for electromagnetic wave shielding sheet to a predetermined thickness and drying to prepare a sheet shape; And heat-pressing the coated and dried composition for electromagnetic wave shielding sheet.
  • the method of coating the composition for electromagnetic wave shielding sheet is not particularly limited, but a knife coating method may be used. As a result, it is easy to implement a thin thickness as compared to the case using other coating methods, it may be advantageous to coat evenly while minimizing the thickness variation in consideration of the viscosity of the composition for electromagnetic wave shielding sheet.
  • the coating thickness of the composition for electromagnetic wave shielding sheet is not particularly limited, but may be coated to have a thickness of, for example, about 80 ⁇ m to about 200 ⁇ m.
  • This coating thickness refers to the coating thickness of the composition before heat-compression, and the coating efficiency is improved by coating the composition in the thickness in the above range, and the thickness of the final electromagnetic shielding sheet may be formed in an appropriate range.
  • the coated composition for electromagnetic wave shielding sheet may be dried at a temperature of about 80 ° C. to about 130 ° C. for about 1 minute to about 5 minutes to form a sheet.
  • a temperature of about 80 ° C. to about 130 ° C. for about 1 minute to about 5 minutes to form a sheet.
  • composition for electromagnetic wave shielding sheet coated and dried to form a sheet may be heat-compressed for about 40 minutes to about 80 minutes at a temperature of about 120 ° C. to about 160 ° C. to prepare an electromagnetic wave shielding sheet.
  • the final electromagnetic wave shielding sheet by stacking the composition for the electromagnetic wave shielding sheet of the sheet-like layer, after laminating the various layers under the temperature and time conditions of about 160kgf / cm 2 to about 200kgf / cm 2 It can be made into a single layer electromagnetic shielding sheet without boundary of the interlayer interface by pressing.
  • a solvent is prepared by mixing methyl ethyl ketone (MEK) and toluene in a molar ratio of 1: 1, and styrene-ethylene-butadiene-styrene (SEBS, Styrene-) having a maleic anhydride group based on 100 parts by weight of solids in the solvent. 10 parts by weight of an ethylene-butadiene-styrene binder resin is mixed, 90 parts by weight of an iron-silicon-chromium (Fe-Si-Cr) alloy is mixed as magnetic particles, and 3 parts by weight of graphite is mixed as carbon-based inorganic particles.
  • a composition for electromagnetic wave shielding sheet was prepared.
  • a composition for electromagnetic wave shielding sheet was prepared in the same manner as in Example 1, except that 5 parts by weight of graphite was mixed as the carbon-based inorganic particles.
  • a composition for electromagnetic wave shielding sheet was prepared in the same manner as in Example 1, except that 10 parts by weight of graphite was mixed as the carbon-based inorganic particles.
  • a composition for electromagnetic wave shielding sheet was prepared in the same manner as in Example 1, except that 3 parts by weight of graphite and 0.3 parts by weight of graphene were mixed as the carbon-based inorganic particles.
  • iron iron-silicon-chromium (Fe-Si-Cr) alloy instead of the iron iron-silicon-chromium (Fe-Si-Cr) alloy as the magnetic particles, an electromagnetic wave was produced in the same manner as in Example 4 except that the iron-silicon-aluminum (Fe-Si-Al) alloy was used in the same amount.
  • a composition for shielding sheets was prepared.
  • ABS acrylonitrile-butadiene-styrene
  • ABS acrylonitrile-butadiene-styrene
  • composition for electromagnetic wave shielding sheet was prepared in the same manner as in Example 1.
  • composition for electromagnetic wave shielding sheet was prepared in the same manner as in Example 5.
  • Table 1 shows the components and contents of each of Examples and Comparative Examples. Each content is based on 100 parts by weight of the solid content of the composition for electromagnetic wave shielding sheet.
  • Each of the electromagnetic wave shielding sheet composition was coated with a thickness of 80 ⁇ m using a knife coating method, and dried in a temperature of 100 ° C. for 3 minutes to prepare a sheet. Subsequently, five sheets were laminated and thermo-compressed at a temperature of 150 ° C. for 60 minutes to prepare a single layer electromagnetic shielding sheet having a final thickness of 250 ⁇ m.
  • electrical, magnetic properties and physical properties were evaluated as described below.
  • the magnetic permeability and the loss ratio were measured under the frequency of 1 MHz to 1 GHz using an impedance analyzer (Keysight, E4991B), and the results are shown in Table 2 below.
  • the magnetic permeability is the relative magnetic permeability of the vacuum magnetic permeability.
  • the sheet resistance was measured using a 4-pin probe type using a sheet resistance meter (Loresta-GP / MCP-T610), and the results were as follows. Are listed in Table 2 below.
  • the glass transition temperature of the binder resin used in the respective compositions was measured using a measuring instrument (Perkin-Elmer DSC8000). Specifically, the temperature was measured at a temperature increase rate of 10 ° C./min in a temperature range of ⁇ 60 ° C. to 150 ° C.
  • the glass transition temperature of the styrene-ethylene-butadiene-styrene resin having the maleic anhydride group of Example 1-8 and Comparative Example 3-4 was -42 ° C, and acrylonitrile- of Comparative Example 1-2
  • the glass transition temperature of butadiene-styrene resin was measured at 105 ° C.
  • the electromagnetic shielding sheet of Examples 1 to 4 is a carbon-based inorganic particles and a maleic anhydride group containing magnetic particles, graphite or graphene of iron-silicon-chromium alloy
  • SEBS styrene-ethylene-butadiene-styrene
  • the electromagnetic wave shielding sheet of Examples 5 to 8 has styrene-ethylene-butadiene-styrene (SEBS) having magnetic particles of iron-silicon-aluminum alloys, carbon-based inorganic particles including graphite or graphene, and maleic anhydride groups.
  • SEBS styrene-ethylene-butadiene-styrene
  • the resin By including the resin, it can be seen that the relative permeability of 50.00 to 90.00, loss ratio of less than 30%, and sheet resistance of 1.E + 04 or less are simultaneously satisfied.
  • the electromagnetic shielding sheet of the embodiment 1-8 realizes the lowest sheet resistance while implementing the permeability to a predetermined level or more, and it can be seen that the electromagnetic wave reflecting effect is excellently implemented.
  • Comparative Examples 1 and 2 as an electromagnetic shielding sheet containing no styrene-butadiene-based rubber resin containing an acid anhydride group, compared with the electromagnetic shielding sheet of Example 1-8 in terms of permeability or sheet resistance, Judging from the results of Experimental Example 3, the glass transition temperature of the styrene-butadiene-based rubber resin containing the acid anhydride group used in Example 1-8 was relatively higher than the resin used in Comparative Example 1-2. It was found to be very flexible, and it was found to be very flexible, and to fill the fluidity between the inorganic particles at high temperatures during compression, thereby effectively filling the spaces, resulting in higher physical properties of the final flexibility.
  • Comparative Examples 3 and 4 do not include carbon-based inorganic particles, it is difficult to ensure the heat dissipation function, it can be seen that in terms of sheet resistance is more disadvantageous than the electromagnetic shielding sheet of Example 1-8.

Abstract

바인더 수지, 자성 입자 및 탄소계 무기 입자를 포함하고, 상기 바인더 수지는 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하며, 상기 자성 입자를 고형분 100 중량부 기준 80 중량부 이상, 100 중량부 미만으로 포함하는 전자기파 차폐시트용 조성물을 제공한다. 또한, 상기 전자기파 차폐시트용 조성물로부터 제조된 전자기파 차폐시트를 제공한다.

Description

전자기파 차폐시트용 조성물 및 전자기파 차폐시트
전자기파 차폐시트를 제조하기 위한 조성물과 상기 조성물로 제조된 전자기파 차폐시트에 관한 것이다.
과학기술의 발전에 따라 전자파를 발생시키는 전자, 전기 및 통신 관련 기기의 사용이 급증하는 추세이다. 또한, 전자 기기 등의 고집적화 및 고성능화로 인하여 기존에 사용되는 주파수 영역을 뛰어 넘는 고주파수 영역대의 제품 개발에 대한 필요성이 늘어나고 있다.
이와 같이, 주변의 여러 곳에서 사용하는 전기 제품이나 전자 제품에 의해 발생하는 전자기파는 인체에 해로운 영향을 줄 수 있다. 이에 따라, 외부에서 입사되는 전자파 간섭(EME: Electromagnetic Interference)의 차폐를 위해, 전자파를 표면에서 흡수 또는 반사시켜 내부로 전이되는 방지하는 전자파 차폐 기술에 대한 연구가 활발히 진행되고 있다.
본 발명의 일 구현예는 전자기파 차폐 성능이 우수하면서도, 성형성 및 가공성이 향상된 전자기파 차폐시트를 얻을 수 있는 전자기파 차폐시트용 조성물을 제공한다.
본 발명의 다른 구현예는 상기 전자기파 차폐시트용 조성물로부터 제조되어 전자기파 차폐 성능이 우수하면서, 시트의 유연성이 우수하고 내구성이 향상된 전자기파 차폐시트를 제공한다.
본 발명의 일 구현예에서, 바인더 수지, 자성 입자 및 탄소계 무기 입자를 포함하고, 상기 바인더 수지는 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하며, 상기 자성 입자를 고형분 100 중량부 기준 90 중량부 이상, 100 중량부 미만으로 포함하는 전자기파 차폐시트용 조성물을 제공한다.
본 발명의 다른 구현예에서, 상기 전자기파 차폐시트용 조성물로부터 제조된 시트를 적어도 한 층 포함하는 전자기파 차폐시트를 제공한다.
상기 전자기파 차폐시트용 조성물은 이로부터 제조된 전자기파 차폐시트에 우수한 내구성 및 성형성을 부여하며, 이와 동시에 향상된 전자기파 차폐 성능을 부여할 수 있다. 또한, 상기 전자기파 차폐시트용 조성물로부터 전자기파 차폐시트를 제조하는 과정에서 향상된 가공성을 나타낼 수 있다.
도 1은 본 발명의 일 구현예에 따른 전자기파 차폐시트의 단면을 개략적으로 도시한 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 본 명세서에서 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상부에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 아울러, 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 또는 "하부에" 있다고 할 때, 이는 다른 부분 "바로 아래에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 아래에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
본 발명의 일 구현예에서, 바인더 수지, 자성 입자 및 탄소계 무기 입자를 포함하고, 상기 바인더 수지는 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하며, 상기 자성 입자는 고형분 100 중량부 기준 80 중량부 이상, 100 중량부 미만으로 포함되는 전자기파 차폐시트용 조성물을 제공한다.
기존의 전자기파 차폐 소재는 크게 페라이트(ferrite) 시트와 유무기 복합체 시트로 나눌 수 있다. 페라이트 시트는 고온에서 자성 입자를 소결시켜 시트 형상으로 만든 것으로 제조 공정이 까다로울 뿐만 아니라 제조된 시트의 취성(brittleness)이 강해 다루기가 어렵고, 가공성 및 성형성도 좋지 못하였다. 유무기 복합체 시트는 페라이트 시트의 이러한 문제점을 개선하기 위한 것으로, 자성 입자에 고분자를 첨가하여 제조한다. 이러한 유무기 복합체 시트는 고분자가 첨가되어 취성을 낮추고 가공성 및 성형성을 개선할 수는 있으나, 차폐 성능이 현저히 떨어지게 되는 문제점이 있다.
또한, 전자기파 차폐의 메커니즘은 크게 반사와 흡수가 있는데, 상기 페라이트 시트의 경우 전자기파를 흡수하여 차폐 기능을 구현하고, 흡수된 전자기파는 열로 변환되어 시트가 적용된 기기의 내부 온도를 높이는 문제점이 있다. 따라서, 부수적으로 방열 시트가 반드시 필요하므로 제품 구조가 두꺼워지고 무거워지는 문제가 있다. 반사 메커니즘을 이용하여 전자기파를 차폐하는 재질은 주로 금속이며, 금속의 경우 가공성이 낮고 무거운 단점이 있어 활용도가 떨어지는 문제점이 있다.
본 발명의 일 구현예에 따른 상기 전자기파 차폐시트용 조성물은 전자기파 차폐시트를 제조하기 위한 조성물로서, 기존의 전자기파 차폐 소재가 지니고 있던 단점 및 문제점을 해결하여, 전자기파를 효과적으로 흡수함과 동시에 높은 전기 전도도를 부여하여 전자기파를 반사시키는 메커니즘도 수행 가능하도록 하였으며, 동시에 별도의 방열 시트 없이 그 자체로 방열 기능을 구현하며 뛰어난 가공성 및 성형성을 나타낼 수 있다.
구체적으로, 상기 전자기파 차폐시트용 조성물은 바인더 수지, 자성 입자 및 탄소계 무기 입자를 포함한다. 즉, 상기 전자기파 차폐시트용 조성물을 이용하여 단일층의 전자기파 차폐시트를 형성할 경우, 상기 단일층 내에는 바인더 수지, 자성 입자 및 탄소계 무기 입자가 모두 포함되며, 서로 화학적 또는 물리적으로 적절히 상호 작용하여 분산 혼합되어 있을 수 있다.
이와 같이, 상기 조성물이 바인더 수지, 자성 입자 및 탄소계 무기 입자를 모두 포함함으로써 이로부터 형성된 전자기파 차폐시트가 두께를 얇게 구현하면서도, 부수적인 방열 시트 없이 방열 기능 및 전자기파 차폐 기능을 그 자체로 모두 확보하는 이점을 가질 수 있다.
또한, 상기 전자기파 차폐시트용 조성물은 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하는 바인더 수지를 포함함으로써 자성 입자가 비교적 높은 함량으로 포함됨에도 불구하고, 상기 조성물로부터 제조된 전자기파 차폐시트에 우수한 유연성, 성형성 및 가공성을 부여할 수 있다.
구체적으로, 상기 바인더 수지는 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함한다. 상기 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지는 스티렌-부타디엔계 공중합체의 주쇄에 측쇄로서 산무수물기가 함유된 화학적 구조를 갖는 것이다.
상기 바인더 수지가 산무수물기를 함유함으로써 상기 자성 입자 및 탄소계 무기 입자와 부착 성능이 우수해질 수 있고, 이로써 조성물 내에서 무기물 입자의 분산성을 뛰어나게 하여 전자기파 차폐시트의 최종 물성, 예를 들어, 차폐 성능 및 전기 전도도 등을 향상시킬 수 있다.
상기 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지는 산무수물기를 약 1중량% 내지 약 5중량% 함유할 수 있다. 상기 수지 중의 산무수물기의 함량이 상기 범위를 만족함으로써 상기 바인더 수지의 자성 입자에 대한 부착 성능이 적절히 확보될 수 있고, 전자기파 차폐시트의 유연성 및 성형성이 향상될 수 있다. 상기 수지 중의 산무수물기의 함량이 지나치게 높아지면 외부 수분에도 취약하며 자체 반응으로 인한 불순물이 형성될 우려가 있다.
또한, 상기 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지는 중량평균분자량(Mw)이 약 20,000 내지 약 150,000일 수 있고, 예를 들어, 약 40,000 내지 약 80,000일 수 있다. 이로써, 상기 전자기파 차폐시트용 조성물이 적절한 점도를 확보할 수 있고, 코팅성 및 가공성을 고려한 측면에서 보다 유리할 수 있다.
상기 산무수물기는, 구체적으로, 말레산 무수물기, 이타콘산 무수물기, 숙신산 무수물기 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 이와 같은 종류의 산무수물기를 통해, 상기 바인더 수지가 자성 입자 및 탄소계 무기 입자와 적절한 부착성을 나타낼 수 있고, 분산 안정성 확보를 통한 우수한 차폐 효과를 용이하게 구현할 수 있다.
상기 스티렌-부타디엔계 고무 수지는 스티렌 및 부타디엔을 포함하여 2종 이상의 단량체를 함유하는 단량체 혼합물로부터 형성된 공중합체이다. 상기 전자기파 차폐시트용 조성물은 바인더 수지로서 스티렌-부타디엔계 고무 수지가 주쇄 구조인 수지를 사용함으로써, 다른 종류의 수지를 사용하는 경우에 비하여, 상기 조성물로부터 전자기파 차폐시트를 제조하는 과정에서 열-압착 공정의 온도를 제어하기 유리하며, 전자기파 차폐시트의 내투습성을 향상시킬 수 있고, 내열성 및 내마모성 물성을 효과적으로 확보할 수 있다.
보다 구체적으로, 상기 스티렌-부타디엔계 고무 수지는 스티렌-에틸렌-부타디엔-스티렌(SEBS, Styrene-ethylene-butadiene-styrene) 수지, 스티렌-부타디엔-스티렌(SBS, Styrene-butadiene-styrene) 수지, 스티렌-아크릴로니트릴-부타디엔(ABS) 수지, 스티렌-부타디엔(SB, Styrene-butadiene) 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 스티렌-부타디엔계 고무 수지는 스티렌-에틸렌-부타디엔-스티렌(SEBS, Styrene-ethylene-butadiene-styrene) 수지를 포함할 수 있고, 이 경우 다른 종류의 스티렌-부타디엔계 고무 수지에 비하여 유연성 확보 및 분자량 조절에 용이할 수 있다.
상기 전자기파 차폐시트용 조성물은 고형분 100 중량부 기준 상기 바인더 수지를 약 5 내지 약 20 중량부 포함할 수 있다. 상기 바인더 수지의 함량이 전술한 범위를 만족함으로써 자성 입자 및 탄소계 무기 입자가 적절하게 서로 결속될 수 있고, 시트의 내구성이 향상되며, 밀도가 적절한 범위로 확보될 수 있다.
상기 전자기파 차폐시트용 조성물은 상기 바인더 수지와 함께 자성 입자를 포함하며, 상기 자성 입자를 고형분 100 중량부 기준 약 80 중량부 이상, 약 100 중량부 미만으로 포함하고, 예를 들어 약 85 내지 약 95 중량부 포함한다.
일반적으로, 자성 입자가 많이 함유될수록 전자기파 차폐 효과는 향상될 수 있다. 그러나, 기존의 전자기파 차폐 소재는 자성 입자의 함량을 높이면 높일수록 취성(brittleness)이 증가하여 이를 일정 함량 이상 함유하기에 한계가 있었다.
반면, 본 발명의 일 구현예에 따른 상기 전자기파 차폐시트용 조성물은 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하는 바인더 수지와 함께 상기 자성 입자를 함유함으로써 자성 입자가 높은 함량으로 포함됨에도 불구하고 취성이 낮고, 성형성 및 가공성이 우수한 전자기파 차폐시트를 얻을 수 있다.
구체적으로, 상기 자성 입자는 전자 기기 또는 전자 부품 등에서 발생하는 전자기파를 주로 흡수하여 차폐 효과를 구현하는 것으로, 예를 들어, 철-실리콘-알루미늄 합금, 철-실리콘-크롬 합금, 철-실리콘 합금, 철-크롬 합금, 코발트-철-니켈 합금 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 자성 입자는 철-실리콘-알루미늄 합금 또는 철-실리콘-크롬 합금을 포함할 수 있고, 이 경우 다른 종류의 자성 입자에 비하여 높은 투자율과 낮은 손실율을 동시에 확보하기에 용이할 수 있다.
상기 자성 입자는 플레이크(flake) 형상, 즉, 판상의 형상을 갖는다. 이러한 형상의 자성 입자는 이의 면 방향과 전자기파 차폐시트의 면 방향이 실질적으로 평행하도록 상기 전자기파 차폐시트 내에 존재할 수 있다. 이로써 상기 전자기파 차폐시트가 전면적에 걸쳐 전자기파 차폐 효과를 고르게 구현할 수 있으며, 층상 구조의 탄소계 무기 입자와 함께 사용되어 방열 기능의 추가 확보에 있어서 큰 향상 효과를 구현할 수 있다.
상기 자성 입자의 평균 입자 크기는 약 40㎛ 내지 약 120㎛일 수 있고, 예를 들어, 약 60㎛ 내지 약 80㎛일 수 있다. 상기 자성 입자가 상기 범위의 평균 입자 크기를 가짐으로써 상기 전자기파 차폐시트용 조성물 내에 고르게 분산될 수 있고, 상기 바인더 수지와 상용성이 향상될 수 있으며, 비교적 높은 함량으로 함유되어도 우수한 가공성 및 성형성을 구현하기 유리한 이점을 가질 수 있다. 상기 자성 입자의 평균 입자 크기는 TEM/SEM 이미지 분석에 의해 판상 구조의 면 방향 단면적의 수평균 직경으로 측정될 수 있다.
상기 전자기파 차폐시트용 조성물은 상기 바인더 수지 및 자성 입자와 함께 탄소계 무기 입자를 포함하며, 상기 탄소계 무기 입자는 높은 전기 전도도를 구현하여 전자기파의 반사 성능을 구현하면서, 동시에 우수한 방열 효과를 나타내는 역할을 한다.
상기 전자기파 차폐시트용 조성물은 고형분 100 중량부 기준, 상기 탄소계 무기 입자를 약 0.1 내지 15 중량부, 예를 들어, 약 0.3 내지 5 중량부 포함할 수 있다. 상기 탄소계 무기 입자의 함량이 상기 범위를 만족함으로써 일정 수준 이상의 투자율을 확보하면서, 이와 동시에 반사 메커니즘을 통한 전자기파 차폐 성능 및 방열 성능을 우수하게 구현할 수 있다.
상기 탄소계 무기 입자는 그래파이트(graphite), 그래핀(graphene), 탄소나노튜브(CNT), 그래핀 옥사이드(grapheme oxide) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 탄소계 무기 입자가 층상 구조를 갖는 경우 전자기파 차폐시트가 전면적에서 면방향으로 고른 물성을 구현하기에 유리할 수 있다. 즉, 상기 탄소계 무기 입자는 그래파이트 또는 그래핀을 포함하는 경우 유리할 수 있다.
상기 전자기파 차폐시트용 조성물은 상기 바인더 수지, 자성 입자 및 탄소계 무기 입자와 함께 용매를 더 포함할 수 있다. 상기 용매는 상기 조성물이 코팅되기에 적절한 점도를 확보하도록 하며, 상기 바인더 수지, 자성 입자 및 탄소계 무기 입자를 적절하게 분산시키는 역할을 한다.
예를 들어, 상기 용매는 메틸에틸케톤(MEK), 톨루엔(Toluene), 아세톤(Acetone), 에탄올(Ethanol), 디메틸포름아미드(DMF, Dimethylformamide) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
일 구현예에서, 상기 용매는 메틸에틸케톤(MEK) 및 톨루엔(Toluene)을 혼합하여 사용할 수 있고, 이 경우 점도 조절이 용이하고, 건조 효율이 높으며, 상기 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하는 바인더 수지와 우수한 상용성을 나타낼 수 있다.
상기 전자기파 차폐시트용 조성물은 약 25℃에서 점도가 약 4,000cPs 내지 약 10,000cPs일 수 있다. 모든 성분이 혼합된 조성물의 점도가 상기 범위를 만족함으로써 상기 전자기파 차폐시트용 조성물의 코팅성이 향상될 수 있고, 이로부터 제조된 전자기파 차폐시트가 얇은 두께에도 불구하고 균일한 두께를 갖도록 할 수 있다.
본 발명의 다른 구현예에서, 상기 전자기파 차폐시트용 조성물로부터 제조된 시트를 적어도 한 층 포함하는 전자기파 차폐시트를 제공한다.
상기 전자기파 차폐시트는 상기 전자기파 차폐시트용 조성물로부터 제조된 시트를 한 층 포함할 수 있으며, 필요에 따라 여러 층을 적층하여 압착한 구조일 수도 있다. 상기 전자기파 차폐시트용 조성물로부터 제조된 시트를 여러 층 적층하여 압착하면 층간 계면의 경계가 사라지고 하나의 층으로 구현된다. 즉, 이 경우, 전자기파 차폐시트는 상기 전자기파 차폐시트용 조성물로부터 제조된 시트를 단일층으로 포함한다.
상기 전자기파 차폐시트는 구체적인 적용 제품에 따라 다양한 두께로 형성될 수 있고, 예를 들어, 약 150㎛ 내지 약 400㎛의 두께를 가질 수 있다. 상기 범위의 두께를 갖는 경우, 전자기파 차폐 성능과 함께 방열 기능을 우수하게 구현할 수 있으며, 전자기파 차폐시트의 내구성이 향상될 수 있다.
또한, 상기 전자기파 차폐시트의 밀도는 약 2g/㎤ 내지 약 6g/㎤일 수 있고, 예를 들어, 약 3g/㎤ 내지 약 4g/㎤일 수 있다. 상기 전자기파 차폐시트의 밀도가 상기 범위를 만족함으로써 기포 등의 결함이 적어 우수한 차폐 효과를 구현하는 이점을 얻을 수 있다.
도 1은 본 발명의 일 구현예에 따른 전자기파 차폐시트(100)의 단면을 개략적으로 도시한 것이다. 상기 전자기파 차폐시트(100)는 바인더 수지(10), 자성 입자(20) 및 탄소계 무기 입자(30)를 포함하고, 이때, 도 1은 상기 탄소계 무기 입자(30)가 층상 구조인 것으로, 그래파이트(graphite)인 경우를 일 예시로 도시한 것이다.
도 1을 참조할 때, 상기 전자기파 차폐시트(100)는 이에 포함된 자성 입자(20) 및 탄소계 무기 입자(30)가 서로 단일 배향성을 가질 수 있다. 보다 구체적으로, 상기 전자기파 차폐시트(100)의 탄소계 무기 입자(30)는 층상 구조일 수 있고, 이러한 층상 구조의 배향성과 상기 자성 입자(20)의 배향성이 동일할 수 있다.
상기 자성 입자와 탄소계 무기 입자가 단일 배향성을 갖는다는 것, 혹은 배향성이 동일하다는 것은 도 1에 도시된 바와 같이, 상기 자성 입자가 배열된 길이 방향과, 층상 구조의 탄소계 무기 입자의 배열된 길이 방향이 서로 이루는 각도가 예를 들어, 10°미만, 예를 들어, 5°미만, 예를 들어 2°미만인 것을 의미한다.
상기 자성 입자와 상기 탄소계 무기 입자의 배향성이 동일하며, 그 배향 방향이 상기 전자기파 차폐시트의 면 방향에 해당함으로써 상기 전자기파 차폐시트가 얇은 두께에서도 우수한 방열 기능 및 전자기파 차폐 기능을 동시에 구현할 수 있으며, 상기 전자기파 차폐시트의 전면적에 걸쳐 고른 물성을 구현하기에 유리할 수 있다.
상기 전자기파 차폐시트용 조성물로부터 상기 전자기파 차폐시트를 제조하는 방법은, 구체적으로, 상기 전자기파 차폐시트용 조성물을 소정의 두께로 코팅하고 건조하여 시트 형상으로 제조하는 단계; 및 코팅 및 건조된 상기 시트 형상의 전자기파 차폐시트용 조성물을 열-압착하는 단계;를 포함한다.
상기 전자기파 차폐시트용 조성물을 코팅하는 방법은 특별히 제한되지 아니하나, 나이프(knife) 코팅법을 사용할 수 있다. 이로써, 다른 코팅 방법을 사용하는 경우에 비하여 얇은 두께의 구현이 용이하며, 상기 전자기파 차폐시트용 조성물의 점도를 고려한 측면에서 두께 편차를 최소화하면서 고르게 코팅하기에 유리할 수 있다.
상기 전자기파 차폐시트용 조성물의 코팅 두께는 특별히 제한되지 아니하나, 예를 들어, 약 80㎛ 내지 약 200㎛의 두께를 갖도록 코팅될 수 있다. 이러한 코팅 두께는 열-압착 이전의 조성물의 코팅 두께를 의미하며, 상기 조성물이 상기 범위의 두께로 코팅됨으로써 건조 효율이 향상될 수 있고, 최종 전자기파 차폐시트의 두께가 적절한 범위로 형성될 수 있다.
상기 코팅된 전자기파 차폐시트용 조성물은 약 80℃ 내지 약 130℃의 온도에서 약 1분 내지 약 5분 동안 건조되어 시트 형상으로 제조될 수 있다. 이러한 온도 및 시간 범위에서 건조시킴으로써 높은 건조 효율을 확보할 수 있고, 후속하여 열-압착 공정을 수행하기 적절한 상태를 형성할 수 있다.
코팅 및 건조되어 시트 형상으로 제조된 상기 전자기파 차폐시트용 조성물은 약 120℃ 내지 약 160℃의 온도에서 약 40분 내지 약 80분 동안 열-압착되어 전자기파 차폐시트로 제조될 수 있다.
이때, 상기 시트 형상의 전자기파 차폐 시트용 조성물을 여러 층 적층하여 최종 전자기파 차폐시트를 제조하는 경우에는 여러 층을 적층한 후에 상기 온도 및 시간 조건 하에서 약 160kgf/cm2내지 약 200kgf/cm2의 압력으로 가압하여 층간 계면의 경계 없이 단일 층의 전자기파 차폐 시트로 제조될 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
< 실시예 비교예 >
실시예 1
메틸에틸케톤(MEK) 및 톨루엔(Toluene)을 1 : 1의 몰비로 혼합한 용매를 준비하고, 상기 용매에 고형분 100 중량부 기준 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌(SEBS, Styrene-ethylene-butadiene-styrene) 바인더 수지를 10 중량부 혼합하며, 자성 입자로서 철-실리콘-크롬(Fe-Si-Cr) 합금을 90 중량부 혼합하고, 탄소계 무기 입자로서 그래파이트를 3 중량부 혼합하여 전자기파 차폐시트용 조성물을 제조하였다.
실시예 2
탄소계 무기 입자로서 그래파이트를 5 중량부 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
실시예 3
탄소계 무기 입자로서 그래파이트를 10 중량부 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
실시예 4
탄소계 무기 입자로서 그래파이트를 3 중량부 및 그래핀 0.3 중량부를 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
실시예 5
자성 입자로서 철-실리콘-크롬(Fe-Si-Cr) 합금 대신에, 철-실리콘-알루미늄(Fe-Si-Al) 합금을 동일한 함량으로 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
실시예 6
자성 입자로서 철-실리콘-크롬(Fe-Si-Cr) 합금 대신에, 철-실리콘-알루미늄(Fe-Si-Al) 합금을 동일한 함량으로 사용한 것을 제외하고 상기 실시예 2와 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
실시예 7
자성 입자로서 철-실리콘-크롬(Fe-Si-Cr) 합금 대신에, 철-실리콘-알루미늄(Fe-Si-Al) 합금을 동일한 함량으로 사용한 것을 제외하고 상기 실시예 3과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
실시예 8
자성 입자로서 철 철-실리콘-크롬(Fe-Si-Cr) 합금 대신에, 철-실리콘-알루미늄(Fe-Si-Al) 합금을 동일한 함량으로 사용한 것을 제외하고 상기 실시예 4와 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
비교예 1
고형분 100 중량부 기준, 바인더 수지로서 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 바인더 수지 대신에, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지를 15 중량부 혼합하고, 자성 입자를 85 중량부 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
비교예 2
고형분 100 중량부 기준, 바인더 수지로서 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 바인더 수지 대신에, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지를 10 중량부 혼합하고, 자성 입자를 90 중량부 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
비교예 3
탄소계 무기 입자를 전혀 포함하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
비교예 4
탄소계 무기 입자를 전혀 포함하지 않는 것을 제외하고, 상기 실시예 5와 동일한 방법으로 전자기파 차폐시트용 조성물을 제조하였다.
하기 표 1에 각각의 실시예 및 비교예의 성분 및 함량을 기재하였다. 각각의 함량은 전자기파 차폐시트용 조성물의 고형분 100 중량부 기준 함량으로 기재하였다.
자성 입자 바인더 수지 탄소계 무기 입자
실시예 1 Fe-Si-Cr90 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 수지10 그래파이트 3
실시예 2 그래파이트 5
실시예 3 그래파이트 10
실시예 4 그래프이트 3 + 그래핀 0.3
실시예 5 Fe-Si-Al90 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 수지10 그래파이트 3
실시예 6 그래파이트 5
실시예 7 그래파이트 10
실시예 8 그래프이트 3 + 그래핀 0.3
비교예 1 Fe-Si-Cr85 아크릴로니트릴-부타디엔-스티렌 수지15 그래파이트 3
비교예 2 Fe-Si-Cr90 아크릴로니트릴-부타디엔-스티렌 수지10 그래파이트 3
비교예 3 Fe-Si-Cr90 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 수지10 -
비교예 4 Fe-Si-Al90 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 수지10 -
<평가>
상기 실시예 및 비교예 각각의 전자기파 차폐시트용 조성물을 나이프(knife) 코팅법을 이용하여 80㎛의 두께로 코팅하였고, 100℃의 온도에서 3분 정도 건조하여 시트 형상으로 제조하였다. 이어서, 상기 시트를 5장 적층하여 150℃의 온도에서 60분 동안 열-압착함으로써 최종 두께 250㎛의 단일층의 전자기파 차폐시트를 제조하였다. 이렇게 제조된 각각의 전자기파 차폐시트에 대하여, 후술하는 바와 같이 전기적, 자기적 특성과 물리적 물성을 평가하였다.
실험예 1: 자기적 물성의 측정
상기 실시예 및 비교예 각각의 전자기파 차폐시트에 대하여, 임피던스 분석 장치(키사이트, E4991B)를 이용하여, 1MHz 내지 1GHz 주파수 하에서 투자율 및 손실율을 측정하였고, 그 결과는 하기 표 2에 기재하였다. 이때, 투자율은 진공의 투자율에 대한 상대 투자율이다.
실험예 2: 전기적 물성의 측정
상기 실시예 및 비교예 각각의 전자기파 차폐시트에 대하여, 면저항 측정기(Loresta-GP/MCP-T610)를 이용하여, 4-핀 프로프 타입(4-pin probe Type)으로 면저항을 측정하였고, 그 결과는 하기 표 2에 기재하였다.
실험예 3: 바인더 수지의 유리전이온도의 측정
상기 실시예 및 비교예 각각의 전자기파 차폐시트에 대하여, 각각의 조성물에 사용한 바인더 수지의 유리전이온도를 측정 장비(Perkin-Elmer DSC8000)를 이용해 측정하였다. 구체적으로, -60℃ 내지 150℃의 온도 구간에서 10℃/min의 승온 속도 조건에서 측정하였다.
그 결과, 상기 실시예 1-8 및 비교예 3-4의 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌 수지의 유리전이온도는 -42℃이며, 상기 비교예 1-2의 아크릴로니트릴-부타디엔-스티렌 수지의 유리전이온도는 105℃로 측정되었다.
구분 자기적 물성 전기적 물성
상대 투자율 손실율[%] 면저항[ohm/□]
실시예 1 42.31 3.82 1.E+04
실시예 2 31.27 3.41 1.E+03
실시예 3 31.45 3.62 1.E+01
실시예 4 34.61 3.46 1.E+02
실시예 5 64.92 28.44 1.E+04
실시예 6 62.31 28.31 1.E+03
실시예 7 51.37 26.45 1.E+01~02
실시예 8 72.76 29.14 1.E+02
비교예 1 25.48 1.42 1.E+06
비교예 2 35.02 3.58 1.E+04
비교예 3 47.28 3.56 1.E+07
비교예 4 86.93 29.34 1.E+04
상기 표 1 및 표 2의 결과를 참조할 때, 상기 실시예 1 내지 4의 전자기파 차폐시트는 철-실리콘-크롬 합금의 자성 입자, 그래파이트 또는 그래핀을 포함하는 탄소계 무기 입자 및 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌(SEBS) 수지를 포함함으로써 30.00 내지 50.00의 상대 투자율, 5% 미만의 손실율 및 1.E+04 이하의 면저항을 동시에 만족하는 것을 알 수 있다.
또한, 상기 실시예 5 내지 8의 전자기파 차폐시트는 철-실리콘-알루미늄 합금의 자성 입자, 그래파이트 또는 그래핀을 포함하는 탄소계 무기 입자 및 말레산 무수물기를 갖는 스티렌-에틸렌-부타디엔-스티렌(SEBS) 수지를 포함함으로써 50.00 내지 90.00의 상대 투자율, 30% 미만의 손실율 및 1.E+04 이하의 면저항을 동시에 만족하는 것을 알 수 있다.
이와 같이 상기 실시예 1-8의 전자기파 차폐시트는 투자율을 일정 수준 이상으로 구현하면서 최대한 낮은 면저항을 구현하는 것으로, 전자기파를 반사하여 도전성을 부여하는 기능을 우수하게 구현함을 알 수 있다.
반면, 상기 비교예 1 및 2의 경우에는 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하지 않는 전자기파 차폐시트로서, 실시예 1-8의 전자기파 차폐시트에 비하여 투자율 또는 면저항 측면에서 불리하며, 실험예 3의 결과를 통해 판단할 때, 상기 실시예 1-8에 사용된 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지의 경우 상기 비교예 1-2에 사용된 수지에 비하여 유리전이온도가 상대적으로 낮아 매우 유연한 특성을 보이고, 압착 시 고온에서 무기 입자 사이를 더 유동성 있게 채워 들어가서 사이 사이를 효과적으로 메우며, 그 결과, 최종 유연성의 물성도 더 높게 나오는 것을 알 수 있었다.
또한, 상기 비교예 3 및 4의 경우에는 탄소계 무기 입자를 포함하지 않는 것으로서, 방열 기능의 확보가 어려우며, 면저항 측면에서 실시예 1-8의 전자기파 차폐시트보다 불리한 것을 알 수 있다.
[부호의 설명]
100: 전자기파 차폐시트
10: 바인더 수지
20: 자성 입자
30: 탄소계 무기 입자

Claims (11)

  1. 바인더 수지, 자성 입자 및 탄소계 무기 입자를 포함하고,
    상기 바인더 수지는 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지를 포함하며,
    상기 자성 입자를 고형분 100 중량부 기준 80 중량부 이상, 100 중량부 미만으로 포함하는
    전자기파 차폐시트용 조성물.
  2. 제1항에 있어서,
    상기 산무수물기를 함유하는 스티렌-부타디엔계 고무 수지는 산무수물기를 1중량% 내지 5중량% 함유하는
    전자기파 차폐시트용 조성물.
  3. 제1항에 있어서,
    상기 산무수물기는 말레산 무수물기, 이타콘산 무수물기, 숙신산 무수물기 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    전자기파 차폐시트용 조성물.
  4. 제1항에 있어서,
    상기 스티렌-부타디엔계 고무 수지는 스티렌-에틸렌-부타디엔-스티렌(SEBS, Styrene-ethylene-butadiene-styrene) 수지, 스티렌-부타디엔-스티렌(SBS, Styrene-butadiene-styrene) 수지, 스티렌-아크릴로니트릴-부타디엔(ABS) 수지, 스티렌-부타디엔(SB, Styrene-butadiene) 수지 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    전자기파 차폐시트용 조성물.
  5. 제1항에 있어서,
    상기 자성 입자는 철-실리콘-알루미늄 합금, 철-실리콘-크롬 합금, 철-실리콘 합금, 철-크롬 합금, 코발트-철-니켈 합금 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    전자기파 차폐시트용 조성물.
  6. 제1항에 있어서,
    상기 자성 입자는 평균 입자 크기가 40㎛ 내지 120㎛인
    전자기파 차폐시트용 조성물.
  7. 제1항에 있어서,
    상기 탄소계 무기 입자는 그래파이트(graphite), 그래핀(graphene), 탄소나노튜브(CNT), 그래핀 옥사이드(grapheme oxide) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    전자기파 차폐시트용 조성물.
  8. 제1항에 있어서,
    상기 탄소계 무기 입자를 고형분 100 중량부 기준 0.1 내지 15 중량부 포함하는
    전자기파 차폐시트용 조성물.
  9. 제1항에 있어서,
    용매를 더 포함하며,
    상기 용매는 메틸에틸케톤(MEK), 톨루엔(Toluene), 아세톤(Acetone), 에탄올(Ethanol), 디메틸포름아미드(DMF, Dimethylformamide) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는
    전자기파 차폐시트용 조성물.
  10. 제1항에 있어서,
    25℃에서 점도가 4,000cPs 내지 10,000cPs인
    전자기파 차폐시트용 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 전자기파 차폐시트용 조성물로부터 제조된 시트를 적어도 한 층 포함하는 전자기파 차폐시트.
PCT/KR2017/002815 2016-07-29 2017-03-15 전자기파 차폐시트용 조성물 및 전자기파 차폐시트 WO2018021648A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0097580 2016-07-29
KR1020160097580A KR101926453B1 (ko) 2016-07-29 2016-07-29 전자기파 차폐시트용 조성물 및 전자기파 차폐시트

Publications (1)

Publication Number Publication Date
WO2018021648A1 true WO2018021648A1 (ko) 2018-02-01

Family

ID=61017596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002815 WO2018021648A1 (ko) 2016-07-29 2017-03-15 전자기파 차폐시트용 조성물 및 전자기파 차폐시트

Country Status (2)

Country Link
KR (1) KR101926453B1 (ko)
WO (1) WO2018021648A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183871A1 (en) * 2003-07-29 2005-08-25 Pon-Wei Hou Shielding material for preventing from outleakage and penetration of electromagnetic waves
JP2006073949A (ja) * 2004-09-06 2006-03-16 Showa Denko Kk 電磁波吸収体
KR20130112612A (ko) * 2012-04-04 2013-10-14 현대자동차주식회사 광대역 전자파차폐용 복합재
KR20150111469A (ko) * 2014-03-25 2015-10-06 (주)엘지하우시스 전자기파 차폐시트, 및 이의 제조방법
KR20150115055A (ko) * 2014-04-02 2015-10-14 (주)엘지하우시스 전자기파 차폐시트, 및 이의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781119B1 (ko) * 2003-08-18 2007-11-30 쇼와 덴코 가부시키가이샤 전자파 흡수체
KR102056155B1 (ko) * 2013-12-30 2020-01-22 현대자동차 주식회사 전자파 차폐용 복합재, 및 전자파 차폐용 복합재의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183871A1 (en) * 2003-07-29 2005-08-25 Pon-Wei Hou Shielding material for preventing from outleakage and penetration of electromagnetic waves
JP2006073949A (ja) * 2004-09-06 2006-03-16 Showa Denko Kk 電磁波吸収体
KR20130112612A (ko) * 2012-04-04 2013-10-14 현대자동차주식회사 광대역 전자파차폐용 복합재
KR20150111469A (ko) * 2014-03-25 2015-10-06 (주)엘지하우시스 전자기파 차폐시트, 및 이의 제조방법
KR20150115055A (ko) * 2014-04-02 2015-10-14 (주)엘지하우시스 전자기파 차폐시트, 및 이의 제조방법

Also Published As

Publication number Publication date
KR20180013625A (ko) 2018-02-07
KR101926453B1 (ko) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2015012427A1 (ko) 그래핀/흑연나노플레이트/카본나노튜브/나노금속 복합체를 이용한 방열시트 및 그 제조방법
WO2018169246A1 (ko) 휨성을 갖는 전자파 차폐 시트 및 이의 제조방법
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
WO2013081424A1 (ko) 투명 전극 필름 제조용 기재 필름
WO2012148218A2 (ko) 수평열전 테이프 및 그 제조방법
WO2005101941A1 (ja) 電磁波吸収体
WO2017164437A1 (ko) 방열특성이 우수한 방열시트 및 이의 제조방법
WO2017188524A1 (ko) 대전방지용 탄소 복합재, 성형품 및 그 제조방법
WO2020105949A1 (ko) 수지 조성물, 이를 포함하는 프리프레그, 이를 포함하는 적층판, 및 이를 포함하는 수지 부착 금속박
WO2017150748A1 (ko) 자동차 조명 하우징 적용을 위한 고열전도성 복합조성물 및 그 제조방법
WO2018084518A1 (ko) 코어-쉘 구조의 은 코팅된 구리 나노와이어를 포함하는 에폭시 페이스트 조성물 및 이를 포함하는 도전성 필름
CN109266094B (zh) 散热油墨及散热屏蔽罩的制备方法
WO2012128528A2 (ko) 전도성 고분자 전극층을 구비한 투명전극 필름
WO2018021648A1 (ko) 전자기파 차폐시트용 조성물 및 전자기파 차폐시트
WO2014092343A1 (ko) 기능성 필름 및 이를 포함하는 연성회로기판
WO2021162368A1 (ko) 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법
WO2020141925A1 (ko) 방열 시트 제조방법
KR20190053666A (ko) 탄소소재 복합체
KR102077766B1 (ko) 그라파이트 필름, 그 제조방법 및 이를 포함하는 전자소자용 방열구조체
WO2020032535A1 (ko) 비대칭 복합재
WO2018182353A1 (ko) 고분자 나노무기입자 복합체 및 이를 제조하는 방법
WO2017188752A1 (ko) 방열 특성이 향상된 코팅 조성물 및 이를 이용한 도막의 형성 방법
WO2018124317A1 (ko) 방열 그래핀 시트 및 이의 제조방법
WO2017078404A1 (ko) 형상 이방성 자성 입자, 이를 포함하는 전자파 흡수시트 및 이를 포함하는 안테나 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834593

Country of ref document: EP

Kind code of ref document: A1