WO2021162368A1 - 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법 - Google Patents

방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2021162368A1
WO2021162368A1 PCT/KR2021/001597 KR2021001597W WO2021162368A1 WO 2021162368 A1 WO2021162368 A1 WO 2021162368A1 KR 2021001597 W KR2021001597 W KR 2021001597W WO 2021162368 A1 WO2021162368 A1 WO 2021162368A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
electromagnetic wave
composite film
wave shielding
filler
Prior art date
Application number
PCT/KR2021/001597
Other languages
English (en)
French (fr)
Inventor
좌용호
김종렬
송요셉
조홍백
이상복
정병문
김민열
임민섭
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210015674A external-priority patent/KR102645530B1/ko
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of WO2021162368A1 publication Critical patent/WO2021162368A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a multifunctional composite film having a novel type of heat dissipation and electromagnetic wave shielding/absorbing ability and a manufacturing method thereof, and more particularly, has high heat dissipation in the in-plane direction and the surface transmission direction, and at the same time, electromagnetic wave It relates to a composite film having shielding and absorption capabilities.
  • the heat dissipation sheet is a mixture of a high heat dissipation material, such as a carbon material (diamond, graphite, carbon black, carbon nanotube, etc.) and a ceramic material (aluminum nitride, alumina, boron nitride, etc.), with a polymer as a matrix.
  • Electromagnetic wave shielding film is an electrically conductive material carbon material (graphite, carbon black, carbon nanotube, etc.) or metal material (copper, silver, etc.) composited with a polymer as a matrix.
  • the electromagnetic wave absorbing film is made by mixing a magnetic material with a polymer as a matrix, and a metal material (Fe, FeCo, etc.) or a ceramic material (Fe 2 O 3 , NdFeB, etc.) is used as the magnetic material.
  • a metal material Fe, FeCo, etc.
  • a ceramic material Fe 2 O 3 , NdFeB, etc.
  • the object of the present invention is to exclude high vacuum and high temperature processes with high process costs by manufacturing them using inorganic particles having heat dissipation properties, magnetic particles having electromagnetic wave shielding/absorbing ability, polymers and conductive metal meshes, and can be manufactured at low temperatures. , It is an object of the present invention to provide a multifunctional composite film capable of shielding and absorbing electromagnetic waves of various frequencies while having heat dissipation properties by minimizing the use of expensive materials per unit area.
  • the heat dissipation-electromagnetic wave shielding/absorbing composite film of the present invention includes a polymer matrix layer in which a magnetic filler is dispersed; and a metal mesh impregnated in the polymer matrix layer.
  • the metal mesh may be exposed on one side of the composite film.
  • a heat dissipation filler may be additionally dispersed.
  • the material of the metal mesh may be copper (Cu), silver (Ag), aluminum (Al), nickel (Ni), gold (Au), or iron (Fe).
  • the magnetic filler may be one or two or more selected from the group consisting of Fe, an Fe-based alloy, M-type hexaferrite, and a magnetic material substituted with M-type hexaferrite.
  • the heat dissipation filler is graphite, graphene, carbon nanotube, carbon black, nano diamond, hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), boron nitride nanotube, aluminum nitride (AlN) and It may be 1 or 2 or more selected from the group consisting of alumina (Al 2 O 3 ).
  • the polymer is high-density polyethylene (HDPE), linear low-density polyethylene, low-density polyethylene, polyvinyl alcohol (polyvinyl alcohol), polyvinyl difluoride (PVDF), polyethylene terephthalate (PET), poly It may be one or two or more selected from the group consisting of butylene terephthalate (PBT), poly dimethyl siloxane, poly silazane, and poly siloxane.
  • HDPE high-density polyethylene
  • PVDF polyvinyl difluoride
  • PET polyethylene terephthalate
  • PBT butylene terephthalate
  • PBT poly dimethyl siloxane
  • poly silazane poly silazane
  • poly siloxane poly siloxane
  • the composite film may have a thickness of 1 ⁇ m to 10 mm.
  • Diameters of the magnetic filler and the heat dissipation filler may be smaller than the thickness of the composite film.
  • the heat dissipation-electromagnetic wave shielding/absorption method of the composite film of the present invention is provided by dispersing a magnetic filler on a polymer matrix to prepare a mixed composite; filming the composite; and impregnating a metal mesh onto the filmed composite.
  • a heat dissipation filler may be additionally dispersed.
  • the material of the metal mesh may be copper (Cu), silver (Ag), aluminum (Al), nickel (Ni), gold (Au), or iron (Fe).
  • the magnetic filler may be one or two or more selected from the group consisting of Fe, an Fe-based alloy, M-type hexaferrite, and a magnetic material substituted with M-type hexaferrite.
  • the heat dissipation filler is graphite, graphene, carbon nanotube, carbon black, nano diamond, hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), boron nitride nanotube, aluminum nitride (AlN) and It may be 1 or 2 or more selected from the group consisting of alumina (Al 2 O 3 ).
  • the polymer is high-density polyethylene (HDPE), linear low-density polyethylene, low-density polyethylene, polyvinyl alcohol (polyvinyl alcohol), polyvinyl difluoride (PVDF), polyethylene terephthalate (PET), poly It may be one or two or more selected from the group consisting of butylene terephthalate (PBT), poly dimethyl siloxane, poly silazane, and poly siloxane.
  • HDPE high-density polyethylene
  • PVDF polyvinyl difluoride
  • PET polyethylene terephthalate
  • PBT butylene terephthalate
  • PBT poly dimethyl siloxane
  • poly silazane poly silazane
  • poly siloxane poly siloxane
  • the composite film of the present invention has heat dissipation characteristics and electromagnetic wave absorption characteristics by uniformly mixing a magnetic filler and a heat dissipation filler on a polymer matrix, and a metal mesh is dispersed on a polymer matrix (dispersion medium)
  • electromagnetic wave shielding and heat dissipation properties it has high heat dissipation in the in-plane direction and the surface transmission direction, and at the same time, there is an effect of providing a composite film having electromagnetic wave shielding and absorbing ability.
  • the composite film of the present invention is prepared by dispersing and mixing a magnetic filler and a heat dissipating filler on a polymer matrix (dispersion medium) by a melt mixing method, and then impregnating a metal mesh on the polymer matrix to process cost This is reduced, and each separate stacking according to the heat dissipation or shielding/absorbing function is not required, so there is an effect of reducing the weight and reducing the thickness.
  • the composite film of the present invention has the effect that it is possible to optimize the characteristics for each frequency, so that it can be applied to various demanding places requiring electromagnetic wave shielding/absorbing ability and heat dissipation characteristics at the same time.
  • FIG. 1 shows a plan view (upper image) and a cross-sectional view (down image) of a composite film having a heat dissipation-electromagnetic wave shielding/absorbing ability according to an embodiment of the present invention.
  • FIG. 2 is a heat dissipation according to an embodiment of the present invention-shows a manufacturing process of a composite film equipped with electromagnetic wave shielding/absorbing ability.
  • FIG. 3 shows a scanning electron microscope (SEM) image of a cross-section of a composite film with heat dissipation-electromagnetic wave shielding/absorption ability manufactured by a melt mixing method according to an embodiment of the present invention.
  • FIG. 4 is a heat dissipation according to an embodiment of the present invention - shows an optical image of a cross-section of the metal mesh (copper mesh) of the composite film with electromagnetic wave shielding/absorbing ability is exposed.
  • Figure 5 shows the electromagnetic wave shielding and absorption performance results for the metal mesh-polymer composite according to a comparative example of the present invention.
  • 6A to 6D show results of electromagnetic wave shielding and absorption performance of a composite film having heat dissipation-electromagnetic wave shielding/absorbing ability according to an embodiment of the present invention.
  • FIG. 7 is a heat dissipation according to an embodiment of the present invention - shows the heat dissipation performance results of the composite film provided with electromagnetic wave shielding / absorption.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • a part such as a film, layer, region, configuration request, etc. is “on” or “on” another part, not only when it is directly on the other part, but also another film, layer, region, configuration in the middle The case where an element, etc. is interposed is also included.
  • FIG. 1 is a plan view (upper image) and cross-sectional view (down image) of a composite film equipped with a heat dissipation-electromagnetic wave shielding/absorbing ability of the present invention
  • FIG. 2 is a heat dissipation-electromagnetic wave shielding of the present invention. / It shows a process diagram of a manufacturing method of a composite film equipped with absorption capacity.
  • the heat dissipation-electromagnetic wave shielding/absorbing composite film 100 of the present invention includes a polymer matrix layer 110 in which a magnetic filler is dispersed; and a metal mesh 130 impregnated on the polymer matrix layer 110 .
  • the polymer matrix layer 110 may be dispersed by additionally adding a heat dissipation filler. More specifically, as a magnetic filler having electromagnetic wave shielding/absorbing properties in the polymer matrix layer 110 , as a heat dissipation filler having magnetic particles and heat dissipation properties, inorganic particles may be dispersed and uniformly mixed, in this case, the composite film 100 ), a ceramic filler having a low dielectric characteristic may be added to the polymer matrix layer 110 to control the dielectric constant.
  • the composite film 100 may provide heat dissipation properties and electromagnetic wave absorption capability.
  • the metal mesh 130 may provide electronic vehicle shielding and heat dissipation properties to the composite film 100 through electrical conductivity, and the material of the metal mesh 130 is copper (Cu), silver (Ag), aluminum (Al). , may be nickel (Ni), gold (Au) or iron (Fe), preferably a material having high thermal conductivity of the metal itself, more specifically copper (Cu), silver (Ag) or aluminum ( Al), and more preferably copper (Cu).
  • the magnetic filler may be one or two or more selected from the group consisting of Fe, an Fe-based alloy, M-type hexaferrite, and a magnetic material substituted with M-type hexaferrite, and the Fe-based alloy may be FeCo, FeNi or FeCoNi. and M-type hexaferrite may be Sr x Fe y O z or Ba x Fe y O z . More preferably, the magnetic filler may be spherical Fe or SrFe 12 O 19 .
  • the heat dissipation filler is a surface-modified one, and the heat dissipation filler may be graphite, graphene, carbon nanotube, carbon black or nanodiamond, which is a carbon-based material, and the heat dissipation filler is a non-carbon-based material h-BN, c- It may be BN, boron nitride nanotubes, aluminum nitride (AlN) or alumina (Al 2 O 3 ).
  • the heat dissipation filler is graphite, graphene, carbon nanotube, carbon black, nano diamond, hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), boron nitride nanotube, aluminum nitride (AlN) ) and alumina (Al 2 O 3 ) may be one or two or more selected from the group consisting of, and more preferably, hexagonal boron nitride (h-BN).
  • the polymer of the polymer matrix layer 110 may be any carbon-based polymer such as a PE-based polymer, a vinyl-based polymer, or an ester-based polymer, and may be a silicone-based polymer.
  • the PE-based polymer may be one or two or more selected from the group consisting of high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and low-density polyethylene (LDPE)
  • the vinyl-based polymer is polyvinyl alcohol (Poly vinyl alcohol) and / or polyvinyl difluoride (Poly vinyl difluoride)
  • the ester-based polymer may be polyethylene terephthalate (PET) and / or polybutylene terephthalate (Poly butylene terephthalate; PBT), silicone-based
  • the polymer may be one or two or more selected from the group consisting of poly dimethyl siloxane, poly silazane, and poly siloxane. More preferably, the poly
  • the polymer of the polymer matrix layer 110 is high density polyethylene (HDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), polyvinyl alcohol (polyvinyl alcohol), polyvinyl difluoride (PVDF). ), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polydimethylsiloxane, polysilazane, and polysiloxane.
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • PVDF polyvinyl alcohol
  • PVDF polyvinyl difluoride
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polydimethylsiloxane polysilazane
  • polysiloxane polysiloxane
  • It may be 1 or 2 or more selected from the group, and preferably 1 or 2 or more selected from the group consisting of high-density polyethylene, linear low-density polyethylene, and polydimethyl siloxane, which are polymers with high thermal conductivity, and more Preferably, it may be high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • the thickness of the composite film 100 may be 1 ⁇ m to 10 mm.
  • Diameters of the magnetic filler and the heat dissipation filler may be smaller than the thickness of the composite film 100 .
  • the heat dissipation-electromagnetic wave shielding/absorbing composite film 100 of the present invention is a heat dissipation filler, and the type of inorganic particles, the type of magnetic filler (magnetic particle), the type of low-k filler, the type of polymer, the size of the conductive metal mesh It is possible to change factors such as, and thus, it is possible to provide a composite film having heat dissipation characteristics and electromagnetic wave shielding/absorbing ability according to the purpose or use.
  • heat dissipation and electromagnetic wave shielding through control of the thickness of the composite film 100, control of the type and content of the filler in the polymer matrix layer 110, the size of holes in the metal mesh 130 and the thickness of the wire, etc. /Absorbability can be adjusted.
  • the heat dissipation of the present invention - the method of manufacturing a composite film having electromagnetic wave shielding/absorbing ability comprises the steps of dispersing a magnetic filler on a polymer matrix to prepare a mixed composite (S110); Filming the composite (S130); and impregnating the metal mesh on the filmed composite (S150).
  • Step S110 may be to prepare a composite according to a melt mixing method, and a heat dissipation filler may be additionally dispersed in the polymer matrix.
  • Step S110 may be to melt each of the magnetic filler, the heat dissipation filler, and the polymer to disperse and mix the polymer, in this case, the melting may be performed at 160 °C.
  • Step S130 may be forming into a film (film formation) through a hot compaction process, and the thermal compression process in step S130 may be performed at a temperature of 180° C. and a pressure of 5 MPa.
  • Step S150 may be to compound the composite and the metal mesh by a hot compaction process on the metal mesh on the filmed composite.
  • the material of the metal mesh may be copper (Cu), silver (Ag), aluminum (Al), nickel (Ni), gold (Au) or iron (Fe), preferably a material having high thermal conductivity of the metal itself.
  • the magnetic filler may be one or two or more selected from the group consisting of Fe, an Fe-based alloy, M-type hexaferrite, and a magnetic material substituted with M-type hexaferrite, and the Fe-based alloy may be FeCo, FeNi or FeCoNi. and M-type hexaferrite may be Sr x Fe y O z or Ba x Fe y O z . More preferably, the magnetic filler may be spherical Fe or SrFe 12 O 19 .
  • the heat dissipation filler is a surface-modified one, and the heat dissipation filler may be graphite, graphene, carbon nanotube, carbon black or nanodiamond, which is a carbon-based material, and the heat dissipation filler is a non-carbon-based material h-BN, c- It may be BN, boron nitride nanotubes, aluminum nitride (AlN) or alumina (Al 2 O 3 ).
  • the heat dissipation filler is graphite, graphene, carbon nanotube, carbon black, nano diamond, hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), boron nitride nanotube, aluminum nitride (AlN) ) and alumina (Al 2 O 3 ) may be one or two or more selected from the group consisting of, and more preferably, hexagonal boron nitride (h-BN).
  • the polymer of the polymer matrix layer 110 may be any carbon-based polymer such as a PE-based polymer, a vinyl-based polymer, or an ester-based polymer, and may be a silicone-based polymer.
  • the PE-based polymer may be one or two or more selected from the group consisting of high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and low-density polyethylene (LDPE)
  • the vinyl-based polymer is polyvinyl alcohol (Poly vinyl alcohol) and / or polyvinyl difluoride (Poly vinyl difluoride)
  • the ester-based polymer may be polyethylene terephthalate (PET) and / or polybutylene terephthalate (Poly butylene terephthalate; PBT), silicone-based
  • the polymer may be one or two or more selected from the group consisting of poly dimethyl siloxane, poly silazane, and poly siloxane. More preferably, the poly
  • the polymer of the polymer matrix layer 110 is high density polyethylene (HDPE), linear low density polyethylene (LLDPE), low density polyethylene (LDPE), polyvinyl alcohol (polyvinyl alcohol), polyvinyl difluoride (PVDF). ), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polydimethylsiloxane, polysilazane, and polysiloxane.
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • PVDF polyvinyl alcohol
  • PVDF polyvinyl difluoride
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polydimethylsiloxane polysilazane
  • polysiloxane polysiloxane
  • It may be 1 or 2 or more selected from the group, and preferably 1 or 2 or more selected from the group consisting of high-density polyethylene, linear low-density polyethylene, and polydimethyl siloxane, which are polymers with high thermal conductivity, and more Preferably, it may be high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • the heat dissipation-electromagnetic wave shielding/absorption method of the composite film of the present invention can be performed by a roll-to-roll method,
  • the manufacturing method is suitable for mass production because it is possible to produce a composite film according to the roll-to-roll method.
  • the heat dissipation-electromagnetic wave shielding/absorption method of the present invention can reduce the process cost, and the composite film having heat dissipation and electromagnetic wave shielding/absorbing ability can be synthesized in large quantities by an easy process method, By controlling the thickness of the composite film, controlling the type and content of fillers in the composite film, adjusting the hole size and metal mesh wire thickness in the metal mesh, etc., it is possible to produce a composite film by controlling the heat dissipation and electromagnetic wave shielding/absorbing ability.
  • the prepared composite was made into a film (composite film) through a hot compaction process under conditions of 180 °C (temperature) and 5 MPa (pressure), and the thickness of the composite film was fixed at 0.5 mm.
  • thermocompression bonding process After placing a copper (Cu) mesh (a copper (Cu) wire diameter of 0.1 mm, a mesh hole size (diameter) of 0.15 mm) on the prepared composite film, a thermocompression bonding process was performed, and one side A composite film was prepared in which a copper mesh was impregnated on one side of the composite film, and the copper mesh was exposed on the other side.
  • Cu copper
  • Cu copper
  • Example 2 The same procedure as in Example 1, except that 10 vol% of surface-modified hexagonal boron nitride (h-BN) (heat dissipation filler), 50 vol% of spherical Fe particles (magnetic filler) and a polymer of 40 A heat dissipation and electromagnetic wave absorbing composite was prepared by a melt mixing method in which vol% of high density polyethylene (HDPE) and each were melted at 160 ° C., dispersed and mixed.
  • HDPE high density polyethylene
  • Example 2 Same as Example 2, except that 10 vol% of surface-modified hexagonal boron nitride (h-BN) (heat dissipation filler), 50 vol% of SrFeO ferrite (SrFe 12 O- 19 ) (magnetic A heat dissipation and electromagnetic wave absorbing composite was prepared by a melt mixing method of dispersing and mixing by melting, dispersing and mixing at 160 ° C. with 40 vol% of high density polyethylene (HDPE), which is a polymer (filler).
  • HDPE high density polyethylene
  • PDMS Poly-(dimethylsiloxane)
  • One side (the other side) to which the copper mesh is exposed among any one of the composite films prepared in Examples 1 to 3 is shown as an optical image, which is shown in FIG. 4 .
  • the copper mesh of the PDMS / copper mesh composite film prepared in the comparative example based on the unit cell (unit cell), the electrical conductivity ( ⁇ ) of copper is 5.8 ⁇ 10 7 S / m,
  • the width (w) of the mesh (grid) is 100 ⁇ m
  • the period (p) of the mesh (grid) is 250 ⁇ m
  • the thickness (t) of the mesh (grid) is 100 ⁇ m
  • the thickness (t) of PDMS ( ⁇ : 3.5, tan ⁇ : 0.01) is 300 ⁇ m.
  • the electromagnetic wave shielding and absorption characteristics (performance) of the composite films prepared in Examples 1 to 3 were specified, and the electromagnetic wave shielding ability ( The shielding effectiveness (SE) including both reflection) and electromagnetic wave absorption was measured, and as a control, the shielding effect (SE) including the electromagnetic wave shielding ability and electromagnetic wave absorption capacity of the copper mesh itself was also measured.
  • SE electromagnetic wave shielding effectiveness
  • SE electromagnetic wave absorption capacity
  • SE electromagnetic wave absorption capacity
  • the total electromagnetic wave shielding effect (SE total; full line) of the surface (the other side) to which the copper mesh is exposed is determined by the copper mesh being made of a polymer (HDPE).
  • the surface (the entire electromagnetic wave shielding effect of the one side) (SE total; the dotted line (dotted line) impregnated into one) and similar, the electromagnetic wave absorption capability (SE absoprtion) has a surface (surface side) impregnated with a polymer (HDPE) (dotted line ( It can be seen that the dotted line) appears higher than the exposed surface (the other side) (full line) of the copper mesh.
  • Example 7 (Example 1: Fe 50vol%, Example 2: CIP 50vol%_h-BN 10vol%, Example 3: SrFe 12 O- 19 50vol%_h-BN 10vol%), as a heat dissipation filler h-
  • Example 1 Fe 50vol%
  • Example 2 CIP 50vol%_h-BN 10vol%
  • Example 3 SrFe 12 O- 19 50vol%_h-BN 10vol%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명은 신규한 타입의 방열 및 전자파 차폐/흡수능을 구비하는 다기능성의 복합 필름 및 이의 제조방법에 관한 것으로, 보다 상세하게는, 고분자 매트릭스 상에 자성 필러 및 방열 필러를 균일하게 혼합하여 방열 특성 및 전자파 흡수 특성을 구비하며, 금속 메쉬를 고분자 매트릭스상에 분산시켜 전자파 차폐 및 방열 특성을구비하도록 하여, 면내 방향 및 면 투과 방향으로 고 방열성을 가지며, 이와 동시에, 전자파 차폐 및 흡수능을 가지는 복합 필름을 제공하는 효과가 있다.

Description

방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법
본 발명은 신규한 타입의 방열 및 전자파 차폐/흡수능을 구비하는 다기능성의 복합 필름 및 이의 제조방법에 관한 것으로, 보다 상세하게는, 면내 방향 및 면 투과 방향으로 고 방열성을 가지며, 이와 동시에, 전자파 차폐 및 흡수능을 가지는 복합 필름에 관한 것이다.
최근 전자 제품이 고 집적화 됨에 따라서 내부 전자기 장해가 문제가 되고 있으며, 또한 차세대 통신의 경우 통신 주파수가 점점 고진동수를 가짐에 따라서 외부에서 들어오는 통신 전파 또한 전자기 장해의 원인이 되고 있다. 또한 전자 제품 내부에 쓰이는 소재의 경우, 전자기 장해를 제거하는 것도 중요하지만, 집적화에 따른 발열을 해소하는 문제도 크게 대두되고 있다. 발열 또한 전자기기 오류의 대두되는 문제 중 하나로 과열로 인한 오동작을 야기할 수 있기 때문이다. 따라서 방열 특성을 가짐과 동시에 전자파를 차페 또는 흡수하는 다기능성 소재의 수요가 대폭 증가하고 있는 추세이다. 현 시점에서 중점적으로 판매되고 있는 관련 제품으로는 방열필름, 전자파 차폐 필름, 전자파 흡수(감쇠) 필름 등 다기능성이 아닌 특정 기능만 가지는 필름이 사용되어 상기 기능을 모두 필요로 할 경우 필름을 적층하여 사용하고 있는 실정이다.
현재 상용화 되어 있는 관련 기술 제품으로는 방열 시트, 방열 페이스트, 전자파 차폐 필름, 전자파 흡수 필름이 있다. 방열 시트는 고방열성 물질인 탄소 소재(다이아몬드, 흑연, 카본 블랙, 탄소 나노튜브 등), 세라믹 소재(질화 알루미늄, 알루미나, 질화붕소 등)을 매트릭스인 고분자에 혼합한 것이다. 전자파 차폐 필름은 전기 전도성 물질인 탄소 소재(흑연, 카본 블랙, 탄소 나노튜브 등) 또는 금속 소재 (구리, 은 등)을 이용하여 매트릭스인 고분자에 복합화한 것으로, 전기 전도도에 비례하여 차폐능이 증가하는 특성 상 절연성이 필요한 곳에는 적용하기 어려움이 있다. 전자파 흡수 필름은 자성 소재를 매트릭스인 고분자에 혼합한 것으로, 자성소재로는 금속소재 (Fe, FeCo 등)나 세라믹 소재(Fe2O3, NdFeB 등)를 이용한다. 하지만 이러한 각 소재의 경우 하나의 기능만을 가지며, 그 기능을 방열 및 전자파 차폐 또는 방열 및 전자파 흡수 등의 다기능을 가지는 소재는 상용화 되어 있지 않아 그 필요성이 대두되고 있다.
또한, 경량화, 박막화 등의 첨단 소재의 기능적, 물적 요구에 따라 방열과 전자파 차폐/흡수 특성을 동시에 가지는 다기능성 소재에 대한 수요가 증대되고 있으며, 추후 소재의 제작에 있어서 가격 경쟁력 및 양산성을 확보하기 위해서 공정비용이 높은 고 진공 및 고온 공정을 배제하고 저온에서 소재를 합성할 수 있는 기술 개발이 필요하다. 현재 개발되어 상용화된 제품은 방열, 전자파 차폐 또는 전자파 흡수 중 하나의 기능만 가진 단일 기능성 제품으로 제품에 적용 시 적층구조를 적용하여야 하며, 이에 따라 박막화 및 경량화의 한계에 직면한 상황이다. 따라서 경량화 및 박막화를 위하여 상기 성능을 가지는 다기능성 소재에 대한 연구가 필요한 실정이다.
본 발명의 목적은, 방열 특성을 가지는 무기물 입자와 전자파 차폐/흡수능 가지는 자성 입자, 고분자 및 전도성 금속 메쉬를 이용하여 제조함으로써, 공정비용이 높은 고진공 및 고온 공정을 배제하고, 저온에서 제조가 가능하며, 단위 면적 당 고가의 소재 사용을 최소화하여, 방열 특성을 구비함과 동시에 다양한 주파수의 전자파 차폐 및 흡수가 가능한 다기능성 복합 필름을 제공함을 본 발명의 목적으로 한다.
해결하고자 하는 과제의 달성을 위하여, 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름은 자성 필러가 분산된 고분자 매트릭스 층; 및 상기 고분자 매트릭스 층 내에 함침되는 금속 메쉬를 포함한다.
상기 복합 필름의 일측 면에 상기 금속 메쉬가 노출되는 것일 수 있다.
상기 고분자 매트릭스 층에 대하여, 방열 필러가 추가적으로 분산된 일 수 있다.
상기 금속 메쉬의 소재는 구리(Cu), 은(Ag), 알루미늄(Al), 니켈(Ni), 금(Au) 또는 철(Fe)일 수 있다.
상기 자성 필러는 Fe, Fe계 합금, M형 헥사페라이트 및 M형 헥사페라이트가 치환된 자성체로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
상기 방열 필러는 그라파이트, 그래핀, 탄소나노튜브, 카본블랙, 나노 다이아몬드, 육방정계 질화붕소(h-BN), 입방정계 질화붕소(c-BN), 질화붕소 나노튜브, 질화알루미늄(AlN) 및 알루미나(Al2O3)로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
상기 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 폴리비닐 알코올(poly vinyl alcohol), 폴리비닐 디플루오라이드(Poly vinyl difluoride; PVDF), 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT), 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
상기 복합 필름의 두께가 1 μm 내지 10 mm일 수 있다.
상기 자성 필러 및 상기 방열 필러의 직경은 상기 복합 필름의 두께 보다 작은 것일 수 있다.
또한, 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법은 고분자 매트릭스 상에 자성 필러를 분산시켜 혼합된 복합체를 제조하는 단계; 상기 복합체를 필름화 시키는 단계; 및 상기 필름화된 복합체 상에 금속 메쉬를 함침시키는 단계를 포함한다,
상기 고분자 매트릭스에 대하여, 방열 필러가 추가적으로 분산된 것일 수 있다.
상기 금속 메쉬의 소재는 구리(Cu), 은(Ag), 알루미늄(Al), 니켈(Ni), 금(Au) 또는 철(Fe)일 수 있다.
상기 자성 필러는 Fe, Fe계 합금, M형 헥사페라이트 및 M형 헥사페라이트가 치환된 자성체로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
상기 방열 필러는 그라파이트, 그래핀, 탄소나노튜브, 카본블랙, 나노 다이아몬드, 육방정계 질화붕소(h-BN), 입방정계 질화붕소(c-BN), 질화붕소 나노튜브, 질화알루미늄(AlN) 및 알루미나(Al2O3)로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
상기 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 폴리비닐 알코올(poly vinyl alcohol), 폴리비닐 디플루오라이드(Poly vinyl difluoride; PVDF), 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT), 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다.
본 발명의 실시예에 따르면, 본 발명의 복합 필름은 고분자 매트릭스 상에 자성 필러 및 방열 필러를 균일하게 혼합하여 방열 특성 및 전자파 흡수 특성을 구비하며, 금속 메쉬를 고분자 매트릭스(분산매) 상에 분산시켜 전자파 차폐 및 방열 특성을 구비하도록 하여, 면내 방향 및 면 투과 방향으로 고 방열성을 가지며, 이와 동시에, 전자파 차폐 및 흡수능을 가지는 복합 필름을 제공하는 효과가 있다.
또한, 본 발명의 실시예에 따르면, 본 발명의 복합 필름은 용융혼합법에 의하여 고분자 매트릭스(분산매) 상에 자성 필러 및 방열 필러를 분산 및 혼합 후, 고분자 매트릭스 상에 금속 메쉬를 함침시킴으로써 공정비용이 저감되며, 방열 또는 차폐/흡수 기능에 따른 각각의 별개의 적층이 요구되지 않아, 경량화 및 박막화가 가능한 효과가 있다.
또한, 본 발명의 실시예에 따르면, 본 발명의 복합 필름은 주파수 별 특성의 최적화가 가능하여 전자파 차폐/흡수능과 방열 특성이 동시에 요구되는 다양한 수요처에 적용이 가능한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 방열-전자파 차폐/흡수능이 구비된 복합필름의 평면도(상부(up) 이미지) 및 단면도(하부(down) 이미지)를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 방열-전자파 차폐/흡수능이 구비된 복합필름의 제조 공정을 도시한 것이다.
도 3은 본 발명의 일 실시예 따른 용융혼합법으로 제조된 방열-전자파 차폐/흡수능이 구비된 복합체 필름 단면의 주사전자현미경(SEM) 이미지를 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 방열-전자파 차폐/흡수능이 구비된 복합 필름의 금속 메쉬(구리 메쉬)가 노출된 단면의 광학 이미지를 도시한 것이다.
도 5는 본 발명의 비교예에 따른 금속 메쉬-고분자 복합체에 대한 전자파 차폐 및 흡수 성능 결과를 도시한 것이다.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 방열-전자파 차폐/흡수능이 구비된 복합 필름의 전자파 차폐 및 흡수 성능 결과를 도시한 것이다.
도 7은 본 발명의 일 실시예에 다른 방열-전자파 차폐/흡수능이 구비된 복합 필름의 방열 성능 결과를 도시한 것이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.
한편, 제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의하여 한정되지 않는다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 막, 층, 영역, 구성 요청 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐 만 아니라, 그 중간에 다른 막, 층, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
한편, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. 도 1은 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 평면도(상부(up) 이미지) 및 단면도(하부(down) 이미지)를 도시한 것이고, 도 2는 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법 공정도를 도시한 것이다.
도 1을 참조하면, 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름(100)은 자성 필러(magnetic filler)가 분산된 고분자 매트릭스 층(110); 및 고분자 매트릭스 층(110) 상에 함침되는 금속 메쉬(130)를 포함한다.
고분자 매트릭스 층(110)은 방열 필러가 추가적으로 첨가되어 분산된 것일 수 있다. 보다 상세하게는 고분자 매트릭스 층(110)에 전자파 차폐/흡수 특성을 가지는 자성 필러로서 자성 입자와 방열 특성을 가지는 방열 필러로서 무기물 입자가 분산되어 균일하게 혼합된 것일 수 있으며, 이때, 복합 필름(100)의 유전율 제어를 위하여 저유전 특성을 가지는 세라믹 필러가 고분자 매트릭스 층(110)에 첨가된 것일 수 있다.
고분자 매트릭스 층(110) 상에 분산된 자성 필러 및 방열 필러의 균일한 혼합으로 인하여, 복합 필름(100)에 방열 특성 및 전자파 흡수능을 제공할 수 있다.
금속 메쉬(130)는 전기 전도성을 통한 복합 필름(100)에 전자차 차폐 및 방열 특성을 제공할 수 있으며, 금속 메쉬(130)의 소재는 구리(Cu), 은(Ag), 알루미늄(Al), 니켈(Ni), 금(Au) 또는 철(Fe)일 수 있으며, 바람직하게는 금속 자체의 열전도도가 높은 소재일 수 있으며, 보다 상세하게는 구리(Cu), 은(Ag) 또는 알루미늄(Al)일 수 있으며, 보다 바람직하게는 구리(Cu)일 수 있다.
상기 자성 필러는 Fe, Fe계 합금, M형 헥사페라이트(hexaferrite) 및 M형 헥사페라이트가 치환된 자성체로 이루어진 군에서 선택되는 1 또는 2 이상인 것일 수 있으며, Fe계 합금은 FeCo, FeNi 또는 FeCoNi일 수 있으며, M형 헥사페라이트는 SrxFeyOz 또는 BaxFeyOz일 수 있다. 보다 바람직하게는 상기 자성 필러는 구형 Fe 또는 SrFe12O19일 수 있다.
상기 방열 필러는 표면 개질된 것으로서, 상기 방열 필러는 탄소계 물질인 그라파이트, 그래핀, 탄소나노튜브, 카본블랙 또는 나노 다이아몬드일 수 있으며, 상기 방열 필러는 비 탄소계 물질인 h-BN, c-BN, 질화붕소 나노튜브, AlN(aluminum nitride) 또는 알루미나(Al2O3)일 수 있다. 따라서, 상기 방열 필러는 그라파이트, 그래핀, 탄소나노튜브, 카본블랙, 나노 다이아몬드, 육방정계 질화붕소(h-BN), 입방정계 질화붕소(c-BN), 질화붕소 나노튜브, 질화알루미늄(AlN) 및 알루미나(Al2O3)로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 보다 바람직하게는 육방정계 질화붕소(h-BN)일 수 있다.
고분자 매트릭스 층(110)의 고분자는 PE계 고분자, 비닐계 고분자, 에스테르계 고분자 등의 모든 탄소계 고분자일 수 있으며, 실리콘계 고분자일 수 있다. 이때, PE계 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE)로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 비닐계 고분자는 폴리비닐알코올(Poly vinyl alcohol) 및/또는 폴리비닐 디플루오라이드(Poly vinyl difluoride)일 수 있으며, 에스테르계 고분자는 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET) 및/또는 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT)일 수 있으며, 실리콘계 고분자는 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다. 보다 바람직하게, 상기 고분자는 고밀도 폴리에틸렌(HDPE)일 수 있다.
따라서, 고분자 매트릭스 층(110)의 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE), 폴리비닐 알코올(poly vinyl alcohol), 폴리비닐 디플루오라이드(Poly vinyl difluoride; PVDF), 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT), 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 바람직하게는 열전도도가 높은 고분자인 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌 및 폴리디메틸실록산(Poly dimethyl siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 보다 더 바람직하게는 고밀도 폴리에틸렌(HDPE)일 수 있다.
복합 필름(100)의 두께가 1 μm 내지 10 mm일 수 있다.
상기 자성 필러 및 상기 방열 필러의 직경은 복합 필름(100)의 두께 보다 작은 것일 수 있다.
본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름(100)은 방열 필러로서 무기물 입자의 종류, 자성 필러(자성 입자)의 종류, 저유전 필러의 종류, 고분자의 종류, 전도성 금속 메쉬의 크기 등의 요소들을 변화시킬 수 있으며, 이에 따라, 목적 내지 용도에 따른 방열 특성 및 전자파 차폐/흡수능을 가지는 복합 필름을 제공할 수 있다.
더 나아가, 복합 필름(100)의 두께 조절, 고분자 매트릭스 층(110) 내의 필러의 종류 및 함량 조절, 금속 메쉬(130) 내부의 구멍 크기 및 와이어(wire)의 두께 조절 등을 통하여 방열 및 전자파 차폐/흡수능을 조정할 수 있다.
또한, 도 2를 참조하면, 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법은 고분자 매트릭스 상에 자성 필러를 분산시켜 혼합된 복합체를 제조하는 단계(S110); 상기 복합체를 필름화 시키는 단계(S130); 및 상기 필름화된 복합체 상에 금속 메쉬를 함침시키는 단계(S150)를 포함한다.
단계 S110은 용융혼합법에 따라 복합체를 제조하는 것일 수 있으며, 상기 고분자 매트릭스에 대하여, 방열 필러가 추가적으로 분산된 것일 수 있다.
단계 S110은 자성 필러, 방열 필러 및 고분자를 각각 용융하여 고분자에 분산시켜 혼합하는 것일 수 있으며, 이때, 용융은 160 ℃에서 수행하는 것일 수 있다.
단계 S130은 열 압착(hot compaction) 공정을 통하여 필름으로 성형시키는 것(필름화)일 수 있으며, 단계 S130에서의 열 압착 공정은 온도 180 ℃, 압력 5 MPa에서 수행하는 것일 수 있다.
단계 S150은 상기 필름화 된 복합체 상에 금속 메쉬를 열 압착(hot compaction) 공정에 의하여 상기 복합체와 상기 금속 메쉬를 복합화 시키는 것일 수 있다.
상기 금속 메쉬의 소재는 구리(Cu), 은(Ag), 알루미늄(Al), 니켈(Ni), 금(Au) 또는 철(Fe)일 수 있으며, 바람직하게는 금속 자체의 열전도도가 높은 소재일 수 있으며, 보다 상세하게는 구리(Cu), 은(Ag) 또는 알루미늄(Al)일 수 있으며, 보다 바람직하게는 구리(Cu)일 수 있다.
상기 자성 필러는 Fe, Fe계 합금, M형 헥사페라이트(hexaferrite) 및 M형 헥사페라이트가 치환된 자성체로 이루어진 군에서 선택되는 1 또는 2 이상인 것일 수 있으며, Fe계 합금은 FeCo, FeNi 또는 FeCoNi일 수 있으며, M형 헥사페라이트는 SrxFeyOz 또는 BaxFeyOz일 수 있다. 보다 바람빅하게는 상기 자성 필러는 구형 Fe 또는 SrFe12O19 일 수 있다.
상기 방열 필러는 표면 개질된 것으로서, 상기 방열 필러는 탄소계 물질인 그라파이트, 그래핀, 탄소나노튜브, 카본블랙 또는 나노 다이아몬드일 수 있으며, 상기 방열 필러는 비 탄소계 물질인 h-BN, c-BN, 질화붕소 나노튜브, AlN(aluminum nitride) 또는 알루미나(Al2O3)일 수 있다. 따라서, 상기 방열 필러는 그라파이트, 그래핀, 탄소나노튜브, 카본블랙, 나노 다이아몬드, 육방정계 질화붕소(h-BN), 입방정계 질화붕소(c-BN), 질화붕소 나노튜브, 질화알루미늄(AlN) 및 알루미나(Al2O3)로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 보다 바람직하게는 육방정계 질화붕소(h-BN)일 수 있다.
고분자 매트릭스 층(110)의 고분자는 PE계 고분자, 비닐계 고분자, 에스테르계 고분자 등의 모든 탄소계 고분자일 수 있으며, 실리콘계 고분자일 수 있다. 이때, PE계 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE)로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 비닐계 고분자는 폴리비닐알코올(Poly vinyl alcohol) 및/또는 폴리비닐 디플루오라이드(Poly vinyl difluoride)일 수 있으며, 에스테르계 고분자는 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET) 및/또는 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT)일 수 있으며, 실리콘계 고분자는 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있다. 보다 바람직하게, 상기 고분자는 고밀도 폴리에틸렌(HDPE)일 수 있다.
따라서, 고분자 매트릭스 층(110)의 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE), 폴리비닐 알코올(poly vinyl alcohol), 폴리비닐 디플루오라이드(Poly vinyl difluoride; PVDF), 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT), 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 바람직하게는 열전도도가 높은 고분자인 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌 및 폴리디메틸실록산(Poly dimethyl siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상일 수 있으며, 보다 더 바람직하게는 고밀도 폴리에틸렌(HDPE)일 수 있다.
본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법은 롤투롤(roll-to-roll) 방식에 의해 수행될 수 있으며, 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법은 롤투롤 방식에 따라 복합 필름의 생산이 가능하여 양산에 적합하다.
이로 인하여, 본 발명의 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법은 공정비용을 절감시키며, 용이한 공정 방법으로 방열 및 전자파 차폐/흡수능을 가지는 복합 필름을 대량으로 합성할 수 있으며, 복합 필름의 두께 조절, 복합 필름 내의 필러 종류 및 함량 조절, 금속 메쉬 내부의 구멍 크기 및 금속 메쉬 와이어 두께 조절 등을 통하여, 방열 및 전자파 차폐/흡수능을 조절하여 복합 필름을 생산할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
실시예 1.
50 vol%의 구형(spherical) Fe입자(자성필러)를 고분자인 50 vol%의 고밀도 폴리에틸렌(high density polyethylene, HDPE)과 160 ℃에서 각각 용융하여 분산 및 혼합하는 용융혼합법으로 방열 및 전자파 흡수 복합체를 제조하였다.
제조된 복합체를 180 ℃(온도) 및 5 MPa(압력) 조건으로 열압착(hot compaction) 공정을 통하여 필름(복합체 필름)화 하였으며, 복합체 필름의 두께를 0.5 mm로 고정하였다.
제조된 복합체 필름 상에 구리(Cu) 메쉬(mesh)(구리(Cu) 와이어 직경이 0.1 mm, 메쉬 구멍(hole) 크기(diameter)가 0.15 mm)를 올려놓은 후 열압착 공정을 진행하였으며, 일측 면에는 구리 메쉬가 복합체 필름에 함침된 형태로 제조되며, 타측 면에는 구리 메쉬가 노출되는 형태의 복합필름을 제조하였다.
한편, 실시예 1에서 제조된 복합체 필름 상에 구리(Cu) 메쉬를 적층한 후, 적층된 구리 메쉬 상에 또다른 복합체 필름을 적층 하여 열압착 공정을 진행하는 경우, 일측 및 타측 면 모두 구리 메쉬가 복합체 필름 상에 함침되어 구리 메쉬가 노출되지 않은 형태로 제조할 수 있다.
실시예 2.
상기 실시예 1과 동일하게 실시하되, 10 vol%의 표면 개질된 육방정계 질화붕소(hexagonal boron nitride; h-BN)(방열필러), 50 vol%의 구형 Fe 입자(자성필러)과 고분자인 40 vol%의 고밀도 폴리에틸렌(high density polyethylene, HDPE)과 160 ℃에서 각각 용융하여 분산 및 혼합하는 용융혼합법으로 방열 및 전자파 흡수 복합체를 제조하였다.
실시예 3.
상기 실시예 2와 동일하게 실시하되, 10 vol%의 표면 개질된 육방정계 질화붕소(hexagonal boron nitride; h-BN)(방열필러), 50 vol%의 SrFeO 페라이트(SrFe12O-19)(자성필러)와 고분자인 40 vol%의 고밀도 폴리에틸렌(high density polyethylene, HDPE)과 160 ℃에서 각각 용융하여 분산 및 혼합하는 용융혼합법으로 방열 및 전자파 흡수 복합체를 제조하였다.
비교예.
고분자로서 0.3 mm 두께의 PDMS(Poly-(dimethylsiloxane))에 대하여, 구리 메쉬를 함침하여, PDMS/구리 메쉬 복합필름을 제조하였다.
실험예. 모폴로지(morphology) 분석
상기 실시예 1 내지 3에서 용융혼합법으로 제조된 방열-전자파 차폐/흡수능이 구비된 복합 필름의 단면을 주사전자현미경(scanning electron microscope; SEM)을 이용하여 관찰하였으며, 관찰된 SEM 이미지를 도 3에 도시하였다.
실험예. 광학 이미지 분석
상기 실시예 1 내지 3으로 제조된 어느 하나의 복합필름 중 구리 메쉬가 노출되는 한쪽 면(타측 면)을 광학 이미지로 나타내었으며, 이를 도 4에 도시하였다.
실험예.
상기 비교예에서 제조된 PDMS/구리 메쉬 복합필름에 대하여, 도 5에서 도시한 전자파 차폐 흡수 전산 모사 도식도에 따라 전자파 차폐능 및 흡수능을 측정을 위한 시뮬레이션을 수행하였으며, 그 결과를 도 5에 도시하였다.
도 5에서와 같이, 상기 비교예에서 제조된 PDMS/구리 메쉬 복합필름의 구리 메쉬는, 단위셀(unit cell)을 기준으로, 구리의 전기전도도(σ)가 5.8 × 107 S/m이고, 메쉬(그리드(grid))의 폭(width)(w)은 100 μm, 메쉬(그리드)의 간격(period)(p)은 250 μm, 메쉬(그리드)의 높이(thickness)(t)는 100 μm이며, PDMS(ε: 3.5, tanδ: 0.01)의 높이(thickness)(t)는 300 μm이다.
도 5를 참조하면, 단순 구리 메쉬와 고분자로서 PDMS만을 복합화 하여도 전자파 차폐능(SER)과 전자파 흡수능(SEA)은 각각 30 dB 이상으로, 총 전자파 차폐능(SET)은 60 dB 이상을 가지는 것을 확인할 수 있다.
실험예. 전자파 차폐 및 흡수 성능 분석
상기 실시예 1 내지 3에서 제조된 복합필름의 전자파 차폐 및 흡수 특성(성능)을 특정하였으며, 구리 메쉬가 고분자(HDPE)에 함침된 일측 면과 구리 메쉬가 노출된 타측 면에 대한 전자파 차폐능(reflection) 및 전자파 흡수능(absorption)을 모두 포함하는 차폐효과(Shielding Effectiveness; SE)를 측정하였으며, 대조군으로서 구리 메쉬(Cu mesh) 자체의 전자파 차폐능 및 전자파 흡수능을 포함하는 차폐효과(SE) 또한 측정하여, 도 6a 내지 도 6d에 도시하였다(도 6a: 실시예 1(Fe50_HDPE_Cu mesh, 도 6b: 실시예 2(Fe50_h-BN_HDPE_Cu mesh), 도 6c: 실시예 3(Sr-Fe50_h-BN_HDPE_Cu mesh), 도 6d: Cu mesh). 도 6a 내지 도 6d에서 전자파 차폐능은 SEreflection으로 및 전자파 흡수능은 SEabsorption으로 표시하였으며, 전자파 차폐능 및 전자파 흡수능을 포함하는 차폐효과는 SEtotal으로 표시하였다.
구리 메쉬(Cu mesh)만을 이용하는 경우(도 6d 참조)에도, 약 45 dB 이상의 높은 전자파 차폐효과(SEtotal)를 보여주고 있으나, 반사 손실(SEreflction) 또한 약 10 dB 정도로 크게 나타나는 것을 확인할 수 있다.
반면, 실시예 1 내지 3의 경우(도 6a 내지 도 6c 참조), 구리 메쉬가 노출된 면(타측 면)의 전체 전자파 차폐효과(SE total; 실선(full line))는 구리 메쉬가 고분자(HDPE)에 함침된 면(일측 면)의 전체 전자파 차폐효과(SE total; 점선(dotted line))과 유사하나, 전자파 흡수능(SEabsoprtion)은 고분자(HDPE)에 함침된 면(일측 면)(점선(dotted line))이 구리 메쉬가 노출된 면(타측 면)(실선(full line)) 보다 높게 나타나는 것을 확인할 수 있다.
실험에. 방열 성능 분석
상기 실시예 1 내지 3에 있어서, 구리 메쉬와 복합화(함침) 이전의 복합체(without mesh)와, 구리 메쉬와 복합화(함침) 한 복합필름(with mesh)에 대하여, 면 투과 방향 열전도도(Thermal Conductivity)를 열전도파(Thermal wave) 법을 이용하여 측정하였으며, 그 결과를 도 7에 도시하였다.
도 7(실시예 1: Fe 50vol%, 실시예 2: CIP 50vol%_h-BN 10vol%, 실시예 3: SrFe12O-19 50vol%_h-BN 10vol%)을 참조하면, 방열필러로서 h-BN을 포함하고 있지 않은 실시예 1의 복합체(without mesh)의 경우, 0.78 W/mK로 매우 낮은 방열 특성을 가지고 있으나, 10 vol%의 방열소재(h-BN)을 첨가한 실시예 2의 복합체(without mesh)의 경우, 1.64 W/mK로 실시예 1 대비 110% 향상된 방열 특성을 보이고 있으며, 구리 메쉬와 복합화 한 복합필름(with mesh)의 경우 실시예 1 및 2 각각의 방열 특성이 2.39 W/mK, 5.99 W/mK로 전자파 차폐능 및 흡수능은 물론 방열 특성 또한 가지는 것을 확인할 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (23)

  1. 자성 필러가 분산된 고분자 매트릭스 층; 및
    상기 고분자 매트릭스 층 내에 함침되는 금속 메쉬를 포함하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  2. 제 1 항에 있어서,
    상기 복합 필름의 일측 면에 상기 금속 메쉬가 노출되는 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  3. 제 1 항에 있어서,
    상기 고분자 매트릭스 층에 대하여, 방열 필러가 추가적으로 분산된 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  4. 제 1 항에 있어서,
    상기 금속 메쉬의 소재는 구리(Cu), 은(Ag), 알루미늄(Al), 니켈(Ni), 금(Au) 또는 철(Fe)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  5. 제 1 항에 있어서,
    상기 금속 메쉬의 소재는 구리(Cu)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  6. 제 1 항에 있어서,
    상기 자성 필러는 Fe, Fe계 합금, M형 헥사페라이트 및 M형 헥사페라이트가 치환된 자성체로 이루어진 군에서 선택되는 1 또는 2 이상인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  7. 제 1 항에 있어서,
    상기 자성 필러는 구형 Fe 또는 SrFe12O19인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  8. 제 3 항에 있어서,
    상기 방열 필러는 그라파이트, 그래핀, 탄소나노튜브, 카본블랙, 나노 다이아몬드, 육방정계 질화붕소(h-BN), 입방정계 질화붕소(c-BN), 질화붕소 나노튜브, 질화알루미늄(AlN) 및 알루미나(Al2O3)로 이루어진 군에서 선택되는 1 또는 2 이상인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  9. 제 3 항에 있어서,
    상기 방열 필러는 육방정계 질화붕소(h-BN)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  10. 제 1 항에 있어서,
    상기 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 폴리비닐 알코올(poly vinyl alcohol), 폴리비닐 디플루오라이드(Poly vinyl difluoride; PVDF), 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT), 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  11. 제 1 항에 있어서,
    상기 고분자는 고밀도 폴리에틸렌(HDPE)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  12. 제 1 항에 있어서,
    상기 복합 필름의 두께가 1 μm 내지 10 mm인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  13. 제 3 항에 있어서,
    상기 자성 필러 및 상기 방열 필러의 직경은 상기 복합 필름의 두께 보다 작은 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름.
  14. 고분자 매트릭스 상에 자성 필러를 분산시켜 혼합된 복합체를 제조하는 단계;
    상기 복합체를 필름화 시키는 단계; 및
    상기 필름화된 복합체 상에 금속 메쉬를 함침시키는 단계를 포함하는
    방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  15. 제 14 항에 있어서,
    상기 고분자 매트릭스에 대하여, 방열 필러가 추가적으로 분산된 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  16. 제 14 항에 있어서,
    상기 금속 메쉬의 소재는 구리(Cu), 은(Ag), 알루미늄(Al), 니켈(Ni), 금(Au) 또는 철(Fe)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  17. 제 14 항에 있어서,
    상기 금속 메쉬의 소재는 구리(Cu)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  18. 제 14 항에 있어서,
    상기 자성 필러는 Fe, Fe계 합금, M형 헥사페라이트 및 M형 헥사페라이트가 치환된 자성체로 이루어진 군에서 선택되는 1 또는 2 이상인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  19. 제 14 항에 있어서,
    상기 자성 필러는 구형 Fe 또는 SrFe12O19인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  20. 제 14 항에 있어서,
    상기 방열 필러는 그라파이트, 그래핀, 탄소나노튜브, 카본블랙, 나노 다이아몬드, 육방정계 질화붕소(h-BN), 입방정계 질화붕소(c-BN), 질화붕소 나노튜브, 질화알루미늄(AlN) 및 알루미나(Al2O3)로 이루어진 군에서 선택되는 1 또는 2 이상인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  21. 제 14 항에 있어서,
    상기 방열 필러는 육방정계 질화붕소(h-BN)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  22. 제 14 항에 있어서,
    상기 고분자는 고밀도 폴리에틸렌(HDPE), 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 폴리비닐 알코올(poly vinyl alcohol), 폴리비닐 디플루오라이드(Poly vinyl difluoride; PVDF), 폴리에틸렌테레프탈레이트(Poly ethylene terephthalate; PET), 폴리부틸렌테레프탈레이트(Poly butylene terephthalate; PBT), 폴리디메틸실록산(poly dimethyl siloxane), 폴리실라잔(Poly silazane) 및 폴리실록산(Poly siloxane)으로 이루어진 군에서 선택되는 1 또는 2 이상인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
  23. 제 14 항에 있어서,
    상기 고분자는 고밀도 폴리에틸렌(HDPE)인 것을 특징으로 하는 방열-전자파 차폐/흡수능이 구비된 복합 필름의 제조방법.
PCT/KR2021/001597 2020-02-13 2021-02-08 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법 WO2021162368A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200017373 2020-02-13
KR10-2020-0017373 2020-02-13
KR1020210015674A KR102645530B1 (ko) 2020-02-13 2021-02-03 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법
KR10-2021-0015674 2021-02-03

Publications (1)

Publication Number Publication Date
WO2021162368A1 true WO2021162368A1 (ko) 2021-08-19

Family

ID=77292927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001597 WO2021162368A1 (ko) 2020-02-13 2021-02-08 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2021162368A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004023A (zh) * 2023-08-16 2023-11-07 东华大学 一种可3d打印的电磁屏蔽聚合物材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728217B1 (ko) * 2006-02-17 2007-06-13 삼성에스디아이 주식회사 전자파 차폐 필름 및 이를 구비한 플라즈마 디스플레이패널
KR20160136226A (ko) * 2015-05-18 2016-11-29 주식회사 이녹스 전자파 차폐 및 방열 기능 일체형 복합시트 및 이의 제조방법
KR20170131930A (ko) * 2016-05-23 2017-12-01 에스케이씨하이테크앤마케팅(유) 방열 및 전자파 차폐 조성물 및 복합 시트
KR20190083966A (ko) * 2018-01-05 2019-07-15 한국과학기술연구원 전자파 차폐 필름의 제조 방법
JP2019134011A (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 電磁波吸収材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728217B1 (ko) * 2006-02-17 2007-06-13 삼성에스디아이 주식회사 전자파 차폐 필름 및 이를 구비한 플라즈마 디스플레이패널
KR20160136226A (ko) * 2015-05-18 2016-11-29 주식회사 이녹스 전자파 차폐 및 방열 기능 일체형 복합시트 및 이의 제조방법
KR20170131930A (ko) * 2016-05-23 2017-12-01 에스케이씨하이테크앤마케팅(유) 방열 및 전자파 차폐 조성물 및 복합 시트
KR20190083966A (ko) * 2018-01-05 2019-07-15 한국과학기술연구원 전자파 차폐 필름의 제조 방법
JP2019134011A (ja) * 2018-01-30 2019-08-08 パナソニックIpマネジメント株式会社 電磁波吸収材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004023A (zh) * 2023-08-16 2023-11-07 东华大学 一种可3d打印的电磁屏蔽聚合物材料及其制备方法和应用
CN117004023B (zh) * 2023-08-16 2024-04-16 东华大学 一种可3d打印的电磁屏蔽聚合物材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2014030782A1 (ko) 탄화규소가 코팅된 탄소섬유 복합체 및 그 제조방법
KR20210103413A (ko) 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법
WO2012148218A2 (ko) 수평열전 테이프 및 그 제조방법
WO2015012427A1 (ko) 그래핀/흑연나노플레이트/카본나노튜브/나노금속 복합체를 이용한 방열시트 및 그 제조방법
WO2013062220A1 (ko) 그래핀을 포함하는 근방계 영역의 전자기파 감쇄 및 방열용 수동소자층 및 이를 포함하는 전자기 소자
CN111534016B (zh) 具有导热与电磁屏蔽性能的电子封装材料及其制备方法
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2018212555A1 (ko) 히트파이프의 제조 방법
KR101808898B1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2021162368A1 (ko) 방열 및 전자파 차폐/흡수능을 가지는 다기능성 복합 필름 및 이의 제조방법
WO2014061929A1 (ko) 피복 입자, 이를 포함하는 조성물 및 열전달 시트
WO2011027946A1 (ko) 비정질 탄소 미립자를 포함하는 흑연 방열재 및 그의 제조방법
CN114752221B (zh) 一种绝缘高导热柔性硅胶垫片及其制备方法
JP7286270B2 (ja) 電磁波吸収シート、およびその製造方法
WO2017159917A1 (ko) 전기전도성 카본페이퍼의 제작방법
WO2021015580A1 (ko) 방열복합소재 및 그 제조 방법
WO2016047988A1 (ko) 표면 개질된 질화붕소, 상기 입자가 분산된 조성물, 및 상기 조성물로 코팅된 와이어
WO2011025299A2 (ko) 실리콘 카바이드를 포함한 방열판 및 그 제조방법
CN118201346A (zh) 复合吸波材料、制备方法及器件
WO2024090878A1 (ko) 복합 방열 하이브리드 tim 시트
JP2004218144A (ja) 絶縁被覆カーボンファイバー、その製造方法及びそれを用いたコンポジット
WO2015016490A1 (ko) 세라믹이 코팅된 흑연의 제조방법
WO2021261758A1 (ko) 열전도성 실리콘 컴파운드, 그 제조방법 및 이를 포함하는 가상화폐 채굴용 열전도성 겔
KR101531630B1 (ko) 초박막 방열필름 및 이를 포함하는 열확산 시트
KR20180097991A (ko) 전자파 흡수기능 및 방열기능을 갖는 탄소핵의 경량입자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21752939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21752939

Country of ref document: EP

Kind code of ref document: A1