WO2018021446A1 - 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα-オレフィン重合体及び共重合体の製造方法 - Google Patents

金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα-オレフィン重合体及び共重合体の製造方法 Download PDF

Info

Publication number
WO2018021446A1
WO2018021446A1 PCT/JP2017/027134 JP2017027134W WO2018021446A1 WO 2018021446 A1 WO2018021446 A1 WO 2018021446A1 JP 2017027134 W JP2017027134 W JP 2017027134W WO 2018021446 A1 WO2018021446 A1 WO 2018021446A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
heteroatom
general formula
metal complex
Prior art date
Application number
PCT/JP2017/027134
Other languages
English (en)
French (fr)
Inventor
京子 野崎
慎庫 伊藤
ウェンジェ タオ
洋平 小西
央士 大瀧
泰生 大石
丹那 晃央
田谷野 孝夫
Original Assignee
国立大学法人東京大学
日本ポリケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016147877A external-priority patent/JP6867761B2/ja
Application filed by 国立大学法人東京大学, 日本ポリケム株式会社 filed Critical 国立大学法人東京大学
Priority to US16/320,046 priority Critical patent/US11149099B2/en
Priority to EP17834448.7A priority patent/EP3476858A4/en
Priority to CN201780046126.4A priority patent/CN109601002B/zh
Publication of WO2018021446A1 publication Critical patent/WO2018021446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B

Definitions

  • the present disclosure relates to a metal complex useful for the production of ⁇ -olefin polymers and copolymers, and a novel ⁇ -olefin polymer and copolymer production method using the same.
  • the copolymer of ⁇ -olefin and polar group-containing monomer is an industrially useful polymer.
  • a high-pressure radical method is usually used.
  • this method has a drawback in that higher ⁇ -olefins such as propylene cannot be polymerized. It is industrially difficult to obtain a copolymer other than the high-pressure radical method, and catalyst deactivation was inevitable when using a Ziegler catalyst or a metallocene catalyst.
  • ethylene and methyl methacrylate can be copolymerized by the organic rare earth metal complex-based metallocene catalyst.
  • the copolymer of ethylene and the polar group-containing comonomer by the late transition metal complex catalyst can be used.
  • Polymerization has been actively studied. For example, the ( ⁇ -diimine) palladium complex reported by Brookhart et al. And the (salicylamidinate) nickel catalyst reported by Grubbs et al. are known. When these catalysts are used, since the polymerization temperature is lowered in order to suppress frequent occurrence of chain transfer, the productivity of the copolymer is generally low and the molecular weight is also low.
  • Patent Document 1 In recent years, in the copolymerization of ethylene and a polar group-containing monomer, the above-mentioned problem is related to (phosphorus sulfonate) palladium complex (see Patent Document 1) and so-called SHOP-based catalyst (phosphonolate) nickel complex (Patent Document 2-4). (See Non-Patent Document 1-2).
  • the (phosphophenolate) nickel complex has been useful as a copolymerization catalyst for ethylene and a polar group-containing monomer, but there has been no report on the copolymerization of an ⁇ -olefin and a polar group-containing monomer. It was.
  • JP 2010-150246 A International Publication No. 2010/050256 US Pat. No. 6,559,326 Japanese Patent Laid-Open No. 2005-307021
  • the present inventors have found a transition metal complex having a novel phosphophenolate ligand structure different from the existing (phosphonolate) transition metal complex. It has been found that it is possible to homopolymerize or copolymerize with polar group-containing monomers. Moreover, it discovered that the (co) polymer of higher molecular weight was obtained, and came to this indication.
  • the first embodiment of the present disclosure is [1-1] Obtained by contacting a compound represented by the following general formula [I] or [II] with a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table A metal complex characterized by that.
  • R 1 to R 6 , E 1 and X 1 in the general formulas [I] and [II] are as follows.
  • R 1 , R 2 , R 3 and R 4 each independently represents an atom or group selected from the group consisting of the following (i) to (iv).
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • a plurality of groups appropriately selected from R 1 , R 2 , R 3 and R 4 are connected to each other and contain an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. A heterocycle may be formed. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 7 to 30 carbon atoms, a carbon number of 7 Represents a branched acyclic alkyl group having 30 to 30 carbon atoms, an alkenyl group having 7 to 30 carbon atoms, a cycloalkyl group optionally having a side chain having 7 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms .
  • E 1 represents phosphorus, arsenic or antimony.
  • X 1 represents oxygen or sulfur.
  • Z represents hydrogen or a leaving group
  • m represents the valence of Z. ] [1-2]
  • R 1 to R 7 , E 1 , X 1 , M, and L 1 in the general formula [III] are as follows.
  • R 1 , R 2 , R 3 and R 4 each independently represents an atom or group selected from the group consisting of the following (i) to (iv).
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • a plurality of groups appropriately selected from R 1 , R 2 , R 3 and R 4 are connected to each other and contain an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. A heterocycle may be formed. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 7 to 30 carbon atoms, a carbon number of 7 Represents a branched acyclic alkyl group having 30 to 30 carbon atoms, an alkenyl group having 7 to 30 carbon atoms, a cycloalkyl group optionally having a side chain having 7 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms .
  • E 1 represents phosphorus, arsenic or antimony.
  • X 1 represents oxygen or sulfur.
  • M represents a transition metal belonging to Group 9, 10 or 11 of the periodic table.
  • R 7 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms which may have a group selected from the group consisting of a hetero atom and a group containing a hetero atom.
  • L 1 represents a ligand coordinated to M. R 7 and L 1 may be bonded to each other to form a ring.
  • [1-3] The metal complex according to [1-2], wherein M is a transition metal belonging to Group 10 of the periodic table. [1-4] The metal complex according to any one of [1-1] to [1-3], wherein R 3 is hydrogen.
  • [1-5] A compound represented by the general formula [I] or [II] of the above [1-1] and a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table
  • a method for producing a metal complex which comprises producing a metal complex represented by the general formula [III] of the above [1-2] by contacting.
  • [1-6] An olefin comprising the metal complex according to any one of [1-1] to [1-4] or the metal complex obtained by the production method according to [1-5] Polymerization catalyst component.
  • [1-7] An olefin polymerization catalyst comprising the following components (A) and (B), and (C) as necessary.
  • Component (A) Metal complex according to any one of [1-1] to [1-4] or a metal complex obtained by the production method according to [1-5]
  • Component (B) Component (A ) Or an ion-exchangeable layered silicate
  • Component (C) Organoaluminum compound [1-8]
  • the component (B) is an aluminoxane [1-7]
  • An ⁇ -olefin polymer characterized in that (a) an ⁇ -olefin is polymerized or copolymerized in the presence of the polymerization catalyst according to [1-7] or [1-8] Production method.
  • the second embodiment of the present disclosure [2-1] Obtained by contacting a compound represented by the following general formula [I] or [II] with a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table A metal complex characterized by that.
  • R 1 to R 6 , E 1 and X 1 in the general formulas [I] and [II] are as follows.
  • R 2 , R 3 and R 4 each independently represents an atom or group selected from the group consisting of the following (i) to (iv).
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • R 1 represents a group selected from the group consisting of the following (v) and (vi).
  • (V) a straight-chain alkyl group having 1 to 30 carbon atoms, a branched acyclic alkyl group having 3 to 30 carbon atoms, and a group selected from the group consisting of heteroatoms and heteroatom-containing groups; -30 alkenyl group, cycloalkyl group optionally having a side chain having 3 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, arylalkyl group having 7 to 30 carbon atoms, or 7 to 30 carbon atoms
  • An alkylaryl group (vi) OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , SOR 9 , OSO 2 R 9 , P (O) (OR 9 ) 2-y (R 8 ) y , CN, NHR 9 , N (R 9 ) 2 , Si (OR 8 ) 3-x (R 8 )
  • R 8 , R 9 , M ′, x, and y are as described above.
  • a plurality of groups appropriately selected from R 1 , R 2 , R 3 and R 4 are connected to each other and contain an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur.
  • a heterocycle may be formed.
  • the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 1 to 6 carbon atoms, a carbon number of 3 Represents a branched acyclic alkyl group having 6 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
  • R 5 and R 6 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • E 1 represents phosphorus, arsenic or antimony.
  • X 1 represents oxygen or sulfur.
  • Z represents hydrogen or a leaving group
  • m represents the valence of Z. ] [2-2]
  • R 1 to R 7 , E 1 , X 1 , M, and L 1 in the general formula [III] are as follows.
  • R 2 , R 3 and R 4 each independently represents an atom or group selected from the group consisting of the following (i) to (iv).
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • R 1 represents a group selected from the group consisting of the following (v) and (vi).
  • (V) a straight-chain alkyl group having 1 to 30 carbon atoms, a branched acyclic alkyl group having 3 to 30 carbon atoms, and a group selected from the group consisting of heteroatoms and heteroatom-containing groups; -30 alkenyl group, cycloalkyl group optionally having a side chain having 3 to 30 carbon atoms, aryl group having 6 to 30 carbon atoms, arylalkyl group having 7 to 30 carbon atoms, or 7 to 30 carbon atoms
  • An alkylaryl group (vi) OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , SOR 9 , OSO 2 R 9 , P (O) (OR 9 ) 2-y (R 8 ) y , CN, NHR 9 , N (R 9 ) 2 , Si (OR 8 ) 3-x (R 8 )
  • R 8 , R 9 , M ′, x, and y are as described above.
  • a plurality of groups appropriately selected from R 1 , R 2 , R 3 and R 4 are connected to each other and contain an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur.
  • a heterocycle may be formed.
  • the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 1 to 6 carbon atoms, a carbon number of 3 Represents a branched acyclic alkyl group having 6 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
  • R 5 and R 6 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • E 1 represents phosphorus, arsenic or antimony.
  • X 1 represents oxygen or sulfur.
  • M represents a transition metal belonging to Group 9, 10 or 11 of the periodic table.
  • R 7 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms which may have a group selected from the group consisting of a hetero atom and a group containing a hetero atom.
  • L 1 represents a ligand coordinated to M. R 7 and L 1 may be bonded to each other to form a ring.
  • [2-3] The metal complex according to [2-2], wherein M is a transition metal belonging to Group 10 of the periodic table.
  • R 1 is an aryl group having 6 to 30 carbon atoms or a Si (OR 8 ) 3-x (R 8 ) x having a group selected from the group consisting of a hetero atom and a group containing a hetero atom
  • [2-6] The metal complex according to [2-5], wherein R 3 is hydrogen.
  • [2-7] A compound represented by the general formula [I] or [II] of the above [2-1] and a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table
  • a method for producing a metal complex which comprises producing a metal complex represented by the general formula [III] of the above [2-2] by contacting.
  • An olefin comprising the metal complex according to any one of [2-1] to [2-6] or the metal complex obtained by the production method according to [2-7] Polymerization catalyst component.
  • An olefin polymerization catalyst comprising the following components (A) and (B), and (C) as necessary.
  • Component (A) Metal complex according to any one of [2-1] to [2-6] or metal complex obtained by the production method according to [2-7]
  • Component (B) Component (A ) Or an ion-exchangeable layered silicate
  • Component (C) Organoaluminum compound [2-10] wherein the component (B) is an aluminoxane [2-9]
  • An ⁇ -olefin polymer characterized in that (a) an ⁇ -olefin is polymerized or copolymerized in the presence of the polymerization catalyst according to [2-9] or [2-10]. Production method.
  • the third embodiment of the present disclosure [3-1] Obtained by contacting a compound represented by the following general formula [I] or [II] with a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table A metal complex characterized by that.
  • R 1 to R 6 , E 1 and X 1 in the general formulas [I] and [II] are as follows.
  • R 1 has a linear alkyl group having 1 to 30 carbon atoms, a branched acyclic alkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and a side chain having 3 to 30 carbon atoms.
  • R 2 , R 3 and R 4 each independently represents an atom or group selected from the group consisting of the following (i) to (iv).
  • An arylalkyl group having ⁇ 30 or an alkylaryl group having 7 to 30 carbon atoms (iv) OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , S
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • a plurality of groups appropriately selected from R 2 , R 3 and R 4 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur It may be formed.
  • the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 4 to 6 carbon atoms, a carbon number of 4 A secondary alkyl group having 6 to 6 carbon atoms, a tertiary alkyl group having 4 to 6 carbon atoms, or an alkenyl group having 4 to 6 carbon atoms.
  • E 1 represents phosphorus, arsenic or antimony.
  • X 1 represents oxygen or sulfur.
  • Z represents hydrogen or a leaving group;
  • m represents the valence of Z. ] [3-2]
  • R 1 to R 7 , E 1 , X 1 , M, and L 1 in the general formula [III] are as follows.
  • R 1 has a linear alkyl group having 1 to 30 carbon atoms, a branched acyclic alkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and a side chain having 3 to 30 carbon atoms.
  • R 2 , R 3 and R 4 each independently represents an atom or group selected from the group consisting of the following (i) to (iv).
  • An arylalkyl group having ⁇ 30 or an alkylaryl group having 7 to 30 carbon atoms (iv) OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , S
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • a plurality of groups appropriately selected from R 2 , R 3 and R 4 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur It may be formed.
  • the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 4 to 6 carbon atoms, a carbon number of 4 A secondary alkyl group having 6 to 6 carbon atoms, a tertiary alkyl group having 4 to 6 carbon atoms, or an alkenyl group having 4 to 6 carbon atoms.
  • E 1 represents phosphorus, arsenic or antimony.
  • X 1 represents oxygen or sulfur.
  • M represents a transition metal belonging to Group 9, 10 or 11 of the periodic table.
  • R 7 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms which may have a group selected from the group consisting of a hetero atom and a group containing a hetero atom.
  • L 1 represents a ligand coordinated to M.
  • R 7 and L 1 may be bonded to each other to form a ring.
  • [3-3] The metal complex according to [3-2], wherein M is a transition metal belonging to Group 10 of the periodic table.
  • [3-4] The metal complex according to any one of [3-1] to [3-3], wherein R 5 and R 6 are tert-butyl groups.
  • [3-5] The metal complex according to any one of [3-1] to [3-4], wherein R 1 is a tert-butyl group.
  • a compound represented by the general formula [I] or [II] of [3-1] above and a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table A method for producing a metal complex, which comprises producing a metal complex represented by the general formula [III] of the above [3-2] by contacting them.
  • An olefin comprising the metal complex according to any one of [3-1] to [3-5] or the metal complex obtained by the production method according to [3-6] Polymerization catalyst component.
  • An olefin polymerization catalyst comprising the following components (A) and (B), and (C) as necessary.
  • Component (A) Metal complex according to any one of [3-1] to [3-5] or metal complex obtained by the production method according to [3-6]
  • Component (B) Component (A ) Or an ion-exchangeable layered silicate
  • Component (C) Organoaluminum compound [3-9]
  • the component (B) is an aluminoxane [3-8]
  • the catalyst for olefin polymerization described in 1.
  • An ⁇ -olefin polymer characterized in that (a) an ⁇ -olefin is polymerized or copolymerized in the presence of the polymerization catalyst according to [3-8] or [3-9]. Production method.
  • a higher molecular weight ⁇ -olefin homopolymer can be obtained with higher polymerization activity than before, and copolymerization of the ⁇ -olefin and the polar group-containing monomer can be achieved with good polymerization activity.
  • FIG. 1 is an ORTEP diagram of Complex (B-350) NiPh (PEt 3 ).
  • the compound represented by the general formula [I] or [II] and the groups 9 and 10 of the periodic table such as nickel, palladium, cobalt, copper, or rhodium are used.
  • metal complex [III] hereinafter sometimes referred to as metal complex [III]
  • a process for producing a polymer or copolymer of ⁇ -olefin carried out in the presence of the catalyst component, and (a) ⁇ -olefin and (b) (meth) acrylic This is a method for producing a copolymer with an acid ester monomer, a vinyl monomer or an allyl monomer.
  • polymerization is a general term for homopolymerization of one type of monomer and copolymerization of a plurality of types of monomers. ".
  • (meth) acrylic acid ester includes both acrylic acid ester and methacrylic acid ester.
  • Metal Complex includes a compound represented by the following general formula [I] or [II] and a transition metal that includes a transition metal belonging to Group 9, 10 or 11 of the periodic table It can be obtained by contacting with a metal compound.
  • contact means that E 1 in the above general formula [I] or [II] can form a coordination bond with the transition metal and / or X 1 in these general formulas is the above.
  • the compound represented by these general formulas hereinafter, these may be collectively referred to as a phosphophenolate compound
  • the transition metal compound are sufficiently close to each other.
  • the contact of the phosphophenolate compound with the transition metal compound means that these compounds are sufficiently close to each other and these compounds are mixed so that at least one of the two types of bonds can be formed.
  • the conditions for mixing the phosphophenolate compound and the transition metal compound are not particularly limited. These compounds may be mixed directly or using a solvent.
  • the phosphorus phenolate compound becomes a ligand, and therefore the reaction between the phosphorus phenolate compound and the transition metal compound is usually a ligand exchange reaction.
  • the ligand exchange reaction is performed by mixing the phosphophenolate compound and the transition metal compound at room temperature (15 to 30 ° C.). Progresses.
  • the obtained metal complex is more thermodynamically unstable than the transition metal compound, it is preferable to appropriately heat the mixture in order to allow the ligand exchange reaction to proceed sufficiently.
  • Examples of the metal complex obtained by bringing the compound represented by the general formula [I] or [II] into contact with a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table are described later. It is presumed that it has a structure represented by the general formula [III]. However, since the compound represented by the general formula [I] or [II] is a phosphophenolate compound, which is a bidentate ligand, the compound is classified into groups 9, 10, or 11 of the periodic table. When contacted with a transition metal compound containing a transition metal belonging to, a metal complex having a structure other than the structure represented by the general formula [III] may be generated.
  • the metal complex represented by the general formula [III] is a 1: 1 reaction product of a phosphophenolate compound and a transition metal compound. Depending on the type of transition metal, a reaction product having a different composition ratio can be obtained. Is also possible. For example, two or more molecules of the phosphorus phenolate compound may form a complex with one transition metal, or one molecule of the phosphorus phenolate compound may react with two or more transition metals to synthesize a polynuclear complex. Conceivable.
  • such a metal complex having a structure other than the structure represented by the general formula [III] is used for the production of an ⁇ -olefin (co) polymer, similarly to the metal complex represented by the general formula [III]. There is no denying that it is possible.
  • R 1 to R 6 , E 1 and X 1 in the general formulas [I] and [II], and Z and m in the general formula [I] will be described.
  • R 1 , R 2 , R 3 and R 4 each independently have a group selected from the group consisting of (i) hydrogen, (ii) halogen, (iii) a heteroatom and a group containing a heteroatom. And (iv) a hetero atom-containing substituent.
  • the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom is preferable.
  • heteroatom used in (iii) examples include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, halogen, and boron. Of these heteroatoms, fluorine and chlorine are preferred.
  • Specific examples of the “group containing a heteroatom” used in (iii) include the same groups as (iv) a heteroatom-containing substituent described later.
  • Examples of the “group containing a hetero atom” include an alkoxy group (OR 9 ) and an ester group (CO 2 R 9 ). R 9 is as described later.
  • the total number of carbon atoms of the substituents corresponding to R 1 to R 4 is preferably 1 to 30, more preferably 2 to 25, and further preferably 4 to 20.
  • a specific group optionally having a group selected from the group consisting of a heteroatom and a group containing a heteroatom refers to (iii-A) a straight chain having 1 to 30 carbon atoms.
  • Chain alkyl group branched acyclic alkyl group having 3 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, cycloalkyl group optionally having a side chain having 3 to 30 carbon atoms, 6 to 6 carbon atoms 30 aryl groups, arylalkyl groups having 7 to 30 carbon atoms, and alkylaryl groups having 7 to 30 carbon atoms, (iii-B) each group of (iii-A) has one or more heteroatoms.
  • a substituted group, (iii-C) a group in which each of the groups in (iii-A) is substituted with one or more “groups containing a heteroatom”, and (iii-D)
  • B atom is substituted one or more, and refers to a group in which the "group having a hetero atom" as a substituent 1 or 2 or more.
  • Examples of (iii-C) include an alkyl group substituted with an alkoxy group and an aryl group substituted with an ester group.
  • heteroatom-containing substituent examples include OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , SOR 9 , OSO 2 R 9 , P (O) (OR 9 ) 2-y (R 8 ) y , CN, NHR 9 , N (R 9 ) 2 , Si (OR 8 ) 3-x (R 8 ) x , OSi (OR 8 ) 3-x (R 8 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , P (O) (OR 2 ) 2 M ′, and an epoxy-containing group Point to.
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • a plurality of groups appropriately selected from R 1 , R 2 , R 3 and R 4 are connected to each other to form an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. You may form the heterocyclic ring to contain.
  • the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • a plurality of groups contained in R 1 may be connected to each other to form a ring on R 1 .
  • R 2 , R 3 , or R 4 contains a plurality of groups.
  • R 1 , R 2 , R 3 and R 4 are preferably each independently selected from the following: (i) hydrogen atom; (ii) fluorine atom, chlorine atom, bromine atom; (iii) methyl group, ethyl group, isopropyl group , Butyl, phenyl, trifluoromethyl, pentafluorophenyl, carbazolyl, naphthyl, anthracenyl; (iv) methoxy, ethoxy, phenoxy, nitrile, trimethylsilyl, triethylsilyl, dimethylphenyl Examples include silyl group, trimethoxysilyl group, triethoxysilyl group, trimethylsilyloxy group, trimethoxysiloxy group, cyclohexylamino group, sodium sulfonate, potassium sulfonate, sodium phosphate, potassium phosphate and the like.
  • R 1 Particularly for R 1 , among these, (i) hydrogen atom; (iii) t-butyl group, pentafluorophenyl group, carbazolyl group; (iv) methoxy group, trimethylsilyl group, trimethylsilyloxy group, cyclohexyl An amino group etc. are mentioned.
  • R 3 preferred among these are (i) a hydrogen atom or (iii) a t-butyl group.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 7 to 30 carbon atoms, a carbon number of 7 Represents a branched acyclic alkyl group having 30 to 30 carbon atoms, an alkenyl group having 7 to 30 carbon atoms, a cycloalkyl group optionally having a side chain having 7 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms .
  • R 5 and R 6 may be bonded to each other to form a ring.
  • Each carbon number of the linear alkyl group, branched acyclic alkyl group, alkenyl group, cycloalkyl group optionally having a side chain, and arylalkyl group is preferably 7 to 25, and more preferably. Is 8 to 20, more preferably 10 to 15.
  • R 5 and R 6 are in the vicinity of the metal M and interact with M sterically and / or electronically. In order to exert such an effect, R 5 and R 6 are preferably bulky.
  • R 5 and R 6 include 5-tricyclo [3.3.1.1 3,7 ] dec-1-yl group (1-adamantyl group), 5-methyl-2- (propane- 2-yl) cyclohexyl group (menthyl group), 2,6-dimethylheptan-4-yl group, 2,4-dimethylpentan-3-yl group, bicyclo- [2.2.1] -hept-2-yl Group, 2,4-phenylpentan-3-yl group, cycloheptyl group, 2-heptyl group and the like. Among these, 1-adamantyl group and menthyl group are more preferable.
  • Heteroatoms used for R 5 and R 6 include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, halogen, and boron. Of these heteroatoms, fluorine and chlorine are preferred. Examples of the group containing these heteroatoms include an oxygen group, an alkoxy group, an aryloxy group, an acyl group, and an ester group, and examples of the nitrogen-containing group include an amino group and an amide group, and a sulfur-containing group.
  • the phosphorus-containing substituent includes a phosphino group
  • the selenium-containing group includes a selenyl group
  • the silicon-containing group includes a trialkylsilyl group
  • Examples include a dialkylarylsilyl group and an alkyldiarylsilyl group.
  • the fluorine-containing group include a fluoroalkyl group and a fluoroaryl group.
  • the boron-containing group include an alkylboron group and an arylboron group. Of these heteroatom-containing groups, an alkoxy group or an aryloxy group is most preferable.
  • heteroatom contained in the hetero atom-containing group described above one capable of coordinating with a transition metal is preferable.
  • Specific examples of the heteroatom-containing group containing a heteroatom that can be coordinated to such a transition metal include the following. That is, as an oxygen-containing group, alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group, phenoxy group, p-methylphenoxy group, p-methoxyphenoxy group
  • aryl groups such as aryloxy groups, acetyl groups, benzoyl groups, and other acyl groups, acetoxy groups, carboxyethyl groups, carboxy t-butyl groups, carboxyphenyl groups, and the like.
  • nitrogen-containing group examples include dialkylamino groups such as a dimethylamino group, a diethylamino group, a di-n-propylamino group, and a cyclohexylamino group.
  • sulfur-containing group examples include thioalkoxy groups such as thiomethoxy group, thioethoxy group, thio-n-propoxy group, thioisopropoxy group, thio-n-butoxy group, thio-t-butoxy group, and thiophenoxy group, p-methylthio And thioaryloxy groups such as phenoxy group and p-methoxythiophenoxy group.
  • Examples of the phosphorus-containing substituent include dialkylphosphino groups such as dimethylphosphino group, diethylphosphino group, di-n-propylphosphino group, and cyclohexylphosphino group.
  • Examples of the selenium-containing group include selenyl groups such as a methylselenyl group, an ethylselenyl group, an n-propylselenyl group, an n-butylselenyl group, a t-butylselenyl group, and a phenylselenyl group.
  • E 1 represents phosphorus, arsenic or antimony. Among these, it is preferred that E 1 is phosphorus.
  • X 1 represents oxygen or sulfur. Among these, X 1 is preferably oxygen.
  • Z represents hydrogen or a leaving group. Specific examples of Z include a hydrogen atom, an R 9 SO 2 group (where R 9 is as described above), and a CF 3 SO 2 group. m represents the valence of Z.
  • any counter cation can be used as long as it does not inhibit the reaction with the transition metal compound in the present disclosure.
  • the counter cation include ammonium, quaternary ammonium or phosphonium, and metal ions of Groups 1 to 14 of the periodic table.
  • NH 4 + , R 9 4 N + (wherein R 9 is as described above, and four R 9 may be the same or different. The same shall apply hereinafter), R. 9 4 P + , Li + , Na + , K + , Mg 2+ , Ca 2+ , and Al 3+ , and more preferably R 9 4 N + , Li + , Na + , and K + .
  • the compounds represented by the general formulas [I] and [II] can be synthesized based on a known synthesis method.
  • R 1 to R 6 , E 1 and X 1 are as described above.
  • the main skeleton containing a benzene ring and these substituents (R 1 to R 6 , E 1 , X 1 ) has a common complex structure.
  • M, R 7 and L 1 in the general formula [III] will be described.
  • M is a transition metal belonging to Group 9, 10 or 11 of the periodic table.
  • M is preferably group 10 nickel, palladium, platinum and group 9 cobalt, rhodium and group 11 copper, more preferably group 10 nickel, palladium, platinum, most preferably group 10 Nickel or palladium.
  • the valence of M is preferably divalent.
  • the valence of M means a formal oxidation number used in organometallic chemistry. That is, when an electron pair in a bond involving an element is assigned to an element having a high electronegativity, the number of charges remaining on the atom of the element is indicated.
  • E 1 is phosphorus
  • X 1 is oxygen
  • M is nickel
  • R 7 is a phenyl group
  • L 1 is triethylphosphine
  • nickel is phosphorus
  • oxygen phenyl group carbon
  • the formal oxidation number of nickel that is, the valence of nickel is divalent. This is because, based on the above definition, in these bonds, the electron pair is assigned to two phosphorus, oxygen, and carbon, which have a greater electronegativity than nickel, and the charges are 0 for phosphorus, -1, for oxygen, and phenyl.
  • the group is ⁇ 1 and the complex is electrically neutral as a whole, the charge remaining on the nickel is +2.
  • the divalent transition metal for example, nickel (II), palladium (II), platinum (II), and cobalt (II) are preferable, and copper (I) or rhodium (III) is also preferable other than divalent.
  • R 7 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a group selected from the group consisting of a hetero atom and a group containing a hetero atom.
  • the polymerization or copolymerization reaction in the present disclosure is considered to be initiated by inserting the component (a) or component (b) in the present disclosure into the bond between M and R 7 . Therefore, if R 7 has too many carbon atoms, this initiation reaction tends to be inhibited. Therefore, as preferred R 7 , the number of carbon atoms excluding the number of carbon atoms contained in the substituent is 1 to 16, and more preferably the number of carbon atoms is 1 to 10.
  • R 7 examples include hydride group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-hexyl group, n-octyl group, n-decyl group, Examples thereof include n-dodecyl group, cyclopentyl group, cyclohexyl group, benzyl group, phenyl group, p-methylphenyl group, trimethylsilyl group, triethylsilyl group, triphenylsilyl group and the like.
  • L 1 represents a ligand coordinated to M.
  • the ligand L 1 in the present disclosure is a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen, and sulfur as atoms capable of coordination bonding.
  • L 1 a hydrocarbon compound having a carbon-carbon unsaturated bond capable of coordinating to the transition metal (which may contain a hetero atom) can also be used.
  • L 1 has 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms.
  • L 1 coordinated to M in the general formula [III] a compound having no charge is preferable.
  • Preferred L 1 in the present disclosure includes cyclic unsaturated hydrocarbons, phosphines, pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, Examples include alcohols, amides, aliphatic esters, aromatic esters, amines, and the like. More preferable L 1 includes cyclic olefins, phosphines, pyridines, cyclic ethers, aliphatic esters, aromatic esters, and particularly preferable L 1 includes trialkylphosphine, pyridine, lutidine (dimethylpyridine).
  • R 7 and L 1 may be bonded to each other to form a ring.
  • An example of such is the cyclooct-1-enyl group, which is also a preferred embodiment in the present disclosure.
  • the complex of this structural formula is referred to as (2-diadamantylphosphanyl-6-pentafluorophenylphenolate) phenyl (triethylphosphine) nickel (II).
  • transition metal compound used in the present disclosure one that can react with the compound represented by the general formula [I] or [II] to form a complex having a polymerization ability is used. These are sometimes called precursors (precursors).
  • precursors precursors
  • the transition metal compound containing nickel, bis (1,5-cyclooctadiene) nickel (0) a complex represented by the general formula: Ni (CH 2 CR 13 CH 2 ) 2 [wherein R 13 is , A hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a hetero atom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2-y (R 9 ) y , CN, NHR 8 , N (R 8 ) 2 , Si (OR 9
  • NiR 13 2 L 1 2 in complex represented (wherein R 13, L 1 are as described above), or the like can be used.
  • the general formula: MR 13 p L 1 q (where M is a Group 9, 10 or 11 transition metal) , R 13 and L 1 are as described herein, and p and q are integers of 0 or more that satisfy the valence of M.).
  • transition metal compounds those preferably used are nickel (0) bis (1,5-cyclooctadiene), NiPhCl (PEt 3 ) 2 , NiPhCl (PPh 3 ) 2, general formula: Ni (CH 2 CR 13 CH 2) complex represented by 2 (wherein R 13 is as described above), the general formula:. Ni (CH 2 SiR 13 3) complex represented by 2 L 1 2 (wherein R 13 , L 1 is as defined above), the general formula:..
  • an organic solvent such as toluene and benzene
  • Ni (COD) 2 nickel (0)
  • the components constituting the transition metal compound, other than the transition metal in the compound are replaced by the portion other than Z in the general formula [I] or the compound of the general formula [II]
  • a metal complex represented by the general formula [III] of the present disclosure is formed.
  • This substitution reaction preferably proceeds quantitatively, but may not proceed completely in some cases.
  • the general formula [I], [II] and other components derived from the transition metal compound coexist, but the polymerization reaction or copolymerization reaction of the present disclosure
  • These other components may or may not be removed during the process. Generally, it is preferable to remove these other components because high activity can be obtained.
  • L 1 may be allowed to coexist L 1 according to the present disclosure.
  • nickel or palladium is used as M according to the present disclosure
  • the stability of the purified complex of the general formula [III] may be increased by allowing Lewis basic L 1 to coexist in the system.
  • L 1 is preferably allowed to coexist as long as L 1 does not inhibit the polymerization reaction or copolymerization reaction of the present disclosure.
  • the reaction is carried out in advance in a container separate from the reactor used for the polymerization of ⁇ -olefin and the copolymerization of ⁇ -olefin and (meth) acrylic acid ester.
  • the complex of III] may be subjected to polymerization of ⁇ -olefin, copolymerization of ⁇ -olefin and (meth) acrylic acid ester, or the reaction may be performed in the presence of these monomers.
  • the reaction may be performed in a reactor used for polymerization of ⁇ -olefin or copolymerization of ⁇ -olefin and (meth) acrylate. At this time, these monomers may exist or may not exist.
  • a single component may respectively be used and multiple types of components may be used together, respectively. Particularly, for the purpose of widening the molecular weight distribution and the comonomer content distribution, a combination of these plural types is useful.
  • a metal complex represented by the general formula [III] can be produced by contacting a transition metal compound containing a transition metal belonging to the group.
  • the olefin polymerization catalyst component according to the first embodiment of the present disclosure includes the metal complex or the metal complex obtained by the production method.
  • the metal complex represented by the general formula [III] can be used as a catalyst component for polymerization or copolymerization.
  • the metal complex represented by the general formula [III] can be formed by the reaction of the general formula [I] or [II] and the transition metal complex component.
  • an isolated one may be used, or one supported on a carrier may be used.
  • the reaction may be performed in the presence or absence of these monomers in the reactor used for the polymerization of the supported ⁇ -olefin or the copolymerization of the ⁇ -olefin and the (meth) acrylic acid ester. You may carry out in another container.
  • any carrier can be used as long as the gist of the present disclosure is not impaired.
  • inorganic oxides and polymer carriers can be preferably used. Specific examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, or a mixture thereof, and SiO 2 —Al 2 O 3.
  • SiO 2 —V 2 O 5 , SiO 2 —TiO 2 , SiO 2 —MgO, SiO 2 —Cr 2 O 3 and other mixed oxides can also be used, inorganic silicate, polyethylene carrier, polypropylene carrier, A polystyrene carrier, polyacrylic acid carrier, polymethacrylic acid carrier, polyacrylic acid ester carrier, polyester carrier, polyamide carrier, polyimide carrier and the like can be used. These carriers are not particularly limited in particle size, particle size distribution, pore volume, specific surface area, etc., and any one can be used.
  • clay, clay mineral, zeolite, diatomaceous earth, etc. can be used as the inorganic silicate.
  • a synthetic product may be used for these, and the mineral produced naturally may be used.
  • Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite. Stone group, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, etc.
  • Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer.
  • Examples of the artificial compound include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic teniolite.
  • kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as sauconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite
  • montmorillonite sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic Taeniolite.
  • These carriers may be used as they are, but may be treated with hydrochloric acid, nitric acid, sulfuric acid, etc. and / or LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti ( Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3 may be performed.
  • Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3
  • the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • shape control such as pulverization and granulation and drying treatment may be performed.
  • the olefin polymerization catalyst of the first embodiment of the present disclosure is characterized by including the following components (A) and (B), and (C) as necessary.
  • Component (A) is the above metal complex or a metal complex obtained by the above production method, and only one type of metal complex may be used or two or more types of metal complexes may be used in combination.
  • An organic aluminum oxy compound is mentioned as one of the components (B).
  • the organoaluminum oxy compound has Al—O—Al bonds in the molecule, and the number of bonds is usually in the range of 1 to 100, preferably 1 to 50.
  • Such an organoaluminum oxy compound is usually a product obtained by reacting an organoaluminum compound with water. The reaction between organoaluminum and water is usually carried out in an inert hydrocarbon (solvent).
  • inert hydrocarbon aliphatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene and xylene, alicyclic hydrocarbons and aromatic hydrocarbons can be used. Preference is given to using aromatic hydrocarbons.
  • organoaluminum compound used for the preparation of the organoaluminum oxy compound any compound represented by the following general formula can be used, but trialkylaluminum is preferably used.
  • R x represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or aralkyl group having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, and X 3 represents a hydrogen atom or a halogen atom.
  • T represents an integer of 1 ⁇ t ⁇ 3.
  • the alkyl group of the trialkylaluminum may be any of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, etc.
  • An isobutyl group is preferable, and a methyl group is particularly preferable.
  • Two or more of the above organoaluminum compounds can be used in combination.
  • the reaction ratio between water and the organoaluminum compound is preferably 0.25 / 1 to 1.2 / 1, particularly preferably 0.5 / 1 to 1/1, and the reaction temperature is Usually, it is in the range of ⁇ 70 to 100 ° C., preferably ⁇ 20 to 20 ° C.
  • the reaction time is usually selected in the range of 5 minutes to 24 hours, preferably 10 minutes to 5 hours.
  • water required for the reaction not only mere water but also crystal water contained in copper sulfate hydrate, aluminum sulfate hydrate and the like and components capable of generating water in the reaction system can be used.
  • organoaluminum oxy compounds described above those obtained by reacting alkylaluminum with water are usually called aluminoxanes, particularly methylaluminoxane (including those substantially consisting of methylaluminoxane (MAO)). Is suitable as an organoaluminum oxy compound.
  • a solid dry methylaluminoxane (DMAO) obtained by distilling off the MAO solution is also suitable.
  • DMAO solid dry methylaluminoxane
  • two or more of the aforementioned organoaluminum oxy compounds may be used in combination, and a solution in which the organoaluminum oxy compound is dissolved or dispersed in the above-described inert hydrocarbon solvent. You may use.
  • an ion exchange layered silicate is mentioned as a specific example of a component (B).
  • An ion-exchange layered silicate (hereinafter, sometimes simply referred to as “silicate”) has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other and have a binding force.
  • silicate ion-exchange layered silicate
  • Various known silicates are known, and are specifically described in Shiramizu Haruo "Clay Mineralogy" Asakura Shoten (1995).
  • what is preferably used as the component (B) belongs to the smectite group, and specifically includes montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stevensite and the like.
  • montmorillonite is preferable from the viewpoint of increasing the polymerization activity and molecular weight of the copolymer portion.
  • silicates are naturally produced mainly as the main component of clay minerals, they often contain impurities (such as quartz and cristobalite) other than ion-exchanged layered silicates.
  • the smectite group silicate may contain impurities.
  • the silicate may be subjected to acid treatment and / or salt treatment. In the treatment, the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • component (B) a mixture of the organoaluminum oxy compound and an ion-exchange layered silicate can be used. Furthermore, each may be used alone or in combination of two or more.
  • organoaluminum compound used as the component (C) is represented by the following general formula.
  • Al (R p ) a X (3-a) In the general formula, R p represents a hydrocarbon group having 1 to 20 carbon atoms, X represents hydrogen, halogen, an alkoxy group, or a siloxy group, and a represents a number greater than 0 and 3 or less.
  • organoaluminum compounds represented by the general formula include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, halogen or alkoxy such as diethylaluminum monochloride, diethylaluminum monomethoxide An alkyl aluminum is mentioned.
  • triisobutylaluminum is preferred.
  • Two or more of the above organoaluminum compounds may be used in combination.
  • the above aluminum compound may be modified with alcohol, phenol or the like. Examples of these modifiers include methanol, ethanol, 1-propanol, isopropanol, butanol, phenol, 2,6-dimethylphenol, 2,6-di-t-butylphenol, and preferred specific examples include 2,6. -Dimethylphenol, 2,6-di-t-butylphenol.
  • the method of contacting the components (A), (B), and (C) as necessary is not particularly limited. Various methods can be illustrated.
  • component (I) Method of adding component (C) after contacting component (A) and component (B) (ii) After contacting component (A) and component (C), component (B) (Iii) Method of adding component (A) after contacting component (B) and component (C) (iv) Contacting each component (A), (B), (C) simultaneously How to make.
  • different types of components may be used as a mixture in each component, or the components may be contacted in different orders. This contact may be performed not only at the time of catalyst preparation but also at the time of prepolymerization with olefin or at the time of polymerization of olefin.
  • the component (B) and the component (C) may be contacted, and then the mixture of the component (A) and the component (C) may be added, and the components may be divided and brought into contact with each component.
  • the contact of each of the components (A), (B), and (C) is preferably performed in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, and xylene in an inert gas such as nitrogen.
  • the contact can be performed at a temperature between ⁇ 20 ° C. and the boiling point of the solvent, and is preferably performed at a temperature between room temperature and the boiling point of the solvent.
  • One embodiment of the method for producing an ⁇ -olefin polymer according to the first embodiment of the present disclosure includes: (a) polymerizing or co-polymerizing ⁇ -olefin in the presence of the polymerization catalyst. Polymerize.
  • Component (a) in the present disclosure is an ⁇ -olefin represented by the general formula: CH 2 ⁇ CHR 10 .
  • R 10 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond. When the number of carbon atoms in R 10 is greater than 20, sufficient polymerization activity tends not to be expressed.
  • a preferable component (a) includes an ⁇ -olefin in which R 10 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. More preferable component (a) is ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinyl. Examples thereof include cyclohexene and styrene.
  • a single component (a) may be used, or a plurality of components (a) may be used in combination.
  • the (meth) acrylic acid ester monomer in the present disclosure is represented by the general formula: CH 2 ⁇ C (R 11 ) CO 2 (R 12 ).
  • R 11 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • R 12 is a hydrocarbon group having 1 to 30 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • a hetero atom may be contained at any position in R 12 .
  • R 11 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • preferred (meth) acrylic acid esters are those in which R 11 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • More preferable (meth) acrylic acid ester monomers include methacrylic acid esters in which R 11 is a methyl group or acrylic acid esters in which R 11 is a hydrogen atom.
  • R 12 has 1 to 30 carbon atoms, but R 12 preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • R 12 examples include oxygen, sulfur, selenium, phosphorus, nitrogen, silicon, fluorine, and boron. Of these heteroatoms, oxygen, silicon and fluorine are preferred, and oxygen is more preferred. R 12 preferably does not contain a hetero atom.
  • (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
  • the vinyl monomer in the present disclosure is a vinyl monomer having a polar group such as halogen-containing, nitrogen-containing, oxygen-containing or sulfur-containing, particularly halogen, hydroxyl group, amino group, nitro group, carboxyl group, formyl group, ester group, epoxy group. , A vinyl monomer containing a nitrile group or the like.
  • 3-buten-1-ol, 10-undecenoic acid ethyl, and 10-undecen-1-ol are particularly preferable.
  • allyl monomer in the present disclosure examples include an allyl monomer having 3 carbon atoms (propenyl monomer) and an allyl monomer having an allyl group having 4 or more carbon atoms.
  • the allyl monomer is an allyl monomer having a polar group such as halogen-containing, nitrogen-containing, oxygen-containing or sulfur-containing, particularly halogen, hydroxyl group, amino group, nitro group, carboxyl group, formyl group, ester group, epoxy group, nitrile group. Is a vinyl monomer containing the like.
  • Preferred examples include allyl acetate, allyl alcohol, allylamine, N-allylaniline, Nt-butoxycarbonyl-N-allylamine, N-benzyloxycarbonyl-N-allylamine, N-allyl-N-benzylamine, allyl chloride. , Allyl bromide, allyl ether, diallyl ether and the like. Among these, allyl acetate and allyl alcohol are particularly preferable, and allyl acetate, allyl ether, and diallyl ether are more preferable.
  • the polymerization reaction of the present disclosure includes propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, liquids such as methylcyclohexane, liquids such as liquefied ⁇ -olefins, diethyl ether,
  • the reaction is carried out in the presence or absence of a polar solvent such as ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like.
  • the above-mentioned hydrocarbon solvent and ionic liquid are more preferable.
  • the polymerization reaction can be performed in the presence or absence of a known additive.
  • a polymerization inhibitor that inhibits radical polymerization and an additive that has an action of stabilizing the produced copolymer are preferable.
  • preferable additives include quinone derivatives and hindered phenol derivatives. Specifically, monomethyl ether hydroquinone, 2,6-di-t-butyl 4-methylphenol (BHT), reaction product of trimethylaluminum and BHT, reaction product of alkoxide of tetravalent titanium and BHT, etc. Can be used.
  • BHT 2,6-di-t-butyl 4-methylphenol
  • reaction product of trimethylaluminum and BHT reaction product of alkoxide of tetravalent titanium and BHT, etc.
  • inorganic and / or organic fillers may be used and polymerization may be performed in the presence of these fillers.
  • L 1 or ionic liquid according to the present disclosure may be used as an additive.
  • a preferred additive in the present disclosure includes a Lewis base.
  • a Lewis base By selecting an appropriate Lewis base, the activity, molecular weight, and copolymerizability of the acrylate ester can be improved.
  • the amount of the Lewis base is 0.0001 equivalent to 1000 equivalents, preferably 0.1 equivalents to 100 equivalents, more preferably 0.3 equivalents, relative to the transition metal M in the catalyst component present in the polymerization system. ⁇ 30 equivalents.
  • limiting in particular about the method of adding a Lewis base to a polymerization system Arbitrary methods can be used. For example, it may be added in a mixture with the catalyst component of the present disclosure, may be added in a mixture with a monomer, or may be added to the polymerization system independently of the catalyst component or the monomer.
  • a plurality of Lewis bases may be used in combination. Further, may be used the same Lewis base as L 1 according to the present disclosure, it may be different.
  • Lewis bases include aromatic amines, aliphatic amines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitriles, aryl nitriles, alcohols, amides, aliphatic esters , Aromatic esters, phosphates, phosphites, thiophenes, thianthrenes, thiazoles, oxazoles, morpholines, cyclic unsaturated hydrocarbons, and the like.
  • Lewis bases are aromatic amines, aliphatic amines, cyclic ethers, aliphatic esters, aromatic esters, and among them, preferred Lewis bases are pyridine derivatives, pyrimidine derivatives, piperidine. Derivatives, imidazole derivatives, aniline derivatives, piperidine derivatives, triazine derivatives, pyrrole derivatives, furan derivatives.
  • Lewis base compounds include pyridine, pentafluoropyridine, 2,6-lutidine, 2,4-lutidine, 3,5-lutidine, pyrimidine, N, N-dimethylaminopyridine, N-methylimidazole, 2, 2'-bipyridine, aniline, piperidine, 1,3,5-triazine, 2,4,6-tris (trifluoromethyl) -1,3,5-triazine, 2,4,6-tris (2-pyridyl) -S-triazine, quinoline, 8-methylquinoline, phenazine, 1,10-phenanthroline, N-methylpyrrole, 1,8-diazabicyclo- [5.4.0] -undec-7-ene, 1,4 -Diazabicyclo- [2,2,2] -octane, triethylamine, benzonitrile, picoline, triphenylamine, N-methyl-2-pyrrolide , 4-methylmorpholine, benzo
  • polymerization type Slurry polymerization in which at least a part of the generated polymer in the medium becomes a slurry, bulk polymerization using the liquefied monomer itself as a medium, gas phase polymerization performed in a vaporized monomer, or a polymer generated in a monomer liquefied at high temperature and high pressure
  • High-pressure ionic polymerization in which at least a part of the polymer is dissolved is preferably used.
  • any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used.
  • living polymerization may be sufficient and it may superpose
  • so-called chain transfer agent (CSA) may be used in combination, and chain shuffling or coordinative chain transfer polymerization (CCTP) may be performed.
  • CSA chain transfer agent
  • CCTP coordinative chain transfer polymerization
  • Unreacted monomers and media may be separated from the produced copolymer and recycled. In recycling, these monomers and media may be purified and reused, or may be reused without purification.
  • a conventionally known method can be used to separate the produced copolymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
  • the polymerization temperature, polymerization pressure, and polymerization time are not particularly limited, but usually, optimum settings can be made in consideration of productivity and process capability from the following ranges. That is, the polymerization temperature is usually ⁇ 20 ° C. to 290 ° C., preferably 0 ° C.
  • the copolymerization pressure is 0.1 MPa to 300 MPa, preferably 0.3 MPa to 250 MPa
  • the polymerization time is 0.1 minutes. It can be selected from the range of ⁇ 10 hours, preferably 0.5 minutes to 7 hours, more preferably 1 minute to 6 hours.
  • polymerization is generally performed under an inert gas atmosphere.
  • a nitrogen, argon or carbon dioxide atmosphere can be used, and a nitrogen atmosphere is preferably used.
  • a small amount of oxygen or air may be mixed.
  • various supply methods can be used depending on the purpose. For example, in the case of batch polymerization, it is possible to take a technique in which a predetermined amount of monomer is supplied to a polymerization reactor in advance and a catalyst is supplied thereto. In this case, an additional monomer or an additional catalyst may be supplied to the polymerization reactor.
  • a method can be used in which a predetermined amount of monomer and catalyst are continuously or intermittently supplied to the polymerization reactor to continuously carry out the polymerization reaction.
  • a method of controlling a copolymer by supplying a plurality of monomers to a reactor and changing the supply ratio thereof can be generally used.
  • Other methods include controlling the copolymer composition using the difference in monomer reactivity ratio due to the difference in catalyst structure, and controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio.
  • a conventionally known method can be used for controlling the molecular weight of the polymer.
  • a method for controlling the molecular weight by controlling the polymerization temperature a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a molecular weight by controlling the ligand structure in the transition metal complex.
  • a chain transfer agent a conventionally known chain transfer agent can be used.
  • hydrogen, metal alkyl, etc. can be used.
  • the molecular weight can be adjusted by controlling the ratio of the component (b) to the component (a) and the concentration of the component (b). is there.
  • the type, number, and arrangement of the hetero atom-containing groups in R 2 and R 3 described above are controlled, and the volume around the metal M is increased.
  • the tendency to increase the molecular weight can be utilized by arranging a high substituent or introducing a hetero atom into R 6 described above.
  • the copolymer obtained by the present disclosure has good paintability, printability, antistatic properties, inorganic filler dispersibility, adhesion to other resins, and adhesion with other resins due to the effects based on the polar groups of the copolymer. Compatibilizing ability is developed. Utilizing such properties, the copolymer of the present disclosure can be used in various applications. For example, it can be used as a film, sheet, adhesive resin, binder, compatibilizing agent, wax, and the like.
  • the compound represented by the general formula [I] or [II] and the groups 9 and 10 of the periodic table such as nickel, palladium, cobalt, copper, or rhodium are used.
  • metal complex [III] hereinafter sometimes referred to as metal complex [III]
  • a process for producing a polymer or copolymer of ⁇ -olefin carried out in the presence of the catalyst component, and (a) ⁇ -olefin and (b) (meth) acrylic This is a method for producing a copolymer with an acid ester monomer, a vinyl monomer or an allyl monomer.
  • polymerization is a general term for homopolymerization of one type of monomer and copolymerization of a plurality of types of monomers. ".
  • (meth) acrylic acid ester includes both acrylic acid ester and methacrylic acid ester.
  • the metal complex according to the second embodiment of the present disclosure includes a compound represented by the following general formula [I] or [II] and a transition metal that includes a transition metal belonging to Group 9, 10 or 11 of the periodic table It can be obtained by contacting with a metal compound.
  • contact means that E 1 in the above general formula [I] or [II] can form a coordination bond with the transition metal and / or X 1 in these general formulas is the above.
  • the compound represented by these general formulas hereinafter, these may be collectively referred to as a phosphophenolate compound
  • the transition metal compound are sufficiently close to each other.
  • the contact of the phosphophenolate compound with the transition metal compound means that these compounds are sufficiently close to each other and these compounds are mixed so that at least one of the two types of bonds can be formed.
  • the conditions for mixing the phosphophenolate compound and the transition metal compound are not particularly limited. These compounds may be mixed directly or using a solvent.
  • the phosphorus phenolate compound becomes a ligand, and therefore the reaction between the phosphorus phenolate compound and the transition metal compound is usually a ligand exchange reaction.
  • the ligand exchange reaction is performed by mixing the phosphophenolate compound and the transition metal compound at room temperature (15 to 30 ° C.). Progresses.
  • the obtained metal complex is more thermodynamically unstable than the transition metal compound, it is preferable to appropriately heat the mixture in order to allow the ligand exchange reaction to proceed sufficiently.
  • Examples of the metal complex obtained by bringing the compound represented by the general formula [I] or [II] into contact with a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table are described later. It is presumed that it has a structure represented by the general formula [III]. However, since the compound represented by the general formula [I] or [II] is a phosphophenolate compound, which is a bidentate ligand, the compound is classified into groups 9, 10, or 11 of the periodic table. When contacted with a transition metal compound containing a transition metal belonging to, a metal complex having a structure other than the structure represented by the general formula [III] may be generated.
  • the metal complex represented by the general formula [III] is a 1: 1 reaction product of a phosphophenolate compound and a transition metal compound. Depending on the type of transition metal, a reaction product having a different composition ratio can be obtained. Is also possible. For example, two or more molecules of the phosphorus phenolate compound may form a complex with one transition metal, or one molecule of the phosphorus phenolate compound may react with two or more transition metals to synthesize a polynuclear complex. Conceivable.
  • such a metal complex having a structure other than the structure represented by the general formula [III] is used for the production of an ⁇ -olefin (co) polymer, similarly to the metal complex represented by the general formula [III]. There is no denying that it is possible.
  • R 2 , R 3 and R 4 may each independently have a group selected from the group consisting of (i) hydrogen, (ii) halogen, (iii) a heteroatom and a group containing a heteroatom. It represents a specific group or (iv) a hetero atom-containing substituent.
  • the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom is preferable.
  • heteroatom used in (iii) examples include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, halogen, and boron. Of these heteroatoms, fluorine and chlorine are preferred.
  • Specific examples of the “group containing a heteroatom” used in (iii) include the same groups as (iv) a heteroatom-containing substituent described later.
  • Examples of the “group containing a hetero atom” include an alkoxy group (OR 9 ) and an ester group (CO 2 R 9 ). R 9 is as described later.
  • the total number of carbon atoms of the substituents corresponding to R 2 to R 4 is preferably 1 to 30, more preferably 2 to 25, and further preferably 4 to 20.
  • a specific group optionally having a group selected from the group consisting of a heteroatom and a group containing a heteroatom refers to (iii-A) a straight chain having 1 to 30 carbon atoms.
  • Chain alkyl group branched acyclic alkyl group having 3 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, cycloalkyl group optionally having a side chain having 3 to 30 carbon atoms, 6 to 6 carbon atoms 30 aryl groups, arylalkyl groups having 7 to 30 carbon atoms, and alkylaryl groups having 7 to 30 carbon atoms, (iii-B) each group of (iii-A) has one or more heteroatoms.
  • a substituted group, (iii-C) a group in which each of the groups in (iii-A) is substituted with one or more “groups containing a heteroatom”, and (iii-D)
  • B atom is substituted one or more, and refers to a group in which the "group having a hetero atom" as a substituent 1 or 2 or more.
  • Examples of (iii-C) include an alkyl group substituted with an alkoxy group and an aryl group substituted with an ester group.
  • heteroatom-containing substituent examples include OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , SOR 9 , OSO 2 R 9 , P (O) (OR 9 ) 2-y (R 8 ) y , CN, NHR 9 , N (R 9 ) 2 , Si (OR 8 ) 3-x (R 8 ) x , OSi (OR 8 ) 3-x (R 8 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , P (O) (OR 2 ) 2 M ′, and an epoxy-containing group Point to.
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • R 2 , R 3, and R 4 are each preferably as follows: (i) hydrogen atom; (ii) fluorine atom, chlorine atom, bromine atom; (iii) methyl group, ethyl group, isopropyl group, butyl group , Phenyl, trifluoromethyl, pentafluorophenyl, naphthyl, anthracenyl; (iv) methoxy, ethoxy, phenoxy, nitrile, trimethylsilyl, triethylsilyl, dimethylphenylsilyl, trimethoxysilyl Group, triethoxysilyl group, trimethylsilyloxy group, trimethoxysiloxy group, cyclohexylamino group, sodium sulfonate, potassium sulfonate, sodium phosphate, potassium phosphate and the like.
  • R 3 is preferably hydrogen or a linear alkyl group having 1 to 30 carbon atoms having a substituent containing a hetero atom, and R 3 is more preferably hydrogen.
  • R 1 represents (v) a specific group having a group selected from the group consisting of a heteroatom and a group containing a heteroatom, or (vi) a heteroatom-containing substituent.
  • the specific group having a group selected from the group consisting of a heteroatom and a group containing a heteroatom is specifically a linear alkyl group having 1 to 30 carbon atoms or a group having 3 to 30 carbon atoms.
  • a hydrocarbon group selected from the group consisting of an arylalkyl group and an alkylaryl group having 7 to 30 carbon atoms is substituted with a substituent containing a hetero atom.
  • R 1 is preferably an aryl group having 6 to 30 carbon atoms having a hetero atom and a group selected from the group consisting of hetero atoms.
  • the upper limit of each carbon number of the linear alkyl group, branched acyclic alkyl group, alkenyl group, cycloalkyl group optionally having a side chain, aryl group, arylalkyl group, and alkylaryl group is preferably Is 25, more preferably 20, and even more preferably 15.
  • hetero atom-containing substituent examples include OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , SOR 9 , OSO 2 R 9 , P (O) (OR 9 ) 2-y (R 8 ) y , CN, NHR 9 , N (R 9 ) 2 , Si (OR 8 ) 3-x (R 8 ) x , OSi (OR 8 ) 3-x (R 8 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , P (O) (OR 2 ) 2 M ′, and an epoxy-containing group Represents.
  • R 8 , R 9 , M ′, x, and y are the same as those in R 2 to R 4 .
  • R 1 is preferably Si (OR 8 ) 3-x (R 8 ) x .
  • R 1 is more preferably (v) trifluoromethyl group, pentafluorophenyl group, carbazolyl group; (vi) methoxy group, ethoxy group, phenoxy group, nitrile group, trimethylsilyl group, triethylsilyl group, dimethylphenylsilyl. Group, trimethoxysilyl group, triethoxysilyl group, trimethylsilyloxy group, trimethoxysiloxy group, cyclohexylamino group, sodium sulfonate, potassium sulfonate, sodium phosphate, potassium phosphate and the like.
  • a plurality of groups appropriately selected from R 1 , R 2 , R 3 and R 4 are connected to each other to form an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. You may form the heterocyclic ring to contain. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • a plurality of groups contained in R 1 may be connected to each other to form a ring on R 1 . The same applies when any of R 2 , R 3 , or R 4 contains a plurality of groups.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 1 to 6 carbon atoms, a carbon number of 3 Represents a branched acyclic alkyl group having 6 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
  • R 5 and R 6 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur. At this time, the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • R 5 and R 6 are in the vicinity of the metal M and interact with M sterically and / or electronically. In order to exert such an effect, R 5 and R 6 are preferably bulky. Specific examples of preferable R 5 and R 6 include an isobutyl group, a t-butyl group, a cyclohexyl group, a neopentyl group, and a pentan-3-yl group. Among these, a t-butyl group is more preferable.
  • Heteroatoms used for R 5 and R 6 include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, halogen, and boron. Of these heteroatoms, fluorine and chlorine are preferred. Examples of the group containing these heteroatoms include an oxygen group, an alkoxy group, an aryloxy group, an acyl group, and an ester group, and examples of the nitrogen-containing group include an amino group and an amide group, and a sulfur-containing group.
  • the phosphorus-containing substituent includes a phosphino group
  • the selenium-containing group includes a selenyl group
  • the silicon-containing group includes a trialkylsilyl group
  • Examples include a dialkylarylsilyl group and an alkyldiarylsilyl group.
  • the fluorine-containing group include a fluoroalkyl group and a fluoroaryl group.
  • the boron-containing group include an alkylboron group and an arylboron group. Of these heteroatom-containing groups, an alkoxy group or an aryloxy group is most preferable.
  • heteroatom contained in the hetero atom-containing group described above one capable of coordinating with a transition metal is preferable.
  • Specific examples of the heteroatom-containing group containing a heteroatom that can be coordinated to such a transition metal include the following. That is, as an oxygen-containing group, alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group, phenoxy group, p-methylphenoxy group, p-methoxyphenoxy group
  • aryl groups such as aryloxy groups, acetyl groups, benzoyl groups, and other acyl groups, acetoxy groups, carboxyethyl groups, carboxy t-butyl groups, carboxyphenyl groups, and the like.
  • nitrogen-containing group examples include dialkylamino groups such as a dimethylamino group, a diethylamino group, a di-n-propylamino group, and a cyclohexylamino group.
  • sulfur-containing group examples include thioalkoxy groups such as thiomethoxy group, thioethoxy group, thio-n-propoxy group, thioisopropoxy group, thio-n-butoxy group, thio-t-butoxy group, and thiophenoxy group, p-methylthio And thioaryloxy groups such as phenoxy group and p-methoxythiophenoxy group.
  • Examples of the phosphorus-containing substituent include dialkylphosphino groups such as dimethylphosphino group, diethylphosphino group, di-n-propylphosphino group, and cyclohexylphosphino group.
  • Examples of the selenium-containing group include selenyl groups such as a methylselenyl group, an ethylselenyl group, an n-propylselenyl group, an n-butylselenyl group, a t-butylselenyl group, and a phenylselenyl group.
  • E 1 represents phosphorus, arsenic or antimony. Among these, it is preferred that E 1 is phosphorus.
  • X 1 represents oxygen or sulfur. Among these, X 1 is preferably oxygen.
  • Z represents hydrogen or a leaving group. Specific examples of Z include a hydrogen atom, an R 9 SO 2 group (where R 9 is as described above), and a CF 3 SO 2 group. m represents the valence of Z.
  • any counter cation can be used as long as it does not inhibit the reaction with the transition metal compound in the present disclosure.
  • the counter cation include ammonium, quaternary ammonium or phosphonium, and metal ions of Groups 1 to 14 of the periodic table.
  • NH 4 + , R 9 4 N + (wherein R 9 is as described above, and four R 9 may be the same or different. The same shall apply hereinafter), R. 9 4 P + , Li + , Na + , K + , Mg 2+ , Ca 2+ , and Al 3+ , and more preferably R 9 4 N + , Li + , Na + , and K + .
  • the compounds represented by the general formulas [I] and [II] can be synthesized based on a known synthesis method.
  • R 1 to R 6 , E 1 and X 1 are as described above.
  • the main skeleton containing a benzene ring and these substituents (R 1 to R 6 , E 1 , X 1 ) has a common complex structure.
  • M, R 7 and L 1 in the general formula [III] will be described.
  • M is a transition metal belonging to Group 9, 10 or 11 of the periodic table.
  • M is preferably group 10 nickel, palladium, platinum and group 9 cobalt, rhodium and group 11 copper, more preferably group 10 nickel, palladium, platinum, most preferably group 10 Nickel or palladium.
  • the valence of M is preferably divalent.
  • the valence of M means a formal oxidation number used in organometallic chemistry. That is, when an electron pair in a bond involving an element is assigned to an element having a high electronegativity, the number of charges remaining on the atom of the element is indicated.
  • E 1 is phosphorus
  • X 1 is oxygen
  • M is nickel
  • R 7 is a phenyl group
  • L 1 is pyridine
  • nickel is phosphorus
  • oxygen In the case where a bond is formed with carbon of the phenyl group and nitrogen of pyridine, the formal oxidation number of nickel, that is, the valence of nickel is divalent. This is because, based on the above definition, in these bonds, the electron pair is assigned to phosphorus, oxygen, carbon, and nitrogen, which have a higher electronegativity than nickel, and the charges are 0 for phosphorus, ⁇ 1 for oxygen, and phenyl.
  • the group is -1, the pyridine is 0, and the complex is electrically neutral as a whole, so that the charge remaining on the nickel is +2.
  • the divalent transition metal for example, nickel (II), palladium (II), platinum (II), and cobalt (II) are preferable, and copper (I) or rhodium (III) is also preferable other than divalent.
  • R 7 represents a hydrocarbon group having 1 to 20 carbon atoms which may have a hydrogen atom or a group selected from the group consisting of a heteroatom and a group containing a heteroatom.
  • the polymerization or copolymerization reaction in the present disclosure is considered to be initiated by inserting the component (a) or component (b) in the present disclosure into the bond between M and R 7 . Therefore, if R 7 has too many carbon atoms, this initiation reaction tends to be inhibited. Therefore, as preferred R 7 , the number of carbon atoms excluding the number of carbon atoms contained in the substituent is 1 to 16, and more preferably the number of carbon atoms is 1 to 10.
  • R 7 examples include hydride group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-hexyl group, n-octyl group, n-decyl group, Examples thereof include n-dodecyl group, cyclopentyl group, cyclohexyl group, benzyl group, phenyl group, p-methylphenyl group, trimethylsilyl group, triethylsilyl group, triphenylsilyl group and the like.
  • L 1 represents a ligand coordinated to M.
  • the ligand L 1 in the present disclosure is a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen, and sulfur as atoms capable of coordination bonding.
  • L 1 a hydrocarbon compound having a carbon-carbon unsaturated bond capable of coordinating to the transition metal (which may contain a hetero atom) can also be used.
  • L 1 has 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms.
  • L 1 coordinated to M in the general formula [III] a compound having no charge is preferable.
  • Preferred L 1 in the present disclosure includes cyclic unsaturated hydrocarbons, phosphines, pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, Examples include alcohols, amides, aliphatic esters, aromatic esters, amines, and the like. More preferable L 1 includes cyclic olefins, phosphines, pyridines, cyclic ethers, aliphatic esters, aromatic esters, and particularly preferable L 1 includes trialkylphosphine, pyridine, lutidine (dimethylpyridine).
  • R 7 and L 1 may be bonded to each other to form a ring.
  • An example of such is the cyclooct-1-enyl group, which is also a preferred embodiment in the present disclosure.
  • transition metal compound used in the present disclosure one that can react with the compound represented by the general formula [I] or [II] to form a complex having a polymerization ability is used. These are sometimes called precursors (precursors).
  • precursors precursors
  • the transition metal compound containing nickel, bis (1,5-cyclooctadiene) nickel (0) a complex represented by the general formula: Ni (CH 2 CR 13 CH 2 ) 2 [wherein R 13 is , A hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 30 carbon atoms which may contain a hetero atom, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2-y (R 9 ) y , CN, NHR 8 , N (R 8 ) 2 , Si (OR 9
  • NiR 13 2 L 1 2 in complex represented (wherein R 13, L 1 are as described above), or the like can be used.
  • the general formula: MR 13 p L 1 q (where M is a Group 9, 10 or 11 transition metal) , R 13 and L 1 are as described herein, and p and q are integers of 0 or more that satisfy the valence of M.).
  • transition metal compounds those preferably used are nickel (0) bis (1,5-cyclooctadiene), NiPhCl (PEt 3 ) 2 , NiPhCl (PPh 3 ) 2, NiPhCl (TMEDA) (hereinafter, TMEDA represents tetramethylethylenediamine.),
  • an organic solvent such as toluene and benzene
  • Ni (COD) 2 nickel (0)
  • the components constituting the transition metal compound, other than the transition metal in the compound are replaced by the portion other than Z in the general formula [I] or the compound of the general formula [II]
  • a metal complex represented by the general formula [III] of the present disclosure is formed.
  • This substitution reaction preferably proceeds quantitatively, but may not proceed completely in some cases.
  • the general formula [I], [II] and other components derived from the transition metal compound coexist, but the polymerization reaction or copolymerization reaction of the present disclosure
  • These other components may or may not be removed during the process. Generally, it is preferable to remove these other components because high activity can be obtained.
  • L 1 may be allowed to coexist L 1 according to the present disclosure.
  • nickel or palladium is used as M according to the present disclosure
  • the stability of the purified complex of the general formula [III] may be increased by allowing Lewis basic L 1 to coexist in the system.
  • L 1 is preferably allowed to coexist as long as L 1 does not inhibit the polymerization reaction or copolymerization reaction of the present disclosure.
  • the reaction is carried out in advance in a container separate from the reactor used for the polymerization of ⁇ -olefin and the copolymerization of ⁇ -olefin and (meth) acrylic acid ester.
  • the complex of III] may be subjected to polymerization of ⁇ -olefin, copolymerization of ⁇ -olefin and (meth) acrylic acid ester, or the reaction may be performed in the presence of these monomers.
  • the reaction may be performed in a reactor used for polymerization of ⁇ -olefin or copolymerization of ⁇ -olefin and (meth) acrylate. At this time, these monomers may exist or may not exist.
  • a single component may respectively be used and multiple types of components may be used together, respectively. Particularly, for the purpose of widening the molecular weight distribution and the comonomer content distribution, a combination of these plural types is useful.
  • a metal complex represented by the general formula [III] can be produced by contacting a transition metal compound containing a transition metal belonging to the group.
  • the olefin polymerization catalyst component according to the second embodiment of the present disclosure includes the metal complex or the metal complex obtained by the production method.
  • the metal complex represented by the general formula [III] can be used as a catalyst component for polymerization or copolymerization.
  • the metal complex represented by the general formula [III] can be formed by the reaction of the general formula [I] or [II] and the transition metal complex component.
  • an isolated one may be used, or one supported on a carrier may be used.
  • the reaction may be performed in the presence or absence of these monomers in the reactor used for the polymerization of the supported ⁇ -olefin or the copolymerization of the ⁇ -olefin and the (meth) acrylic acid ester. You may carry out in another container.
  • any carrier can be used as long as the gist of the present disclosure is not impaired.
  • inorganic oxides and polymer carriers can be preferably used. Specific examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, or a mixture thereof, and SiO 2 —Al 2 O 3.
  • SiO 2 —V 2 O 5 , SiO 2 —TiO 2 , SiO 2 —MgO, SiO 2 —Cr 2 O 3 and other mixed oxides can also be used, inorganic silicate, polyethylene carrier, polypropylene carrier, A polystyrene carrier, polyacrylic acid carrier, polymethacrylic acid carrier, polyacrylic acid ester carrier, polyester carrier, polyamide carrier, polyimide carrier and the like can be used. These carriers are not particularly limited in particle size, particle size distribution, pore volume, specific surface area, etc., and any one can be used.
  • clay, clay mineral, zeolite, diatomaceous earth, etc. can be used as the inorganic silicate.
  • a synthetic product may be used for these, and the mineral produced naturally may be used.
  • Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite. Stone group, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, etc.
  • Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer.
  • Examples of the artificial compound include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic teniolite.
  • kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as sauconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite
  • montmorillonite sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic Taeniolite.
  • These carriers may be used as they are, but may be treated with hydrochloric acid, nitric acid, sulfuric acid, etc. and / or LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti ( Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3 may be performed.
  • Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3
  • the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • shape control such as pulverization and granulation and drying treatment may be performed.
  • the olefin polymerization catalyst according to the second embodiment of the present disclosure is characterized by including the following components (A) and (B), and (C) as necessary.
  • Component (A) is the above metal complex or a metal complex obtained by the above production method, and only one type of metal complex may be used or two or more types of metal complexes may be used in combination.
  • An organic aluminum oxy compound is mentioned as one of the components (B).
  • the organoaluminum oxy compound has Al—O—Al bonds in the molecule, and the number of bonds is usually in the range of 1 to 100, preferably 1 to 50.
  • Such an organoaluminum oxy compound is usually a product obtained by reacting an organoaluminum compound with water. The reaction between organoaluminum and water is usually carried out in an inert hydrocarbon (solvent).
  • inert hydrocarbon aliphatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene and xylene, alicyclic hydrocarbons and aromatic hydrocarbons can be used. Preference is given to using aromatic hydrocarbons.
  • organoaluminum compound used for the preparation of the organoaluminum oxy compound any compound represented by the following general formula can be used, but trialkylaluminum is preferably used.
  • R x represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or aralkyl group having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, and X 3 represents a hydrogen atom or a halogen atom.
  • T represents an integer of 1 ⁇ t ⁇ 3.
  • the alkyl group of the trialkylaluminum may be any of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, etc.
  • An isobutyl group is preferable, and a methyl group is particularly preferable.
  • Two or more of the above organoaluminum compounds can be used in combination.
  • the reaction ratio between water and the organoaluminum compound is preferably 0.25 / 1 to 1.2 / 1, particularly preferably 0.5 / 1 to 1/1, and the reaction temperature is Usually, it is in the range of ⁇ 70 to 100 ° C., preferably ⁇ 20 to 20 ° C.
  • the reaction time is usually selected in the range of 5 minutes to 24 hours, preferably 10 minutes to 5 hours.
  • water required for the reaction not only mere water but also crystal water contained in copper sulfate hydrate, aluminum sulfate hydrate and the like and components capable of generating water in the reaction system can be used.
  • organoaluminum oxy compounds described above those obtained by reacting alkylaluminum with water are usually called aluminoxanes, particularly methylaluminoxane (including those substantially consisting of methylaluminoxane (MAO)). Is suitable as an organoaluminum oxy compound.
  • a solid dry methylaluminoxane (DMAO) obtained by distilling off the MAO solution is also suitable.
  • DMAO solid dry methylaluminoxane
  • two or more of the aforementioned organoaluminum oxy compounds may be used in combination, and a solution in which the organoaluminum oxy compound is dissolved or dispersed in the above-described inert hydrocarbon solvent. You may use.
  • an ion exchange layered silicate is mentioned as a specific example of a component (B).
  • An ion-exchange layered silicate (hereinafter, sometimes simply referred to as “silicate”) has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other and have a binding force.
  • silicate ion-exchange layered silicate
  • Various known silicates are known, and are specifically described in Shiramizu Haruo "Clay Mineralogy" Asakura Shoten (1995).
  • what is preferably used as the component (B) belongs to the smectite group, and specifically includes montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stevensite and the like.
  • montmorillonite is preferable from the viewpoint of increasing the polymerization activity and molecular weight of the copolymer portion.
  • silicates are naturally produced mainly as the main component of clay minerals, they often contain impurities (such as quartz and cristobalite) other than ion-exchanged layered silicates.
  • the smectite group silicate may contain impurities.
  • the silicate may be subjected to acid treatment and / or salt treatment. In the treatment, the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • component (B) a mixture of the organoaluminum oxy compound and an ion-exchange layered silicate can be used. Furthermore, each may be used alone or in combination of two or more.
  • organoaluminum compound used as the component (C) is represented by the following general formula.
  • Al (R p ) a X (3-a) In the general formula, R p represents a hydrocarbon group having 1 to 20 carbon atoms, X represents hydrogen, halogen, an alkoxy group, or a siloxy group, and a represents a number greater than 0 and 3 or less.
  • organoaluminum compounds represented by the general formula include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, halogen or alkoxy such as diethylaluminum monochloride, diethylaluminum monomethoxide An alkyl aluminum is mentioned.
  • triisobutylaluminum is preferred.
  • Two or more of the above organoaluminum compounds may be used in combination.
  • the above aluminum compound may be modified with alcohol, phenol or the like. Examples of these modifiers include methanol, ethanol, 1-propanol, isopropanol, butanol, phenol, 2,6-dimethylphenol, 2,6-di-t-butylphenol, and preferred specific examples include 2,6. -Dimethylphenol, 2,6-di-t-butylphenol.
  • the method of contacting the components (A), (B), and (C) as necessary is not particularly limited. Various methods can be illustrated.
  • component (I) Method of adding component (C) after contacting component (A) and component (B) (ii) After contacting component (A) and component (C), component (B) (Iii) Method of adding component (A) after contacting component (B) and component (C) (iv) Contacting each component (A), (B), (C) simultaneously How to make.
  • different types of components may be used as a mixture in each component, or the components may be contacted in different orders. This contact may be performed not only at the time of catalyst preparation but also at the time of prepolymerization with olefin or at the time of polymerization of olefin.
  • the component (B) and the component (C) may be contacted, and then the mixture of the component (A) and the component (C) may be added, and the components may be divided and brought into contact with each component.
  • the contact of each of the components (A), (B), and (C) is preferably performed in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, and xylene in an inert gas such as nitrogen.
  • the contact can be performed at a temperature between ⁇ 20 ° C. and the boiling point of the solvent, and is preferably performed at a temperature between room temperature and the boiling point of the solvent.
  • One embodiment of the method for producing an ⁇ -olefin polymer according to the second embodiment of the present disclosure includes: (a) polymerizing or co-polymerizing ⁇ -olefin in the presence of the polymerization catalyst. Polymerize.
  • Component (a) in the present disclosure is an ⁇ -olefin represented by the general formula: CH 2 ⁇ CHR 10 .
  • R 10 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond. When the number of carbon atoms in R 10 is greater than 20, sufficient polymerization activity tends not to be expressed.
  • a preferable component (a) includes an ⁇ -olefin in which R 10 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. More preferable component (a) is ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinyl. Examples thereof include cyclohexene and styrene.
  • a single component (a) may be used, or a plurality of components (a) may be used in combination.
  • the (meth) acrylic acid ester monomer in the present disclosure is represented by the general formula: CH 2 ⁇ C (R 11 ) CO 2 (R 12 ).
  • R 11 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • R 12 is a hydrocarbon group having 1 to 30 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • a hetero atom may be contained at any position in R 12 .
  • R 11 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • preferred (meth) acrylic acid esters are those in which R 11 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • More preferable (meth) acrylic acid ester monomers include methacrylic acid esters in which R 11 is a methyl group or acrylic acid esters in which R 11 is a hydrogen atom.
  • R 12 has 1 to 30 carbon atoms, but R 12 preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • R 12 examples include oxygen, sulfur, selenium, phosphorus, nitrogen, silicon, fluorine, and boron. Of these heteroatoms, oxygen, silicon and fluorine are preferred, and oxygen is more preferred. R 12 preferably does not contain a hetero atom.
  • (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
  • the vinyl monomer in the present disclosure is a vinyl monomer having a polar group such as halogen-containing, nitrogen-containing, oxygen-containing or sulfur-containing, particularly halogen, hydroxyl group, amino group, nitro group, carboxyl group, formyl group, ester group, epoxy group. , A vinyl monomer containing a nitrile group or the like.
  • 3-buten-1-ol, 10-undecenoic acid ethyl, 10-undecen-1-ol, and triethoxyvinylsilane are particularly preferable.
  • allyl monomer in the present disclosure examples include an allyl monomer having 3 carbon atoms (propenyl monomer) and an allyl monomer having an allyl group having 4 or more carbon atoms.
  • the allyl monomer is an allyl monomer having a polar group such as halogen-containing, nitrogen-containing, oxygen-containing or sulfur-containing, particularly halogen, hydroxyl group, amino group, nitro group, carboxyl group, formyl group, ester group, epoxy group, nitrile group. Is a vinyl monomer containing the like.
  • Preferred examples include allyl acetate, allyl alcohol, allylamine, N-allylaniline, Nt-butoxycarbonyl-N-allylamine, N-benzyloxycarbonyl-N-allylamine, N-allyl-N-benzylamine, allyl chloride. , Allyl bromide, allyl ether, diallyl ether and the like. Among these, allyl acetate and allyl alcohol are particularly preferable, and allyl acetate, allyl ether, and diallyl ether are more preferable.
  • the polymerization reaction of the present disclosure includes propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, liquids such as methylcyclohexane, liquids such as liquefied ⁇ -olefins, diethyl ether,
  • the reaction is carried out in the presence or absence of a polar solvent such as ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like.
  • the above-mentioned hydrocarbon solvent and ionic liquid are more preferable.
  • the polymerization reaction can be performed in the presence or absence of a known additive.
  • a polymerization inhibitor that inhibits radical polymerization and an additive that has an action of stabilizing the produced copolymer are preferable.
  • preferable additives include quinone derivatives and hindered phenol derivatives. Specifically, monomethyl ether hydroquinone, 2,6-di-t-butyl 4-methylphenol (BHT), reaction product of trimethylaluminum and BHT, reaction product of alkoxide of tetravalent titanium and BHT, etc. Can be used.
  • BHT 2,6-di-t-butyl 4-methylphenol
  • reaction product of trimethylaluminum and BHT reaction product of alkoxide of tetravalent titanium and BHT, etc.
  • inorganic and / or organic fillers may be used and polymerization may be performed in the presence of these fillers.
  • L 1 or ionic liquid according to the present disclosure may be used as an additive.
  • a preferred additive in the present disclosure includes a Lewis base.
  • a Lewis base By selecting an appropriate Lewis base, the activity, molecular weight, and copolymerizability of the acrylate ester can be improved.
  • the amount of the Lewis base is 0.0001 equivalent to 1000 equivalents, preferably 0.1 equivalents to 100 equivalents, more preferably 0.3 equivalents, relative to the transition metal M in the catalyst component present in the polymerization system. ⁇ 30 equivalents.
  • limiting in particular about the method of adding a Lewis base to a polymerization system Arbitrary methods can be used. For example, it may be added in a mixture with the catalyst component of the present disclosure, may be added in a mixture with a monomer, or may be added to the polymerization system independently of the catalyst component or the monomer.
  • a plurality of Lewis bases may be used in combination. Further, may be used the same Lewis base as L 1 according to the present disclosure, it may be different.
  • Lewis bases include aromatic amines, aliphatic amines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitriles, aryl nitriles, alcohols, amides, aliphatic esters , Aromatic esters, phosphates, phosphites, thiophenes, thianthrenes, thiazoles, oxazoles, morpholines, cyclic unsaturated hydrocarbons, and the like.
  • Lewis bases are aromatic amines, aliphatic amines, cyclic ethers, aliphatic esters, aromatic esters, and among them, preferred Lewis bases are pyridine derivatives, pyrimidine derivatives, piperidine. Derivatives, imidazole derivatives, aniline derivatives, piperidine derivatives, triazine derivatives, pyrrole derivatives, furan derivatives.
  • Lewis base compounds include pyridine, pentafluoropyridine, 2,6-lutidine, 2,4-lutidine, 3,5-lutidine, pyrimidine, N, N-dimethylaminopyridine, N-methylimidazole, 2, 2'-bipyridine, aniline, piperidine, 1,3,5-triazine, 2,4,6-tris (trifluoromethyl) -1,3,5-triazine, 2,4,6-tris (2-pyridyl) -S-triazine, quinoline, 8-methylquinoline, phenazine, 1,10-phenanthroline, N-methylpyrrole, 1,8-diazabicyclo- [5.4.0] -undec-7-ene, 1,4 -Diazabicyclo- [2,2,2] -octane, triethylamine, benzonitrile, picoline, triphenylamine, N-methyl-2-pyrrolide , 4-methylmorpholine, benzo
  • polymerization type Slurry polymerization in which at least a part of the generated polymer in the medium becomes a slurry, bulk polymerization using the liquefied monomer itself as a medium, gas phase polymerization performed in a vaporized monomer, or a polymer generated in a monomer liquefied at high temperature and high pressure
  • High-pressure ionic polymerization in which at least a part of the polymer is dissolved is preferably used.
  • any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used.
  • living polymerization may be sufficient and it may superpose
  • so-called chain transfer agent (CSA) may be used in combination, and chain shuffling or coordinative chain transfer polymerization (CCTP) may be performed.
  • CSA chain transfer agent
  • CCTP coordinative chain transfer polymerization
  • Unreacted monomers and media may be separated from the produced copolymer and recycled. In recycling, these monomers and media may be purified and reused, or may be reused without purification.
  • a conventionally known method can be used to separate the produced copolymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
  • the polymerization temperature, polymerization pressure, and polymerization time are not particularly limited, but usually, optimum settings can be made in consideration of productivity and process capability from the following ranges. That is, the polymerization temperature is usually ⁇ 20 ° C. to 290 ° C., preferably 0 ° C.
  • the copolymerization pressure is 0.1 MPa to 300 MPa, preferably 0.3 MPa to 250 MPa
  • the polymerization time is 0.1 minutes. It can be selected from the range of ⁇ 10 hours, preferably 0.5 minutes to 7 hours, more preferably 1 minute to 6 hours.
  • polymerization is generally performed under an inert gas atmosphere.
  • a nitrogen, argon or carbon dioxide atmosphere can be used, and a nitrogen atmosphere is preferably used.
  • a small amount of oxygen or air may be mixed.
  • various supply methods can be used depending on the purpose. For example, in the case of batch polymerization, it is possible to take a technique in which a predetermined amount of monomer is supplied to a polymerization reactor in advance and a catalyst is supplied thereto. In this case, an additional monomer or an additional catalyst may be supplied to the polymerization reactor.
  • a method can be used in which a predetermined amount of monomer and catalyst are continuously or intermittently supplied to the polymerization reactor to continuously carry out the polymerization reaction.
  • a method of controlling a copolymer by supplying a plurality of monomers to a reactor and changing the supply ratio thereof can be generally used.
  • Other methods include controlling the copolymer composition using the difference in monomer reactivity ratio due to the difference in catalyst structure, and controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio.
  • a conventionally known method can be used for controlling the molecular weight of the polymer.
  • a method for controlling the molecular weight by controlling the polymerization temperature a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a molecular weight by controlling the ligand structure in the transition metal complex.
  • a chain transfer agent a conventionally known chain transfer agent can be used.
  • hydrogen, metal alkyl, etc. can be used.
  • the molecular weight can be adjusted by controlling the ratio of the component (b) to the component (a) and the concentration of the component (b). is there.
  • the type, number, and arrangement of the hetero atom-containing groups in R 2 and R 3 described above are controlled, and the volume around the metal M is increased.
  • the tendency to increase the molecular weight can be utilized by arranging a high substituent or introducing a hetero atom into R 6 described above.
  • the copolymer obtained by the present disclosure has good paintability, printability, antistatic properties, inorganic filler dispersibility, adhesion to other resins, and adhesion with other resins due to the effects based on the polar groups of the copolymer. Compatibilizing ability is developed. Utilizing such properties, the copolymer of the present disclosure can be used in various applications. For example, it can be used as a film, sheet, adhesive resin, binder, compatibilizing agent, wax, and the like.
  • the compound represented by the general formula [I] or [II] and the groups 9 and 10 of the periodic table such as nickel, palladium, cobalt, copper, or rhodium are used.
  • metal complex [III] metal complex
  • a process for producing a polymer or copolymer of ⁇ -olefin carried out in the presence of the catalyst component, and (a) ⁇ -olefin and (b) (meth) acrylic This is a method for producing a copolymer with an acid ester monomer, a vinyl monomer or an allyl monomer.
  • polymerization is a general term for homopolymerization of one type of monomer and copolymerization of a plurality of types of monomers. ".
  • (meth) acrylic acid ester includes both acrylic acid ester and methacrylic acid ester.
  • Metal Complex includes a compound represented by the following general formula [I] or [II] and a transition metal that includes a transition metal belonging to Group 9, 10 or 11 of the periodic table It can be obtained by contacting with a metal compound.
  • contact means that E 1 in the above general formula [I] or [II] can form a coordination bond with the transition metal and / or X 1 in these general formulas is the above.
  • the compound represented by these general formulas hereinafter, these may be collectively referred to as a phosphophenolate compound
  • the transition metal compound are sufficiently close to each other.
  • the contact of the phosphophenolate compound with the transition metal compound means that these compounds are sufficiently close to each other and these compounds are mixed so that at least one of the two types of bonds can be formed.
  • the conditions for mixing the phosphophenolate compound and the transition metal compound are not particularly limited. These compounds may be mixed directly or using a solvent.
  • the phosphorus phenolate compound becomes a ligand, and therefore the reaction between the phosphorus phenolate compound and the transition metal compound is usually a ligand exchange reaction.
  • the ligand exchange reaction is performed by mixing the phosphophenolate compound and the transition metal compound at room temperature (15 to 30 ° C.). Progresses.
  • the obtained metal complex is more thermodynamically unstable than the transition metal compound, it is preferable to appropriately heat the mixture in order to allow the ligand exchange reaction to proceed sufficiently.
  • Examples of the metal complex obtained by bringing the compound represented by the general formula [I] or [II] into contact with a transition metal compound containing a transition metal belonging to Group 9, 10 or 11 of the periodic table are described later. It is presumed that it has a structure represented by the general formula [III]. However, since the compound represented by the general formula [I] or [II] is a phosphophenolate compound, which is a bidentate ligand, the compound is classified into groups 9, 10, or 11 of the periodic table. When contacted with a transition metal compound containing a transition metal belonging to, a metal complex having a structure other than the structure represented by the general formula [III] may be generated.
  • the metal complex represented by the general formula [III] is a 1: 1 reaction product of a phosphophenolate compound and a transition metal compound. Depending on the type of transition metal, a reaction product having a different composition ratio can be obtained. Is also possible. For example, two or more molecules of the phosphorus phenolate compound may form a complex with one transition metal, or one molecule of the phosphorus phenolate compound may react with two or more transition metals to synthesize a polynuclear complex. Conceivable.
  • such a metal complex having a structure other than the structure represented by the general formula [III] is used for the production of an ⁇ -olefin (co) polymer, similarly to the metal complex represented by the general formula [III]. There is no denying that it is possible.
  • R 1 has a linear alkyl group having 1 to 30 carbon atoms, a branched acyclic alkyl group having 3 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and a side chain having 3 to 30 carbon atoms. And an optionally substituted cycloalkyl group, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an alkylaryl group having 7 to 30 carbon atoms.
  • linear alkyl group branched acyclic alkyl group, cycloalkyl group optionally having a side chain, aryl group, and arylalkyl group.
  • the upper limit of each carbon number of the linear alkyl group, branched acyclic alkyl group, alkenyl group, cycloalkyl group optionally having a side chain, aryl group, arylalkyl group, and alkylaryl group is preferably Is 25, more preferably 20, and even more preferably 15.
  • the linear alkyl group having 1 to 30 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-heptyl group.
  • a straight-chain alkyl group having 1 to 10 carbon atoms such as a group, n-octyl group, n-nonyl group and n-decyl group is more preferred, and a straight-chain alkyl group having 1 to 4 carbon atoms is more preferred.
  • branched acyclic alkyl groups having 3 to 30 carbon atoms include isopropyl group, isobutyl group, tert-butyl group (t-butyl group), sec-butyl group, isopentyl group (3-methylbutyl group).
  • t-pentyl group (1,1-dimethylpropyl group), sec-pentyl group (1-methylbutyl group), 2-methylbutyl group, neopentyl group (2,2-dimethylpropyl group), 1,2-dimethyl group
  • a branched acyclic alkyl group having 3 to 10 carbon atoms such as a propyl group and an isohexyl group (4-methylpentyl group) is more preferable, and a branched acyclic alkyl group having 3 to 8 carbon atoms is more preferable.
  • examples of the alkenyl group having 2 to 30 carbon atoms include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a styryl group, and a cinnamyl group.
  • C3-C8 alkenyl groups such as allyl group, butenyl group, pentenyl group, hexenyl group, and styryl group are preferable, and C4-C8 alkenyl groups such as butenyl group, pentenyl group, hexenyl group, and styryl group are more preferable. preferable.
  • the cycloalkyl group optionally having a side chain having 3 to 30 carbon atoms includes a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a 2-methylcyclopentyl group, a 3-methylcyclopentyl group, Having a side chain having 3 to 10 carbon atoms such as a cyclohexyl group, 4-methylcyclohexyl group, 4-ethylcyclohexyl group, cyclooctyl group, decahydronaphthyl group (bicyclo [4,4,0] decyl group), etc.
  • the aryl group having 6 to 30 carbon atoms includes phenyl group, naphthyl group, azulenyl group, biphenyl group, anthracenyl group, terphenyl group, phenanthrenyl group, triphenylenyl group, chrycenyl group, pyrenyl group, tetracenyl group
  • An aryl group having 6 to 18 carbon atoms such as a group is more preferable, and an aryl group having 6 to 12 carbon atoms is more preferable.
  • the arylalkyl group having 7 to 30 carbon atoms includes 7 carbon atoms such as benzyl group, phenethyl group (2-phenylethyl group), 9-fluorenyl group, naphthylmethyl group, 1-tetralinyl group and the like.
  • An arylalkyl group having 15 to 15 carbon atoms is more preferable, and an arylalkyl group having 7 to 10 carbon atoms is more preferable.
  • the alkylaryl group having 7 to 30 carbon atoms includes tolyl group, xylyl group, ethylphenyl group, propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, heptylphenyl group, octyl group.
  • An alkylaryl group having 7 to 20 carbon atoms such as phenyl group, nonylphenyl group, decylphenyl group, undecylphenyl group, dodecylphenyl group, etc.
  • R 1 is a t-butyl group.
  • R 2 , R 3 and R 4 may each independently have a group selected from the group consisting of (i) hydrogen, (ii) halogen, (iii) a heteroatom and a group containing a heteroatom. It represents a specific group or (iv) a hetero atom-containing substituent.
  • the halogen include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom is preferable.
  • the heteroatom used in (iii) include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, halogen, and boron. Of these heteroatoms, fluorine and chlorine are preferred.
  • the “group containing a heteroatom” used in (iii) include the same groups as (iv) a heteroatom-containing substituent described later.
  • Examples of the “group containing a hetero atom” include an alkoxy group (OR 9 ) and an ester group (CO 2 R 9 ). R 9 is as described later.
  • the total number of carbon atoms of the substituents corresponding to R 2 to R 4 is preferably 1 to 30, more preferably 2 to 25, and further preferably 4 to 20.
  • a specific group optionally having a group selected from the group consisting of a heteroatom and a group containing a heteroatom refers to (iii-A) a straight chain having 1 to 30 carbon atoms.
  • Chain alkyl group branched acyclic alkyl group having 3 to 30 carbon atoms, alkenyl group having 2 to 30 carbon atoms, cycloalkyl group optionally having a side chain having 3 to 30 carbon atoms, 6 to 6 carbon atoms 30 aryl groups, arylalkyl groups having 7 to 30 carbon atoms, and alkylaryl groups having 7 to 30 carbon atoms, (iii-B) each group of (iii-A) has one or more heteroatoms.
  • a substituted group, (iii-C) a group in which each of the groups in (iii-A) is substituted with one or more “groups containing a heteroatom”, and (iii-D)
  • B atom is substituted one or more, and refers to a group in which the "group having a hetero atom" as a substituent 1 or 2 or more.
  • Examples of (iii-C) include an alkyl group substituted with an alkoxy group and an aryl group substituted with an ester group.
  • heteroatom-containing substituent examples include OR 9 , CO 2 R 9 , CO 2 M ′, C (O) N (R 8 ) 2 , C (O) R 9 , SR 9 , SO 2 R 9 , SOR 9 , OSO 2 R 9 , P (O) (OR 9 ) 2-y (R 8 ) y , CN, NHR 9 , N (R 9 ) 2 , Si (OR 8 ) 3-x (R 8 ) x , OSi (OR 8 ) 3-x (R 8 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , P (O) (OR 2 ) 2 M ′, and an epoxy-containing group Point to.
  • R 8 represents hydrogen or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 represents a hydrocarbon group having 1 to 20 carbon atoms.
  • M ′ represents an alkali metal, an alkaline earth metal, ammonium, quaternary ammonium or phosphonium, x represents an integer from 0 to 3, and y represents an integer from 0 to 2.
  • R 2 , R 3, and R 4 are each preferably as follows: (i) hydrogen atom; (ii) fluorine atom, chlorine atom, bromine atom; (iii) methyl group, ethyl group, isopropyl group, butyl group , Phenyl, trifluoromethyl, pentafluorophenyl, naphthyl, anthracenyl; (iv) methoxy, ethoxy, phenoxy, nitrile, trimethylsilyl, triethylsilyl, dimethylphenylsilyl, trimethoxysilyl Group, triethoxysilyl group, trimethylsilyloxy group, trimethoxysiloxy group, cyclohexylamino group, sodium sulfonate, potassium sulfonate, sodium phosphate, potassium phosphate and the like.
  • R 3 is preferably hydrogen, a methyl group or a t-butyl group, and R 3 is more preferably hydrogen or a t-butyl group.
  • a plurality of groups appropriately selected from R 2 , R 3 and R 4 are connected to each other, and a heterocycle containing an alicyclic ring, an aromatic ring, or a heteroatom selected from the group consisting of oxygen, nitrogen and sulfur A ring may be formed.
  • the number of ring members is 5 to 8, and it may or may not have a substituent on the ring.
  • a plurality of groups contained in R 2 may be connected to each other to form a ring on R 2 . The same applies when either R 3 or R 4 contains a plurality of groups.
  • R 5 and R 6 each independently have a heteroatom and a group selected from the group consisting of heteroatom-containing groups, a linear alkyl group having 4 to 6 carbon atoms, a carbon number of 4 A secondary alkyl group having 6 to 6 carbon atoms, a tertiary alkyl group having 4 to 6 carbon atoms, or an alkenyl group having 4 to 6 carbon atoms.
  • the secondary alkyl group and the tertiary alkyl group in the present disclosure both include an alkyl group having an alicyclic ring.
  • R 5 and R 6 are in the vicinity of the metal M and interact with M sterically and / or electronically.
  • R 5 and R 6 preferably have a branched structure within the range of each carbon number.
  • the branched structure here includes a cyclic structure.
  • examples of the linear alkyl group having 4 to 6 carbon atoms include an n-propyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group.
  • a linear alkyl group having a number of 4 to 5 is preferred.
  • examples of the secondary alkyl group having 4 to 6 carbon atoms include isopropyl group, isobutyl group, pentan-2-yl group, pentan-3-yl group, and 3-methyl-2-pentyl.
  • examples of the secondary alkyl group having 4 to 6 carbon atoms include isopropyl group, isobutyl group, pentan-2-yl group, pentan-3-yl group, and 3-methyl-2-pentyl.
  • the tertiary alkyl group having 4 to 6 carbon atoms includes a tert-butyl group (t-butyl group), a t-pentyl group (1,1-dimethylpropyl group), 2- And methyl-2-pentyl group, 3-methyl-3-pentyl group, t-hexyl group (1,1-dimethylbutyl group), 1,2-dimethylcyclobutyl group, 1-methylcyclopentyl group, etc.
  • tertiary alkyl groups having 4 to 5 carbon atoms are preferred.
  • examples of the alkenyl group having 4 to 6 carbon atoms include a butenyl group, a pentenyl group, and a hexenyl group, and among these, an alkenyl group having 4 to 5 carbon atoms is preferable.
  • examples of particularly preferred are tert-butyl group (t-butyl group), t-pentyl group (1,1-dimethylpropyl group), 2-methyl-2-pentyl group, 3-methyl-3- Examples thereof include a pentyl group and a 1-methylcyclopentyl group.
  • it is more preferable that either R 5 or R 6 is a t-butyl group, and it is more preferable that both R 5 and R 6 are t-butyl groups.
  • Heteroatoms used for R 5 and R 6 include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, halogen, and boron. Of these heteroatoms, fluorine and chlorine are preferred. Examples of the group containing these heteroatoms include an oxygen group, an alkoxy group, an aryloxy group, an acyl group, and an ester group, and examples of the nitrogen-containing group include an amino group and an amide group, and a sulfur-containing group.
  • the phosphorus-containing substituent includes a phosphino group
  • the selenium-containing group includes a selenyl group
  • the silicon-containing group includes a trialkylsilyl group
  • Examples include a dialkylarylsilyl group and an alkyldiarylsilyl group.
  • the fluorine-containing group include a fluoroalkyl group and a fluoroaryl group.
  • the boron-containing group include an alkylboron group and an arylboron group. Of these heteroatom-containing groups, an alkoxy group or an aryloxy group is most preferable.
  • heteroatom contained in the hetero atom-containing group described above one capable of coordinating with a transition metal is preferable.
  • Specific examples of the heteroatom-containing group containing a heteroatom that can be coordinated to such a transition metal include the following. That is, as an oxygen-containing group, alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group, phenoxy group, p-methylphenoxy group, p-methoxyphenoxy group
  • aryl groups such as aryloxy groups, acetyl groups, benzoyl groups, and other acyl groups, acetoxy groups, carboxyethyl groups, carboxy t-butyl groups, carboxyphenyl groups, and the like.
  • nitrogen-containing group examples include dialkylamino groups such as a dimethylamino group, a diethylamino group, a di-n-propylamino group, and a cyclohexylamino group.
  • sulfur-containing group examples include thioalkoxy groups such as thiomethoxy group, thioethoxy group, thio-n-propoxy group, thioisopropoxy group, thio-n-butoxy group, thio-t-butoxy group, and thiophenoxy group, p-methylthio And thioaryloxy groups such as phenoxy group and p-methoxythiophenoxy group.
  • Examples of the phosphorus-containing substituent include dialkylphosphino groups such as dimethylphosphino group, diethylphosphino group, di-n-propylphosphino group, and cyclohexylphosphino group.
  • Examples of the selenium-containing group include selenyl groups such as a methylselenyl group, an ethylselenyl group, an n-propylselenyl group, an n-butylselenyl group, a t-butylselenyl group, and a phenylselenyl group.
  • E 1 represents phosphorus, arsenic or antimony. Among these, it is preferred that E 1 is phosphorus.
  • X 1 represents oxygen or sulfur. Among these, X 1 is preferably oxygen.
  • Z represents hydrogen or a leaving group. Specific examples of Z include a hydrogen atom, an R 9 SO 2 group (where R 9 is as described above), and a CF 3 SO 2 group. m represents the valence of Z.
  • any counter cation can be used as long as it does not inhibit the reaction with the transition metal compound in the present disclosure.
  • the counter cation include ammonium, quaternary ammonium or phosphonium, and metal ions of Groups 1 to 14 of the periodic table.
  • NH 4 + , R 9 4 N + (wherein R 9 is as described above, and four R 9 may be the same or different. The same shall apply hereinafter), R. 9 4 P + , Li + , Na + , K + , Mg 2+ , Ca 2+ , and Al 3+ , and more preferably R 9 4 N + , Li + , Na + , and K + .
  • the compounds represented by the general formulas [I] and [II] can be synthesized based on a known synthesis method.
  • R 1 to R 6 , E 1 and X 1 are as described above.
  • the main skeleton containing a benzene ring and these substituents (R 1 to R 6 , E 1 , X 1 ) has a common complex structure.
  • M, R 7 and L 1 in the general formula [III] will be described.
  • M is a transition metal belonging to Group 9, 10 or 11 of the periodic table.
  • M is preferably group 10 nickel, palladium, platinum and group 9 cobalt, rhodium and group 11 copper, more preferably group 10 nickel, palladium, platinum, most preferably group 10 Nickel or palladium.
  • the valence of M is preferably divalent.
  • the valence of M means a formal oxidation number used in organometallic chemistry. That is, when an electron pair in a bond involving an element is assigned to an element having a high electronegativity, the number of charges remaining on the atom of the element is indicated.
  • E 1 is phosphorus
  • X 1 is oxygen
  • M nickel
  • R 7 is a phenyl group
  • L 1 is pyridine
  • nickel is phosphorus
  • oxygen a phenyl group carbon
  • the formal oxidation number of nickel that is, the valence of nickel is divalent.
  • the electron pair is assigned to phosphorus, oxygen, carbon, and nitrogen, which have a higher electronegativity than nickel, and the charges are 0 for phosphorus, ⁇ 1 for oxygen, and phenyl.
  • the group is -1, the pyridine is 0, and the complex is electrically neutral as a whole, so that the charge remaining on the nickel is +2.
  • the divalent transition metal for example, nickel (II), palladium (II), platinum (II), and cobalt (II) are preferable, and copper (I) or rhodium (III) is also preferable other than divalent.
  • R 7 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a group selected from the group consisting of a hetero atom and a group containing a hetero atom.
  • the polymerization or copolymerization reaction in the present disclosure is considered to be initiated by inserting the component (a) or component (b) in the present disclosure into the bond between M and R 7 . Therefore, if R 7 has too many carbon atoms, this initiation reaction tends to be inhibited. Therefore, as preferred R 7 , the number of carbon atoms excluding the number of carbon atoms contained in the substituent is 1 to 16, and more preferably the number of carbon atoms is 1 to 10.
  • R 7 examples include hydride group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-hexyl group, n-octyl group, n-decyl group, Examples thereof include n-dodecyl group, cyclopentyl group, cyclohexyl group, benzyl group, phenyl group, p-methylphenyl group, trimethylsilyl group, triethylsilyl group, triphenylsilyl group and the like.
  • L 1 represents a ligand coordinated to M.
  • the ligand L 1 in the present disclosure is a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen, and sulfur as atoms capable of coordination bonding.
  • L 1 a hydrocarbon compound having a carbon-carbon unsaturated bond capable of coordinating to the transition metal (which may contain a hetero atom) can also be used.
  • L 1 has 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms.
  • L 1 coordinated to M in the general formula [III] a compound having no charge is preferable.
  • Preferred L 1 in the present disclosure includes cyclic unsaturated hydrocarbons, phosphines, pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, Examples include alcohols, amides, aliphatic esters, aromatic esters, amines, and the like. More preferable L 1 includes cyclic olefins, phosphines, pyridines, cyclic ethers, aliphatic esters, aromatic esters, and particularly preferable L 1 includes trialkylphosphine, pyridine, lutidine (dimethylpyridine).
  • R 7 and L 1 may be bonded to each other to form a ring.
  • An example of such is the cyclooct-1-enyl group, which is also a preferred embodiment in the present disclosure.
  • the compound of this structural formula is (2- (di-t-butylphosphanyl) -6-t-butylphenylphenolate) ((1,4,5- ⁇ ) -4-cycloocten-1-yl) nickel (II).
  • transition metal compound used in the present disclosure one that can react with the compound represented by the general formula [I] or [II] to form a complex having a polymerization ability is used. These are sometimes called precursors (precursors).
  • precursors precursors
  • the transition metal compound containing nickel, bis (1,5-cyclooctadiene) nickel (0) a complex represented by the general formula: Ni (CH 2 CR 13 CH 2 ) 2 [wherein R 13 is , A hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 30 carbon atoms which may contain a hetero atom, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2-y (R 9 ) y , CN, NHR 8 , N (R 8 ) 2 , Si (OR 9
  • NiR 13 2 L 1 2 in complex represented (wherein R 13, L 1 are as described above), or the like can be used.
  • the general formula: MR 13 p L 1 q (where M is a Group 9, 10 or 11 transition metal) , R 13 and L 1 are as described herein, and p and q are integers of 0 or more that satisfy the valence of M.).
  • nickel (0) bis (1,5-cyclooctadiene), NiPhCl (PEt 3 ) 2 , NiPhCl (PPh 3 ) 2, NiPhCl (TMEDA), NiArBr (TMEDA) (where Ar 4- It is fluorophenyl.), Ni (CH 2 CHCH 2 ) 2 , Ni (CH 2 CMeCH 2 ) 2 , Ni (CH 2 SiMe 3 ) 2 (Py) 2 (hereinafter Py represents pyridine), Ni ( CH 2 SiMe 3 ) 2 (Lut) 2 (hereinafter, Lut represents 2,6-lutidine), NiPh 2 (Py) 2 , NiPh 2 (Lut) 2 , Pd (dba) 2 , Pd 2 (dba) 3 , Pd 3 (dba) 4 (where dba represents dibenzylideneacetone), Pd (OCOCH 3 ) 2 , (1,5-cycl Loo
  • an organic solvent such as toluene and benzene
  • Ni (COD) 2 nickel (0)
  • the components constituting the transition metal compound, other than the transition metal in the compound are replaced by the portion other than Z in the general formula [I] or the compound of the general formula [II]
  • a metal complex represented by the general formula [III] of the present disclosure is formed.
  • This substitution reaction preferably proceeds quantitatively, but may not proceed completely in some cases.
  • the general formula [I], [II] and other components derived from the transition metal compound coexist, but the polymerization reaction or copolymerization reaction of the present disclosure
  • These other components may or may not be removed during the process. Generally, it is preferable to remove these other components because high activity can be obtained.
  • L 1 may be allowed to coexist L 1 according to the present disclosure.
  • nickel or palladium is used as M according to the present disclosure
  • the stability of the purified complex of the general formula [III] may be increased by allowing Lewis basic L 1 to coexist in the system.
  • L 1 is preferably allowed to coexist as long as L 1 does not inhibit the polymerization reaction or copolymerization reaction of the present disclosure.
  • the reaction is carried out in advance in a container separate from the reactor used for the polymerization of ⁇ -olefin and the copolymerization of ⁇ -olefin and (meth) acrylic acid ester.
  • the complex of III] may be subjected to polymerization of ⁇ -olefin, copolymerization of ⁇ -olefin and (meth) acrylic acid ester, or the reaction may be performed in the presence of these monomers.
  • the reaction may be performed in a reactor used for polymerization of ⁇ -olefin or copolymerization of ⁇ -olefin and (meth) acrylate. At this time, these monomers may exist or may not exist.
  • a single component may respectively be used and multiple types of components may be used together, respectively. Particularly, for the purpose of widening the molecular weight distribution and the comonomer content distribution, a combination of these plural types is useful.
  • a metal complex represented by the general formula [III] can be produced by contacting a transition metal compound containing a transition metal belonging to the group.
  • the olefin polymerization catalyst component according to the third embodiment of the present disclosure includes the metal complex or the metal complex obtained by the production method.
  • the metal complex represented by the general formula [III] can be used as a catalyst component for polymerization or copolymerization.
  • the metal complex represented by the general formula [III] can be formed by the reaction of the general formula [I] or [II] and the transition metal complex component.
  • an isolated one may be used, or one supported on a carrier may be used.
  • the reaction may be performed in the presence or absence of these monomers in the reactor used for the polymerization of the supported ⁇ -olefin or the copolymerization of the ⁇ -olefin and the (meth) acrylic acid ester. You may carry out in another container.
  • any carrier can be used as long as the gist of the present disclosure is not impaired.
  • inorganic oxides and polymer carriers can be preferably used. Specific examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, or a mixture thereof, and SiO 2 —Al 2 O 3.
  • SiO 2 —V 2 O 5 , SiO 2 —TiO 2 , SiO 2 —MgO, SiO 2 —Cr 2 O 3 and other mixed oxides can also be used, inorganic silicate, polyethylene carrier, polypropylene carrier, A polystyrene carrier, polyacrylic acid carrier, polymethacrylic acid carrier, polyacrylic acid ester carrier, polyester carrier, polyamide carrier, polyimide carrier and the like can be used. These carriers are not particularly limited in particle size, particle size distribution, pore volume, specific surface area, etc., and any one can be used.
  • clay, clay mineral, zeolite, diatomaceous earth, etc. can be used as the inorganic silicate.
  • a synthetic product may be used for these, and the mineral produced naturally may be used.
  • Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite. Stone group, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, etc.
  • Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer.
  • Examples of the artificial compound include synthetic mica, synthetic hectorite, synthetic saponite, and synthetic teniolite.
  • kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as sauconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite
  • montmorillonite sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic Taeniolite.
  • These carriers may be used as they are, but may be treated with hydrochloric acid, nitric acid, sulfuric acid, etc. and / or LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti ( Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3 may be performed.
  • Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3
  • the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • shape control such as pulverization and granulation and drying treatment may be performed.
  • An olefin polymerization catalyst according to the third embodiment of the present disclosure is characterized by including the following components (A) and (B), and (C) as necessary.
  • Component (A) is the above metal complex or a metal complex obtained by the above production method, and only one type of metal complex may be used or two or more types of metal complexes may be used in combination.
  • An organic aluminum oxy compound is mentioned as one of the components (B).
  • the organoaluminum oxy compound has Al—O—Al bonds in the molecule, and the number of bonds is usually in the range of 1 to 100, preferably 1 to 50.
  • Such an organoaluminum oxy compound is usually a product obtained by reacting an organoaluminum compound with water. The reaction between organoaluminum and water is usually carried out in an inert hydrocarbon (solvent).
  • inert hydrocarbon aliphatic hydrocarbons such as pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene and xylene, alicyclic hydrocarbons and aromatic hydrocarbons can be used. Preference is given to using aromatic hydrocarbons.
  • organoaluminum compound used for the preparation of the organoaluminum oxy compound any compound represented by the following general formula can be used, but trialkylaluminum is preferably used.
  • R x represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or aralkyl group having 1 to 18 carbon atoms, preferably 1 to 12 carbon atoms, and X 3 represents a hydrogen atom or a halogen atom.
  • T represents an integer of 1 ⁇ t ⁇ 3.
  • the alkyl group of the trialkylaluminum may be any of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, etc.
  • An isobutyl group is preferable, and a methyl group is particularly preferable.
  • Two or more of the above organoaluminum compounds can be used in combination.
  • the reaction ratio between water and the organoaluminum compound is preferably 0.25 / 1 to 1.2 / 1, particularly preferably 0.5 / 1 to 1/1, and the reaction temperature is Usually, it is in the range of ⁇ 70 to 100 ° C., preferably ⁇ 20 to 20 ° C.
  • the reaction time is usually selected in the range of 5 minutes to 24 hours, preferably 10 minutes to 5 hours.
  • water required for the reaction not only mere water but also crystal water contained in copper sulfate hydrate, aluminum sulfate hydrate and the like and components capable of generating water in the reaction system can be used.
  • organoaluminum oxy compounds described above those obtained by reacting alkylaluminum with water are usually called aluminoxanes, particularly methylaluminoxane (including those substantially consisting of methylaluminoxane (MAO)). Is suitable as an organoaluminum oxy compound.
  • a solid dry methylaluminoxane (DMAO) obtained by distilling off the MAO solution is also suitable.
  • DMAO solid dry methylaluminoxane
  • two or more of the aforementioned organoaluminum oxy compounds may be used in combination, and a solution in which the organoaluminum oxy compound is dissolved or dispersed in the above-described inert hydrocarbon solvent. You may use.
  • an ion exchange layered silicate is mentioned as a specific example of a component (B).
  • An ion-exchange layered silicate (hereinafter, sometimes simply referred to as “silicate”) has a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other and have a binding force.
  • silicate ion-exchange layered silicate
  • Various known silicates are known, and are specifically described in Shiramizu Haruo "Clay Mineralogy" Asakura Shoten (1995).
  • what is preferably used as the component (B) belongs to the smectite group, and specifically includes montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stevensite and the like.
  • montmorillonite is preferable from the viewpoint of increasing the polymerization activity and molecular weight of the copolymer portion.
  • silicates are naturally produced mainly as the main component of clay minerals, they often contain impurities (such as quartz and cristobalite) other than ion-exchanged layered silicates.
  • the smectite group silicate may contain impurities.
  • the silicate may be subjected to acid treatment and / or salt treatment. In the treatment, the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • component (B) a mixture of the organoaluminum oxy compound and an ion-exchange layered silicate can be used. Furthermore, each may be used alone or in combination of two or more.
  • organoaluminum compound used as the component (C) is represented by the following general formula.
  • Al (R p ) a X (3-a) In the general formula, R p represents a hydrocarbon group having 1 to 20 carbon atoms, X represents hydrogen, halogen, an alkoxy group, or a siloxy group, and a represents a number greater than 0 and 3 or less.
  • organoaluminum compounds represented by the general formula include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, halogen or alkoxy such as diethylaluminum monochloride, diethylaluminum monomethoxide An alkyl aluminum is mentioned.
  • triisobutylaluminum is preferred.
  • Two or more of the above organoaluminum compounds may be used in combination.
  • the above aluminum compound may be modified with alcohol, phenol or the like. Examples of these modifiers include methanol, ethanol, 1-propanol, isopropanol, butanol, phenol, 2,6-dimethylphenol, 2,6-di-t-butylphenol, and preferred specific examples include 2,6. -Dimethylphenol, 2,6-di-t-butylphenol.
  • the method of contacting the components (A), (B), and (C) as necessary is not particularly limited. Various methods can be illustrated.
  • component (I) Method of adding component (C) after contacting component (A) and component (B) (ii) After contacting component (A) and component (C), component (B) (Iii) Method of adding component (A) after contacting component (B) and component (C) (iv) Contacting each component (A), (B), (C) simultaneously How to make.
  • different types of components may be used as a mixture in each component, or the components may be contacted in different orders. This contact may be performed not only at the time of catalyst preparation but also at the time of prepolymerization with olefin or at the time of polymerization of olefin.
  • the component (B) and the component (C) may be contacted, and then the mixture of the component (A) and the component (C) may be added, and the components may be divided and brought into contact with each component.
  • the contact of each of the components (A), (B), and (C) is preferably performed in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, and xylene in an inert gas such as nitrogen.
  • the contact can be performed at a temperature between ⁇ 20 ° C. and the boiling point of the solvent, and is preferably performed at a temperature between room temperature and the boiling point of the solvent.
  • One embodiment of the method for producing an ⁇ -olefin polymer according to the third embodiment of the present disclosure includes: (a) polymerizing or co-polymerizing ⁇ -olefin in the presence of the polymerization catalyst. Polymerize.
  • Component (a) in the present disclosure is an ⁇ -olefin represented by the general formula: CH 2 ⁇ CHR 10 .
  • R 10 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond. When the number of carbon atoms in R 10 is greater than 20, sufficient polymerization activity tends not to be expressed.
  • a preferable component (a) includes an ⁇ -olefin in which R 10 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. More preferable component (a) is ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, vinyl. Examples thereof include cyclohexene and styrene. In addition, a single component (a) may be used, or a plurality of components (a) may be used in combination. In the method for producing an ⁇ -olefin polymer and the method for producing an ⁇ -olefin copolymer of the present disclosure, it is particularly preferable that (a) the ⁇ -olefin is propylene.
  • the (meth) acrylic acid ester monomer in the present disclosure is represented by the general formula: CH 2 ⁇ C (R 11 ) CO 2 (R 12 ).
  • R 11 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • R 12 is a hydrocarbon group having 1 to 30 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • a hetero atom may be contained at any position in R 12 .
  • R 11 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • preferred (meth) acrylic acid esters are those in which R 11 is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms.
  • More preferable (meth) acrylic acid ester monomers include methacrylic acid esters in which R 11 is a methyl group or acrylic acid esters in which R 11 is a hydrogen atom.
  • R 12 has 1 to 30 carbon atoms, but R 12 preferably has 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms.
  • R 12 examples include oxygen, sulfur, selenium, phosphorus, nitrogen, silicon, fluorine, and boron. Of these heteroatoms, oxygen, silicon and fluorine are preferred, and oxygen is more preferred. R 12 preferably does not contain a hetero atom.
  • (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
  • the vinyl monomer in the present disclosure is a vinyl monomer having a polar group such as halogen-containing, nitrogen-containing, oxygen-containing or sulfur-containing, particularly halogen, hydroxyl group, amino group, nitro group, carboxyl group, formyl group, ester group, epoxy group. , A vinyl monomer containing a nitrile group or the like.
  • 3-buten-1-ol, 10-undecenoic acid ethyl, and 10-undecen-1-ol are particularly preferable.
  • allyl monomer in the present disclosure examples include an allyl monomer having 3 carbon atoms (propenyl monomer) and an allyl monomer having an allyl group having 4 or more carbon atoms.
  • the allyl monomer is an allyl monomer having a polar group such as halogen-containing, nitrogen-containing, oxygen-containing or sulfur-containing, particularly halogen, hydroxyl group, amino group, nitro group, carboxyl group, formyl group, ester group, epoxy group, nitrile group. Is a vinyl monomer containing the like.
  • Preferred examples include allyl acetate, allyl alcohol, allylamine, N-allylaniline, Nt-butoxycarbonyl-N-allylamine, N-benzyloxycarbonyl-N-allylamine, N-allyl-N-benzylamine, allyl chloride. , Allyl bromide, allyl ether, diallyl ether and the like. Among these, allyl acetate and allyl alcohol are particularly preferable, and allyl acetate, allyl ether, and diallyl ether are more preferable.
  • the polymerization reaction of the present disclosure includes propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, liquids such as methylcyclohexane, liquids such as liquefied ⁇ -olefins, diethyl ether,
  • the reaction is carried out in the presence or absence of a polar solvent such as ethylene glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like.
  • the above-mentioned hydrocarbon solvent and ionic liquid are more preferable.
  • the polymerization reaction can be performed in the presence or absence of a known additive.
  • a polymerization inhibitor that inhibits radical polymerization and an additive that has an action of stabilizing the produced copolymer are preferable.
  • preferable additives include quinone derivatives and hindered phenol derivatives. Specifically, monomethyl ether hydroquinone, 2,6-di-t-butyl 4-methylphenol (BHT), reaction product of trimethylaluminum and BHT, reaction product of alkoxide of tetravalent titanium and BHT, etc. Can be used.
  • BHT 2,6-di-t-butyl 4-methylphenol
  • reaction product of trimethylaluminum and BHT reaction product of alkoxide of tetravalent titanium and BHT, etc.
  • inorganic and / or organic fillers may be used and polymerization may be performed in the presence of these fillers.
  • L 1 or ionic liquid according to the present disclosure may be used as an additive.
  • a preferred additive in the present disclosure includes a Lewis base.
  • a Lewis base By selecting an appropriate Lewis base, the activity, molecular weight, and copolymerizability of the acrylate ester can be improved.
  • the amount of the Lewis base is 0.0001 equivalent to 1000 equivalents, preferably 0.1 equivalents to 100 equivalents, more preferably 0.3 equivalents, relative to the transition metal M in the catalyst component present in the polymerization system. ⁇ 30 equivalents.
  • limiting in particular about the method of adding a Lewis base to a polymerization system Arbitrary methods can be used. For example, it may be added in a mixture with the catalyst component of the present disclosure, may be added in a mixture with a monomer, or may be added to the polymerization system independently of the catalyst component or the monomer.
  • a plurality of Lewis bases may be used in combination. Further, may be used the same Lewis base as L 1 according to the present disclosure, it may be different.
  • Lewis bases include aromatic amines, aliphatic amines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitriles, aryl nitriles, alcohols, amides, aliphatic esters , Aromatic esters, phosphates, phosphites, thiophenes, thianthrenes, thiazoles, oxazoles, morpholines, cyclic unsaturated hydrocarbons, and the like.
  • Lewis bases are aromatic amines, aliphatic amines, cyclic ethers, aliphatic esters, aromatic esters, and among them, preferred Lewis bases are pyridine derivatives, pyrimidine derivatives, piperidine. Derivatives, imidazole derivatives, aniline derivatives, piperidine derivatives, triazine derivatives, pyrrole derivatives, furan derivatives.
  • Lewis base compounds include pyridine, pentafluoropyridine, 2,6-lutidine, 2,4-lutidine, 3,5-lutidine, pyrimidine, N, N-dimethylaminopyridine, N-methylimidazole, 2, 2'-bipyridine, aniline, piperidine, 1,3,5-triazine, 2,4,6-tris (trifluoromethyl) -1,3,5-triazine, 2,4,6-tris (2-pyridyl) -S-triazine, quinoline, 8-methylquinoline, phenazine, 1,10-phenanthroline, N-methylpyrrole, 1,8-diazabicyclo- [5.4.0] -undec-7-ene, 1,4 -Diazabicyclo- [2,2,2] -octane, triethylamine, benzonitrile, picoline, triphenylamine, N-methyl-2-pyrrolide , 4-methylmorpholine, benzo
  • polymerization type Slurry polymerization in which at least a part of the generated polymer in the medium becomes a slurry, bulk polymerization using the liquefied monomer itself as a medium, gas phase polymerization performed in a vaporized monomer, or a polymer generated in a monomer liquefied at high temperature and high pressure
  • High-pressure ionic polymerization in which at least a part of the polymer is dissolved is preferably used.
  • any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used.
  • living polymerization may be sufficient and it may superpose
  • so-called chain transfer agent (CSA) may be used in combination, and chain shuffling or coordinative chain transfer polymerization (CCTP) may be performed.
  • CSA chain transfer agent
  • CCTP coordinative chain transfer polymerization
  • Unreacted monomers and media may be separated from the produced copolymer and recycled. In recycling, these monomers and media may be purified and reused, or may be reused without purification.
  • a conventionally known method can be used to separate the produced copolymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
  • the polymerization temperature, polymerization pressure, and polymerization time are not particularly limited, but usually, optimum settings can be made in consideration of productivity and process capability from the following ranges. That is, the polymerization temperature is usually ⁇ 20 ° C. to 290 ° C., preferably 0 ° C.
  • the copolymerization pressure is 0.1 MPa to 300 MPa, preferably 0.3 MPa to 250 MPa
  • the polymerization time is 0.1 minutes. It can be selected from the range of ⁇ 10 hours, preferably 0.5 minutes to 7 hours, more preferably 1 minute to 6 hours.
  • polymerization is generally performed under an inert gas atmosphere.
  • a nitrogen, argon or carbon dioxide atmosphere can be used, and a nitrogen atmosphere is preferably used.
  • a small amount of oxygen or air may be mixed.
  • various supply methods can be used depending on the purpose. For example, in the case of batch polymerization, it is possible to take a technique in which a predetermined amount of monomer is supplied to a polymerization reactor in advance and a catalyst is supplied thereto. In this case, an additional monomer or an additional catalyst may be supplied to the polymerization reactor.
  • a method can be used in which a predetermined amount of monomer and catalyst are continuously or intermittently supplied to the polymerization reactor to continuously carry out the polymerization reaction.
  • a method of controlling a copolymer by supplying a plurality of monomers to a reactor and changing the supply ratio thereof can be generally used.
  • Other methods include controlling the copolymer composition using the difference in monomer reactivity ratio due to the difference in catalyst structure, and controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio.
  • a conventionally known method can be used for controlling the molecular weight of the polymer.
  • a method for controlling the molecular weight by controlling the polymerization temperature a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a molecular weight by controlling the ligand structure in the transition metal complex.
  • a chain transfer agent a conventionally known chain transfer agent can be used.
  • hydrogen, metal alkyl, etc. can be used.
  • the molecular weight can be adjusted by controlling the ratio of the component (b) to the component (a) and the concentration of the component (b). is there.
  • the type, number, and arrangement of the hetero atom-containing groups in R 2 and R 3 described above are controlled, and the volume around the metal M is increased.
  • the tendency to increase the molecular weight can be utilized by arranging a high substituent or introducing a hetero atom into R 6 described above.
  • the copolymer obtained by the present disclosure has good paintability, printability, antistatic properties, inorganic filler dispersibility, adhesion to other resins, and adhesion with other resins due to the effects based on the polar groups of the copolymer. Compatibilizing ability is developed. Utilizing such properties, the copolymer of the present disclosure can be used in various applications. For example, it can be used as a film, sheet, adhesive resin, binder, compatibilizing agent, wax, and the like.
  • the reaction solution was cooled to room temperature and filtered, and the filtrate was added to 120 mL of a hexane solution of phosphorus trichloride (8.59 g, 62.55 mmol) to obtain a white suspension.
  • the suspension was slowly warmed to room temperature and stirred at 68 ° C. for 16 hours.
  • the reaction solution was filtered, and the filtrate was concentrated under reduced pressure to obtain a pale yellow oily product. Then, it refine
  • the mixed organic layer was washed with 200 mL of brine. Then, it dehydrated with sodium sulfate, filtered, and the crude product was obtained by concentrating a filtrate.
  • the crude product was purified with a silica gel column (developing solution: petroleum ether) to obtain Compound 19 (112.00 g, 576.52 mmol, 86.60%).
  • the mixed organic layer was washed with saturated sodium thiosulfate (50 mL ⁇ 2), dehydrated with sodium sulfate and filtered, and then the filtrate was concentrated to obtain a crude product as a black oil. Then, it refine
  • Ni (COD) 2 43 mg, 0.16 mmol was weighed into another flask and dissolved in toluene (8.0 mL) to prepare a 20 mmol / mL Ni (COD) 2 toluene solution.
  • the resulting solution was yellow and transparent.
  • the obtained Ni (COD) 2 toluene solution 6.2 mL was added to the eggplant flask containing the ligand B-350 to obtain a solution. Then, it stirred at room temperature for 1 hour.
  • Example 1-2 Synthesis of Complex (B-352) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-352 was used instead of ligand B-350.
  • a complex (B-352) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 1-1 except that it was used.
  • Example 1-3 was synthesized complexes (B-350) NIPH complex according (PEt 3) the following scheme of (B-350) NiPh (PEt 3).
  • Ni (COD) 2 (1.57 g, 5.71 mmol) was added to an 80 mL Schlenk tube and dissolved in 10 mL of diethyl ether. The solution was cooled with ice water and triethylphosphine (25 mmol, 1.0 M THF solution) was added. The mixture was warmed to room temperature and stirred for 2 hours. After removing the solvent, the Schlenk tube was transferred to the glove box. 5 mL of hexane was added and filtered through celite. Celite was then washed with 5 mL of hexane. Chlorobenzene (1.10 g, 9.77 mmol) was added to the filtrate, and the mixture was further stirred at room temperature for 4 hours.
  • a Rigaku Saturn 724 CCD diffractometer equipped with a vessel was mounted at -180 ° C.
  • the single crystal was set at a distance of 45 mm from the diffractometer.
  • Diffraction intensity measurement was performed using Mo-K ⁇ radiation monochromatized with graphite.
  • the lattice constant was determined, and reflection data of 720 frames was obtained using the program Crystal Clear. Lorentz correction was performed on the obtained data.
  • the unit crystal of the obtained single crystal was monoclinic and the space group was P2 1 / n.
  • the structure was determined by the direct method using the program SHELXT2014, and the reflection F2 observed by the SHELXL2014 was refined by the full matrix least square method.
  • FIG. 1 is an ORTEP diagram of Complex (B-350) NiPh (PEt 3 ).
  • the obtained complex has the chemical formula C44H53F5NiOP2 and has the planar four-coordinate structure shown in FIG. The ethyl group and 1,2,3,4,5-pentafluorophenyl group on the phosphine were disordered.
  • the distance between Ni and P2 was 2.243 mm, the distance between Ni and O was 1.904 mm, the distance between Ni and P1 was 2.205 mm, and the distance between Ni and the carbon atom on the phenyl group was 1.891 mm.
  • the coordination depression angle of P—Ni—O was 86.8 °.
  • Example 1-4 Synthesis of Complex (B-415) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-415 was used instead of ligand B-350.
  • a complex (B-415) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 1-1 except that it was used.
  • Example 1-5 Synthesis of Complex (B-414) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-414 was used instead of ligand B-350.
  • a complex (B-414) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 1-1 except that it was used.
  • Example 1-6 Synthesis of Complex (B-439) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-439 was used instead of ligand B-350.
  • a complex (B-439) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 1-1 except that it was used.
  • Example 1-7 Synthesis of Complex (B-412) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-412 was used instead of ligand B-350.
  • a complex (B-412) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 1-1 except that it was used.
  • Example 1-1 Synthesis of Complex (B-348) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-348 was used instead of ligand B-350.
  • a complex (B-348) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 1-1 except that it was used.
  • Example 1-1A Propylene polymerization or copolymerization
  • Propylene polymerization using the complex of Example 1-1 Propylene (500 mL) was introduced into an induction-stirring autoclave having an internal volume of 2 L.
  • the complex of Example 1-1 ((B-350) Ni ((1,4,5- ⁇ ) -COE)) was introduced into the autoclave with nitrogen gas.
  • the temperature of the autoclave was raised to 50 ° C. while stirring the mixture. Polymerization was carried out for a predetermined time after reaching 50 ° C. After removing unreacted monomers, the autoclave was opened and heat-dried to obtain a polymer.
  • Example 1-2A Propylene polymerization using the complex of Example 1-2
  • the complex ((B-350) Ni ((1,4,5- ⁇ Example 1-1A except that the complex of Example 1-2 ((B-352) Ni ((1,4,5- ⁇ ) -COE)) was used instead of) -COE))
  • a polymer was obtained by the same procedure.
  • Example 1-3A Propylene polymerization using the complex of Example 1-3
  • a 50 mL stainless steel autoclave was dried in a 120 ° C. dryer for 3 hours, then assembled, and dried under reduced pressure at 125 ° C. for 2 hours.
  • the complex of Example 1-3 ((B-350) NiPh (PEt 3 )) (5.0 ⁇ mol, 10.0 mL, 0.50 mmol / L toluene solution) and toluene (into an autoclave under argon) 5 mL) and 6 mL of propylene were added. Thereafter, the autoclave was heated to 50 ° C. and stirred for 43 hours.
  • Example 1-4A Propylene Polymerization Using Complex of Example 1-4
  • Example 1-1A the complex of Example 1-1 ((B-350) Ni ((1,4,5- ⁇ Example 1-1A except that the complex of Example 1-4 ((B-415) Ni ((1,4,5- ⁇ ) -COE)) was used instead of) -COE)))
  • a polymer was obtained by the same procedure.
  • Example 1-5A Propylene polymerization using the complex of Example 1-5
  • the complex ((B-350) Ni ((1,4,5- ⁇ Example 1-1A except that the complex of Example 1-5 ((B-414) Ni ((1,4,5- ⁇ ) -COE)) was used in place of) -COE))
  • a polymer was obtained by the same procedure.
  • Example 1-6A Propylene Polymerization Using Complex of Example 1-6
  • Example 1-1A the complex of Example 1-1 ((B-350) Ni ((1,4,5- ⁇ Example 1-1A except that the complex of Example 1-6 ((B-439) Ni ((1,4,5- ⁇ ) -COE)) was used in place of) -COE)))
  • a polymer was obtained by the same procedure.
  • Example 1-7A Propylene polymerization using the complex of Example 1-7 In Example 1-1A, the complex ((B-350) Ni ((1,4,5- ⁇ Example 1-1A except that the complex of Example 1-7 ((B-412) Ni ((1,4,5- ⁇ ) -COE)) was used in place of) -COE))))
  • a polymer was obtained by the same procedure.
  • Example 1-2B Copolymerization Using Complex of Example 1-2
  • Example 1-1A the complex of Example 1-1 ((B-350) Ni ((1,4,5- ⁇ ) -COE)) in place of the complex of Example 1-2 ((B-352) Ni ((1,4,5- ⁇ ) -COE)) and the complex of Example 1-2
  • a copolymer was obtained in the same manner as in Example 1-1A except that ethyl 10-undecenoate was further added to the autoclave after introduction into the autoclave with nitrogen gas.
  • the comonomer content in the copolymer was determined by 1 HNMR measurement to determine the molar ratio of propylene: comonomer and listed in the table as comonomer content mol%.
  • Example 1-2C Copolymerization Using Complex of Example 1-2
  • Example 1-1A the complex of Example 1-1 ((B-350) Ni ((1,4,5- ⁇ ) -COE)) in place of the complex of Example 1-2 ((B-352) Ni ((1,4,5- ⁇ ) -COE)) and the complex of Example 1-2
  • a copolymer was obtained by the same procedure as in Example 1-1A, except that 10-undecene-1-ol was further added to the autoclave after introduction into the autoclave with nitrogen gas.
  • the comonomer content in the copolymer was determined by 1 HNMR measurement to determine the molar ratio of propylene: comonomer and listed in the table as comonomer content mol%.
  • Example 1-1A Propylene Polymerization Using Complex of Comparative Example 1-1
  • Example 1-1A the complex of Example 1-1 ((B-350) Ni ((1,4,5- ⁇ ) -COE)), except that the complex of Comparative Example 1-1 ((B-348) Ni ((1,4,5- ⁇ ) -COE)) was used instead of Example 1-1A According to the procedure, a polymer was obtained.
  • Table 4-1 compares the nickel raw materials and ligands used in the synthesis of the complexes of Examples 1-1 to 1-7 and Comparative Example 1-1.
  • Table 4-2 below summarizes the polymerization conditions and polymerization results of Example 1-1A to Example 1-7A, Example 1-2B to Example 1-2C, and Comparative Example 1-1A.
  • the polymerization activity in Table 4-2 represents the copolymer yield (g) per 1 hour of polymerization time per 1 mol of the complex used in the polymerization.
  • Table 4-2 shows the weight average molecular weight Mw and the molecular weight distribution Mw / Mn as GPC measurement results for the polymer.
  • the amount of copolymerization in Table 4-2 indicates the ratio of the amount of comonomer incorporation in the total monomer amount subjected to polymerization.
  • the metal complexes of the present disclosure using a bulky substituent in R 5 and R 6, as compared with the case R 5 and R 6 is a cyclohexyl group it can be seen that a higher molecular weight polypropylene obtained .
  • the metal complex of the present disclosure is used, the polymerization activity is as good as 4.6 ⁇ 10 2 (g / mol / hr) or more, and the molecular weight distribution Mw / Mn of the obtained polypropylene is 2.2. Fits below.
  • copolymerization of ⁇ -olefin and a polar group-containing monomer can be carried out with good polymerization activity by the metal complex of the present disclosure. Achieved.
  • the metal complex of the present disclosure can provide a higher molecular weight ⁇ -olefin homopolymer than the conventional one, and can achieve copolymerization of the ⁇ -olefin and the polar group-containing monomer with good polymerization activity. It is clear that it has excellent technical significance.
  • Ligand B-349 was synthesized according to the following scheme. In the following chemical formulas, -OMOM represents a methoxymethoxy group (-OCH 2 OCH 3 ).
  • n-butyllithium 2.5M, 29.5 mL, 73.8 mmol
  • hexafluorobenzene (17.2 g, 92.3 mmol) was added at ⁇ 78 ° C., and the mixture was stirred at 10 ° C. for 12 hours.
  • the reaction solution was poured into 50 mL of ice water and extracted with ethyl acetate (100 mL ⁇ 2). The organic phase was dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
  • n-butyllithium (2.5 M, 10.9 mL, 27.2 mmol) was added at 0 ° C., and the mixture was stirred at 0 ° C. for 1 hour.
  • chlorotrimethylsilane (3.54 g, 32.6 mmol, 4.1 mL) was added at ⁇ 78 ° C., and the mixture was stirred at 15 ° C. for 12 hours.
  • the reaction solution was poured into 50 mL of ice water and extracted with ethyl acetate (50 mL ⁇ 2). The organic phase was dried over anhydrous sodium sulfate and concentrated to obtain a crude product.
  • the crude product was purified with a silica gel column (developing solvent, petroleum ether) to obtain colorless oily compound 33b (2.3 g, 6.3 mmol, yield 28.7%).
  • the reaction mixture was quenched by adding 30 mL of water and extracted with ethyl acetate (30 mL ⁇ 3). The organic phase was washed with 15 mL brine, dried over anhydrous sodium sulfate and concentrated to give the crude product.
  • the crude product was purified with a silica gel column (petroleum ether as a developing solvent) to obtain Compound 42 (7.5 g, 17.4 mmol, yield 53.7%).
  • Ni (COD) 2 (40 mg, 0.15 mmol) was weighed into another flask and dissolved in toluene (7.3 mL) to prepare a 20 mmol / mL Ni (COD) 2 toluene solution.
  • the resulting solution was yellow and transparent.
  • the obtained Ni (COD) 2 toluene solution 6.2 mL was added to the eggplant flask containing the ligand B-349 to obtain a solution. Then, it stirred at room temperature for 1 hour.
  • Example 2-2 Synthesis of Complex (B-395) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-395 was used instead of ligand B-349.
  • a complex (B-395) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 2-1, except that it was used.
  • Example 2-3 Synthesis of Complex (B-396) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-396 was used instead of ligand B-349.
  • a complex (B-396) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 2-1, except that it was used.
  • Example 2-4 Synthesis of Complex (B-395) NiPhPy Complex (B-395) NiPhPy was synthesized according to the following scheme.
  • Ligand B-395 53 mg, 0.17 mmol
  • potassium hydride 17 mg, 0.43 mmol
  • 5 mL of diethyl ether was added, and the mixture was stirred for 30 minutes.
  • the reaction mixture was filtered through celite, and the celite was washed with 3 mL of diethyl ether.
  • NiPhCl (TMEDA) (TMEDA: tetramethylethylenediamine) is a non-patent document Marshall, W. et al. J. et al. Grushin, V .; V. Can. J. et al. Chem. 2005, 83, 640 was synthesized with reference.
  • Example 2-5) was synthesized complexes (B-349) NIPH complex according (PEt 3) the following scheme of (B-349) NiPh (PEt 3).
  • Ni (COD) 2 (1.57 g, 5.71 mmol) was added to an 80 mL Schlenk tube and dissolved in 10 mL of diethyl ether. The solution was cooled with ice water and triethylphosphine (25 mmol, 1.0 M THF solution) was added. The mixture was warmed to room temperature and stirred for 2 hours. After removing the solvent, the Schlenk tube was transferred to the glove box. 5 mL of hexane was added and filtered through celite. Celite was then washed with 5 mL of hexane. Chlorobenzene (1.10 g, 9.77 mmol) was added to the filtrate, and the mixture was further stirred at room temperature for 4 hours.
  • Comparative Example 2-1 Synthesis of Complex (B-399) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-399 was used instead of ligand B-349.
  • a complex (B-399) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 2-1, except that it was used.
  • Example 2-1A Propylene polymerization or copolymerization
  • Propylene polymerization using the complex of Example 2-1 Propylene (500 mL) was introduced into an induction-stirring autoclave having an internal volume of 2 L.
  • the complex of Example 2-1 ((B-349) Ni ((1,4,5- ⁇ ) -COE)) was introduced into the autoclave with nitrogen gas.
  • the temperature of the autoclave was raised to 50 ° C. while stirring the mixture. Polymerization was carried out for a predetermined time after reaching 50 ° C. After removing unreacted monomers, the autoclave was opened and heat-dried to obtain a polymer.
  • Example 2-2A Propylene polymerization using the complex of Example 2-2
  • Example 2-1A the complex of Example 2-1 ((B-349) Ni ((1,4,5- ⁇ ) -COE)), except that the complex of Example 2-2 ((B-395) Ni ((1,4,5- ⁇ ) -COE)) was used instead of Example 2-1A According to the procedure, a polymer was obtained.
  • Example 2-3A Propylene polymerization using the complex of Example 2-3
  • Example 2-1A the complex of Example 2-1 ((B-349) Ni ((1,4,5- ⁇ ) -COE)), except that the complex of Example 2-3 ((B-396) Ni ((1,4,5- ⁇ ) -COE)) was used instead of Example 2-1A
  • a polymer was obtained.
  • Example 2-4A Propylene polymerization using the complex of Example 2-4
  • the complex of Example 2-1 ((B-349) Ni ((1,4,5- ⁇ ) -COE)
  • a polymer was obtained in the same manner as in Example 2-1A, except that the complex of Example 2-4 ((B-395) NiPhPy) was used.
  • Example 2-5A Propylene polymerization using the complex of Example 2-5
  • the complex ((B-349) Ni ((1,4,5- ⁇ ) -COE)
  • a polymer was obtained in the same manner as in Example 2-1A, except that the complex of Example 2-5 ((B-349) NiPh (PEt 3 )) was used. .
  • Example 2-2B to Example 2-2D Copolymerization using the complex of Example 2-2
  • the complex ((B-349) Ni ((1 , 4,5- ⁇ ) -COE)) in place of the complex of Example 2-2 ((B-395) Ni ((1,4,5- ⁇ ) -COE))
  • Example 2-2B further triethoxyvinylsilane
  • Example 2-2C ethyl 10-undecenoate
  • 3-buten-1-ol was added to the autoclave.
  • a copolymer was obtained in the same manner as in Example 2-1A, except that (Example 2-2D) was added.
  • the comonomer content in the copolymer was determined by 1 HNMR measurement to determine the molar ratio of ethylene: comonomer and listed in the table as comonomer content mol%.
  • Example 2-4E Copolymerization using the complex of Example 2-4
  • a 50 mL stainless steel autoclave was dried in a dryer at 120 ° C for 3 hours, and then assembled and dried under reduced pressure at 125 ° C for 2 hours.
  • the complex of Example 2-4 ((B-395) NiPhPy) (5.0 ⁇ mol, 10.0 mL, 0.50 mmol / L toluene solution) and toluene (5 mL) were added to the autoclave under argon. It was. Then allyl acetate was added. Thereafter, the autoclave was filled with ethylene 4.0 MPa and stirred at 50 ° C. for 16 hours.
  • comonomer content in the copolymer was determined by 1 HNMR measurement to determine the molar ratio of ethylene: comonomer and listed in the table as comonomer content mol%.
  • Example 2-1A Propylene polymerization using the complex of Comparative Example 2-1
  • Example 2-1A the complex of Example 2-1 ((B-349) Ni ((1,4,5- ⁇ ) -COE)), except that the complex of Comparative Example 2-1 ((B-399) Ni ((1,4,5- ⁇ ) -COE)) was used instead of Example 2-1A According to the procedure, a polymer was obtained.
  • Table 5-1 compares the nickel raw materials and ligands used in the synthesis of the complexes of Examples 2-1 to 2-5 and Comparative Example 2-1.
  • Table 5-2 shows the polymerization conditions and polymerization conditions of Example 2-1A to Example 2-5A, Example 2-2B to Example 2-2D, and Comparative Example 2-1A for polymerization or copolymerization using propylene.
  • the polymerization results are summarized.
  • Table 5-3 summarizes the polymerization conditions and polymerization results of Example 2-4E for copolymerization using ethylene.
  • the polymerization activity in these tables represents the copolymer yield (g) per 1 hour of polymerization time per 1 mol of the complex used for polymerization.
  • the weight average molecular weight Mw and the molecular weight distribution Mw / Mn are listed as GPC measurement results for the polymer.
  • the amount of copolymerization in these tables indicates the ratio of the amount of comonomer incorporation in the total monomer amount subjected to polymerization.
  • Example 2-1A to Example 2-5A in Table 5-2 above in the polypropylene polymerization using the metal complexes of the present disclosure (Example 2-1 to Example 2-5), The polymerization activity is as high as 6.5 ⁇ 10 3 (g / mol / hr) or more, and the molecular weight Mw of the resulting polymer is as large as 4,900 or more.
  • the metal complexes of the present disclosure with a substituent containing a hetero atom in R 1, compared to the case R 1 is hydrogen (Comparative Example 2-1), exhibit high polymerization activity in the polypropylene polymer And higher molecular weight polypropylene is obtained.
  • the metal complex of the present disclosure allows ⁇ -olefin and polar group to be used. Copolymerization with the containing monomer is achieved with good polymerization activity. As described above, the metal complex of the present disclosure provides a higher molecular weight ⁇ -olefin homopolymer with a higher polymerization activity than the conventional one, and the copolymerization of the ⁇ -olefin and the polar group-containing monomer with good polymerization activity. It is clear that it has excellent technical significance.
  • Ni (COD) 2 43 mg, 0.16 mmol was weighed into another flask and dissolved in toluene (8.0 mL) to prepare a 20 mmol / mL Ni (COD) 2 toluene solution. The resulting solution was yellow and transparent. The obtained Ni (COD) 2 toluene solution (7.1 mL) was added to the eggplant flask containing the ligand B-394 to obtain a solution. Then, it stirred at room temperature for 1 hour.
  • Example 3-2 Synthesis of Complex (B-400) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-400 was used instead of ligand B-394.
  • a complex (B-400) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 3-1, except that it was used.
  • Example 3-3 Synthesis of Complex (B-394) Ni (4-Fluorophenyl) Py
  • B-394 Ni (4-Fluorophenyl) Py was synthesized according to the following scheme.
  • Ligand B-394 (100 mg, 0.34 mmol) and potassium hydride (27 mg, 0.68 mmol) were placed in a 15 mL vial in a glove box, 5 mL of diethyl ether was added, and the mixture was stirred at room temperature for 10 minutes. The reaction mixture was filtered through celite, and the celite was washed with 5 mL of diethyl ether.
  • Ni (4-Fluorophenyl) Br (TMEDA) (TMEDA: tetramethylethylenediamine) is a non-patent document Molecules (2014), 19 (9), 13603-13613.
  • Example 3-1 Synthesis of Complex (B-399) Ni ((1,4,5- ⁇ ) -COE)
  • ligand B-399 was used instead of ligand B-394.
  • a complex (B-399) Ni ((1,4,5- ⁇ ) -COE) was synthesized by the same procedure as in Example 3-1, except that it was used.
  • Example 3-4 Propylene polymerization or copolymerization
  • Example 3-1A Propylene polymerization using the complex of Example 3-1 Propylene (500 mL) was introduced into an induction-stirring autoclave having an internal volume of 2 L.
  • the complex of Example 3-1 ((B-394) Ni ((1,4,5- ⁇ ) -COE)) was introduced into the autoclave with nitrogen gas.
  • the temperature of the autoclave was raised to 50 ° C. while stirring the mixture. Polymerization was carried out for a predetermined time after reaching 50 ° C. After removing unreacted monomers, the autoclave was opened and heat-dried to obtain a polymer.
  • Example 3-2A Propylene Polymerization Using Complex of Example 3-2
  • Example 3-1A the complex of Example 3-1 ((B-394) Ni ((1,4,5- ⁇ ) -COE)), except that the complex of Example 3-2 ((B-400) Ni ((1,4,5- ⁇ ) -COE)) was used instead of Example 3-1A According to the procedure, a polymer was obtained.
  • Example 3-3A Propylene polymerization using the complex of Example 3-3 In Example 3-1A, the complex of Example 3-1 ((B-394) Ni ((1,4,5- ⁇ ) -COE)) in place of the complex of Example 3-3 ((B-394) Ni (4-Fluorophenyl) Py). Obtained.
  • Example 3-1B Copolymerization using the complex of Example 3-1
  • the complex of Example 3-1 was introduced into the autoclave with nitrogen gas, and then 3-butene-1 A copolymer was obtained by the same procedure as in Example 3-1A, except that -ol was added.
  • the comonomer content in the copolymer was determined by 1 HNMR measurement to determine the molar ratio of propylene: comonomer and listed in the table as comonomer content mol%.
  • Example 3-2C Copolymerization Using Complex of Example 3-2
  • Example 3-1A the complex of Example 3-1 ((B-394) Ni ((1,4,5- ⁇ ) -COE)) in place of the complex of Example 3-2 ((B-400) Ni ((1,4,5- ⁇ ) -COE)) and the complex of Example 3-2
  • a copolymer was obtained in the same manner as in Example 3-1A, except that ethyl 10-undecenoate was further added after introduction into the autoclave with nitrogen gas.
  • the comonomer content in the copolymer was determined by 1 HNMR measurement to determine the molar ratio of propylene: comonomer and listed in the table as comonomer content mol%.
  • Example 3-3D Copolymerization using the complex of Example 3-3
  • a 50 mL stainless steel autoclave was dried in a 120 ° C. dryer for 3 hours, then assembled and dried under reduced pressure at 125 ° C. for 2 hours.
  • the complex of Example 3-3 ((B-394) Ni (4-Fluorophenyl) Py) (10.0 ⁇ mol, 10.0 mL, 1.00 mmol / L toluene solution) was placed in an autoclave under argon. Toluene (10 mL) was added. Thereafter, 10 g of propylene and methyl acrylate were added. Thereafter, the temperature of the autoclave was set to 50 ° C., and the contents were stirred for 64 hours.
  • Example 3-1A Propylene polymerization using the complex of Comparative Example 3-1
  • Example 3-1A the complex of Example 3-1 ((B-394) Ni ((1,4,5- ⁇ ) -COE)), except that the complex of Comparative Example 3-1 ((B-399) Ni ((1,4,5- ⁇ ) -COE)) was used instead of Example 3-1A According to the procedure, a polymer was obtained.
  • Table 6-1 compares the nickel raw materials and ligands used in the synthesis of the complexes of Examples 3-1 to 3-3 and Comparative Example 3-1.
  • Table 6-2 below shows Examples 3-1A to 3-3A, Example 3-1B, Example 3-2C, Example 3-3D, and Comparative Examples for polymerization or copolymerization using propylene.
  • the polymerization conditions and polymerization results for 3-1A are summarized.
  • the polymerization activity in Table 6-2 represents the copolymer yield (g) per 1 hour of polymerization time per 1 mol of the complex used in the polymerization.
  • Table 6-2 lists the weight average molecular weight Mw and the molecular weight distribution Mw / Mn as GPC measurement results for the polymers.
  • the amount of copolymerization in Table 6-2 indicates the ratio of the amount of comonomer incorporation in the total monomer amount subjected to polymerization.
  • Example 3-1A to Example 3-3A in Table 6-2 above in the polypropylene polymerization using the metal complexes of the present disclosure (Example 3-1 to Example 3-3), The polymerization activity is as high as 1.1 ⁇ 10 5 (g / mol / hr) or more, and the molecular weight Mw of the obtained polymer is as large as 15,900 or more.
  • the metal complexes of the present disclosure using the hydrocarbon groups R 1, compared to the case R 1 is hydrogen (Comparative Example 3-1), can exhibit a high polymerization activity in the polypropylene polymerization, and more A high molecular weight polypropylene is obtained.
  • the molecular weight distribution Mw / Mn of the obtained polypropylene falls within 2.3 or less.
  • the metal complex of the present disclosure allows the copolymerization of the ⁇ -olefin and the polar group-containing monomer. Achieved with good polymerization activity.
  • the metal complex of the present disclosure can provide a higher molecular weight ⁇ -olefin homopolymer with higher polymerization activity than the conventional one, and copolymerization of ⁇ -olefin and a polar group-containing monomer with good polymerization activity. It is clear that it has excellent technical significance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

α-オレフィン重合体及び共重合体、特に分子量の高い重合体の製造用の、優れた重合活性を有する新規な触媒成分、並びにそれを用いたα-オレフィン重合体及び共重合体の製造方法を提供する。下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。[一般式[I]及び[II]中、R,R,RおよびRは、それぞれ独立に、(i)水素、(ii)ハロゲン、(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~30の直鎖状アルキル等、又は(iv)OR等を表す。RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数7~30の直鎖状アルキル基等を表す。Eは、リン、砒素またはアンチモンを表す。Xは、酸素または硫黄を表す。一般式[I]中、Zは、水素または脱離基を表し、mはZの価数を表す。]

Description

金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα-オレフィン重合体及び共重合体の製造方法
 本開示は、α-オレフィンの重合体及び共重合体の製造に有用な金属錯体、並びにそれを用いた新規なα-オレフィン重合体及び共重合体の製造方法に関する。
 α-オレフィンと極性基含有モノマーとの共重合体は産業上有用なポリマーである。この共重合体を直接重合によって得るには、通常高圧ラジカル法が用いられる。ただし、この方法は、プロピレンを始めとする高級α-オレフィンを重合できない点が欠点である。高圧ラジカル法以外で共重合体を得ることは工業的に困難であり、チーグラー触媒やメタロセン触媒を用いた場合には触媒失活が避けられなかった。
 その後、メタロセン触媒においては有機希土類金属錯体系メタロセン触媒により、エチレンとメチルメタクリレートとの共重合が可能となり、1990年代以降には、後周期遷移金属錯体触媒による、エチレンと極性基含有コモノマーとの共重合が精力的に研究されている。例えば、Brookhartらにより報告された(α-ジイミン)パラジウム錯体や、Grubbsらにより報告された(サリチルアミジナート)ニッケル触媒が知られている。これらの触媒を用いる場合には、連鎖移動の頻発を抑制するために重合温度を低くすることから、コポリマーの生産性は低く、分子量も低いのが一般的であった。近年、エチレンと極性基含有モノマーとの共重合において、上記課題は、(リンスルホネート)パラジウム錯体(特許文献1参照)やいわゆるSHOP系触媒と呼ばれる(リンフェノレート)ニッケル錯体(特許文献2-4、非特許文献1-2参照)などの発見により克服された。
 このように、(リンフェノレート)ニッケル錯体は、エチレンと極性基含有モノマーとの共重合触媒として有用であったが、α-オレフィンと極性基含有モノマーとの共重合についての報告はこれまでなかった。
特開2010-150246号公報 国際公開第2010/050256号 米国特許第6559326号明細書 特開2005-307021号公報
J.Heinicke et al.、「Chem. Eur. J.」、 2003、9、6093. J.Heinicke et al.、「European Journal of Inorganic Chemistry」、2000、3、431.
 本開示の課題は、上記従来技術の問題点に鑑み、α-オレフィン重合体及び共重合体、特に分子量の高い重合体の製造に用いられる、優れた重合活性を有する新規な触媒成分、並びにそれを用いたα-オレフィン重合体及び共重合体の製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、既存の(リンフェノレート)遷移金属錯体とは異なる新規なリンフェノレート配位子構造を有する遷移金属錯体を見出し、α-オレフィンの単独重合または極性基含有モノマーとの共重合が可能であることを発見した。また、より高い分子量の(共)重合体が得られることを見出し、本開示に至った。
 すなわち、本開示の第1の実施形態は、
[1-1] 下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000013

[一般式[I]および[II]中のR~R、E、Xは以下の通りである。
 R,R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素
(ii)ハロゲン
(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数7~30の直鎖状アルキル基、炭素数7~30の分岐した非環状アルキル基、炭素数7~30のアルケニル基、炭素数7~30の側鎖を有していてもよいシクロアルキル基、または炭素数7~30のアリールアルキル基を表す。
 Eは、リン、砒素またはアンチモンを表す。
 Xは、酸素または硫黄を表す。
 また、一般式[I]中、
 Zは、水素、または脱離基を表し、
 mはZの価数を表す。]
[1-2] 下記一般式[III]で表されることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000014

[一般式[III]中のR~R、E、X、M、Lは以下の通りである。
 R,R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素
(ii)ハロゲン
(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数7~30の直鎖状アルキル基、炭素数7~30の分岐した非環状アルキル基、炭素数7~30のアルケニル基、炭素数7~30の側鎖を有していてもよいシクロアルキル基、または炭素数7~30のアリールアルキル基を表す。
 Eは、リン、砒素またはアンチモンを表す。
 Xは、酸素または硫黄を表す。
 Mは、周期表の9族、10族または11族に属する遷移金属を表す。
 Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
 Lは、Mに配位したリガンドを表す。
 RとLが互いに結合して環を形成してもよい。]
[1-3] Mが周期表の10族に属する遷移金属であることを特徴とする[1-2]に記載の金属錯体。
[1-4] Rが水素であることを特徴とする[1-1]~[1-3]のいずれか1項に記載の金属錯体。
[1-5] 上記[1-1]の一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、上記[1-2]の一般式[III]で表される金属錯体を製造することを特徴とする金属錯体の製造方法。
[1-6] [1-1]~[1-4]のいずれか1項に記載の金属錯体又は[1-5]に記載の製造方法で得られる金属錯体を含むことを特徴とするオレフィン重合用触媒成分。
[1-7] 下記の成分(A)及び(B)、更に必要に応じて(C)を含むことを特徴とする、オレフィン重合用触媒。
 成分(A):[1-1]~[1-4]のいずれか1項に記載の金属錯体又は[1-5]に記載の製造方法で得られる金属錯体
 成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
 成分(C):有機アルミニウム化合物
[1-8] 前記成分(B)がアルミノキサンであることを特徴とする[1-7]に記載のオレフィン重合用触媒。
[1-9] [1-7]又は[1-8]に記載の重合用触媒の存在下に、(a)α-オレフィンを重合又は共重合することを特徴とするα-オレフィン重合体の製造方法。
[1-10] [1-7]又は[1-8]に記載の重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとを共重合することを特徴とするα-オレフィン共重合体の製造方法。
 本開示の第2の実施形態は、
[2-1] 下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000015

[一般式[I]および[II]中のR~R、E、Xは以下の通りである。
 R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素
(ii)ハロゲン
(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 Rは、下記(v)および(vi)からなる群より選ばれる基を表す。
(v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(vi)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、R、R、M’、x、yは上記の通りである。
 R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐した非環状アルキル基、または炭素数2~6のアルケニル基を表す。
 RおよびRが互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 Eは、リン、砒素またはアンチモンを表す。
 Xは、酸素または硫黄を表す。
 また、一般式[I]中、
 Zは、水素、または脱離基を表し、
 mはZの価数を表す。]
[2-2] 下記一般式[III]で表されることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000016

[一般式[III]中のR~R、E、X、M、Lは以下の通りである。
 R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素
(ii)ハロゲン
(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 Rは、下記(v)および(vi)からなる群より選ばれる基を表す。
(v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(vi)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、R、R、M’、x、yは上記の通りである。
 R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐した非環状アルキル基、または炭素数2~6のアルケニル基を表す。
 RおよびRが互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 Eは、リン、砒素またはアンチモンを表す。
 Xは、酸素または硫黄を表す。
 Mは、周期表の9族、10族または11族に属する遷移金属を表す。
 Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
 Lは、Mに配位したリガンドを表す。
 RとLが互いに結合して環を形成してもよい。]
[2-3] Mが周期表の10族に属する遷移金属であることを特徴とする[2-2]に記載の金属錯体。
[2-4] Rが、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する炭素数6~30のアリール基またはSi(OR3-x(Rであることを特徴とする[2-1]~[2-3]のいずれか1項に記載の金属錯体。
[2-5] Rが水素、またはヘテロ原子を含有する基を有する炭素数1~30の直鎖状アルキル基であることを特徴とする[2-1]~[2-4]のいずれか1項に記載の金属錯体。
[2-6] Rが水素であることを特徴とする[2-5]に記載の金属錯体。
[2-7] 上記[2-1]の一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、上記[2-2]の一般式[III]で表される金属錯体を製造することを特徴とする金属錯体の製造方法。
[2-8] [2-1]~[2-6]のいずれか1項に記載の金属錯体または[2-7]に記載の製造方法で得られる金属錯体を含むことを特徴とするオレフィン重合用触媒成分。
[2-9] 下記の成分(A)及び(B)、更に必要に応じて(C)を含むことを特徴とする、オレフィン重合用触媒。
 成分(A):[2-1]~[2-6]のいずれか1項に記載の金属錯体または[2-7]に記載の製造方法で得られる金属錯体
 成分(B):成分(A)と反応してイオン対を形成する化合物またはイオン交換性層状珪酸塩
 成分(C):有機アルミニウム化合物
[2-10] 前記成分(B)がアルミノキサンであることを特徴とする[2-9]に記載のオレフィン重合用触媒。
[2-11] [2-9]又は[2-10]に記載の重合用触媒の存在下に、(a)α-オレフィンを重合または共重合することを特徴とするα-オレフィン重合体の製造方法。
[2-12] [2-9]又は[2-10]に記載の重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマーまたはアリルモノマーとを共重合することを特徴とするα-オレフィン共重合体の製造方法。
 本開示の第3の実施形態は、
[3-1] 下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000017

[一般式[I]および[II]中のR~R、E、Xは以下の通りである。
 Rは、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基を表す。
 R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素
(ii)ハロゲン
(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数4~6の直鎖状アルキル基、炭素数4~6の2級アルキル基、炭素数4~6の3級アルキル基、または炭素数4~6のアルケニル基を表す。
 Eは、リン、砒素またはアンチモンを表す。
 Xは、酸素または硫黄を表す。
 また、一般式[I]中、
 Zは、水素、または脱離基を表し、
 mはZの価数を表す。]
[3-2] 下記一般式[III]で表されることを特徴とする金属錯体。
Figure JPOXMLDOC01-appb-C000018

[一般式[III]中のR~R、E、X、M、Lは以下の通りである。
 Rは、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基を表す。
 R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
(i)水素
(ii)ハロゲン
(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
(iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数4~6の直鎖状アルキル基、炭素数4~6の2級アルキル基、炭素数4~6の3級アルキル基、または炭素数4~6のアルケニル基を表す。
 Eは、リン、砒素またはアンチモンを表す。
 Xは、酸素または硫黄を表す。
 Mは、周期表の9族、10族または11族に属する遷移金属を表す。
 Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
 Lは、Mに配位したリガンドを表す。
 RとLが互いに結合して環を形成してもよい。]
[3-3] Mが周期表の10族に属する遷移金属であることを特徴とする[3-2]に記載の金属錯体。
[3-4] R及びRが、tert-ブチル基であることを特徴とする[3-1]~[3-3]のいずれか1項に記載の金属錯体。
[3-5] Rが、tert-ブチル基であることを特徴とする[3-1]~[3-4]のいずれか1項に記載の金属錯体。
[3-6] 上記[3-1]の一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、上記[3-2]の一般式[III]で表される金属錯体を製造することを特徴とする金属錯体の製造方法。
[3-7] [3-1]~[3-5]のいずれか1項に記載の金属錯体または[3-6]に記載の製造方法で得られる金属錯体を含むことを特徴とするオレフィン重合用触媒成分。
[3-8] 下記の成分(A)および(B)、更に必要に応じて(C)を含むことを特徴とする、オレフィン重合用触媒。
 成分(A):[3-1]~[3-5]のいずれか1項に記載の金属錯体または[3-6]に記載の製造方法で得られる金属錯体
 成分(B):成分(A)と反応してイオン対を形成する化合物またはイオン交換性層状珪酸塩
 成分(C):有機アルミニウム化合物
[3-9] 前記成分(B)がアルミノキサンであることを特徴とする[3-8]に記載のオレフィン重合用触媒。
[3-10] [3-8]又は[3-9]に記載の重合用触媒の存在下に、(a)α-オレフィンを重合または共重合することを特徴とするα-オレフィン重合体の製造方法。
[3-11] [3-8]又は[3-9]に記載の重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマーまたはアリルモノマーとを共重合することを特徴とするα-オレフィン共重合体の製造方法。
[3-12] (a)α-オレフィンがプロピレンであることを特徴とする、[3-10]に記載のα-オレフィン重合体の製造方法、又は[3-11]に記載のα-オレフィン共重合体の製造方法。
 本開示により、従来よりも高い重合活性でより高分子量のα-オレフィン単独重合体が得られ、かつ、良好な重合活性でα-オレフィンと極性基含有モノマーとの共重合を達成できる。
図1は、錯体(B-350)NiPh(PEt)のORTEP図である。
1.第1の実施形態
 本開示の第1の実施形態は、一般式[I]又は[II]で表される化合物と、ニッケル、パラジウム、コバルト、銅またはロジウム等の周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる反応生成物、すなわち、一般式[III]で表される金属錯体(以下、金属錯体[III]と称することもある。)、並びにそれを触媒成分とし、その触媒成分の存在下に行う(a)α-オレフィンの重合体又は共重合体の製造方法、及び(a)α-オレフィンと(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとの共重合体の製造方法である。
 本開示において、「重合」とは、1種類のモノマーの単独重合と複数種のモノマーの共重合を総称するものであり、特に両者を区別する必要がない場合には、総称して単に「重合」と記載する。また、本開示において、「(メタ)アクリル酸エステル」とは、アクリル酸エステルとメタクリル酸エステルの両方を含む。
1-1.金属錯体
 本開示の第1の実施形態の金属錯体は、下記一般式[I]又は[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる。
Figure JPOXMLDOC01-appb-C000019
 本開示において「接触」とは、上記一般式[I]又は[II]中のEが、上記遷移金属と配位結合を形成でき、かつ/又は、これら一般式中のXが、上記遷移金属と単結合を形成できるように、これら一般式で表される化合物(以下、これらをまとめてリンフェノレート化合物と称する場合がある。)と、上記遷移金属化合物とが十分近傍に存在することを意味する。そして、リンフェノレート化合物と上記遷移金属化合物とを接触させるとは、これらの化合物を十分近傍に存在させ、上記2種類の結合の少なくともいずれか一方が形成できるように、これらの化合物を混合することを意味する。
 リンフェノレート化合物と上記遷移金属化合物とを混合する条件は、特に限定されない。これらの化合物を直に混合してもよいし、溶媒を用いて混合してもよい。特に、均一な混合を達成する観点から、溶媒を用いることが好ましい。
 得られる金属錯体中において、リンフェノレート化合物は配位子となることから、リンフェノレート化合物と上記遷移金属化合物との反応は、通常、配位子交換反応となる。得られる金属錯体が上記遷移金属化合物よりも熱力学的に安定である場合には、リンフェノレート化合物と上記遷移金属化合物とを室温(15~30℃)で混合することにより配位子交換反応が進行する。一方、得られる金属錯体が上記遷移金属化合物よりも熱力学的に不安定である場合には、配位子交換反応を十分に進行させるため、上記混合物を適宜加熱することが好ましい。
 一般式[I]又は[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる金属錯体としては、後述する一般式[III]に示す構造を有すると推定される。
 しかし、一般式[I]又は[II]で表される化合物は、リンフェノレート化合物であり、これは二座配位子であるから、当該化合物を周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物と接触させた場合には、一般式[III]に示す構造以外の構造を有する金属錯体が生成する可能性がある。例えば、一般式[I]又は[II]中のXのみが遷移金属と結合を形成する場合や、これらの式中のEのみが遷移金属と結合を形成する場合も考えられる。また、一般式[III]に示す金属錯体は、リンフェノレート化合物と遷移金属化合物との1:1反応生成物であるところ、遷移金属の種類によっては異なる組成比の反応生成物が得られることも考えられる。例えば、2分子以上のリンフェノレート化合物が1つの遷移金属と錯体を形成する場合も考えられるし、リンフェノレート化合物1分子が2つ以上の遷移金属と反応して多核錯体を合成する場合も考えられる。
 本開示においては、このような一般式[III]に示す構造以外の構造を有する金属錯体が、一般式[III]に示す金属錯体と同様に、α-オレフィン(共)重合体の製造に用いることが可能であることを否定するものではない。
 以下、一般式[I]および[II]中のR~R、E、X、ならびに、一般式[I]中のZ、mについて説明する。
 R,R,RおよびRは、それぞれ独立に、(i)水素、(ii)ハロゲン、(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい特定の基、又は(iv)ヘテロ原子含有置換基を表す。
 (ii)ハロゲンとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、フッ素原子が好ましい。
 (iii)に使用されるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、ハロゲン、ホウ素が挙げられる。これらのヘテロ原子のうち、フッ素、塩素が好ましい。
 (iii)に使用される「ヘテロ原子を含有する基」としては、具体的には、後述する(iv)ヘテロ原子含有置換基と同様の基が挙げられる。「ヘテロ原子を含有する基」としては、例えば、アルコキシ基(OR)、エステル基(CO)等が挙げられる。なお、Rは後述の通りである。
 以上の(iii)においては、R~Rに相当する置換基の総炭素数が、好ましくは1~30であり、より好ましくは2~25であり、さらに好ましくは4~20である。
 以上を踏まえ、(iii)「ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい特定の基」とは、(iii-A)炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数7~30のアルキルアリール基、(iii-B)上記(iii-A)のそれぞれの基に上記ヘテロ原子が1又は2以上置換している基、(iii-C)上記(iii-A)のそれぞれの基に上記「ヘテロ原子を含有する基」が1又は2以上置換している基、並びに、(iii-D)上記(iii-A)のそれぞれの基に、上記ヘテロ原子が1又は2以上置換し、かつ、上記「ヘテロ原子を含有する基」が1又は2以上置換している基を指す。(iii-C)については、例えば、アルコキシ基が置換しているアルキル基や、エステル基が置換しているアリール基等が挙げられる。
 (iv)ヘテロ原子含有置換基とは、具体的には、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、及びエポキシ含有基を指す。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 なお、R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 また、R内に含まれる複数の基が互いに連結し、R上に環を形成してもよい。R、R、又はRのいずれかが複数の基を含む場合も同様である。
 R,R,RおよびRは、それぞれ独立に、好ましいものとして、(i)水素原子;(ii)フッ素原子、塩素原子、臭素原子;(iii)メチル基、エチル基、イソプロピル基、ブチル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、カルバゾリル基、ナフチル基、アントラセニル基;(iv)メトキシ基、エトキシ基、フェノキシ基、ニトリル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシリルオキシ基、トリメトキシシロキシ基、シクロヘキシルアミノ基、スルフォン酸ナトリウム、スルフォン酸カリウム、リン酸ナトリウム、リン酸カリウム等が挙げられる。
 特にRについては、これらの中で好ましいものとして、(i)水素原子;(iii)t-ブチル基、ペンタフルオロフェニル基、カルバゾリル基;(iv)メトキシ基、トリメチルシリル基、トリメチルシリルオキシ基、シクロヘキシルアミノ基等が挙げられる。また、Rについては、これらの中で好ましいものとして、(i)水素原子又は(iii)t-ブチル基等が挙げられる。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数7~30の直鎖状アルキル基、炭素数7~30の分岐した非環状アルキル基、炭素数7~30のアルケニル基、炭素数7~30の側鎖を有していてもよいシクロアルキル基、または炭素数7~30のアリールアルキル基を表す。R及びRは、互いに結合して環を形成しても良い。
 上記直鎖状アルキル基、分岐した非環状アルキル基、アルケニル基、側鎖を有していてもよいシクロアルキル基、及びアリールアルキル基の各炭素数は、好ましくは7~25であり、より好ましくは8~20であり、さらに好ましくは10~15である。
 R及びRは、金属Mの近傍にあって、立体的および/または電子的にMに相互作用を及ぼす。こうした効果を及ぼすためには、R及びRは、かさ高い方が好ましい。
 好ましいR及びRの具体的な例示として、5-トリシクロ[3.3.1.13,7]デカ-1-イル基(1-アダマンチル基)、5-メチル-2-(プロパン-2-イル)シクロヘキシル基(メンチル基)、2,6-ジメチルヘプタン-4-イル基、2,4-ジメチルペンタン-3-イル基、ビシクロ-[2.2.1]-ヘプタ-2-イル基、2,4-フェニルペンタン-3-イル基、シクロヘプチル基、2-ヘプチル基などを挙げることができる。これらの中でも、1-アダマンチル基及びメンチル基がより好ましい。
 R及びRに使用されるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、ハロゲン、ホウ素が挙げられる。これらのヘテロ原子のうち、フッ素、塩素が好ましい。また、これらのヘテロ原子を含む基としては、酸素含有基として、アルコキシ基、アリーロキシ基、アシル基、エステル基が挙げられ、窒素含有基としては、アミノ基、アミド基が挙げられ、硫黄含有基としては、チオアルコキシ基やチオアリーロキシが挙げられ、リン含有置換基としては、ホスフィノ基が挙げられ、セレン含有基としては、セレニル基が挙げられ、ケイ素含有基としては、トリアルキルシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基が挙げられ、フッ素含有基としては、フルオロアルキル基、フルオロアリール基が挙げられ、ホウ素含有基としては、アルキルホウ素基、アリールホウ素基が挙げられる。これらのヘテロ原子含有基のうち、もっとも好ましいのは、アルコキシ基またはアリーロキシ基である。
 前記したヘテロ原子含有基に含まれるヘテロ原子としては、遷移金属に配位可能なものが好ましい。こうした遷移金属に配位可能なヘテロ原子を含むヘテロ原子含有基の具体的な例としては、以下のようなものが挙げられる。
 すなわち、酸素含有基として、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などのアルコキシ基、フェノキシ基、p-メチルフェノキシ基、p-メトキシフェノキシ基などのアリーロキシ基、アセチル基、ベンゾイル基などのアシル基、アセトキシ基、カルボキシエチル基、カルボキシt-ブチル基、カルボキシフェニル基などのエステル基などを挙げることができる。窒素含有基としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、シクロヘキシルアミノ基などのジアルキルアミノ基などを挙げることができる。硫黄含有基としては、チオメトキシ基、チオエトキシ基、チオ-n-プロポキシ基、チオイソプロポキシ基、チオ-n-ブトキシ基、チオ-t-ブトキシ基、チオフェノキシ基などのチオアルコキシ基、p-メチルチオフェノキシ基、p-メトキシチオフェノキシ基などのチオアリーロキシ基などを挙げることができる。リン含有置換基としては、ジメチルホスフィノ基、ジエチルホスフィノ基、ジ-n-プロピルホスフィノ基、シクロヘキシルホスフィノ基などのジアルキルホスフィノ基などを挙げることができる。セレン含有基としては、メチルセレニル基、エチルセレニル基、n-プロピルセレニル基、n-ブチルセレニル基、t-ブチルセレニル基、フェニルセレニル基などのセレニル基を挙げることができる。
 Eは、リン、砒素またはアンチモンを表す。この中でも、Eはリンであることが好ましい。
 Xは、酸素または硫黄を表す。この中でも、Xは酸素であることが好ましい。
 Zは、水素、または脱離基を表す。Zは、具体的には、水素原子、RSO基(ここでRは、前記したとおりである)、CFSO基などを挙げることができる。
 mはZの価数を表す。
 一般式[II]は、アニオンの形で表されているが、そのカウンターカチオンは、本開示における遷移金属化合物との反応を阻害しない限りにおいて、任意のものを用いることができる。カウンターカチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはホスホニウム、周期表1族~14族の金属イオンを挙げることができる。これらのうち好ましくは、NH 、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい。以下同様である。)、R 、Li、Na、K、Mg2+、Ca2+、Al3+であり、さらに好ましくは、R 、Li、Na、Kである。
 本開示における上記一般式[I]及び[II]中の置換基等の具体的な組み合わせを、下記表1-1に示す。Z及びmは一般式[I]のみに関わる。ただし、具体例は、下記例示に限定されるものではない。
Figure JPOXMLDOC01-appb-T000020
 化合物の構造の理解のため、上記表1-1に記載の化合物1の構造式と名称を示す。この構造式の化合物は、2-ジアダマンチルホスファニル-6-ペンタフルオロフェニルフェノールと称する。
 一般式[I]、[II]で示される化合物については、公知の合成法に基づいて合成することができる。
 上記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物との反応生成物中に、下記一般式[III]で表される本開示の金属錯体が含まれる。ただし、上述したように、当該製造方法によって得られる金属錯体の構造は、一般式[III]に示す構造のみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
 上記一般式[III]中、R~R、E、Xは上記の通りである。このように、上記反応生成物中の金属錯体と、一般式[III]に示す金属錯体との間には、ベンゼン環を含む主骨格や、これら置換基(R~R、E、X)の点において錯体構造の共通性がある。
 以下、一般式[III]中のM、R、Lについて説明する。
 本開示において、Mは、周期表の9族、10族または11族に属する遷移金属である。Mは、好ましくは、10族のニッケル、パラジウム、白金および9族のコバルト、ロジウムおよび11族の銅であり、さらに好ましくは、10族のニッケル、パラジウム、白金であり、最も好ましくは10族のニッケルまたはパラジウムである。
 Mの価数については2価が好ましい。ここでMの価数とは、有機金属化学で用いられる形式酸化数(formal oxidation number)を意味する。すなわち、ある元素が関与する結合中の電子対を電気陰性度の大きい元素に割り当てたとき、その元素の原子上に残る電荷の数を指す。例えば、本開示の一般式[III]において、Eがリン、Xが酸素、Mがニッケル、Rがフェニル基、Lがトリエチルホスフィンであり、ニッケルがリン、酸素、フェニル基の炭素、トリエチルホスフィンのリンと結合を形成している場合、ニッケルの形式酸化数、すなわちニッケルの価数は2価となる。なぜならば、上述の定義に基づき、これらの結合において、電子対は、ニッケルよりも電気陰性度の大きい2つのリン、酸素、炭素に割り当てられ、電荷は、リンが0、酸素が-1、フェニル基が-1で、錯体は、全体として電気的に中性であるため、ニッケル上に残る電荷は+2となるからである。
 2価の遷移金属としては、例えば、ニッケル(II)、パラジウム(II)、白金(II)、コバルト(II)が好ましく、2価以外では、銅(I)またはロジウム(III)も好ましい。
 本開示においてRは、水素原子、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。本開示における重合または共重合反応は、MとRの結合に本開示における(a)成分または(b)成分が挿入されることによって、開始されると考えられる。したがって、Rの炭素数が過度に多いと、この開始反応が阻害される傾向にある。このため、好ましいRとしては、置換基に含まれる炭素数を除く炭素数が1~16、さらに好ましくは当該炭素数が1~10である。
 Rの具体的な例としては、ヒドリド基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、フェニル基、p-メチルフェニル基、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等を挙げることができる。
 本開示において、Lは、Mに配位したリガンドを表す。本開示におけるリガンドLは、配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1~20の炭化水素化合物である。また、Lとして、遷移金属に配位可能な炭素-炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)も使用することができる。好ましくは、Lの炭素数は、1~16であり、さらに好ましくは1~10である。また一般式[III]中のMと配位結合するLとしては、電荷を持たない化合物が好ましい。
 本開示における好ましいLとしては、環状不飽和炭化水素類、ホスフィン類、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類などを挙げることができる。さらに好ましいLとしては、環状オレフィン類、ホスフィン類、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類が挙げられ、特に好ましいLとして、トリアルキルホスフィン、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RCO(RおよびRの定義は、前記の通り)を挙げることができる。
 なお、RとLが互いに結合して環を形成してもよい。そのような例として、シクロオクタ-1-エニル基を挙げることができ、これも本開示における好ましい様態である。
 本開示における上記一般式[III]中の置換基等の具体的な組み合わせを、下記表1-2に示す。ただし、具体例は、下記例示に限定されるものではない。
Figure JPOXMLDOC01-appb-T000023
 金属錯体の構造の理解のため、上記表1-2に記載の錯体1bの構造式と名称を示す。この構造式の錯体は、(2-ジアダマンチルホスファニル-6-ペンタフルオロフェニルフェノラート)フェニル(トリエチルホスフィン)ニッケル(II)と称する。
Figure JPOXMLDOC01-appb-C000024
 また、表1-2に例示した各化合物の中心金属Mがニッケルの代わりに、パラジウムに代わった化合物も例示される。
 本開示で用いられる遷移金属化合物については、一般式[I]または[II]で示される化合物と反応して、重合能を有する錯体を形成可能なものが使用される。これらは、プリカーサー(前駆体)とも呼ばれることがある。
 例えば、ニッケルを含む遷移金属化合物としては、ビス(1,5-シクロオクタジエン)ニッケル(0)、一般式:Ni(CHCR13CHで表される錯体[ここでR13は、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0~3の整数を表し、yは0~2の整数を表す。)。]、ビス(シクロペンタジエニル)ニッケル(II)、一般式:Ni(CHSiR13 で表される錯体(ここでR13、Lは、上記の通りである。)、一般式:NiR13 で表される錯体(ここでR13、Lは、上記の通りである。)等を使用することができる。
 また、9族、10族または11族の遷移金属を含む遷移金属化合物については、一般式:MR13 (ここで、Mは、9族、10族または11族の遷移金属であり、R13およびLは、本明細書に記載した通りであり、pおよびqは、Mの価数を満たす0以上の整数である。)を使用することができる。
 これらの遷移金属化合物のうち、好ましく用いられるものは、ニッケル(0)ビス(1,5-シクロオクタジエン)、NiPhCl(PEt、NiPhCl(PPh2、一般式:Ni(CHCR13CHで表される錯体(ここでR13は上記の通りである。)、一般式:Ni(CHSiR13 で表される錯体(ここでR13、Lは上記の通りである。)、一般式:NiR13 で表される錯体(ここでR13、Lは、上記の通りである。)、Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCH、(1,5-シクロオクタジエン)Pd(メチル)(クロリド)である。
 特に好ましくは、ニッケル(0)ビス(1,5-シクロオクタジエン)、NiPhCl(PEt、NiPhCl(PPh2、Ni(CHCHCH、Ni(CHCMeCH、Ni(CHSiMe(Py)(以下Pyは、ピリジンを表す。)、Ni(CHSiMe(Lut)(以下Lutは、2,6-ルチジンを表す。)、NiPh(Py)、NiPh(Lut),Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCH、(1,5-シクロオクタジエン)Pd(メチル)(クロリド)である。
 本開示の反応生成物は、前述の一般式[I]または[II]で表される化合物と前述の遷移金属化合物[IV]とを、例えば[I]+[II]:[IV]=1:99~99:1(モル比)を、0~100℃のトルエンやベンゼン等の有機溶媒中で、減圧~加圧下で1~86400秒間接触させることにより、得ることができる。遷移金属化合物として、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(COD))のトルエンやベンゼン溶液を用いる場合には、溶液の色が黄色から、例えば赤色に変化することにより、反応生成物の生成が確認できる。
 本反応後、遷移金属化合物を構成している成分であって、当該化合物中の遷移金属以外の成分は、一般式[I]中のZを除いた部分や一般式[II]の化合物によって置換されて、本開示の一般式[III]で表される金属錯体が生成する。この置換反応は、定量的に進行するほうが好ましいが、場合によっては完全に進行しなくてもよい。反応終了後、一般式[III]で表される錯体以外に、一般式[I]、[II]、及び遷移金属化合物由来の他の成分が共存するが、本開示の重合反応または共重合反応を行う際に、これらの他の成分は、除去してもよいし、除去しなくてもよい。一般的には、これらの他の成分は、除去した方が、高活性が得られるので好ましい。
 なお、反応を行う際に、本開示に係るLを共存させてもよい。本開示に係るMとして、ニッケルやパラジウムを用いた場合には、ルイス塩基性のLを系内に共存させることによって、精製した一般式[III]の錯体の安定性が増す場合があり、このような場合には、Lが本開示の重合反応または共重合反応を阻害しない限りにおいて、Lを共存させることが好ましい。
 本開示において、反応をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器とは別の容器で、予め行ったうえで、得られた一般式[III]の錯体をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に供してもよいし、反応をこれらのモノマーの存在下に行ってもよい。また、反応を、α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器の中で行ってもよい。この際に、これらのモノマーは存在していてもよいし、存在していなくてもよい。また、一般式[I]及び[II]で示される成分については、それぞれ単独の成分を用いてもよいし、それぞれ複数種の成分を併用してもよい。特に、分子量分布やコモノマー含量分布を広げる目的には、こうした複数種の併用が有用である。
1-2.金属錯体の製造方法
 本開示の第1の実施形態の製造方法においては、上述したように、一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、一般式[III]で表される金属錯体を製造することができる。
1-3.オレフィン重合用触媒成分
 本開示の第1の実施形態のオレフィン重合用触媒成分は、上記金属錯体、又は上記製造方法で得られる金属錯体を含むことを特徴とする。
 本開示の第1の実施形態においては、一般式[III]で表される金属錯体を、重合または共重合の触媒成分として使用することができる。前記したように、一般式[III]で表される金属錯体は、一般式[I]または[II]と遷移金属錯体成分との反応によって、形成させることができる。一般式[III]で表される金属錯体を触媒成分に用いる場合、単離したものを用いてもよいし、担体に担持したものを用いてもよい。こうした担持α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器中で、これらのモノマーの存在下または非存在下で行ってもよいし、該反応器とは別の容器中で行ってもよい。
 使用可能な担体としては、本開示の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Cr等の混合酸化物も使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。
 無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が使用可能である。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。これらは混合層を形成していてもよい。人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。
 これらの担体は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理および/または、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理を行ってもよい。該処理において、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また粉砕や造粒等の形状制御や乾燥処理を行ってもよい。
1-4.オレフィン重合用触媒
 本開示の第1の実施形態のオレフィン重合用触媒は、下記の成分(A)及び(B)、更に必要に応じて(C)を含むことを特徴とする。
 成分(A):上記金属錯体、又は上記製造方法で得られる金属錯体
 成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
 成分(C):有機アルミニウム化合物
 成分(A)は、上記金属錯体、又は上記製造方法で得られる金属錯体であり、1種類の金属錯体のみを用いてもよいし、2種類以上の金属錯体を組み合わせて用いてもよい。
 成分(B)の一つとして、有機アルミニウムオキシ化合物が挙げられる。上記有機アルミニウムオキシ化合物は、分子中に、Al-O-Al結合を有し、その結合数は通常1~100、好ましくは1~50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる生成物である。
 有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
 有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記一般式で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
  (RAl(X(3-t)
(一般式中、Rは、炭素数1~18、好ましくは1~12のアルキル基、アルケニル基、アリール基、アラルキル基などの炭化水素基を示し、Xは、水素原子又はハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
 トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などのいずれでも差し支えないが、メチル基、イソブチル基が好ましく、メチル基であることが特に好ましい。上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
 水と有機アルミニウム化合物との反応比(水/Alモル比)は、0.25/1~1.2/1、特に、0.5/1~1/1であることが好ましく、反応温度は、通常-70~100℃、好ましくは-20~20℃の範囲にある。反応時間は、通常5分~24時間、好ましくは10分~5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物などに含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
 なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む)は、有機アルミニウムオキシ化合物として、好適である。MAO溶液を溶媒留去して得られた固体状のドライメチルアルミノキサン(DMAO)もまた好適である。
 もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶解又は分散させた溶液としたものを用いても良い。
 また、成分(B)の具体例として、イオン交換性層状珪酸塩が挙げられる。イオン交換性層状珪酸塩(以下、単に「珪酸塩」と略記する場合がある。)は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。珪酸塩は、各種公知のものが知られており、具体的には、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている。
 本開示において、成分(B)として好ましく用いられるものは、スメクタイト族に属するもので、具体的にはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイトなどを挙げることができる。中でも、共重合体部分の重合活性、分子量を高める観点からモンモリロナイトが好ましい。
 大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英やクリストバライトなど)が含まれることが多く、本開示で用いられるスメクタイト族の珪酸塩に夾雑物が含まれていてもよい。
 珪酸塩は酸処理及び/又は塩類処理を行ってもよい。該処理においては、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。
 成分(B)として、前記の有機アルミニウムオキシ化合物と、イオン交換性層状珪酸塩との混合物を用いることもできる。更に、それぞれを単独でも用いてもよいし、二種以上を用いてもよい。
 成分(C)として使用される、有機アルミニウム化合物の一例は、次の一般式で表される。
  Al(R(3-a)
 一般式中、Rは、炭素数1~20の炭化水素基、Xは、水素、ハロゲン、アルコキシ基又はシロキシ基を示し、aは0より大きく3以下の数を示す。
 一般式で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲン又はアルコキシ含有アルキルアルミニウムが挙げられる。
 これらの中では、トリイソブチルアルミニウムが好ましい。また、上記の有機アルミニウム化合物を2種以上併用してもよい。また、上記のアルミニウム化合物をアルコール、フェノールなどで変性して用いてもよい。これらの変性剤としては、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、フェノール、2,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノールなどが例示され、好ましい具体例は、2,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノールである。
 本開示の第1の実施形態に係るオレフィン重合用触媒の調製法においては、成分(A)、(B)、更に必要に応じて(C)を接触させる方法は、特に限定されないが、次の様な方法を例示することができる。
(i)成分(A)と成分(B)とを接触させた後に、成分(C)を添加する方法
(ii)成分(A)と成分(C)とを接触させた後に、成分(B)を添加する方法
(iii)成分(B)と成分(C)とを接触させた後に、成分(A)を添加する方法
(iv)各成分(A)、(B)、(C)を同時に接触させる方法。
 更に、各成分中で別種の成分を混合物として用いてもよいし、別々に順番を変えて接触させてもよい。なお、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
 又、成分(B)と成分(C)とを接触させた後、成分(A)と成分(C)の混合物を加えるというように、成分を分割して各成分に接触させてもよい。
 上記の各成分(A)(B)(C)の接触は、窒素などの不活性ガス中において、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンなどの不活性炭化水素溶媒中で行うことが好ましい。接触は、-20℃から溶媒の沸点の間の温度で行うことができ、特に室温から溶媒の沸点の間での温度で行うのが好ましい。
1-5.α-オレフィン重合体の製造方法
 本開示の第1の実施形態のα-オレフィン重合体の製造方法の一実施形態は、上記重合用触媒の存在下で、(a)α-オレフィンを重合又は共重合するものである。
 本開示における成分(a)は、一般式:CH=CHR10で表されるα-オレフィンである。ここで、R10は、水素原子または炭素数1~20の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R10の炭素数が20より大きいと、十分な重合活性が発現しない傾向がある。このため、なかでも、好ましい(a)成分としては、R10が水素原子または炭素数1~10の炭化水素基であるα-オレフィンが挙げられる。
 さらに好ましい(a)成分としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、スチレンが挙げられる。なお、単独の(a)成分を使用してもよいし、複数の(a)成分を併用してもよい。
 本開示のα-オレフィン重合体の製造方法の他の実施形態は、上記重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとを共重合するものである。
 本開示における(メタ)アクリル酸エステルモノマーは、一般式:CH=C(R11)CO(R12)で表される。ここで、R11は、水素原子または炭素数1~10の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R12は、炭素数1~30の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。さらに、R12内の任意の位置にヘテロ原子を含有していてもよい。
 R11の炭素数が11以上であると、十分な重合活性が発現しない傾向がある。したがって、R11は、水素原子または炭素数1~10の炭化水素基であるが、好ましい(メタ)アクリル酸エステルとしては、R11が水素原子または炭素数1~5の炭化水素基であるものが挙げられる。より好ましい(メタ)アクリル酸エステルモノマーとしては、R11がメチル基であるメタクリル酸エステルまたはR11が水素原子であるアクリル酸エステルが挙げられる。同様に、R12の炭素数が30を超えると、重合活性が低下する傾向がある。よって、R12の炭素数は1~30であるが、R12は、好ましくは炭素数1~12であり、さらに好ましくは炭素数1~8である。
 また、R12内に含まれていても良いヘテロ原子としては、酸素、硫黄、セレン、リン、窒素、ケイ素、フッ素、ホウ素等が挙げられる。これらのヘテロ原子のうち、酸素、ケイ素、フッ素が好ましく、酸素が更に好ましい。また、R12は、ヘテロ原子を含まないものも好ましい。
 さらに好ましい(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸-2-アミノエチル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸エチレンオキサイド、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸-2-トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリルアミド、(メタ)アクリルジメチルアミド、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。なお、単独の(メタ)アクリル酸エステルを使用してもよいし、複数の(メタ)アクリル酸エステルを併用してもよい。
 本開示におけるビニルモノマーは、含ハロゲン、含窒素、含酸素、含硫黄等の極性基を有するビニルモノマーで、特にハロゲン、水酸基、アミノ基、ニトロ基、カルボキシル基、ホルミル基、エステル基、エポキシ基、ニトリル基等を含有するビニルモノマーである。具体的には、5-ヘキセン-1-オール、2-メチル-3-ブテン-1-オール、10-ウンデセン酸エチル、10-ウンデセン-1-オール、12-トリデセン-2-オール、10-ウンデカノイック酸、メチル-9-デセネート、t-ブチル-10-ウンデセネート、1,1-ジメチル-2-プロペン-1-オール、9-デセン-1-オール、3-ブテン酸、3-ブテン-1-オール、N-(3-ブテン-1-イル)フタルイミド、5-ヘキセン酸、5-ヘキセン酸メチル、5-ヘキセン-2-オン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等が挙げられる。この中でも、特に3-ブテン-1-オール、10-ウンデセン酸エチル、10-ウンデセン-1-オールが好ましい。
 本開示におけるアリルモノマーは、炭素数3のアリルモノマー(プロぺニルモノマー)、アリル基を有する、炭素数4以上のアリル系モノマーが例示される。アリルモノマーは、含ハロゲン、含窒素、含酸素、含硫黄等の極性基を有するアリルモノマーで、特にハロゲン、水酸基、アミノ基、ニトロ基、カルボキシル基、ホルミル基、エステル基、エポキシ基、ニトリル基等を含有するビニルモノマーである。好ましい具体例として、酢酸アリル、アリルアルコール、アリルアミン、N-アリルアニリン、N-t-ブトキシカルボニル-N-アリルアミン、N-ベンジルオキシカルボニル-N-アリルアミン、N-アリル-N-ベンジルアミン、塩化アリル、臭化アリル、アリルエーテル、ジアリルエーテルなどが挙げられる。これらの中でも、特に酢酸アリル、アリルアルコールが好ましく、酢酸アリル、アリルエーテル、ジアリルエーテルがより好ましい。
 本開示の重合反応は、プロパン、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化α-オレフィン等の液体、また、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルミアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等のような極性溶媒の存在下あるいは非存在下に行われる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。さらに、イオン液体も溶媒として使用可能である。なお、高い重合活性や高い分子量を得るうえでは、上述の炭化水素溶媒やイオン液体がより好ましい。
 本開示では、公知の添加剤の存在下または非存在下で重合反応を行うことができる。添加剤としては、ラジカル重合を禁止する重合禁止剤や、生成共重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。具体的には、モノメチルエーテルハイドロキノンや、2,6-ジ-t-ブチル4-メチルフェノール(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。また、添加剤として、無機およびまたは有機フィラーを使用し、これらのフィラーの存在下で重合を行っても良い。さらに、本開示に係るLやイオン液体を添加剤として用いてもよい。
 本開示における好ましい添加剤として、ルイス塩基が挙げられる。適切なルイス塩基を選択することにより、活性、分子量、アクリル酸エステルの共重合性を改良することができる。ルイス塩基の量としては、重合系内に存在する触媒成分中の遷移金属Mに対して、0.0001当量~1000当量、好ましくは0.1当量~100当量、さらに好ましくは、0.3当量~30当量である。ルイス塩基を重合系に添加する方法については、特に制限はなく、任意の手法を用いることができる。例えば、本開示の触媒成分と混合して添加してもよいし、モノマーと混合して添加してもよいし、触媒成分やモノマーとは独立に重合系に添加してもよい。また、複数のルイス塩基を併用してもよい。また、本開示に係るLと同じルイス塩基を用いてもよいし、異なっていてもよい。
 ルイス塩基としては、芳香族アミン類、脂肪族アミン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル類、アリールニトリル類、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、ホスフェート類、ホスファイト類、チオフェン類、チアンスレン類、チアゾール類、オキサゾール類、モルフォリン類、環状不飽和炭化水素類などを挙げることができる。これらのうち、特に好ましいルイス塩基は、芳香族アミン類、脂肪族アミン類、環状エーテル類、脂肪族エステル類、芳香族エステル類であり、なかでも好ましいルイス塩基は、ピリジン誘導体、ピリミジン誘導体、ピペリジン誘導体、イミダゾール誘導体、アニリン誘導体、ピペリジン誘導体、トリアジン誘導体、ピロール誘導体、フラン誘導体である。
 具体的なルイス塩基化合物としては、ピリジン、ペンタフルオロピリジン、2,6-ルチジン、2,4-ルチジン、3,5-ルチジン、ピリミジン、N、N-ジメチルアミノピリジン、N-メチルイミダゾール、2,2’-ビピリジン、アニリン、ピペリジン、1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリス(2-ピリジル)-s-トリアジン、キノリン、8-メチルキノリン、フェナジン、1,10-フェナンスロリン、N-メチルピロール、1,8-ジアザビシクロ-[5.4.0]-ウンデカ-7-エン、1,4-ジアザビシクロ-[2,2,2]-オクタン、トリエチルアミン、ベンゾニトリル、ピコリン、トリフェニルアミン、N-メチル-2-ピロリドン、4-メチルモルフォリン、ベンズオキサゾール、ベンゾチアゾール、フラン、2,5-ジメチルフラン、ジベンゾフラン、キサンテン、1,4-ジオキサン、1,3,5-トリオキサン、ジベンゾチオフェン、チアンスレン、トリフェニルホスフォニウムシクロペンタジエニド、トリフェニルホスファイト、トリフェニルホスフェート、トリピロリジノホスフィン、トリス(ピロリジノ)ボランなどを挙げることができる。
 本開示において、重合形式に特に制限はない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。さらに、いわゆるchain transfer agent(CSA)を併用し、chain shuttlingや、coordinative chain transfer polymerization(CCTP)を行ってもよい。
 未反応モノマーや媒体は、生成共重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
 重合温度、重合圧力および重合時間に、特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。すなわち、重合温度は、通常-20℃~290℃、好ましくは0℃~250℃、共重合圧力は、0.1MPa~300MPa、好ましくは、0.3MPa~250MPa、重合時間は、0.1分~10時間、好ましくは、0.5分~7時間、さらに好ましくは1分~6時間の範囲から選ぶことができる。
 本開示において、重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン、二酸化炭素雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。
 重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じてさまざまな供給法をとることができる。たとえばバッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を重合反応器に連続的に、または間歇的に供給し、重合反応を連続的に行う手法をとることができる。
 共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
 重合体の分子量制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、遷移金属錯体中のリガンド構造の制御により分子量を制御する等が挙げられる。連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。例えば、水素、メタルアルキルなどを使用することができる。
 また、(b)成分自身が一種の連鎖移動剤となる場合には、(b)成分の(a)成分に対する比率や、(b)成分の濃度を制御することによっても、分子量調節が可能である。遷移金属錯体中のリガンド構造を制御して、分子量調節を行う場合には、前記したR、R中のヘテロ原子含有基の種類、数、配置を制御したり、金属Mのまわりに嵩高い置換基を配置したり、前記したR中にヘテロ原子を導入したりすることによって、一般に分子量が向上する傾向を利用することができる。なお、金属Mに対して、アリール基やヘテロ原子含有置換基などの電子供与性基が相互作用可能となるように電子供与性基を配置することが好ましい。こうした電子供与性基が金属Mと相互作用可能であるかどうかは、一般に、分子模型や分子軌道計算で電子供与性基と金属Mとの距離を測定することによって判断できる。
 特に本開示により得られる共重合体は、共重合体の極性基にもとづく効果により、良好な塗装性、印刷性、帯電防止性、無機フィラー分散性、他樹脂との接着性、他樹脂との相溶化能などが発現する。こうした性質を利用して、本開示の共重合体は、さまざまな用途に使用することができる。例えば、フィルム、シート、接着性樹脂、バインダー、相溶化剤、ワックスなどとして使用可能である。
2.第2の実施形態
 本開示の第2の実施形態は、一般式[I]又は[II]で表される化合物と、ニッケル、パラジウム、コバルト、銅またはロジウム等の周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる反応生成物、すなわち、一般式[III]で表される金属錯体(以下、金属錯体[III]と称することもある。)、並びにそれを触媒成分とし、その触媒成分の存在下に行う(a)α-オレフィンの重合体又は共重合体の製造方法、及び(a)α-オレフィンと(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとの共重合体の製造方法である。
 本開示において、「重合」とは、1種類のモノマーの単独重合と複数種のモノマーの共重合を総称するものであり、特に両者を区別する必要がない場合には、総称して単に「重合」と記載する。また、本開示において、「(メタ)アクリル酸エステル」とは、アクリル酸エステルとメタクリル酸エステルの両方を含む。
2-1.金属錯体
 本開示の第2の実施形態の金属錯体は、下記一般式[I]又は[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる。
Figure JPOXMLDOC01-appb-C000025
 本開示において「接触」とは、上記一般式[I]又は[II]中のEが、上記遷移金属と配位結合を形成でき、かつ/又は、これら一般式中のXが、上記遷移金属と単結合を形成できるように、これら一般式で表される化合物(以下、これらをまとめてリンフェノレート化合物と称する場合がある。)と、上記遷移金属化合物とが十分近傍に存在することを意味する。そして、リンフェノレート化合物と上記遷移金属化合物とを接触させるとは、これらの化合物を十分近傍に存在させ、上記2種類の結合の少なくともいずれか一方が形成できるように、これらの化合物を混合することを意味する。
 リンフェノレート化合物と上記遷移金属化合物とを混合する条件は、特に限定されない。これらの化合物を直に混合してもよいし、溶媒を用いて混合してもよい。特に、均一な混合を達成する観点から、溶媒を用いることが好ましい。
 得られる金属錯体中において、リンフェノレート化合物は配位子となることから、リンフェノレート化合物と上記遷移金属化合物との反応は、通常、配位子交換反応となる。得られる金属錯体が上記遷移金属化合物よりも熱力学的に安定である場合には、リンフェノレート化合物と上記遷移金属化合物とを室温(15~30℃)で混合することにより配位子交換反応が進行する。一方、得られる金属錯体が上記遷移金属化合物よりも熱力学的に不安定である場合には、配位子交換反応を十分に進行させるため、上記混合物を適宜加熱することが好ましい。
 一般式[I]又は[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる金属錯体としては、後述する一般式[III]に示す構造を有すると推定される。
 しかし、一般式[I]又は[II]で表される化合物は、リンフェノレート化合物であり、これは二座配位子であるから、当該化合物を周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物と接触させた場合には、一般式[III]に示す構造以外の構造を有する金属錯体が生成する可能性がある。例えば、一般式[I]又は[II]中のXのみが遷移金属と結合を形成する場合や、これらの式中のEのみが遷移金属と結合を形成する場合も考えられる。また、一般式[III]に示す金属錯体は、リンフェノレート化合物と遷移金属化合物との1:1反応生成物であるところ、遷移金属の種類によっては異なる組成比の反応生成物が得られることも考えられる。例えば、2分子以上のリンフェノレート化合物が1つの遷移金属と錯体を形成する場合も考えられるし、リンフェノレート化合物1分子が2つ以上の遷移金属と反応して多核錯体を合成する場合も考えられる。
 本開示においては、このような一般式[III]に示す構造以外の構造を有する金属錯体が、一般式[III]に示す金属錯体と同様に、α-オレフィン(共)重合体の製造に用いることが可能であることを否定するものではない。
 以下、一般式[I]および[II]中のR~R、E、X、ならびに、一般式[I]中のZ、mについて説明する。
 R,RおよびRは、それぞれ独立に、(i)水素、(ii)ハロゲン、(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい特定の基、又は(iv)ヘテロ原子含有置換基を表す。
 (ii)ハロゲンとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、フッ素原子が好ましい。
 (iii)に使用されるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、ハロゲン、ホウ素が挙げられる。これらのヘテロ原子のうち、フッ素、塩素が好ましい。
 (iii)に使用される「ヘテロ原子を含有する基」としては、具体的には、後述する(iv)ヘテロ原子含有置換基と同様の基が挙げられる。「ヘテロ原子を含有する基」としては、例えば、アルコキシ基(OR)、エステル基(CO)等が挙げられる。なお、Rは後述の通りである。
 以上の(iii)においては、R~Rに相当する置換基の総炭素数が、好ましくは1~30であり、より好ましくは2~25であり、さらに好ましくは4~20である。
 以上を踏まえ、(iii)「ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい特定の基」とは、(iii-A)炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数7~30のアルキルアリール基、(iii-B)上記(iii-A)のそれぞれの基に上記ヘテロ原子が1又は2以上置換している基、(iii-C)上記(iii-A)のそれぞれの基に上記「ヘテロ原子を含有する基」が1又は2以上置換している基、並びに、(iii-D)上記(iii-A)のそれぞれの基に、上記ヘテロ原子が1又は2以上置換し、かつ、上記「ヘテロ原子を含有する基」が1又は2以上置換している基を指す。(iii-C)については、例えば、アルコキシ基が置換しているアルキル基や、エステル基が置換しているアリール基等が挙げられる。
 (iv)ヘテロ原子含有置換基とは、具体的には、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、及びエポキシ含有基を指す。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 R,RおよびRは、それぞれ独立に、好ましいものとして、(i)水素原子;(ii)フッ素原子、塩素原子、臭素原子;(iii)メチル基、エチル基、イソプロピル基、ブチル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、ナフチル基、アントラセニル基;(iv)メトキシ基、エトキシ基、フェノキシ基、ニトリル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシリルオキシ基、トリメトキシシロキシ基、シクロヘキシルアミノ基、スルフォン酸ナトリウム、スルフォン酸カリウム、リン酸ナトリウム、リン酸カリウム等が挙げられる。
 これらの中で特に好ましいものとしては、(i)水素原子;(iii)t-ブチル基、ペンタフルオロフェニル基;(iv)メトキシ基、トリメチルシリル基、トリメチルシリルオキシ基、シクロヘキシルアミノ基等が挙げられる。特に、Rは、水素またはヘテロ原子を含有する置換基を有する炭素数1~30の直鎖状アルキル基であることが好ましく、Rは水素であることがより好ましい。
 Rは、(v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する特定の基、又は(vi)ヘテロ原子含有置換基を表す。
 (v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する特定の基とは、具体的には、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数7~30のアルキルアリール基からなる群より選ばれる炭化水素基に、ヘテロ原子を含有する置換基が置換しているものを指す。Rは、これらの中でも、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する炭素数6~30のアリール基であることが好ましい。
 上記直鎖状アルキル基、分岐した非環状アルキル基、アルケニル基、側鎖を有していてもよいシクロアルキル基、アリール基、アリールアルキル基、及びアルキルアリール基の各炭素数の上限は、好ましくは25であり、より好ましくは20であり、さらに好ましくは15である。
 (vi)ヘテロ原子含有置換基とは、具体的には、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、及びエポキシ含有基を表す。ここで、R、R、M’、x及びyは、上記R~Rの場合と同様である。Rは、これらの中でも、Si(OR3-x(Rであることが好ましい。
 Rは、より好ましいものとして、(v)トリフルオロメチル基、ペンタフルオロフェニル基、カルバゾリル基;(vi)メトキシ基、エトキシ基、フェノキシ基、ニトリル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシリルオキシ基、トリメトキシシロキシ基、シクロヘキシルアミノ基、スルフォン酸ナトリウム、スルフォン酸カリウム、リン酸ナトリウム、リン酸カリウム等が挙げられる。
 これらの中で特に好ましいものとしては、(v)ペンタフルオロフェニル基、カルバゾリル基;(vi)メトキシ基、トリメチルシリル基、トリメチルシリルオキシ基、シクロヘキシルアミノ基等が挙げられる。
 なお、R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 また、R内に含まれる複数の基が互いに連結し、R上に環を形成してもよい。R、R、又はRのいずれかが複数の基を含む場合も同様である。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐した非環状アルキル基、または炭素数2~6のアルケニル基を表す。
 RおよびRが互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 R及びRは、金属Mの近傍にあって、立体的および/または電子的にMに相互作用を及ぼす。こうした効果を及ぼすためには、R及びRは、かさ高い方が好ましい。
 好ましいR及びRの具体的な例示として、イソブチル基、t-ブチル基、シクロヘキシル基、ネオペンチル基、ペンタン-3-イル基などを挙げることができる。これらの中でも、t-ブチル基がより好ましい。
 R及びRに使用されるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、ハロゲン、ホウ素が挙げられる。これらのヘテロ原子のうち、フッ素、塩素が好ましい。また、これらのヘテロ原子を含む基としては、酸素含有基として、アルコキシ基、アリーロキシ基、アシル基、エステル基が挙げられ、窒素含有基としては、アミノ基、アミド基が挙げられ、硫黄含有基としては、チオアルコキシ基やチオアリーロキシが挙げられ、リン含有置換基としては、ホスフィノ基が挙げられ、セレン含有基としては、セレニル基が挙げられ、ケイ素含有基としては、トリアルキルシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基が挙げられ、フッ素含有基としては、フルオロアルキル基、フルオロアリール基が挙げられ、ホウ素含有基としては、アルキルホウ素基、アリールホウ素基が挙げられる。これらのヘテロ原子含有基のうち、もっとも好ましいのは、アルコキシ基またはアリーロキシ基である。
 前記したヘテロ原子含有基に含まれるヘテロ原子としては、遷移金属に配位可能なものが好ましい。こうした遷移金属に配位可能なヘテロ原子を含むヘテロ原子含有基の具体的な例としては、以下のようなものが挙げられる。
 すなわち、酸素含有基として、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などのアルコキシ基、フェノキシ基、p-メチルフェノキシ基、p-メトキシフェノキシ基などのアリーロキシ基、アセチル基、ベンゾイル基などのアシル基、アセトキシ基、カルボキシエチル基、カルボキシt-ブチル基、カルボキシフェニル基などのエステル基などを挙げることができる。窒素含有基としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、シクロヘキシルアミノ基などのジアルキルアミノ基などを挙げることができる。硫黄含有基としては、チオメトキシ基、チオエトキシ基、チオ-n-プロポキシ基、チオイソプロポキシ基、チオ-n-ブトキシ基、チオ-t-ブトキシ基、チオフェノキシ基などのチオアルコキシ基、p-メチルチオフェノキシ基、p-メトキシチオフェノキシ基などのチオアリーロキシ基などを挙げることができる。リン含有置換基としては、ジメチルホスフィノ基、ジエチルホスフィノ基、ジ-n-プロピルホスフィノ基、シクロヘキシルホスフィノ基などのジアルキルホスフィノ基などを挙げることができる。セレン含有基としては、メチルセレニル基、エチルセレニル基、n-プロピルセレニル基、n-ブチルセレニル基、t-ブチルセレニル基、フェニルセレニル基などのセレニル基を挙げることができる。
 Eは、リン、砒素またはアンチモンを表す。この中でも、Eはリンであることが好ましい。
 Xは、酸素または硫黄を表す。この中でも、Xは酸素であることが好ましい。
 Zは、水素、または脱離基を表す。Zは、具体的には、水素原子、RSO基(ここでRは、前記したとおりである)、CFSO基などを挙げることができる。
 mはZの価数を表す。
 一般式[II]は、アニオンの形で表されているが、そのカウンターカチオンは、本開示における遷移金属化合物との反応を阻害しない限りにおいて、任意のものを用いることができる。カウンターカチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはホスホニウム、周期表1族~14族の金属イオンを挙げることができる。これらのうち好ましくは、NH 、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい。以下同様である。)、R 、Li、Na、K、Mg2+、Ca2+、Al3+であり、さらに好ましくは、R 、Li、Na、Kである。
 本開示における上記一般式[I]及び[II]中の置換基等の具体的な組み合わせを、下記表2-1に示す。Z及びmは一般式[I]のみに関わる。ただし、具体例は、下記例示に限定されるものではない。
Figure JPOXMLDOC01-appb-T000026
 化合物の構造の理解のため、上記表2-1に記載の化合物1の構造式と名称を示す。この構造式の化合物は、2-(ジ-t-ブチルホスファニル)-6-ペンタフルオロフェニルフェノールと称する。
Figure JPOXMLDOC01-appb-C000027
 一般式[I]、[II]で示される化合物については、公知の合成法に基づいて合成することができる。
 上記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物との反応生成物中に、下記一般式[III]で表される本開示の第2の実施形態の金属錯体が含まれる。ただし、上述したように、当該製造方法によって得られる金属錯体の構造は、一般式[III]に示す構造のみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000028
 上記一般式[III]中、R~R、E、Xは上記の通りである。このように、上記反応生成物中の金属錯体と、一般式[III]に示す金属錯体との間には、ベンゼン環を含む主骨格や、これら置換基(R~R、E、X)の点において錯体構造の共通性がある。
 以下、一般式[III]中のM、R、Lについて説明する。
 本開示の第2の実施形態において、Mは、周期表の9族、10族または11族に属する遷移金属である。Mは、好ましくは、10族のニッケル、パラジウム、白金および9族のコバルト、ロジウムおよび11族の銅であり、さらに好ましくは、10族のニッケル、パラジウム、白金であり、最も好ましくは10族のニッケルまたはパラジウムである。
 Mの価数については2価が好ましい。ここでMの価数とは、有機金属化学で用いられる形式酸化数(formal oxidation number)を意味する。すなわち、ある元素が関与する結合中の電子対を電気陰性度の大きい元素に割り当てたとき、その元素の原子上に残る電荷の数を指す。例えば、本開示の第2の実施形態の一般式[III]において、Eがリン、Xが酸素、Mがニッケル、Rがフェニル基、Lがピリジンであり、ニッケルがリン、酸素、フェニル基の炭素、ピリジンの窒素と結合を形成している場合、ニッケルの形式酸化数、すなわちニッケルの価数は2価となる。なぜならば、上述の定義に基づき、これらの結合において、電子対は、ニッケルよりも電気陰性度の大きいリン、酸素、炭素、窒素に割り当てられ、電荷は、リンが0、酸素が-1、フェニル基が-1、ピリジンが0で、錯体は、全体として電気的に中性であるため、ニッケル上に残る電荷は+2となるからである。
 2価の遷移金属としては、例えば、ニッケル(II)、パラジウム(II)、白金(II)、コバルト(II)が好ましく、2価以外では、銅(I)またはロジウム(III)も好ましい。
 本開示の第2の実施形態においてRは、水素原子、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。本開示における重合または共重合反応は、MとRの結合に本開示における(a)成分または(b)成分が挿入されることによって、開始されると考えられる。したがって、Rの炭素数が過度に多いと、この開始反応が阻害される傾向にある。このため、好ましいRとしては、置換基に含まれる炭素数を除く炭素数が1~16、さらに好ましくは当該炭素数が1~10である。
 Rの具体的な例としては、ヒドリド基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、フェニル基、p-メチルフェニル基、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等を挙げることができる。
 本開示において、Lは、Mに配位したリガンドを表す。本開示におけるリガンドLは、配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1~20の炭化水素化合物である。また、Lとして、遷移金属に配位可能な炭素-炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)も使用することができる。好ましくは、Lの炭素数は、1~16であり、さらに好ましくは1~10である。また一般式[III]中のMと配位結合するLとしては、電荷を持たない化合物が好ましい。
 本開示における好ましいLとしては、環状不飽和炭化水素類、ホスフィン類、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類などを挙げることができる。さらに好ましいLとしては、環状オレフィン類、ホスフィン類、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類が挙げられ、特に好ましいLとして、トリアルキルホスフィン、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RCO(RおよびRの定義は、前記の通り)を挙げることができる。
 なお、RとLが互いに結合して環を形成してもよい。そのような例として、シクロオクタ-1-エニル基を挙げることができ、これも本開示における好ましい様態である。
 本開示における上記一般式[III]中の置換基等の具体的な組み合わせを、下記表2-2に示す。ただし、具体例は、下記例示に限定されるものではない。
Figure JPOXMLDOC01-appb-T000029
 金属錯体の構造の理解のため、上記表2-2に記載の錯体1bの構造式と名称を示す。この構造式の化合物は、(2-(ジ-t-ブチルホスファニル)-6-ペンタフルオロフェニルフェノラート)フェニル(トリエチルホスフィン)ニッケル(II)と称する。
Figure JPOXMLDOC01-appb-C000030
 また、表2-2に例示した各化合物の中心金属Mがニッケルの代わりに、パラジウムに代わった化合物も例示される。
 本開示で用いられる遷移金属化合物については、一般式[I]または[II]で示される化合物と反応して、重合能を有する錯体を形成可能なものが使用される。これらは、プリカーサー(前駆体)とも呼ばれることがある。
 例えば、ニッケルを含む遷移金属化合物としては、ビス(1,5-シクロオクタジエン)ニッケル(0)、一般式:Ni(CHCR13CHで表される錯体[ここでR13は、水素原子、ハロゲン原子、ヘテロ原子を含有していてもよい炭素数1~30の炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0~3の整数を表し、yは0~2の整数を表す。)。]、ビス(シクロペンタジエニル)ニッケル(II)、一般式:Ni(CHSiR13 で表される錯体(ここでR13、Lは、上記の通りである。)、一般式:NiR13 で表される錯体(ここでR13、Lは、上記の通りである。)等を使用することができる。
 また、9族、10族または11族の遷移金属を含む遷移金属化合物については、一般式:MR13 (ここで、Mは、9族、10族または11族の遷移金属であり、R13およびLは、本明細書に記載した通りであり、pおよびqは、Mの価数を満たす0以上の整数である。)を使用することができる。
 これらの遷移金属化合物のうち、好ましく用いられるものは、ニッケル(0)ビス(1,5-シクロオクタジエン)、NiPhCl(PEt、NiPhCl(PPh2、NiPhCl(TMEDA)(以下、TMEDAはテトラメチルエチレンジアミンを表す。)、一般式:Ni(CHCR13CHで表される錯体(ここでR13は上記の通りである。)、一般式:Ni(CHSiR13 で表される錯体(ここでR13、Lは上記の通りである。)、一般式:NiR13 で表される錯体(ここでR13、Lは、上記の通りである。)、Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCH、(1,5-シクロオクタジエン)Pd(メチル)(クロリド)である。
 特に好ましくは、ニッケル(0)ビス(1,5-シクロオクタジエン)、NiPhCl(PEt、NiPhCl(PPh2、NiPhCl(TMEDA)、Ni(CHCHCH、Ni(CHCMeCH、Ni(CHSiMe(Py)(以下Pyは、ピリジンを表す。)、Ni(CHSiMe(Lut)(以下Lutは、2,6-ルチジンを表す。)、NiPh(Py)、NiPh(Lut),Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCH、(1,5-シクロオクタジエン)Pd(メチル)(クロリド)である。
 本開示の反応生成物は、前述の一般式[I]または[II]で表される化合物と前述の遷移金属化合物[IV]とを、例えば[I]+[II]:[IV]=1:99~99:1(モル比)を、0~100℃のトルエンやベンゼン等の有機溶媒中で、減圧~加圧下で1~86400秒間接触させることにより、得ることができる。遷移金属化合物として、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(COD))のトルエンやベンゼン溶液を用いる場合には、溶液の色が黄色から、例えば赤色に変化することにより、反応生成物の生成が確認できる。
 本反応後、遷移金属化合物を構成している成分であって、当該化合物中の遷移金属以外の成分は、一般式[I]中のZを除いた部分や一般式[II]の化合物によって置換されて、本開示の一般式[III]で表される金属錯体が生成する。この置換反応は、定量的に進行するほうが好ましいが、場合によっては完全に進行しなくてもよい。反応終了後、一般式[III]で表される錯体以外に、一般式[I]、[II]、及び遷移金属化合物由来の他の成分が共存するが、本開示の重合反応または共重合反応を行う際に、これらの他の成分は、除去してもよいし、除去しなくてもよい。一般的には、これらの他の成分は、除去した方が、高活性が得られるので好ましい。
 なお、反応を行う際に、本開示に係るLを共存させてもよい。本開示に係るMとして、ニッケルやパラジウムを用いた場合には、ルイス塩基性のLを系内に共存させることによって、精製した一般式[III]の錯体の安定性が増す場合があり、このような場合には、Lが本開示の重合反応または共重合反応を阻害しない限りにおいて、Lを共存させることが好ましい。
 本開示において、反応をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器とは別の容器で、予め行ったうえで、得られた一般式[III]の錯体をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に供してもよいし、反応をこれらのモノマーの存在下に行ってもよい。また、反応を、α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器の中で行ってもよい。この際に、これらのモノマーは存在していてもよいし、存在していなくてもよい。また、一般式[I]及び[II]で示される成分については、それぞれ単独の成分を用いてもよいし、それぞれ複数種の成分を併用してもよい。特に、分子量分布やコモノマー含量分布を広げる目的には、こうした複数種の併用が有用である。
2-2.金属錯体の製造方法
 本開示の第2の実施形態の製造方法においては、上述したように、一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、一般式[III]で表される金属錯体を製造することができる。
2-3.オレフィン重合用触媒成分
 本開示の第2の実施形態のオレフィン重合用触媒成分は、上記金属錯体、又は上記製造方法で得られる金属錯体を含むことを特徴とする。
 本開示の第2の実施形態においては、一般式[III]で表される金属錯体を、重合または共重合の触媒成分として使用することができる。前記したように、一般式[III]で表される金属錯体は、一般式[I]または[II]と遷移金属錯体成分との反応によって、形成させることができる。一般式[III]で表される金属錯体を触媒成分に用いる場合、単離したものを用いてもよいし、担体に担持したものを用いてもよい。こうした担持α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器中で、これらのモノマーの存在下または非存在下で行ってもよいし、該反応器とは別の容器中で行ってもよい。
 使用可能な担体としては、本開示の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Cr等の混合酸化物も使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。
 無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が使用可能である。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。これらは混合層を形成していてもよい。人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。
 これらの担体は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理および/または、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理を行ってもよい。該処理において、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また粉砕や造粒等の形状制御や乾燥処理を行ってもよい。
2-4.オレフィン重合用触媒
 本開示の第2の実施形態のオレフィン重合用触媒は、下記の成分(A)及び(B)、更に必要に応じて(C)を含むことを特徴とする。
 成分(A):上記金属錯体、又は上記製造方法で得られる金属錯体
 成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
 成分(C):有機アルミニウム化合物
 成分(A)は、上記金属錯体、又は上記製造方法で得られる金属錯体であり、1種類の金属錯体のみを用いてもよいし、2種類以上の金属錯体を組み合わせて用いてもよい。
 成分(B)の一つとして、有機アルミニウムオキシ化合物が挙げられる。上記有機アルミニウムオキシ化合物は、分子中に、Al-O-Al結合を有し、その結合数は通常1~100、好ましくは1~50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる生成物である。
 有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
 有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記一般式で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
  (RAl(X(3-t)
(一般式中、Rは、炭素数1~18、好ましくは1~12のアルキル基、アルケニル基、アリール基、アラルキル基などの炭化水素基を示し、Xは、水素原子又はハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
 トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などのいずれでも差し支えないが、メチル基、イソブチル基が好ましく、メチル基であることが特に好ましい。上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
 水と有機アルミニウム化合物との反応比(水/Alモル比)は、0.25/1~1.2/1、特に、0.5/1~1/1であることが好ましく、反応温度は、通常-70~100℃、好ましくは-20~20℃の範囲にある。反応時間は、通常5分~24時間、好ましくは10分~5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物などに含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
 なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む)は、有機アルミニウムオキシ化合物として、好適である。MAO溶液を溶媒留去して得られた固体状のドライメチルアルミノキサン(DMAO)もまた好適である。
 もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶解又は分散させた溶液としたものを用いても良い。
 また、成分(B)の具体例として、イオン交換性層状珪酸塩が挙げられる。イオン交換性層状珪酸塩(以下、単に「珪酸塩」と略記する場合がある。)は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。珪酸塩は、各種公知のものが知られており、具体的には、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている。
 本開示において、成分(B)として好ましく用いられるものは、スメクタイト族に属するもので、具体的にはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイトなどを挙げることができる。中でも、共重合体部分の重合活性、分子量を高める観点からモンモリロナイトが好ましい。
 大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英やクリストバライトなど)が含まれることが多く、本開示で用いられるスメクタイト族の珪酸塩に夾雑物が含まれていてもよい。
 珪酸塩は酸処理及び/又は塩類処理を行ってもよい。該処理においては、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。
 成分(B)として、前記の有機アルミニウムオキシ化合物と、イオン交換性層状珪酸塩との混合物を用いることもできる。更に、それぞれを単独でも用いてもよいし、二種以上を用いてもよい。
 成分(C)として使用される、有機アルミニウム化合物の一例は、次の一般式で表される。
  Al(R(3-a)
 一般式中、Rは、炭素数1~20の炭化水素基、Xは、水素、ハロゲン、アルコキシ基又はシロキシ基を示し、aは0より大きく3以下の数を示す。
 一般式で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲン又はアルコキシ含有アルキルアルミニウムが挙げられる。
 これらの中では、トリイソブチルアルミニウムが好ましい。また、上記の有機アルミニウム化合物を2種以上併用してもよい。また、上記のアルミニウム化合物をアルコール、フェノールなどで変性して用いてもよい。これらの変性剤としては、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、フェノール、2,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノールなどが例示され、好ましい具体例は、2,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノールである。
 本開示の第2の実施形態に係るオレフィン重合用触媒の調製法においては、成分(A)、(B)、更に必要に応じて(C)を接触させる方法は、特に限定されないが、次の様な方法を例示することができる。
(i)成分(A)と成分(B)とを接触させた後に、成分(C)を添加する方法
(ii)成分(A)と成分(C)とを接触させた後に、成分(B)を添加する方法
(iii)成分(B)と成分(C)とを接触させた後に、成分(A)を添加する方法
(iv)各成分(A)、(B)、(C)を同時に接触させる方法。
 更に、各成分中で別種の成分を混合物として用いてもよいし、別々に順番を変えて接触させてもよい。なお、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
 又、成分(B)と成分(C)とを接触させた後、成分(A)と成分(C)の混合物を加えるというように、成分を分割して各成分に接触させてもよい。
 上記の各成分(A)(B)(C)の接触は、窒素などの不活性ガス中において、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンなどの不活性炭化水素溶媒中で行うことが好ましい。接触は、-20℃から溶媒の沸点の間の温度で行うことができ、特に室温から溶媒の沸点の間での温度で行うのが好ましい。
2-5.α-オレフィン重合体の製造方法
 本開示の第2の実施形態のα-オレフィン重合体の製造方法の一実施形態は、上記重合用触媒の存在下で、(a)α-オレフィンを重合又は共重合するものである。
 本開示における成分(a)は、一般式:CH=CHR10で表されるα-オレフィンである。ここで、R10は、水素原子または炭素数1~20の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R10の炭素数が20より大きいと、十分な重合活性が発現しない傾向がある。このため、なかでも、好ましい(a)成分としては、R10が水素原子または炭素数1~10の炭化水素基であるα-オレフィンが挙げられる。
 さらに好ましい(a)成分としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、スチレンが挙げられる。なお、単独の(a)成分を使用してもよいし、複数の(a)成分を併用してもよい。
 本開示のα-オレフィン重合体の製造方法の他の実施形態は、上記重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとを共重合するものである。
 本開示における(メタ)アクリル酸エステルモノマーは、一般式:CH=C(R11)CO(R12)で表される。ここで、R11は、水素原子または炭素数1~10の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R12は、炭素数1~30の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。さらに、R12内の任意の位置にヘテロ原子を含有していてもよい。
 R11の炭素数が11以上であると、十分な重合活性が発現しない傾向がある。したがって、R11は、水素原子または炭素数1~10の炭化水素基であるが、好ましい(メタ)アクリル酸エステルとしては、R11が水素原子または炭素数1~5の炭化水素基であるものが挙げられる。より好ましい(メタ)アクリル酸エステルモノマーとしては、R11がメチル基であるメタクリル酸エステルまたはR11が水素原子であるアクリル酸エステルが挙げられる。同様に、R12の炭素数が30を超えると、重合活性が低下する傾向がある。よって、R12の炭素数は1~30であるが、R12は、好ましくは炭素数1~12であり、さらに好ましくは炭素数1~8である。
 また、R12内に含まれていても良いヘテロ原子としては、酸素、硫黄、セレン、リン、窒素、ケイ素、フッ素、ホウ素等が挙げられる。これらのヘテロ原子のうち、酸素、ケイ素、フッ素が好ましく、酸素が更に好ましい。また、R12は、ヘテロ原子を含まないものも好ましい。
 さらに好ましい(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸-2-アミノエチル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸エチレンオキサイド、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸-2-トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリルアミド、(メタ)アクリルジメチルアミド、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。なお、単独の(メタ)アクリル酸エステルを使用してもよいし、複数の(メタ)アクリル酸エステルを併用してもよい。
 本開示におけるビニルモノマーは、含ハロゲン、含窒素、含酸素、含硫黄等の極性基を有するビニルモノマーで、特にハロゲン、水酸基、アミノ基、ニトロ基、カルボキシル基、ホルミル基、エステル基、エポキシ基、ニトリル基等を含有するビニルモノマーである。具体的には、5-ヘキセン-1-オール、2-メチル-3-ブテン-1-オール、10-ウンデセン酸エチル、10-ウンデセン-1-オール、12-トリデセン-2-オール、10-ウンデカノイック酸、メチル-9-デセネート、t-ブチル-10-ウンデセネート、1,1-ジメチル-2-プロペン-1-オール、9-デセン-1-オール、3-ブテン酸、3-ブテン-1-オール、N-(3-ブテン-1-イル)フタルイミド、5-ヘキセン酸、5-ヘキセン酸メチル、5-ヘキセン-2-オン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、トリエトキシビニルシラン等が挙げられる。この中でも、特に3-ブテン-1-オール、10-ウンデセン酸エチル、10-ウンデセン-1-オール、トリエトキシビニルシランが好ましい。
 本開示におけるアリルモノマーは、炭素数3のアリルモノマー(プロぺニルモノマー)、アリル基を有する、炭素数4以上のアリル系モノマーが例示される。アリルモノマーは、含ハロゲン、含窒素、含酸素、含硫黄等の極性基を有するアリルモノマーで、特にハロゲン、水酸基、アミノ基、ニトロ基、カルボキシル基、ホルミル基、エステル基、エポキシ基、ニトリル基等を含有するビニルモノマーである。好ましい具体例として、酢酸アリル、アリルアルコール、アリルアミン、N-アリルアニリン、N-t-ブトキシカルボニル-N-アリルアミン、N-ベンジルオキシカルボニル-N-アリルアミン、N-アリル-N-ベンジルアミン、塩化アリル、臭化アリル、アリルエーテル、ジアリルエーテルなどが挙げられる。これらの中でも、特に酢酸アリル、アリルアルコールが好ましく、酢酸アリル、アリルエーテル、ジアリルエーテルがより好ましい。
 本開示の重合反応は、プロパン、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化α-オレフィン等の液体、また、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルミアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等のような極性溶媒の存在下あるいは非存在下に行われる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。さらに、イオン液体も溶媒として使用可能である。なお、高い重合活性や高い分子量を得るうえでは、上述の炭化水素溶媒やイオン液体がより好ましい。
 本開示では、公知の添加剤の存在下または非存在下で重合反応を行うことができる。添加剤としては、ラジカル重合を禁止する重合禁止剤や、生成共重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。具体的には、モノメチルエーテルハイドロキノンや、2,6-ジ-t-ブチル4-メチルフェノール(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。また、添加剤として、無機およびまたは有機フィラーを使用し、これらのフィラーの存在下で重合を行っても良い。さらに、本開示に係るLやイオン液体を添加剤として用いてもよい。
 本開示における好ましい添加剤として、ルイス塩基が挙げられる。適切なルイス塩基を選択することにより、活性、分子量、アクリル酸エステルの共重合性を改良することができる。ルイス塩基の量としては、重合系内に存在する触媒成分中の遷移金属Mに対して、0.0001当量~1000当量、好ましくは0.1当量~100当量、さらに好ましくは、0.3当量~30当量である。ルイス塩基を重合系に添加する方法については、特に制限はなく、任意の手法を用いることができる。例えば、本開示の触媒成分と混合して添加してもよいし、モノマーと混合して添加してもよいし、触媒成分やモノマーとは独立に重合系に添加してもよい。また、複数のルイス塩基を併用してもよい。また、本開示に係るLと同じルイス塩基を用いてもよいし、異なっていてもよい。
 ルイス塩基としては、芳香族アミン類、脂肪族アミン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル類、アリールニトリル類、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、ホスフェート類、ホスファイト類、チオフェン類、チアンスレン類、チアゾール類、オキサゾール類、モルフォリン類、環状不飽和炭化水素類などを挙げることができる。これらのうち、特に好ましいルイス塩基は、芳香族アミン類、脂肪族アミン類、環状エーテル類、脂肪族エステル類、芳香族エステル類であり、なかでも好ましいルイス塩基は、ピリジン誘導体、ピリミジン誘導体、ピペリジン誘導体、イミダゾール誘導体、アニリン誘導体、ピペリジン誘導体、トリアジン誘導体、ピロール誘導体、フラン誘導体である。
 具体的なルイス塩基化合物としては、ピリジン、ペンタフルオロピリジン、2,6-ルチジン、2,4-ルチジン、3,5-ルチジン、ピリミジン、N、N-ジメチルアミノピリジン、N-メチルイミダゾール、2,2’-ビピリジン、アニリン、ピペリジン、1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリス(2-ピリジル)-s-トリアジン、キノリン、8-メチルキノリン、フェナジン、1,10-フェナンスロリン、N-メチルピロール、1,8-ジアザビシクロ-[5.4.0]-ウンデカ-7-エン、1,4-ジアザビシクロ-[2,2,2]-オクタン、トリエチルアミン、ベンゾニトリル、ピコリン、トリフェニルアミン、N-メチル-2-ピロリドン、4-メチルモルフォリン、ベンズオキサゾール、ベンゾチアゾール、フラン、2,5-ジメチルフラン、ジベンゾフラン、キサンテン、1,4-ジオキサン、1,3,5-トリオキサン、ジベンゾチオフェン、チアンスレン、トリフェニルホスフォニウムシクロペンタジエニド、トリフェニルホスファイト、トリフェニルホスフェート、トリピロリジノホスフィン、トリス(ピロリジノ)ボランなどを挙げることができる。
 本開示において、重合形式に特に制限はない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。さらに、いわゆるchain transfer agent(CSA)を併用し、chain shuttlingや、coordinative chain transfer polymerization(CCTP)を行ってもよい。
 未反応モノマーや媒体は、生成共重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
 重合温度、重合圧力および重合時間に、特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。すなわち、重合温度は、通常-20℃~290℃、好ましくは0℃~250℃、共重合圧力は、0.1MPa~300MPa、好ましくは、0.3MPa~250MPa、重合時間は、0.1分~10時間、好ましくは、0.5分~7時間、さらに好ましくは1分~6時間の範囲から選ぶことができる。
 本開示において、重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン、二酸化炭素雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。
 重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じてさまざまな供給法をとることができる。たとえばバッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を重合反応器に連続的に、または間歇的に供給し、重合反応を連続的に行う手法をとることができる。
 共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
 重合体の分子量制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、遷移金属錯体中のリガンド構造の制御により分子量を制御する等が挙げられる。連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。例えば、水素、メタルアルキルなどを使用することができる。
 また、(b)成分自身が一種の連鎖移動剤となる場合には、(b)成分の(a)成分に対する比率や、(b)成分の濃度を制御することによっても、分子量調節が可能である。遷移金属錯体中のリガンド構造を制御して、分子量調節を行う場合には、前記したR、R中のヘテロ原子含有基の種類、数、配置を制御したり、金属Mのまわりに嵩高い置換基を配置したり、前記したR中にヘテロ原子を導入したりすることによって、一般に分子量が向上する傾向を利用することができる。なお、金属Mに対して、アリール基やヘテロ原子含有置換基などの電子供与性基が相互作用可能となるように電子供与性基を配置することが好ましい。こうした電子供与性基が金属Mと相互作用可能であるかどうかは、一般に、分子模型や分子軌道計算で電子供与性基と金属Mとの距離を測定することによって判断できる。
 特に本開示により得られる共重合体は、共重合体の極性基にもとづく効果により、良好な塗装性、印刷性、帯電防止性、無機フィラー分散性、他樹脂との接着性、他樹脂との相溶化能などが発現する。こうした性質を利用して、本開示の共重合体は、さまざまな用途に使用することができる。例えば、フィルム、シート、接着性樹脂、バインダー、相溶化剤、ワックスなどとして使用可能である。
3.第3の実施形態
 本開示の第3の実施形態は、一般式[I]又は[II]で表される化合物と、ニッケル、パラジウム、コバルト、銅またはロジウム等の周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる反応生成物、すなわち、一般式[III]で表される金属錯体(以下、金属錯体[III]と称することもある。)、並びにそれを触媒成分とし、その触媒成分の存在下に行う(a)α-オレフィンの重合体又は共重合体の製造方法、及び(a)α-オレフィンと(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとの共重合体の製造方法である。
 本開示において、「重合」とは、1種類のモノマーの単独重合と複数種のモノマーの共重合を総称するものであり、特に両者を区別する必要がない場合には、総称して単に「重合」と記載する。また、本開示において、「(メタ)アクリル酸エステル」とは、アクリル酸エステルとメタクリル酸エステルの両方を含む。
3-1.金属錯体
 本開示の第3の実施形態の金属錯体は、下記一般式[I]又は[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる。
 本開示において「接触」とは、上記一般式[I]又は[II]中のEが、上記遷移金属と配位結合を形成でき、かつ/又は、これら一般式中のXが、上記遷移金属と単結合を形成できるように、これら一般式で表される化合物(以下、これらをまとめてリンフェノレート化合物と称する場合がある。)と、上記遷移金属化合物とが十分近傍に存在することを意味する。そして、リンフェノレート化合物と上記遷移金属化合物とを接触させるとは、これらの化合物を十分近傍に存在させ、上記2種類の結合の少なくともいずれか一方が形成できるように、これらの化合物を混合することを意味する。
 リンフェノレート化合物と上記遷移金属化合物とを混合する条件は、特に限定されない。これらの化合物を直に混合してもよいし、溶媒を用いて混合してもよい。特に、均一な混合を達成する観点から、溶媒を用いることが好ましい。
 得られる金属錯体中において、リンフェノレート化合物は配位子となることから、リンフェノレート化合物と上記遷移金属化合物との反応は、通常、配位子交換反応となる。得られる金属錯体が上記遷移金属化合物よりも熱力学的に安定である場合には、リンフェノレート化合物と上記遷移金属化合物とを室温(15~30℃)で混合することにより配位子交換反応が進行する。一方、得られる金属錯体が上記遷移金属化合物よりも熱力学的に不安定である場合には、配位子交換反応を十分に進行させるため、上記混合物を適宜加熱することが好ましい。
 一般式[I]又は[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られる金属錯体としては、後述する一般式[III]に示す構造を有すると推定される。
 しかし、一般式[I]又は[II]で表される化合物は、リンフェノレート化合物であり、これは二座配位子であるから、当該化合物を周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物と接触させた場合には、一般式[III]に示す構造以外の構造を有する金属錯体が生成する可能性がある。例えば、一般式[I]又は[II]中のXのみが遷移金属と結合を形成する場合や、これらの式中のEのみが遷移金属と結合を形成する場合も考えられる。また、一般式[III]に示す金属錯体は、リンフェノレート化合物と遷移金属化合物との1:1反応生成物であるところ、遷移金属の種類によっては異なる組成比の反応生成物が得られることも考えられる。例えば、2分子以上のリンフェノレート化合物が1つの遷移金属と錯体を形成する場合も考えられるし、リンフェノレート化合物1分子が2つ以上の遷移金属と反応して多核錯体を合成する場合も考えられる。
 本開示においては、このような一般式[III]に示す構造以外の構造を有する金属錯体が、一般式[III]に示す金属錯体と同様に、α-オレフィン(共)重合体の製造に用いることが可能であることを否定するものではない。
 以下、一般式[I]および[II]中のR~R、E、X、ならびに、一般式[I]中のZ、mについて説明する。
 Rは、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基を表す。これらのうち、好ましいものとしては、上記直鎖状アルキル基、分岐した非環状アルキル基、側鎖を有していてもよいシクロアルキル基、アリール基、及びアリールアルキル基が挙げられる。
 上記直鎖状アルキル基、分岐した非環状アルキル基、アルケニル基、側鎖を有していてもよいシクロアルキル基、アリール基、アリールアルキル基、及びアルキルアリール基の各炭素数の上限は、好ましくは25であり、より好ましくは20であり、さらに好ましくは15である。
 Rの例のうち、炭素数1~30の直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10の直鎖状アルキル基がより好ましく、炭素数1~4の直鎖状アルキル基がさらに好ましい。
 Rの例のうち、炭素数3~30の分岐した非環状アルキル基としては、イソプロピル基、イソブチル基、tert-ブチル基(t-ブチル基)、sec-ブチル基、イソペンチル基(3-メチルブチル基)、t-ペンチル基(1,1-ジメチルプロピル基)、sec-ペンチル基(1-メチルブチル基)、2-メチルブチル基、ネオペンチル基(2,2-ジメチルプロピル基)、1,2-ジメチルプロピル基、イソヘキシル基(4-メチルペンチル基)等の炭素数3~10の分岐した非環状アルキル基がより好ましく、炭素数3~8の分岐した非環状アルキル基がさらに好ましい。
 Rの例のうち、炭素数2~30のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基、シンナミル基が挙げられる。アリル基、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基等の炭素数3~8のアルケニル基が好ましく、ブテニル基、ペンテニル基、ヘキセニル基、スチリル基等の炭素数4~8のアルケニル基がより好ましい。
 Rの例のうち、炭素数3~30の側鎖を有していてもよいシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、2-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル基、4-エチルシクロヘキシル基、シクロオクチル基、デカヒドロナフチル基(ビシクロ[4,4,0]デシル基)等の炭素数3~10の側鎖を有していてもよいシクロアルキル基がより好ましく、炭素数3~6の側鎖を有していてもよいシクロアルキル基がさらに好ましい。
 Rの例のうち、炭素数6~30のアリール基としては、フェニル基、ナフチル基、アズレニル基、ビフェニル基、アントラセニル基、テルフェニル基、フェナントレニル基、トリフェニレニル基、クリセニル基、ピレニル基、テトラセニル基等の炭素数6~18のアリール基がより好ましく、炭素数6~12のアリール基がさらに好ましい。
 Rの例のうち、炭素数7~30のアリールアルキル基としては、ベンジル基、フェネチル基(2-フェニルエチル基)、9-フルオレニル基、ナフチルメチル基、1-テトラリニル基等の炭素数7~15のアリールアルキル基がより好ましく、炭素数7~10のアリールアルキル基がさらに好ましい。
 Rの例のうち、炭素数7~30のアルキルアリール基としては、トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基等の炭素数7~20のアルキルアリール基が好ましく、トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基等の炭素数7~15のアルキルアリール基がより好ましい。
 これらの中でより好ましいものとしては、メチル基、エチル基、n-プロピル基、n-ブチル基、イソプロピル基、イソブチル基、t-ブチル基、シクロヘキシル基、フェニル基、ベンジル基等が挙げられ、Rがt-ブチル基であることがさらに好ましい。
 R,RおよびRは、それぞれ独立に、(i)水素、(ii)ハロゲン、(iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい特定の基、又は(iv)ヘテロ原子含有置換基を表す。
 (ii)ハロゲンとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、フッ素原子が好ましい。
 (iii)に使用されるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、ハロゲン、ホウ素が挙げられる。これらのヘテロ原子のうち、フッ素、塩素が好ましい。
 (iii)に使用される「ヘテロ原子を含有する基」としては、具体的には、後述する(iv)ヘテロ原子含有置換基と同様の基が挙げられる。「ヘテロ原子を含有する基」としては、例えば、アルコキシ基(OR)、エステル基(CO)等が挙げられる。なお、Rは後述の通りである。
 以上の(iii)においては、R~Rに相当する置換基の総炭素数が、好ましくは1~30であり、より好ましくは2~25であり、さらに好ましくは4~20である。
 以上を踏まえ、(iii)「ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい特定の基」とは、(iii-A)炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、及び炭素数7~30のアルキルアリール基、(iii-B)上記(iii-A)のそれぞれの基に上記ヘテロ原子が1又は2以上置換している基、(iii-C)上記(iii-A)のそれぞれの基に上記「ヘテロ原子を含有する基」が1又は2以上置換している基、並びに、(iii-D)上記(iii-A)のそれぞれの基に、上記ヘテロ原子が1又は2以上置換し、かつ、上記「ヘテロ原子を含有する基」が1又は2以上置換している基を指す。(iii-C)については、例えば、アルコキシ基が置換しているアルキル基や、エステル基が置換しているアリール基等が挙げられる。
 (iv)ヘテロ原子含有置換基とは、具体的には、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、及びエポキシ含有基を指す。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
 R,RおよびRは、それぞれ独立に、好ましいものとして、(i)水素原子;(ii)フッ素原子、塩素原子、臭素原子;(iii)メチル基、エチル基、イソプロピル基、ブチル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、ナフチル基、アントラセニル基;(iv)メトキシ基、エトキシ基、フェノキシ基、ニトリル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシリルオキシ基、トリメトキシシロキシ基、シクロヘキシルアミノ基、スルフォン酸ナトリウム、スルフォン酸カリウム、リン酸ナトリウム、リン酸カリウム等が挙げられる。
 これらの中で特に好ましいものとしては、(i)水素原子;(iii)メチル基、イソブチル基、tert-ブチル基(t-ブチル基)、sec-ブチル基、ペンタフルオロフェニル基;(iv)メトキシ基、トリメチルシリル基、トリメチルシリルオキシ基、シクロヘキシルアミノ基等が挙げられる。特に、Rは、水素、メチル基又はt-ブチル基であることが好ましく、Rは水素又はt-ブチル基であることがより好ましい。
 なお、R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
 また、R内に含まれる複数の基が互いに連結し、R上に環を形成してもよい。R、又はRのいずれかが複数の基を含む場合も同様である。
 RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数4~6の直鎖状アルキル基、炭素数4~6の2級アルキル基、炭素数4~6の3級アルキル基、または炭素数4~6のアルケニル基を表す。なお、本開示における2級アルキル基及び3級アルキル基には、いずれも脂環式環を有するアルキル基が含まれる。
 R及びRは、金属Mの近傍にあって、立体的および/または電子的にMに相互作用を及ぼす。こうした効果を及ぼすためには、R及びRは、上記各炭素数の範囲内で分岐構造を有するのが好ましい。ここでいう分岐構造には、環状構造も含まれる。
 R及びRの例のうち、炭素数4~6の直鎖状アルキル基としては、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられ、この中でも炭素数4~5の直鎖状アルキル基が好ましい。
 R及びRの例のうち、炭素数4~6の2級アルキル基としては、イソプロピル基、イソブチル基、ペンタン-2-イル基、ペンタン-3-イル基、3-メチル-2-ペンチル基、2-メチル-3-ペンチル基、2-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロヘキシル基等が挙げられ、この中でも炭素数4~5の2級アルキル基が好ましい。
 R及びRの例のうち、炭素数4~6の3級アルキル基としては、tert-ブチル基(t-ブチル基)、t-ペンチル基(1,1-ジメチルプロピル基)、2-メチル-2-ペンチル基、3-メチル-3-ペンチル基、t-ヘキシル基(1,1-ジメチルブチル基)、1,2-ジメチルシクロブチル基、1-メチルシクロペンチル基等が挙げられ、この中でも炭素数4~5の3級アルキル基が好ましい。
 R及びRの例のうち、炭素数4~6のアルケニル基としては、ブテニル基、ペンテニル基、ヘキセニル基が挙げられ、この中でも炭素数4~5のアルケニル基が好ましい。
 これらの中で特に好ましいものとしては、tert-ブチル基(t-ブチル基)、t-ペンチル基(1,1-ジメチルプロピル基)、2-メチル-2-ペンチル基、3-メチル-3-ペンチル基、1-メチルシクロペンチル基、などを挙げることができる。これらの中でも、R又はRのいずれか一方がt-ブチル基であることがより好ましく、R及びRがいずれもt-ブチル基であることがさらに好ましい。
 R及びRに使用されるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、ハロゲン、ホウ素が挙げられる。これらのヘテロ原子のうち、フッ素、塩素が好ましい。また、これらのヘテロ原子を含む基としては、酸素含有基として、アルコキシ基、アリーロキシ基、アシル基、エステル基が挙げられ、窒素含有基としては、アミノ基、アミド基が挙げられ、硫黄含有基としては、チオアルコキシ基やチオアリーロキシが挙げられ、リン含有置換基としては、ホスフィノ基が挙げられ、セレン含有基としては、セレニル基が挙げられ、ケイ素含有基としては、トリアルキルシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基が挙げられ、フッ素含有基としては、フルオロアルキル基、フルオロアリール基が挙げられ、ホウ素含有基としては、アルキルホウ素基、アリールホウ素基が挙げられる。これらのヘテロ原子含有基のうち、もっとも好ましいのは、アルコキシ基またはアリーロキシ基である。
 前記したヘテロ原子含有基に含まれるヘテロ原子としては、遷移金属に配位可能なものが好ましい。こうした遷移金属に配位可能なヘテロ原子を含むヘテロ原子含有基の具体的な例としては、以下のようなものが挙げられる。
 すなわち、酸素含有基として、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などのアルコキシ基、フェノキシ基、p-メチルフェノキシ基、p-メトキシフェノキシ基などのアリーロキシ基、アセチル基、ベンゾイル基などのアシル基、アセトキシ基、カルボキシエチル基、カルボキシt-ブチル基、カルボキシフェニル基などのエステル基などを挙げることができる。窒素含有基としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、シクロヘキシルアミノ基などのジアルキルアミノ基などを挙げることができる。硫黄含有基としては、チオメトキシ基、チオエトキシ基、チオ-n-プロポキシ基、チオイソプロポキシ基、チオ-n-ブトキシ基、チオ-t-ブトキシ基、チオフェノキシ基などのチオアルコキシ基、p-メチルチオフェノキシ基、p-メトキシチオフェノキシ基などのチオアリーロキシ基などを挙げることができる。リン含有置換基としては、ジメチルホスフィノ基、ジエチルホスフィノ基、ジ-n-プロピルホスフィノ基、シクロヘキシルホスフィノ基などのジアルキルホスフィノ基などを挙げることができる。セレン含有基としては、メチルセレニル基、エチルセレニル基、n-プロピルセレニル基、n-ブチルセレニル基、t-ブチルセレニル基、フェニルセレニル基などのセレニル基を挙げることができる。
 Eは、リン、砒素またはアンチモンを表す。この中でも、Eはリンであることが好ましい。
 Xは、酸素または硫黄を表す。この中でも、Xは酸素であることが好ましい。
 Zは、水素、または脱離基を表す。Zは、具体的には、水素原子、RSO基(ここでRは、前記したとおりである)、CFSO基などを挙げることができる。
 mはZの価数を表す。
 一般式[II]は、アニオンの形で表されているが、そのカウンターカチオンは、本開示における遷移金属化合物との反応を阻害しない限りにおいて、任意のものを用いることができる。カウンターカチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはホスホニウム、周期表1族~14族の金属イオンを挙げることができる。これらのうち好ましくは、NH 、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい。以下同様である。)、R 、Li、Na、K、Mg2+、Ca2+、Al3+であり、さらに好ましくは、R 、Li、Na、Kである。
 本開示における上記一般式[I]及び[II]中の置換基等の具体的な組み合わせを、下記表3-1に示す。Z及びmは一般式[I]のみに関わる。ただし、具体例は、下記例示に限定されるものではない。
Figure JPOXMLDOC01-appb-T000032
 化合物の構造の理解のため、上記表3-1に記載の化合物7の構造式と名称を示す。この構造式の化合物は、2-(ジ-t-ブチルホスファニル)-6-t-ブチルフェノールと称する。
Figure JPOXMLDOC01-appb-C000033
 一般式[I]、[II]で示される化合物については、公知の合成法に基づいて合成することができる。
 上記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物との反応生成物中に、下記一般式[III]で表される本開示の金属錯体が含まれる。ただし、上述したように、当該製造方法によって得られる金属錯体の構造は、一般式[III]に示す構造のみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
 上記一般式[III]中、R~R、E、Xは上記の通りである。このように、上記反応生成物中の金属錯体と、一般式[III]に示す金属錯体との間には、ベンゼン環を含む主骨格や、これら置換基(R~R、E、X)の点において錯体構造の共通性がある。
 以下、一般式[III]中のM、R、Lについて説明する。
 本開示において、Mは、周期表の9族、10族または11族に属する遷移金属である。Mは、好ましくは、10族のニッケル、パラジウム、白金および9族のコバルト、ロジウムおよび11族の銅であり、さらに好ましくは、10族のニッケル、パラジウム、白金であり、最も好ましくは10族のニッケルまたはパラジウムである。
 Mの価数については2価が好ましい。ここでMの価数とは、有機金属化学で用いられる形式酸化数(formal oxidation number)を意味する。すなわち、ある元素が関与する結合中の電子対を電気陰性度の大きい元素に割り当てたとき、その元素の原子上に残る電荷の数を指す。例えば、本開示の一般式[III]において、Eがリン、Xが酸素、Mがニッケル、Rがフェニル基、Lがピリジンであり、ニッケルがリン、酸素、フェニル基の炭素、ピリジンの窒素と結合を形成している場合、ニッケルの形式酸化数、すなわちニッケルの価数は2価となる。なぜならば、上述の定義に基づき、これらの結合において、電子対は、ニッケルよりも電気陰性度の大きいリン、酸素、炭素、窒素に割り当てられ、電荷は、リンが0、酸素が-1、フェニル基が-1、ピリジンが0で、錯体は、全体として電気的に中性であるため、ニッケル上に残る電荷は+2となるからである。
 2価の遷移金属としては、例えば、ニッケル(II)、パラジウム(II)、白金(II)、コバルト(II)が好ましく、2価以外では、銅(I)またはロジウム(III)も好ましい。
 本開示においてRは、水素原子、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。本開示における重合または共重合反応は、MとRの結合に本開示における(a)成分または(b)成分が挿入されることによって、開始されると考えられる。したがって、Rの炭素数が過度に多いと、この開始反応が阻害される傾向にある。このため、好ましいRとしては、置換基に含まれる炭素数を除く炭素数が1~16、さらに好ましくは当該炭素数が1~10である。
 Rの具体的な例としては、ヒドリド基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、フェニル基、p-メチルフェニル基、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等を挙げることができる。
 本開示において、Lは、Mに配位したリガンドを表す。本開示におけるリガンドLは、配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1~20の炭化水素化合物である。また、Lとして、遷移金属に配位可能な炭素-炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)も使用することができる。好ましくは、Lの炭素数は、1~16であり、さらに好ましくは1~10である。また一般式[III]中のMと配位結合するLとしては、電荷を持たない化合物が好ましい。
 本開示における好ましいLとしては、環状不飽和炭化水素類、ホスフィン類、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類などを挙げることができる。さらに好ましいLとしては、環状オレフィン類、ホスフィン類、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類が挙げられ、特に好ましいLとして、トリアルキルホスフィン、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RCO(RおよびRの定義は、前記の通り)を挙げることができる。
 なお、RとLが互いに結合して環を形成してもよい。そのような例として、シクロオクタ-1-エニル基を挙げることができ、これも本開示における好ましい様態である。
 本開示における上記一般式[III]中の置換基等の具体的な組み合わせを、下記表3-2に示す。ただし、具体例は、下記例示に限定されるものではない。
Figure JPOXMLDOC01-appb-T000035
 金属錯体の構造の理解のため、上記表3-2に記載の錯体7aの構造式と名称を示す。この構造式の化合物は、(2-(ジ-t-ブチルホスファニル)-6-t-ブチルフェニルフェノラート)((1,4,5-η)-4-シクロオクテン-1-イル)ニッケル(II)と称する。
Figure JPOXMLDOC01-appb-C000036
 また、表3-2に例示した各化合物の中心金属Mがニッケルの代わりに、パラジウムに代わった化合物も例示される。
 本開示で用いられる遷移金属化合物については、一般式[I]または[II]で示される化合物と反応して、重合能を有する錯体を形成可能なものが使用される。これらは、プリカーサー(前駆体)とも呼ばれることがある。
 例えば、ニッケルを含む遷移金属化合物としては、ビス(1,5-シクロオクタジエン)ニッケル(0)、一般式:Ni(CHCR13CHで表される錯体[ここでR13は、水素原子、ハロゲン原子、ヘテロ原子を含有していてもよい炭素数1~30の炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0~3の整数を表し、yは0~2の整数を表す。)。]、ビス(シクロペンタジエニル)ニッケル(II)、一般式:Ni(CHSiR13 で表される錯体(ここでR13、Lは、上記の通りである。)、一般式:NiR13 で表される錯体(ここでR13、Lは、上記の通りである。)等を使用することができる。
 また、9族、10族または11族の遷移金属を含む遷移金属化合物については、一般式:MR13 (ここで、Mは、9族、10族または11族の遷移金属であり、R13およびLは、本明細書に記載した通りであり、pおよびqは、Mの価数を満たす0以上の整数である。)を使用することができる。
 これらの遷移金属化合物のうち、好ましく用いられるものは、ニッケル(0)ビス(1,5-シクロオクタジエン)、NiPhCl(PEt、NiPhCl(PPh2、NiPhCl(TMEDA)(以下、TMEDAはテトラメチルエチレンジアミンを表す。)、NiArBr(TMEDA)(ここで、Ar=4-フルオロフェニルである。)、一般式:Ni(CHCR13CHで表される錯体(ここでR13は上記の通りである。)、一般式:Ni(CHSiR13 で表される錯体(ここでR13、Lは上記の通りである。)、一般式:NiR13 で表される錯体(ここでR13、Lは、上記の通りである。)、Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCH、(1,5-シクロオクタジエン)Pd(メチル)(クロリド)である。
 特に好ましくは、ニッケル(0)ビス(1,5-シクロオクタジエン)、NiPhCl(PEt、NiPhCl(PPh2、NiPhCl(TMEDA)、NiArBr(TMEDA)(ここで、Ar=4-フルオロフェニルである。)、Ni(CHCHCH、Ni(CHCMeCH、Ni(CHSiMe(Py)(以下Pyは、ピリジンを表す。)、Ni(CHSiMe(Lut)(以下Lutは、2,6-ルチジンを表す。)、NiPh(Py)、NiPh(Lut),Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCH、(1,5-シクロオクタジエン)Pd(メチル)(クロリド)である。
 本開示の反応生成物は、前述の一般式[I]または[II]で表される化合物と前述の遷移金属化合物[IV]とを、例えば[I]+[II]:[IV]=1:99~99:1(モル比)を、0~100℃のトルエンやベンゼン等の有機溶媒中で、減圧~加圧下で1~86400秒間接触させることにより、得ることができる。遷移金属化合物として、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(COD))のトルエンやベンゼン溶液を用いる場合には、溶液の色が黄色から、例えば赤色に変化することにより、反応生成物の生成が確認できる。
 本反応後、遷移金属化合物を構成している成分であって、当該化合物中の遷移金属以外の成分は、一般式[I]中のZを除いた部分や一般式[II]の化合物によって置換されて、本開示の一般式[III]で表される金属錯体が生成する。この置換反応は、定量的に進行するほうが好ましいが、場合によっては完全に進行しなくてもよい。反応終了後、一般式[III]で表される錯体以外に、一般式[I]、[II]、及び遷移金属化合物由来の他の成分が共存するが、本開示の重合反応または共重合反応を行う際に、これらの他の成分は、除去してもよいし、除去しなくてもよい。一般的には、これらの他の成分は、除去した方が、高活性が得られるので好ましい。
 なお、反応を行う際に、本開示に係るLを共存させてもよい。本開示に係るMとして、ニッケルやパラジウムを用いた場合には、ルイス塩基性のLを系内に共存させることによって、精製した一般式[III]の錯体の安定性が増す場合があり、このような場合には、Lが本開示の重合反応または共重合反応を阻害しない限りにおいて、Lを共存させることが好ましい。
 本開示において、反応をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器とは別の容器で、予め行ったうえで、得られた一般式[III]の錯体をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に供してもよいし、反応をこれらのモノマーの存在下に行ってもよい。また、反応を、α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器の中で行ってもよい。この際に、これらのモノマーは存在していてもよいし、存在していなくてもよい。また、一般式[I]及び[II]で示される成分については、それぞれ単独の成分を用いてもよいし、それぞれ複数種の成分を併用してもよい。特に、分子量分布やコモノマー含量分布を広げる目的には、こうした複数種の併用が有用である。
3-2.金属錯体の製造方法
 本開示の第3の実施形態の製造方法においては、上述したように、一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、一般式[III]で表される金属錯体を製造することができる。
3-3.オレフィン重合用触媒成分
 本開示の第3の実施形態のオレフィン重合用触媒成分は、上記金属錯体、又は上記製造方法で得られる金属錯体を含むことを特徴とする。
 本開示の第3の実施形態においては、一般式[III]で表される金属錯体を、重合または共重合の触媒成分として使用することができる。前記したように、一般式[III]で表される金属錯体は、一般式[I]または[II]と遷移金属錯体成分との反応によって、形成させることができる。一般式[III]で表される金属錯体を触媒成分に用いる場合、単離したものを用いてもよいし、担体に担持したものを用いてもよい。こうした担持α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器中で、これらのモノマーの存在下または非存在下で行ってもよいし、該反応器とは別の容器中で行ってもよい。
 使用可能な担体としては、本開示の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Cr等の混合酸化物も使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。
 無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が使用可能である。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。これらは混合層を形成していてもよい。人工合成物としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。
 これらの担体は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理および/または、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理を行ってもよい。該処理において、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また粉砕や造粒等の形状制御や乾燥処理を行ってもよい。
3-4.オレフィン重合用触媒
 本開示の第3の実施形態のオレフィン重合用触媒は、下記の成分(A)及び(B)、更に必要に応じて(C)を含むことを特徴とする。
 成分(A):上記金属錯体、又は上記製造方法で得られる金属錯体
 成分(B):成分(A)と反応してイオン対を形成する化合物又はイオン交換性層状珪酸塩
 成分(C):有機アルミニウム化合物
 成分(A)は、上記金属錯体、又は上記製造方法で得られる金属錯体であり、1種類の金属錯体のみを用いてもよいし、2種類以上の金属錯体を組み合わせて用いてもよい。
 成分(B)の一つとして、有機アルミニウムオキシ化合物が挙げられる。上記有機アルミニウムオキシ化合物は、分子中に、Al-O-Al結合を有し、その結合数は通常1~100、好ましくは1~50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる生成物である。
 有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
 有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記一般式で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
  (RAl(X(3-t)
(一般式中、Rは、炭素数1~18、好ましくは1~12のアルキル基、アルケニル基、アリール基、アラルキル基などの炭化水素基を示し、Xは、水素原子又はハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
 トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基などのいずれでも差し支えないが、メチル基、イソブチル基が好ましく、メチル基であることが特に好ましい。上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
 水と有機アルミニウム化合物との反応比(水/Alモル比)は、0.25/1~1.2/1、特に、0.5/1~1/1であることが好ましく、反応温度は、通常-70~100℃、好ましくは-20~20℃の範囲にある。反応時間は、通常5分~24時間、好ましくは10分~5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物などに含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
 なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む)は、有機アルミニウムオキシ化合物として、好適である。MAO溶液を溶媒留去して得られた固体状のドライメチルアルミノキサン(DMAO)もまた好適である。
 もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶解又は分散させた溶液としたものを用いても良い。
 また、成分(B)の具体例として、イオン交換性層状珪酸塩が挙げられる。イオン交換性層状珪酸塩(以下、単に「珪酸塩」と略記する場合がある。)は、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。珪酸塩は、各種公知のものが知られており、具体的には、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている。
 本開示において、成分(B)として好ましく用いられるものは、スメクタイト族に属するもので、具体的にはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイトなどを挙げることができる。中でも、共重合体部分の重合活性、分子量を高める観点からモンモリロナイトが好ましい。
 大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英やクリストバライトなど)が含まれることが多く、本開示で用いられるスメクタイト族の珪酸塩に夾雑物が含まれていてもよい。
 珪酸塩は酸処理及び/又は塩類処理を行ってもよい。該処理においては、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。
 成分(B)として、前記の有機アルミニウムオキシ化合物と、イオン交換性層状珪酸塩との混合物を用いることもできる。更に、それぞれを単独でも用いてもよいし、二種以上を用いてもよい。
 成分(C)として使用される、有機アルミニウム化合物の一例は、次の一般式で表される。
  Al(R(3-a)
 一般式中、Rは、炭素数1~20の炭化水素基、Xは、水素、ハロゲン、アルコキシ基又はシロキシ基を示し、aは0より大きく3以下の数を示す。
 一般式で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲン又はアルコキシ含有アルキルアルミニウムが挙げられる。
 これらの中では、トリイソブチルアルミニウムが好ましい。また、上記の有機アルミニウム化合物を2種以上併用してもよい。また、上記のアルミニウム化合物をアルコール、フェノールなどで変性して用いてもよい。これらの変性剤としては、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、フェノール、2,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノールなどが例示され、好ましい具体例は、2,6-ジメチルフェノール、2,6-ジ-t-ブチルフェノールである。
 本開示の第3の実施形態に係るオレフィン重合用触媒の調製法においては、成分(A)、(B)、更に必要に応じて(C)を接触させる方法は、特に限定されないが、次の様な方法を例示することができる。
(i)成分(A)と成分(B)とを接触させた後に、成分(C)を添加する方法
(ii)成分(A)と成分(C)とを接触させた後に、成分(B)を添加する方法
(iii)成分(B)と成分(C)とを接触させた後に、成分(A)を添加する方法
(iv)各成分(A)、(B)、(C)を同時に接触させる方法。
 更に、各成分中で別種の成分を混合物として用いてもよいし、別々に順番を変えて接触させてもよい。なお、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時又はオレフィンの重合時に行ってもよい。
 又、成分(B)と成分(C)とを接触させた後、成分(A)と成分(C)の混合物を加えるというように、成分を分割して各成分に接触させてもよい。
 上記の各成分(A)(B)(C)の接触は、窒素などの不活性ガス中において、ペンタン、ヘキサン、ヘプタン、トルエン、キシレンなどの不活性炭化水素溶媒中で行うことが好ましい。接触は、-20℃から溶媒の沸点の間の温度で行うことができ、特に室温から溶媒の沸点の間での温度で行うのが好ましい。
3-5.α-オレフィン重合体の製造方法
 本開示の第3の実施形態のα-オレフィン重合体の製造方法の一実施形態は、上記重合用触媒の存在下で、(a)α-オレフィンを重合又は共重合するものである。
 本開示における成分(a)は、一般式:CH=CHR10で表されるα-オレフィンである。ここで、R10は、水素原子または炭素数1~20の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R10の炭素数が20より大きいと、十分な重合活性が発現しない傾向がある。このため、なかでも、好ましい(a)成分としては、R10が水素原子または炭素数1~10の炭化水素基であるα-オレフィンが挙げられる。
 さらに好ましい(a)成分としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、スチレンが挙げられる。なお、単独の(a)成分を使用してもよいし、複数の(a)成分を併用してもよい。
 本開示のα-オレフィン重合体の製造方法、及びα-オレフィン共重合体の製造方法においては、(a)α-オレフィンがプロピレンであることが特に好ましい。
 本開示のα-オレフィン重合体の製造方法の他の実施形態は、上記重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマー又はアリルモノマーとを共重合するものである。
 本開示における(メタ)アクリル酸エステルモノマーは、一般式:CH=C(R11)CO(R12)で表される。ここで、R11は、水素原子または炭素数1~10の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。R12は、炭素数1~30の炭化水素基であり、分岐、環、および/または不飽和結合を有していてもよい。さらに、R12内の任意の位置にヘテロ原子を含有していてもよい。
 R11の炭素数が11以上であると、十分な重合活性が発現しない傾向がある。したがって、R11は、水素原子または炭素数1~10の炭化水素基であるが、好ましい(メタ)アクリル酸エステルとしては、R11が水素原子または炭素数1~5の炭化水素基であるものが挙げられる。より好ましい(メタ)アクリル酸エステルモノマーとしては、R11がメチル基であるメタクリル酸エステルまたはR11が水素原子であるアクリル酸エステルが挙げられる。同様に、R12の炭素数が30を超えると、重合活性が低下する傾向がある。よって、R12の炭素数は1~30であるが、R12は、好ましくは炭素数1~12であり、さらに好ましくは炭素数1~8である。
 また、R12内に含まれていても良いヘテロ原子としては、酸素、硫黄、セレン、リン、窒素、ケイ素、フッ素、ホウ素等が挙げられる。これらのヘテロ原子のうち、酸素、ケイ素、フッ素が好ましく、酸素が更に好ましい。また、R12は、ヘテロ原子を含まないものも好ましい。
 さらに好ましい(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸-2-アミノエチル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸エチレンオキサイド、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸-2-トリフルオロメチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリルアミド、(メタ)アクリルジメチルアミド、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。なお、単独の(メタ)アクリル酸エステルを使用してもよいし、複数の(メタ)アクリル酸エステルを併用してもよい。
 本開示におけるビニルモノマーは、含ハロゲン、含窒素、含酸素、含硫黄等の極性基を有するビニルモノマーで、特にハロゲン、水酸基、アミノ基、ニトロ基、カルボキシル基、ホルミル基、エステル基、エポキシ基、ニトリル基等を含有するビニルモノマーである。具体的には、5-ヘキセン-1-オール、2-メチル-3-ブテン-1-オール、10-ウンデセン酸エチル、10-ウンデセン-1-オール、12-トリデセン-2-オール、10-ウンデカノイック酸、メチル-9-デセネート、t-ブチル-10-ウンデセネート、1,1-ジメチル-2-プロペン-1-オール、9-デセン-1-オール、3-ブテン酸、3-ブテン-1-オール、N-(3-ブテン-1-イル)フタルイミド、5-ヘキセン酸、5-ヘキセン酸メチル、5-ヘキセン-2-オン、アクリロニトリル、メタクリロニトリル、酢酸ビニル等が挙げられる。この中でも、特に3-ブテン-1-オール、10-ウンデセン酸エチル、10-ウンデセン-1-オールが好ましい。
 本開示におけるアリルモノマーは、炭素数3のアリルモノマー(プロぺニルモノマー)、アリル基を有する、炭素数4以上のアリル系モノマーが例示される。アリルモノマーは、含ハロゲン、含窒素、含酸素、含硫黄等の極性基を有するアリルモノマーで、特にハロゲン、水酸基、アミノ基、ニトロ基、カルボキシル基、ホルミル基、エステル基、エポキシ基、ニトリル基等を含有するビニルモノマーである。好ましい具体例として、酢酸アリル、アリルアルコール、アリルアミン、N-アリルアニリン、N-t-ブトキシカルボニル-N-アリルアミン、N-ベンジルオキシカルボニル-N-アリルアミン、N-アリル-N-ベンジルアミン、塩化アリル、臭化アリル、アリルエーテル、ジアリルエーテルなどが挙げられる。これらの中でも、特に酢酸アリル、アリルアルコールが好ましく、酢酸アリル、アリルエーテル、ジアリルエーテルがより好ましい。
 本開示の重合反応は、プロパン、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化α-オレフィン等の液体、また、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルミアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等のような極性溶媒の存在下あるいは非存在下に行われる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。さらに、イオン液体も溶媒として使用可能である。なお、高い重合活性や高い分子量を得るうえでは、上述の炭化水素溶媒やイオン液体がより好ましい。
 本開示では、公知の添加剤の存在下または非存在下で重合反応を行うことができる。添加剤としては、ラジカル重合を禁止する重合禁止剤や、生成共重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。具体的には、モノメチルエーテルハイドロキノンや、2,6-ジ-t-ブチル4-メチルフェノール(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。また、添加剤として、無機およびまたは有機フィラーを使用し、これらのフィラーの存在下で重合を行っても良い。さらに、本開示に係るLやイオン液体を添加剤として用いてもよい。
 本開示における好ましい添加剤として、ルイス塩基が挙げられる。適切なルイス塩基を選択することにより、活性、分子量、アクリル酸エステルの共重合性を改良することができる。ルイス塩基の量としては、重合系内に存在する触媒成分中の遷移金属Mに対して、0.0001当量~1000当量、好ましくは0.1当量~100当量、さらに好ましくは、0.3当量~30当量である。ルイス塩基を重合系に添加する方法については、特に制限はなく、任意の手法を用いることができる。例えば、本開示の触媒成分と混合して添加してもよいし、モノマーと混合して添加してもよいし、触媒成分やモノマーとは独立に重合系に添加してもよい。また、複数のルイス塩基を併用してもよい。また、本開示に係るLと同じルイス塩基を用いてもよいし、異なっていてもよい。
 ルイス塩基としては、芳香族アミン類、脂肪族アミン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル類、アリールニトリル類、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、ホスフェート類、ホスファイト類、チオフェン類、チアンスレン類、チアゾール類、オキサゾール類、モルフォリン類、環状不飽和炭化水素類などを挙げることができる。これらのうち、特に好ましいルイス塩基は、芳香族アミン類、脂肪族アミン類、環状エーテル類、脂肪族エステル類、芳香族エステル類であり、なかでも好ましいルイス塩基は、ピリジン誘導体、ピリミジン誘導体、ピペリジン誘導体、イミダゾール誘導体、アニリン誘導体、ピペリジン誘導体、トリアジン誘導体、ピロール誘導体、フラン誘導体である。
 具体的なルイス塩基化合物としては、ピリジン、ペンタフルオロピリジン、2,6-ルチジン、2,4-ルチジン、3,5-ルチジン、ピリミジン、N、N-ジメチルアミノピリジン、N-メチルイミダゾール、2,2’-ビピリジン、アニリン、ピペリジン、1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリス(2-ピリジル)-s-トリアジン、キノリン、8-メチルキノリン、フェナジン、1,10-フェナンスロリン、N-メチルピロール、1,8-ジアザビシクロ-[5.4.0]-ウンデカ-7-エン、1,4-ジアザビシクロ-[2,2,2]-オクタン、トリエチルアミン、ベンゾニトリル、ピコリン、トリフェニルアミン、N-メチル-2-ピロリドン、4-メチルモルフォリン、ベンズオキサゾール、ベンゾチアゾール、フラン、2,5-ジメチルフラン、ジベンゾフラン、キサンテン、1,4-ジオキサン、1,3,5-トリオキサン、ジベンゾチオフェン、チアンスレン、トリフェニルホスフォニウムシクロペンタジエニド、トリフェニルホスファイト、トリフェニルホスフェート、トリピロリジノホスフィン、トリス(ピロリジノ)ボランなどを挙げることができる。
 本開示において、重合形式に特に制限はない。媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが好ましく用いられる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。さらに、いわゆるchain transfer agent(CSA)を併用し、chain shuttlingや、coordinative chain transfer polymerization(CCTP)を行ってもよい。
 未反応モノマーや媒体は、生成共重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
 重合温度、重合圧力および重合時間に、特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。すなわち、重合温度は、通常-20℃~290℃、好ましくは0℃~250℃、共重合圧力は、0.1MPa~300MPa、好ましくは、0.3MPa~250MPa、重合時間は、0.1分~10時間、好ましくは、0.5分~7時間、さらに好ましくは1分~6時間の範囲から選ぶことができる。
 本開示において、重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン、二酸化炭素雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。
 重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じてさまざまな供給法をとることができる。たとえばバッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を重合反応器に連続的に、または間歇的に供給し、重合反応を連続的に行う手法をとることができる。
 共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
 重合体の分子量制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、遷移金属錯体中のリガンド構造の制御により分子量を制御する等が挙げられる。連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。例えば、水素、メタルアルキルなどを使用することができる。
 また、(b)成分自身が一種の連鎖移動剤となる場合には、(b)成分の(a)成分に対する比率や、(b)成分の濃度を制御することによっても、分子量調節が可能である。遷移金属錯体中のリガンド構造を制御して、分子量調節を行う場合には、前記したR、R中のヘテロ原子含有基の種類、数、配置を制御したり、金属Mのまわりに嵩高い置換基を配置したり、前記したR中にヘテロ原子を導入したりすることによって、一般に分子量が向上する傾向を利用することができる。なお、金属Mに対して、アリール基やヘテロ原子含有置換基などの電子供与性基が相互作用可能となるように電子供与性基を配置することが好ましい。こうした電子供与性基が金属Mと相互作用可能であるかどうかは、一般に、分子模型や分子軌道計算で電子供与性基と金属Mとの距離を測定することによって判断できる。
 特に本開示により得られる共重合体は、共重合体の極性基にもとづく効果により、良好な塗装性、印刷性、帯電防止性、無機フィラー分散性、他樹脂との接着性、他樹脂との相溶化能などが発現する。こうした性質を利用して、本開示の共重合体は、さまざまな用途に使用することができる。例えば、フィルム、シート、接着性樹脂、バインダー、相溶化剤、ワックスなどとして使用可能である。
 以下の実施例および比較例において本開示をさらに詳細に説明するが、本開示はこれらによって限定されるものではない。
 以下の合成例で、とくに断りのない限り、操作は精製窒素雰囲気下で行い、溶媒は脱水・脱酸素したものを用いた。
<本開示の第1の実施形態>
1-1.評価法
(1)重量平均分子量Mw、数平均分子量Mnおよび分子量分布Mw/Mn:以下のGPC測定により求めた。
 はじめに、試料約20mgをポリマーラボラトリー社製高温GPC用前処理装置PL-SP 260VS用のバイアル瓶に採取し、安定剤としてBHTを含有するo-ジクロロベンゼン(BHT濃度=0.5g/L)を加え、ポリマー濃度が0.1質量%になるように調整した。ポリマーを上記高温GPC用前処理装置PL-SP 260VS中で135℃に加熱して溶解させ、グラスフィルターにて濾過して試料を調製した。なお、本開示におけるGPC測定において、グラスフィルターに捕捉されたポリマーはなかった。次に、カラムとして、東ソー社製TSKgel GMH-HT(30cm×4本)およびRI検出器を装着したウォーターズ社製GPCV 2000を使用してGPC測定を行った。測定条件としては、試料溶液注入量:約520μL、カラム温度:135℃、溶媒:o-ジクロロベンゼン、流量:1.0mL/minを採用した。分子量の算出は以下のように行った。すなわち、標準試料として市販の単分散のポリスチレンを使用し、該ポリスチレン標準試料およびエチレン系重合体の粘度式から、保持時間と分子量に関する校正曲線を作成し、該校正曲線に基づいて分子量の算出を行った。なお、粘度式としては、[η]=K×Mαを使用し、ポリスチレンに対しては、K=1.38E-4、α=0.70を使用し、エチレン系重合体に対しては、K=4.77E-4、α=0.70を使用し、プロピレン系重合体に対しては、K=1.03E-4、α=0.78を使用した。
1-2.リガンドの合成
(合成例1-1):リガンドB-350の合成
 以下のスキームに従ってリガンドB-350を合成した。
 なお、以降の化学式中、-OMOMとはメトキシメトキシ基(-OCHOCH)を表す。
Figure JPOXMLDOC01-appb-C000037
(1)化合物2の合成
 アルゴン雰囲気下で化合物1(10.0g、73.4mmol)、塩化アルミニウム(10.47g、78.6mmol)、三塩化リン(50.7g、369.2mmol、32.5mL)の混合物を80℃で12時間撹拌し、オレンジ色の懸濁液を得た。その後、過剰な三塩化リンを常圧蒸留により除去し、セライトを通してろ過した。ろ液を水150mLに注ぎ入れ、ジクロロメタン(150mLx2)で抽出し、有機相は無水硫酸ナトリウムで乾燥し、その後濃縮することで化合物2を得た。
(2)化合物3の合成
 化合物2(13.0g、36.8mmol)のTHF150mL溶液に水素化アルミニウム(3.3g、86.9mmol)を-14℃で60分かけて加えた。30℃まで昇温後、混合物は12時間撹拌し、灰色懸濁液を得た。懸濁液は-14℃に冷却し、1MのHCl水溶液100mLをシリンジでゆっくりと滴下した。生じた二層の上層を分液漏斗により分離し、酢酸エチル100mLで抽出した。有機相は無水硫酸ナトリウムで乾燥し、その後濃縮することで化合物3を得た。
(3)化合物5aの合成
 アルゴン雰囲気下で化合物3(5.8g、19.2mmol)、化合物4(5.7g、19.2mmol)、ナトリム-tert-ブトキシド(3.7g、38.4mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(DPEPhos、2.1g、3.84mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(1.8g、1.9mmol)にトルエン500mLを30℃で加えた。反応混合物は110℃で12時間撹拌し、灰色の懸濁液を得た。反応溶液を30℃まで降温し、セライトを通してろ過し、ろ液を水150mLに注ぎ入れ、酢酸エチル(150mLx2)で抽出し、有機相は無水硫酸ナトリウムで乾燥し、その後濃縮することでオレンジ色の残渣を得た。シリカゲルカラム(展開溶媒に、石油エーテル/酢酸エチル=0:1-50:1)で精製し、化合物5aを得た(3.0g、5.8mmol、収率30.2%)。
(4)化合物6aの合成
 アルゴン雰囲気下で、化合物5a(3.0g、5.8mmol)のTHF溶液20mLにn-ブチルリチウム(2.5M、2.8mL、7.0mmol)を-78℃で加えた。反応溶液は-78℃で2時間撹拌し、オレンジ色の懸濁液を得た。そこにヘキサフルオロベンゼン(1.6g、8.7mmol、1.00mL)を-78℃加え、30℃で12時間撹拌した。反応溶液は、氷で冷却した飽和塩化アンモニウムに注ぎ入れ、酢酸エチル(100mLx2)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで黄色残渣を得た。シリカゲルカラム(展開溶媒に、石油エーテル:酢酸エチル=1:0-30:1)で精製し、化合物6aを得た(1.3g、2.2mmol、収率37.1%)。
(5)リガンドB-350の合成
 アルゴン雰囲気下で、化合物6a(1.7g、2.8mmol)にHCL/酢酸エチル(4M、100mL、400.0mmol)を0℃で加えた。30℃まで昇温した後に、反応混合物は20時間撹拌し、白色の懸濁溶液を得た。揮発成分を減圧下で留去し、粗生成物を得た。ジクロロメタン100mLを添加し、有機相は飽和炭化水素ナトリウム水溶液100mLで洗浄した。その後、有機相を濃縮し、リガンドB-350を得た(1.3g、2.4mmol、収率85.4%)。
HNMR(400MHz,CDCl,δ,ppm):8.21(s,1H),7.70(d,J=7.6Hz,1H),7.25(s,1H),6.99(t,J=7.6Hz,1H),2.03-1.90(m,18H),1.71(s,12H);
31PNMR(162MHz,CDCl,δ,ppm):-5.59(s).
(合成例1-2):リガンドB-352の合成
 以下のスキームにしたがってリガンドB-352を合成した。
Figure JPOXMLDOC01-appb-C000038
(1)化合物12の合成
 濃塩酸(12M、198.0mL)に無水塩化亜鉛(287.9g、2.11mol)を一気に投入した。無水塩化亜鉛が塩酸に溶解後、化合物11(100.0g、634.0mmol)を加えた。その後、溶液は35℃で16時間撹拌し、黄色懸濁溶液を得た。
 懸濁溶液を冷却した後、石油エーテル(80mLx3)で抽出した。有機相は50mLの水と濃硫酸を小分けして変色がなくなるまで加えた。有機相は水(50mLx5)で洗い、無水硫酸ナトリウムで乾燥し、ろ過した後に濃縮し、粗生成物を得た。
 粗生成物は減圧蒸留(b.p.60℃/20mmHg)で精製し、無色オイルである化合物12が得られた。収量:90.0g(515.4mmol、収率:80.5%)
(2)化合物14の合成
 窒素雰囲気下で3つ口フラスコに、マグネシウム(7.1g、293.1mmol)を入れた後に、無水THF80mLとヨウ素(10.0mg、39.4μmol)を加えた。その後化合物12(40.0g、229.0mmol)をゆっくりと加えた。反応溶液は70℃で3時間撹拌し、化合物13を含む黒色懸濁液を得た。黒色懸濁液を0℃に冷却した後に、トルエン50mLに溶かした三塩化リン(11.0g、80.1mmol)を滴下して加えた。得られた懸濁溶液は0℃で1時間撹拌した後に、70℃で14時間撹拌し、白色懸濁溶液を得た。懸濁溶液はろ過による分離し、ろ液は溶媒留去し黄色オイルとして化合物14(粗生成物)を得た。
(3)化合物16の合成
 化合物15(2.1g、15.2mmol)をTHF30mLに溶解し、n-ブチルリチウム(2.5M、6.1mL、15.2mmol)を-78℃で加え、0℃で1時間撹拌した、化合物14(3.5g、10.1mmol)のTHF10mL溶液を反応溶液に加え、20℃で16時間撹拌し、化合物16を含む黄色溶液を得た。この黄色溶液はそのまま次の反応に使用した。
(4)化合物6bの合成
 窒素雰囲気下で、化合物16を含む黄色溶液(4.5g、10.1mmol)のTHF30mL溶液に、n-BuLi(2.5M、6.48mL、16.2mmol)を0℃で加え、0℃で2時間撹拌した。反応溶液にヘキサフルオロベンゼン(2.8g、15.2mmol)を0℃で加え、20℃で16時間撹拌し、黄色溶液を得た。反応溶液は、水でクエンチし、酢酸エチル(20mLx2)で抽出した。有機相は、水20mL、塩水20mLで洗浄し、硫酸ナトリムで乾燥し、その後濃縮し、粗生成物を得た。粗生成物は展開溶媒に石油エーテル/酢酸エチル=100/1を用い、シリカゲルカラムにより精製し、化合物6bを得た。
(5)リガンドB-352の合成
 化合物6b(200.0mg、293.8μmol)の酢酸エチル溶液10mLにHCl/酢酸エチル(4M、734.5μL、2937.9μmol)を0℃で加え、15℃で30分撹拌した。その後、混合溶液を濃縮し、飽和炭酸水素ナトリム溶液30mLを加えクエンチし、ジクロロメタン(20mLx2)で抽出した。有機相は無水硫酸ナトリウムで乾燥した後に濃縮し、リガンドB-352を得た。
HNMR(400MHz,C,δ,ppm):7.99(d,J=10.08Hz,1H),7.51(d,J=7.60,2.52,1.76Hz,1H),7.06(d,J=7.32Hz,1H),6.82(t,J=7.60Hz,1H),2.79(sept,J=7.08Hz,1H),2.18-2.09(m,1H),1.96-1.86(m,3H),1.81-1.74(m,1H),1.69-1.65(m,1H),1.61-1.47(m,3H),1.42-1.32(m,2H),1.24-1.15(m,2H),1.07-1.02(m,1H),0.97-0.93(m,9H),0.90-0.86(m,10H),0.54-0.45(m,1H),0.34(d,J=7.84Hz,3H);
31PNMR(162MHz,C,δ,ppm):-37.52(s).
(合成例1-3):リガンドB-415の合成
 以下のスキームにしたがってリガンドB-415を合成した。
Figure JPOXMLDOC01-appb-C000039
(1)化合物14の合成
 窒素雰囲気下で、3つ口フラスコにマグネシウム(7.12g、293.06mmol)を入れて、無水THF30mLとヨウ素(158.76mg、625.49μmol、126μL)を室温で加えた。その後、化合物12(40g、228.95mmol)のTHF溶液10mLをゆっくりと滴下し、1,2-ジブロモエタン(430.11mg、2.29mmol、172.73μL)を二回に分けて加えた。反応溶液は68℃で3時間撹拌し、黒色の懸濁液を得た。反応溶液を室温まで冷却した後ろ過し、ろ液を三塩化リン(8.59g、62.55mmol)のヘキサン溶液120mLに添加し、白色の懸濁液を得た。懸濁液はゆっくりと室温まで昇温し、68℃で16時間撹拌した。反応溶液をろ過し、ろ液を減圧下で濃縮し、淡黄色のオイル状生成物を得た。その後、減圧蒸留(140-155℃、80pa)により精製し、化合物14を純度61%で得た(21.7g、38.37mmol、収率30.7%)。
(2)化合物17の合成
 アルゴン雰囲気下で、化合物14(6.0g、17.39mmol)のTHF溶液50mLに水素化アルミニウムリチウム(792.22mg、20.87mmol)を0℃で加え、18℃で12時間撹拌し、白色の懸濁液を得た。脱気した水(1.2mL)、脱気した15%水酸化ナトリウム水溶液3.6mLを0℃で反応溶液に加えた。ろ過後、固体残渣をジクロロメタン(50mLx3)で洗浄し、白色固体として化合物17を得た(5.9g、16.72mmol、収率96.13%、純度88%)。
(3)化合物19の合成
 水素化ナトリウム(66.30g、1.66mol)のTHF(300.00mL)懸濁溶液に化合物18(100.00g、665.69mmol、102.04mL)を0℃で加え、0℃で30分撹拌した。この反応溶液にクロロメチルメチルエーテル(107.19g、1.33mol、101.12mL)を0℃で加え、15℃で15時間撹拌し、白色の懸濁液を得た。反応溶液を水200mLでクエンチし、酢酸エチル(200mLx3)で抽出した。混合有機層は食塩水200mLで洗浄した。その後、硫酸ナトリウムで脱水し、ろ過し、ろ液を濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開液:石油エーテル)で精製し、化合物19(112.00g、576.52mmol、86.60%)を得た。
(4)化合物20の合成
 化合物19(10.00g、51.47mmol)のTHF溶液(30.00mL)にn-BuLi(2.5M、22.65mL)を0℃で加えた。反応溶液は0℃で1時間撹拌した。その後、ヨウ素(15.68g、61.76mmol、12.44mL)を加え、25℃で16時間撹拌し、黄色溶液を得た。その後、反応溶液を飽和硫酸ナトリウム水溶液30mLでクエンチし、酢酸エチル(30mLx3)で抽出した。混合有機層は食塩水15mLで洗浄し、硫酸ナトリウムで脱水し、ろ過した。ろ液を濃縮し粗生成物を得た。粗生成物はシリカゲルカラム(展開液:石油エーテル)で精製し、化合物20(12.00g、37.48mmol、収率72.82%)を得た。
(5)化合物6cの合成
 化合物20(5.9g、16.72mmol)と化合物17(5.95g、16.72mmol)、Pd(dba)(961.50mg、1.67mmol)、ナトリウムtert-ブトキシド(3.21g、33.44mmol)とビス[2-(ジフェニルホスフィノ)フェニル]エーテル(1.80g、3.34mmol)にトルエン(80mL)を加え、窒素雰囲気下で、110℃、18時間撹拌し褐色の懸濁液を得た。反応溶液は室温まで冷却し、その後ろ過した。固体残渣を酢酸エチル(100mLx4)で洗浄し、ろ液と合わせて濃縮し、黒色オイル状の粗生成物を得た。粗生成物はシリカゲルカラム(展開液:石油エーテル)で精製した。その後、80℃、4時間減圧乾燥し、化合物6c(5.3g、9.86mmol、収率58.95%)を黄色固体として得た。
(6)リガンドB-415の合成
 化合物6c(1.2g、2.39mmol)のジクロロメタン20mL溶液にHCl/酢酸エチル(2M、30.00mL)を加えた。反応溶液は18℃で24時間撹拌し、黄色溶液を得た。反応溶液を濃縮し、粗生成物を得た。粗生成物のpHを飽和炭酸水素ナトリム水溶液30mLで6.5~7.0に調整し、ジクロロメタン(35mLx3)で抽出し、減圧下で濃縮し、淡黄色固体としてリガンドB-415を得た(700mg、1.45mmol、収率60.74%、純度95%)。
HNMR(400MHz,C,δ,ppm):8.19(d,J=11.81Hz,1H)、7.38(dt,J=7.45,1.96Hz,1H),7.28(dd,J=7.64,1.20Hz,1H),6.83(t,J=7.64Hz,1H),2.94-2.81(m,1H),2.25-2.10(m,1H),2.00-1.78(m,4H),1.73-1.63(m,1H),1.62-1.46(m,5H),1.55(s,9H),1.44-1.30(m,2H),1.28-1.16(m,2H),1.13-0.89(m,3H),0.96(d,J=6.88Hz,3H),0.93(d,J=6.76Hz,3H),0.93(d,J=6.88Hz,3H),0.87(d,J=6.88Hz,3H),0.85(d,J=6.88Hz,3H),0.61-0.40(m,1H),0.32(d,J=6.76Hz,3H);
31PNMR(162MHz,C,δ,ppm):-37.76(s).
(合成例1-4):リガンドB-414の合成
 以下のスキームにしたがってリガンドB-414を合成した。
Figure JPOXMLDOC01-appb-C000040
(1)化合物22の合成
 化合物21(2.00g、5.85mmol)のエーテル溶液(10.00mL)にn-BuLi(2.5M、2.46mL)を-78℃で加え、-78℃で1時間撹拌した。反応溶液にクロロトリメチルシラン(762.65mg、7.02mmol、886.81μL)を-78℃で添加し、20℃で16時間撹拌し、白色の懸濁液を得た。反応溶液に水(20mL)を加え、酢酸エチル(50mLx3)で抽出した。混合有機相は硫酸ナトリウムで脱水し、ろ過した後に濃縮し、粗生成物を得た。シリカゲルカラム(展開液:石油エーテル)で精製し、化合物22(1.30g、3.88mmol、収率66.27%)を得た。
(2)化合物23の合成
 化合物22(1.00g、2.98mmol)のエーテル溶液(10.00mL)にn-BuLi(2.5M、1.31mL)を-78℃で加え、-78℃で1時間撹拌した。得られた反応溶液に化合物17(1.94g,2.98mmol)を-78℃で添加し、20℃で12時間撹拌した。ジメチルスルフィドボラン(10M、357.60μL)を-78℃で加え、20℃で12時間撹拌し、白色の懸濁液を得た。反応溶液に水(10mL)を0℃で加え、酢酸エチル(20mLx3)で抽出した。得られた混合有機層を硫酸ナトリウムで脱水し、ろ過した後にろ液を濃縮し、粗生成物を得た。シリカゲルカラム(展開液:石油エーテル)で精製し、化合物23(700.00mg、1.21mmol、収率40.59%)を得た。
(3)化合物24の合成
 化合物23(2.10g、3.63mmol)のトルエン懸濁液(50.00mL)に1,4-ジアザビシクロ[2.2.2]オクタン(814.05mg、7.26mmol、798.09μL)を加え、反応混合液を70℃で16時間撹拌した。減圧下で溶媒を全て留去し、黄色のオイルを得た。その後、シリカゲルカラム(展開液:石油エーテル)で精製し、化合物24(1.20g、2.12mmol、収率58.52%)を得た。
(4)リガンドB-414の合成
 Pd/C(2.40g、2.12mmol)のエタノール(80.00mL)懸濁液に化合物24(1.20g、2.12mmol)のエタノール溶液(5.00mL)を20℃で加え、水素存在下、20℃で160時間撹拌し、黒色の懸濁液を得た。反応溶液はセライトを通してろ過し、ジクロロメタン(100mL)で洗浄した。ろ液は減圧下で濃縮し、濃黄色オイルを得た。シリカゲルカラム(展開液:石油エーテル)で精製し、リガンドB-414を黄色オイルとして得た(350.00mg、737.20μmol、収量34.77%)。
HNMR(400MHz,C,δ,ppm):7.81(d,J=11.24Hz,1H)、7.50(ddd,J=7.58,2.97,1.70Hz,1H),7.43(dd,J=7.14,1.52Hz,1H),6.88(t,J=7.39Hz,1H),2.92-2.78(m,1H),2.19-2.11(m,1H),1.99-1.76(m,4H),1.72-1.45(m,4H),1.44-1.31(m,2H),1.30-1.14(m,2H),1.13-0.99(m,4H),0.96(d,J=6.82Hz,3H),0.94(d,J=6.06Hz,3H),0.93(d,J=6.82Hz,3H),0.87(d,J=6.00Hz,3H),0.84(d,J=6.82Hz,3H),0.48-0.46(m,1H),0.44(s,9H),0.32(d,J=6.82Hz,3H);
31PNMR(162MHz,C,δ,ppm):-39.04(s).
(合成例1-5):リガンドB-439の合成
 以下のスキームにしたがってリガンドB-439を合成した。
Figure JPOXMLDOC01-appb-C000041
(1)化合物17の合成
 アルゴン雰囲気下で、化合物14(9.3g、26.96mmol)のTHF溶液100mLに水素化アルミニウムリチウム(1.13g、29.66mmol)を0℃で加え、10℃で48時間撹拌し、白色の懸濁液を得た。懸濁液に、脱気した水(1.2mL)、脱気した15%水酸化ナトリウム水溶液(1.2mL)、脱気した水(3.6mL)を0℃で順番に加えた。ろ過をした後に、固体残渣をジクロロメタン(50mLx3)で洗浄し、ろ液と合わせて濃縮し化合物17(7.5g、20.77mmol、収率77.05%、純度86%)を白色固体として得た。
(2)化合物6dの合成
 化合物25(3g、13.82mmol)、化合物17(4.99g、13.82mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(794.72mg、1.38mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(1.49g、2.76mmol)、ナトリウムtert-ブトキシド(2.66g、27.64mmol)にトルエン80mLを加え、12時間還流し、黒色の懸濁液を得た。減圧下で溶媒を留去し、粗生成物を得た。85℃で4時間減圧乾燥し、化合物6d(3.1g、6.91mmol、収率50.02%、純度99.6%)を褐色固体として得た。
(3)リガンドB-439の合成
 アルゴン雰囲気下で、化合物6d(3.1g、6.94mmol)の酢酸エチル溶液(20mL)に塩酸/酢酸エチル(4M、40mL)を0℃で加え、20℃で3.5時間撹拌し、褐色溶液を得た。その後、減圧下で溶媒を除去し、粗生成物を得た。粗生成物をジクロロメタン50mLに溶解し、有機層を飽和炭酸水素ナトリウム50mLで洗浄し、濃縮することでリガンドB-439を褐色固体として得た(2.36g、5.74mmol、収率82.77%、純度98%)。
HNMR(400MHz,C,δ,ppm):7.53(dd,J=7.7Hz,2.6Hz,1H),7.15(t,J=3.3Hz,2H),6.84-6.89(m,2H),3.0(sept,J=6.4Hz,1H),2.23-2.32(m,1H),1.92-2.07(m,4H),1.76-1.81(m,1H),1.68-1.76(m,3H)、1.26-1.36(m,2H),1.15-1.24(m,2H),1.09-1.13(m,1H),1.01-1.05(m,9H),0.91-0.98(m,10H),0.58-0.67(m,1H),0.43(d,J=6.6Hz,3H);
31PNMR(162MHz,CDCl,δ,ppm)-46.64(s).
(合成例1-6):リガンドB-412の合成
 以下のスキームにしたがってリガンドB-412を合成した。
Figure JPOXMLDOC01-appb-C000042
(1)化合物2の合成
 アルゴン雰囲気下で、化合物1(10.00g、73.41mmol)、塩化アルミニウム(10.47g、78.55mmol、4.29mL)、三塩化リン(50.70g、369.18mmol、32.50mL)の混合物を80℃で6時間撹拌し、オレンジ色の懸濁液を得た。過剰な三塩化リンは常圧蒸留で除去した。その後、反応溶液をろ過し、ろ液に水(150mL)を加え、ジクロロメタン(150mLx2)で抽出した。混合有機層を硫酸ナトリウムで脱水し、ろ過し、ろ液を濃縮することで化合物2をオレンジ固体として得た(12.90g、33.16mmol、収率45.0%)。
(2)化合物3の合成
 アルゴン雰囲気下で、化合物2(12.90g、36.56mmol)のTHF溶液(150.00mL)に水素化アルミニウムリチウム(3.27g、86.27mmol)を-14℃で2時間かけて加えた。30℃まで昇温後、反応溶液を18時間撹拌し、灰色の懸濁液を得た。懸濁液は再度-14℃まで冷却し、1Mの塩酸を100mL加えた。酢酸エチルで抽出し、混合有機層を硫酸ナトリウムで脱水し、ろ過した後にろ液を濃縮し、化合物3(粗生成物)を得た。
(3)化合物20の合成
 化合物19(10.00g、51.47mmol)のTHF溶液(25.00mL)にn-BuLi(2.5M、24.71mL)を0℃で加え、0℃で1時間撹拌した。その後、ヨウ素(15.68g、61.76mmol、12.44mL)を反応溶液に加え、25℃で16時間撹拌し、褐色溶液を得た。反応溶液に水100mL加え、酢酸エチル(70mLx3)で抽出した。混合有機層を飽和チオ硫酸ナトリウム(50mLx2)で洗浄し、硫酸ナトリウムで脱水し、ろ過した後に、ろ液を濃縮し、粗生成物を黒色オイルとして得た。その後、シリカゲルカラム(展開溶媒:石油エーテル)で精製し、化合物20を淡黄色オイルとして得た(9.38g、29.30mmol、収率56.92%)。
(4)化合物6eの合成
 化合物20(6.88g、21.49mmol)、化合物3(6.50g、21.49mmol)、ナトリウムtert-ブトキシド(4.13g、42.98mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(2.31g、4.30mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(1.97g、2.15mmol)にトルエン(100mL)をアルゴン雰囲気下で加え、110℃で15時間撹拌し、黒色の懸濁液を得た。反応溶液を30℃に冷却し、ろ過した。固体残渣を酢酸エチル(100mLx4)で洗浄し、ろ液と合わせて濃縮し、黒色オイル状の粗生成物を得た。シリカゲルカラム(展開溶媒:石油エーテル/酢酸エチル=1/0-50/1)で精製し、120℃で減圧乾燥し、化合物6eを得た(2.80g、5.66mmol、収率26.34%)。
(5)リガンドB-412の合成
 アルゴン雰囲気下で、化合物6e(1.83g、3.70mmol)のジクロロメタン溶液(10.00mL)に塩酸/酢酸エチル(4M、30.49mL)を0℃で加え、15℃で3時間撹拌し、濃黄色溶液を得た。その後、減圧下で溶媒を留去し粗生成物を得た。粗生成物にジクロロメタンを加え、飽和炭酸水素ナトリウム水溶液(50mL)で洗浄し、濃縮することでリガンドB-412を黄色固体として得た(1.65g、3.66mmol、収率98.96%)。
HNMR(400MHz,C,δ,ppm):8.92(d,J=11.75Hz,1H),7.51(d,J=7.52Hz,1H),7.37(d,J=7.77Hz,1H),6.88(t,J=7.70Hz,1H),2.03(d(br),J=12.06Hz,6H),1.94(d(br),J=12.06Hz,6H),1.82-1.72(br,6H),1.60(s,9H),1.58-1.48(br,12H);
31PNMR(162MHz,C,δ,ppm):3.31(s).
(比較合成例1-1):リガンドB-348の合成
 以下のスキームにしたがってリガンドB-348を合成した。
Figure JPOXMLDOC01-appb-C000043
(1)化合物5fの合成
 化合物4(3.0g、10.0mmol)のTHF溶液30mLにn-ブチルリチウム(2.5M、4.0mL、10.0mmol)を-78℃で加え、-78℃で1時間撹拌した。その後クロロジシクロヘキシルホスフィン(2.3g、10.0mmol)を-78℃で加え、10℃で12時間撹拌した。反応溶液を氷水に注ぎ入れ、酢酸エチル(30mLx3)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。その後、シリカゲルカラム(展開溶媒に、石油エーテル/酢酸エチル=10:1)で精製し、淡黄色オイルとして化合物5fを得た(2.2g、収率53.2%)。
(2)化合物6fの合成
 化合物5f(2.2g、5.3mmol)のTHF溶液30mLにn-ブチルリチウム(2.5M、2.6mL、6.4mmol)を-78℃で加え、-78℃で1時間撹拌した。その後ヘキサフルオロベンゼン(1.5g、8.0mmol)を-78℃で添加し、反応溶液は10℃で12時間撹拌し、黄色溶液を得た。この反応溶液を氷水30mLに注ぎ入れ、酢酸エチル(30mLx3)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。その後、シリカゲルカラム(展開溶媒に、石油エーテル/酢酸エチル=10:1)で精製し、粘着性のある淡黄色オイルとして化合物6fを得た(0.8g、収率30.1%)。
(3)リガンドB-348の合成
 化合物6f(1.0g、2.0mmol)の酢酸エチル15mL溶液に、HCl/酢酸エチル(729.3mg、20.0mmol)を0℃で加え、15℃で15分間撹拌した。反応溶液は濃縮し、飽和炭酸水素ナトリウム水溶液30mLでクエンチした。その後、ジクロロメタン(50mLx2)で抽出し、有機相は無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に、石油エーテル/酢酸エチル=5/1)で精製し、リガンドB-348を得た(800.0mg、収率87.6%)。
HNMR(400MHz,CDCl,δ,ppm):7.42-7.36(m,1H),7.23(d,J=7.6Hz,1H),7.03(t,J=7.6Hz,1H),2.02-1.59(m,12H),1.32-1.11(m,10H);
31PNMR(162MHz,CDCl,δ,ppm):-33.26(s).
1-3.錯体の合成
(実施例1-1):錯体(B-350)Ni((1,4,5-η)-COE)の合成
 以下の操作は、すべて高純度アルゴン雰囲気下で行った。以下、ビス-1,5-シクロオクタジエンニッケル(0)をNi(COD)と称し、(1,4,5-η)-4-シクロオクテン-1-イル配位子を(1,4,5-η)-COEと称する。
 初めに25mLのナスフラスコに、上記リガンドB-350(65mg、0.12mmol)を秤り取った。次に、Ni(COD)(43mg、0.16mmol)を別のフラスコに秤り取り、トルエン(8.0mL)に溶解させ、20mmol/mLのNi(COD)トルエン溶液を調製した。得られた溶液は、黄色透明であった。ここで得られたNi(COD)トルエン溶液6.2mLを、リガンドB-350を入れたナスフラスコに加え、溶液を得た。その後、室温で1時間撹拌した。この時、溶液の色が次第に暗黄色~褐色に変化し、沈殿がないことを確認し、B-350とNi(COD)の反応生成物((B-350)Ni((1,4,5-η)-COE))の20mmol/mL溶液を得た。ここで、反応生成物の濃度は、B-350とNi(COD)が1対1で反応してニッケル錯体を形成しているとして計算した。
(実施例1-2):錯体(B-352)Ni((1,4,5-η)-COE)の合成
 上記実施例1-1において、リガンドB-350の替わりにリガンドB-352を用いたこと以外は、実施例1-1と同様の手順により、錯体(B-352)Ni((1,4,5-η)-COE)を合成した。
(実施例1-3):錯体(B-350)NiPh(PEt)の合成
 以下のスキームにしたがって錯体(B-350)NiPh(PEt)を合成した。
Figure JPOXMLDOC01-appb-C000044
 80mLシュレンクチューブに、Ni(COD)(1.57g、5.71mmol)を加え、ジエチルエーテル10mLに溶解した。この溶液を氷水で冷却し、トリエチルホスフィン(25mmol、1.0MのTHF溶液)を加えた。室温まで昇温し、2時間撹拌した。溶媒を取り除いた後、シュレンクチューブをグローブボックスに移送した。ヘキサン5mLを加え、セライトを通してろ過した。その後セライトをヘキサン5mLで洗浄した。ろ液にクロロベンゼン(1.10g、9.77mmol)を加え、室温で更に4時間撹拌した。その後、溶媒を減圧下で取り除き、ペンタン5mLを添加した。得られた混合物はセライトを通してろ過し、セライトはペンタン5mLで洗浄した。ろ液はその後-35℃で終夜保管し、結晶を得た。結晶は冷やしたペンタンで洗浄し、得られた結晶を2時間室温で減圧乾燥し、目的物NiPhCl(PEtをオレンジ固体として得た(2.00g、86%)。
HNMR(500MHz,C)δ7.43(d,J=7.5Hz,2H),6.97(t,J=7.3Hz,2H),6.80(t,J=7.0Hz,1H),1.32(m,12H),1.02(m,18H);
13CNMR(126MHz,C):155.31(t,J=54Hz,1C),137.54(t,J=6Hz,2C),126.79(t,J=4Hz,2C),121.33(t,J=4Hz,1C),14.25(t,J=20Hz,6C),8.32(s,6C);
31PNMR(202MHz,C)δ11.1;
Elemental analysis,Calcd for C1835ClNiP;C,53.05;H,8.66.found C,52.81;H,8.57.
 グローブボックス中、15mLバイアルに採取したリガンドB-350(50mg、0.089mmol)に、カリウムビス(トリメチルシリル)アミド(19mg、0.089mmol)のジエチルエーテル溶液3mLをゆっくりと加えた。反応混合物は室温で10分撹拌した。この反応溶液に、NiPhCl(PEt(36mg、0.089mmol)のジエチルエーテル溶液1.5mLを滴下し、THF3mLを添加した後、室温で、終夜撹拌した。反応混合物はセライトを通してろ過し、セライトはTHF2mLで洗浄した。揮発成分減圧下で留去した後、生成物をヘキサンで抽出し、セライトを通してろ過し、セライトはヘキサン3mLで洗浄した。再度揮発成分を減圧下で留去し、ペンタン1.5mLを加え、-35℃で終夜静置した。生成した固体をろ過で回収し、冷やしたペンタン1mLで洗浄し、室温で1時間減圧乾燥することで錯体(B-350)NiPh(PEt)(59mg、収率82%)を得た。
HNMR(400MHz,C)δ7.74(d,J=8Hz,2H),7.61(t,J=6.6Hz,1H),6.97(d,J=6.8Hz,2H),6.80(t,J=7.6Hz,1H),6.65(t,J=7.0Hz,1H),2.53-2.50(m,6H),2.13-2.09(m,6H),1.82(s,6H),1.65-1.54(m,12H),0.93-0.83(m,15H);
31PNMR(162MHz,C)δ42.88(d,J=260Hz,1P),12.83(d,J=260Hz,1P).
 下記手順により、(B-350)NiPh(PEt)のX線結晶構造解析を行った。
 上記錯体(B-350)NiPh(PEt)を、グローブボックス中、室温でn-ペンタンを用いて再溶解させた。溶液をバイアルに移して-30℃に冷却し、フリーザー内にて-30℃で放置したところ、(B-350)NiPh(PEt)の単結晶の成長が見られた。
 得られた単結晶の中から、約0.25×0.20×0.18mmの寸法を有するものを選び、ループ状のマウント上にセットし、該マウントをゴニオメーターの台座、および、CCD検出器を有するRigaku社製Saturn 724 CCD回折計に-180℃で装着した。単結晶は、回折計から45mmの距離にセットした。グラファイトで単色化したMo-Kα線を用いて回折強度測定を行った。はじめに格子定数を決定し、プログラムCrystal Clearを用いて720フレームの反射データを得た。得られたデータについては、Lorentz補正を行った。得られた単結晶の単位格子は単斜晶系(monoclinic)であり、空間群はP2/nであった。プログラムSHELXT2014を用いて直接法で構造決定し、SHELXL2014によって観測された反射のF2に対して、フルマトリクス最小2乗法により精密化を行った。なお、水素以外のすべての原子について、異方性温度因子により構造精密化を行い、水素原子の位置は計算により定め、等方性温度因子により構造精密化を行った。R2(I>2σ(I))=0.1147で収束した。
 図1は、錯体(B-350)NiPh(PEt)のORTEP図である。X線結晶構造解析の結果、得られた錯体は、化学式C44H53F5NiOP2であり、図1に示す平面4配位構造を有していることが明らかになった。ホスフィン上のエチル基および1,2,3,4,5-ペンタフルオロフェニル基はディスオーダーしていた。NiとP2の距離は2.243Å、NiとOの距離は1.904Å、NiとP1の距離は2.205Å、Niとフェニル基上の炭素原子の距離は1.891Åであった。また、P-Ni-Oの配位夾角は86.8°であった。
(実施例1-4):錯体(B-415)Ni((1,4,5-η)-COE)の合成
 上記実施例1-1において、リガンドB-350の替わりにリガンドB-415を用いたこと以外は、実施例1-1と同様の手順により、錯体(B-415)Ni((1,4,5-η)-COE)を合成した。
(実施例1-5):錯体(B-414)Ni((1,4,5-η)-COE)の合成
 上記実施例1-1において、リガンドB-350の替わりにリガンドB-414を用いたこと以外は、実施例1-1と同様の手順により、錯体(B-414)Ni((1,4,5-η)-COE)を合成した。
(実施例1-6):錯体(B-439)Ni((1,4,5-η)-COE)の合成
 上記実施例1-1において、リガンドB-350の替わりにリガンドB-439を用いたこと以外は、実施例1-1と同様の手順により、錯体(B-439)Ni((1,4,5-η)-COE)を合成した。
(実施例1-7):錯体(B-412)Ni((1,4,5-η)-COE)の合成
 上記実施例1-1において、リガンドB-350の替わりにリガンドB-412を用いたこと以外は、実施例1-1と同様の手順により、錯体(B-412)Ni((1,4,5-η)-COE)を合成した。
(比較例1-1):錯体(B-348)Ni((1,4,5-η)-COE)の合成
 上記実施例1-1において、リガンドB-350の替わりにリガンドB-348を用いたこと以外は、実施例1-1と同様の手順により、錯体(B-348)Ni((1,4,5-η)-COE)を合成した。
1-4.プロピレン重合又は共重合
(実施例1-1A):実施例1-1の錯体を用いたプロピレン重合
 内容積2Lの誘導攪拌式オートクレーブに、プロピレン(500mL)を導入した。実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE))を窒素ガスでオートクレーブに導入した。混合物を攪拌しながらオートクレーブを50℃に昇温した。50℃に達した時点から所定時間重合させた。未反応モノマーを除去した後、オートクレーブを開放し、加熱乾燥を行い、重合体を得た。
(実施例1-2A):実施例1-2の錯体を用いたプロピレン重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE)))の替わりに実施例1-2の錯体((B-352)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例1-1Aと同様の手順により、重合体を得た。
(実施例1-3A):実施例1-3の錯体を用いたプロピレン重合
 50mLステンレス鋼オートクレーブを120℃の乾燥機で3時間乾燥した後に、組み立てて、125℃で2時間減圧乾燥した。室温まで冷却後、アルゴン下で、オートクレーブに実施例1-3の錯体((B-350)NiPh(PEt))(5.0μmol、10.0mL、0.50mmol/Lトルエン溶液)とトルエン(5mL)、プロピレン6mLを加えた。その後、オートクレーブを50℃まで昇温し43時間撹拌した。室温まで冷却後、エチレンをパージし、反応はエタノール20mLでクエンチし、重合物をろ過により回収した。重合物を100~120℃で2時間減圧乾燥し、目的とする重合物を得た。
(実施例1-4A):実施例1-4の錯体を用いたプロピレン重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE)))の替わりに実施例1-4の錯体((B-415)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例1-1Aと同様の手順により、重合体を得た。
(実施例1-5A):実施例1-5の錯体を用いたプロピレン重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE)))の替わりに実施例1-5の錯体((B-414)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例1-1Aと同様の手順により、重合体を得た。
(実施例1-6A):実施例1-6の錯体を用いたプロピレン重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE)))の替わりに実施例1-6の錯体((B-439)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例1-1Aと同様の手順により、重合体を得た。
(実施例1-7A):実施例1-7の錯体を用いたプロピレン重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE)))の替わりに実施例1-7の錯体((B-412)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例1-1Aと同様の手順により、重合体を得た。
(実施例1-2B):実施例1-2の錯体を用いた共重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE))の替わりに実施例1-2の錯体((B-352)Ni((1,4,5-η)-COE))を用いたこと、及び実施例1-2の錯体を窒素ガスでオートクレーブに導入した後に、さらにオートクレーブに10-ウンデセン酸エチルを加えたこと以外は、実施例1-1Aと同様の手順により、共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、プロピレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(実施例1-2C):実施例1-2の錯体を用いた共重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE))の替わりに実施例1-2の錯体((B-352)Ni((1,4,5-η)-COE))を用いたこと、及び実施例1-2の錯体を窒素ガスでオートクレーブに導入した後に、さらにオートクレーブに10-ウンデセン-1-オールを加えたこと以外は、実施例1-1Aと同様の手順により、共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、プロピレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(比較例1-1A):比較例1-1の錯体を用いたプロピレン重合
 実施例1-1Aにおいて、実施例1-1の錯体((B-350)Ni((1,4,5-η)-COE))の替わりに比較例1-1の錯体((B-348)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例1-1Aと同様の手順により、重合体を得た。
 下記表4-1は、実施例1-1~実施例1-7及び比較例1-1の錯体の合成に用いたニッケル原料及びリガンドを比較したものである。
Figure JPOXMLDOC01-appb-T000045
 下記表4-2は、実施例1-1A~実施例1-7A、実施例1-2B~実施例1-2C、及び比較例1-1Aの重合条件及び重合結果をまとめたものである。表4-2中の重合活性は、重合に用いた錯体1molあたり、重合時間1時間あたりの共重合体収量(g)を表す。表4-2には、重合体に関するGPC測定結果として、重量平均分子量Mw、及び分子量分布Mw/Mnを載せた。表4-2中の共重合量は、重合に供した全モノマー量中における、コモノマーの取込量の割合を示す。
Figure JPOXMLDOC01-appb-T000046
1-5.考察
 上記表4-2の比較例1-1Aから分かるように、従来の錯体(比較例1-1)を用いたポリプロピレン重合では、得られる重合体の分子量Mwは1,440と小さい。これに対し、上記表4-2の実施例1-1A~実施例1-7Aから分かるように、本開示の金属錯体(実施例1-1~実施例1-7)を用いたポリプロピレン重合では、得られる重合体の分子量Mwは3,300以上と大きい。このように、R及びRに嵩高い置換基を用いた本開示の金属錯体は、R及びRがシクロヘキシル基の場合と比較して、より高分子量のポリプロピレンが得られることが分かる。また、上記本開示の金属錯体を用いた場合、重合活性は4.6×10(g/mol/hr)以上と良好であり、かつ得られたポリプロピレンの分子量分布Mw/Mnは2.2以下に収まる。
 また、上記表4-2の実施例1-2B~実施例1-2Cから分かるように、本開示の金属錯体により、α-オレフィンと極性基含有モノマーとの共重合が、良好な重合活性で達成される。
 以上より、本開示の金属錯体は、従来よりもより高分子量のα-オレフィン単独重合体が得られ、かつ、良好な重合活性でα-オレフィンと極性基含有モノマーとの共重合を達成でき、優れた技術的意義を持つことが明らかである。
<本開示の第2の実施形態>
2-1.評価法
(1)重量平均分子量Mw、数平均分子量Mnおよび分子量分布Mw/Mn:以下のGPC測定により求めた。
 はじめに、試料約20mgをポリマーラボラトリー社製高温GPC用前処理装置PL-SP 260VS用のバイアル瓶に採取し、安定剤としてBHTを含有するo-ジクロロベンゼン(BHT濃度=0.5g/L)を加え、ポリマー濃度が0.1質量%になるように調整した。ポリマーを上記高温GPC用前処理装置PL-SP 260VS中で135℃に加熱して溶解させ、グラスフィルターにて濾過して試料を調製した。なお、本開示におけるGPC測定において、グラスフィルターに捕捉されたポリマーはなかった。次に、カラムとして、東ソー社製TSKgel GMH-HT(30cm×4本)およびRI検出器を装着したウォーターズ社製GPCV 2000を使用してGPC測定を行った。測定条件としては、試料溶液注入量:約520μL、カラム温度:135℃、溶媒:o-ジクロロベンゼン、流量:1.0mL/minを採用した。分子量の算出は以下のように行った。すなわち、標準試料として市販の単分散のポリスチレンを使用し、該ポリスチレン標準試料およびエチレン系重合体の粘度式から、保持時間と分子量に関する校正曲線を作成し、該校正曲線に基づいて分子量の算出を行った。なお、粘度式としては、[η]=K×Mαを使用し、ポリスチレンに対しては、K=1.38E-4、α=0.70を使用し、エチレン系重合体に対しては、K=4.77E-4、α=0.70を使用し、プロピレン系重合体に対しては、K=1.03E-4、α=0.78を使用した。
2-2.リガンドの合成
(合成例2-1):リガンドB-349の合成
 以下のスキームに従ってリガンドB-349を合成した。
 なお、以降の化学式中、-OMOMとはメトキシメトキシ基(-OCHOCH)を表す。
Figure JPOXMLDOC01-appb-C000047
(1)化合物33aの合成
 アルゴン雰囲気下で、化合物15(8.5g、61.5mmol)のTHF溶液100mLにn-ブチルリチウム(2.5M、24.6mL、61.5mmol)を0℃で添加し、0℃で1時間撹拌した。その後ジ-tert-ブチルクロロホスフィン(11.1g、61.5mmol、11.7mL)を-78℃で加え、10℃で2時間撹拌した(化合物32の生成)。その後、n-ブチルリチウム(2.5M、29.5mL、73.8mmol)を0℃で添加し、反応溶液は0℃で1時間撹拌した。この反応溶液に、ヘキサフルオロベンゼン(17.2g、92.3mmol)を-78℃で加え、10℃で12時間撹拌した。反応溶液は氷水50mLに注ぎ入れ、酢酸エチル(100mLx2)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物は、シリカゲルカラム(石油エーテル/酢酸エチル=100:1-20:1)で精製し、石油エーテル:酢酸エチル(20:1、50mL)で再結晶を行い、化合物33aを得た(5.0g、10.7mmol、収率17.4%)。
(2)リガンドB-349の合成
 アルゴン雰囲気下で、化合物33a(5.0g、11.2mmol)のジクロロメタン溶液20.0mLにHCl/酢酸エチル(4M、85.1mL、340.2mmol)を0℃で添加し、10℃で2時間撹拌した。揮発成分は減圧下で留去し、残渣にジクロロメタン100mLを添加した。有機相は飽和炭酸水素ナトリウム水溶液(100mLx2)で洗浄し、濃縮することでB-349を得た(3.9g、9.28mmol、収率83.2%)。
HNMR(400MHz,CDCl,δ,ppm):8.19(s,1H),7.71(d,J=7.6Hz,1H),7.25(s,1H),7.00(t,J=7.4Hz,1H),1.28(s,9H),1.25(s,9H);
31PNMR(162MHz,CDCl,δ,ppm)-5.84(s).
(合成例2-2):リガンドB-395の合成
 以下のスキームにしたがってリガンドB-395を合成した。
Figure JPOXMLDOC01-appb-C000048
(1)化合物33bの合成
 化合物15(3.0g、21.7mmol)のTHF溶液20mLにn-ブチルリチウム(2.5M、8.7mL、21.8mmol)を0℃で加え、0℃で1時間撹拌した。その後、ジ-tert-ブチルクロロホスフィン(3.9g、21.7mmol、4.1mL)を-78℃で加え、15℃で2時間撹拌した(化合物32の生成)。その後、n-ブチルリチウム(2.5M、10.9mL、27.2mmol)を0℃で加え、0℃で1時間撹拌した。その後、クロロトリメチルシラン(3.54g、32.6mmol、4.1mL)を-78℃で添加し、15℃で12時間撹拌した。反応溶液は氷水50mLに注ぎ入れ、酢酸エチル(50mLx2)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に、石油エーテル)で精製し、無色オイル状の化合物33bを得た(2.3g、6.3mmol、収率28.7%)。
(2)リガンドB-395の合成
 アルゴン雰囲気下で、化合物33b(2.4g、6.8mmol)のジクロロメタン溶液30mLにHCl/酢酸エチル(2M、15.0mL、30.0mmol)を0℃で加え、15℃で1.5時間撹拌した。揮発成分は減圧下で留去し、淡黄色オイルを得た。ジクロロメタン100mLを加え、有機相は飽和炭酸水素ナトリウム水溶液100mLで洗浄し、濃縮することで白色固体状のB-395を得た(1.0g、2.9mmol、収率91.0%)。
HNMR(400MHz,CDCl,δ,ppm):8.01(s,1H),7.56(d,J=7.6Hz,1H),7.38(dd,J=7.2Hz,1.6Hz,1H),6.86(t,J=7.4Hz,1H),1.23(s,9H),1.20(s,9H),0.29(s,9H);
31PNMR(162MHz,CDCl,δ,ppm)-6.04(s).
(合成例2-3):リガンドB-396の合成
 以下のスキームにしたがってリガンドB-396を合成した。
Figure JPOXMLDOC01-appb-C000049
(1)化合物42の合成
 化合物41の合成は特開2016-17134を参考に行った。
 化合物41(10.0g、33.0mmol)のTHF溶液60mLに、n-ブチルリチウム(2.5M、15.8mL、39.5mmol)を0℃で加え、0℃で1時間撹拌した。その後、ヨウ素(10.0g、39.6mmol、8.0mL)のTHF溶液10mLを0℃で添加した。反応混合物は25℃で16時間撹拌した。この反応混合物に水30mLを加えクエンチし、酢酸エチル(30mLx3)で抽出した。有機相は塩水15mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮し、粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル)で精製し、化合物42を得た(7.5g、17.4mmol、収率53.7%)。
(2)化合物33cの合成
 窒素雰囲気下で、化合物42(900mg、2.1mmol)、ジ-tert-ブチルホスフィン(337.8mg、2.3mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(192.3mg、210.0μmol)、ナトリウム-tert-ブトキシド(403.6mg、4.2mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(DPEPhos、1.1g、2.1mmol)のトルエン溶液10.0mLを100℃で16時間撹拌し、反応混合物を濃縮し、粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル:酢酸エチル=10:1)で精製し、化合物33cを得た(210.0mg、469.2μmol、収率22.34%)。
(3)リガンドB-396の合成
 化合物33c(3.1g、6.9mmol)のジクロロメタン溶液3mLにHCl/酢酸エチル(4M、40.0mL、160.0mmol)を0℃で加えた。反応混合物は25℃で2時間撹拌し、黄色溶液を得た。反応混合物を濃縮し粗生成物を得た。粗生成物は、飽和炭酸水素ナトリウム水溶液30mLでpH6.5~7.0に調製し、ジクロロメタン(25mLx3)で抽出した。有機相は塩水25mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮することでリガンドB-396を得た(2.4g、6.0mmol、収率85.9%)。
HNMR(400MHz,CDCl,δ,ppm):8.15(d,J=7.8Hz,2H),8.08(s,1H),7.76(dt,J=7.8Hz,1.9Hz,1H),7.49(dd,J=7.7Hz,1.4Hz,1H),7.40(t,J=7.6Hz,2H),7.27(t,J=7.6Hz,2H),7.18(d,J=8.1Hz,2H),7.09(t,J=7.7Hz,1H),1.32(s,9H),1.29(s,9H);
31PNMR(162MHz,CDCl,δ,ppm):-5.75(s).
(比較合成例2-1):リガンドB-399の合成
 以下のスキームにしたがってリガンドB-399を合成した。
Figure JPOXMLDOC01-appb-C000050
(1)化合物32の合成
 化合物15(4.0g、29.0mmol)のTHF溶液30mLにn-ブチルリチウム(2.5M、12.2mL、30.0mmol)を0℃で添加し、0℃で1時間撹拌した。その後、ジ-tert-ブチルクロロホスフィン(5.2g、29.0g、5.5mL)を-78℃で添加し、15℃で12時間撹拌した。反応溶液は、氷水20mLに注ぎ入れ、酢酸エチル(20mLx2)で抽出した。有機相は、無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル:酢酸エチル=1:0-50:1)で精製し、化合物32を得た(3.5g、9.0g、収率31.2%)。
(2)化合物33dの合成
 アルゴン雰囲気下で、化合物32(3.9g、13.9mmol)のTHF溶液10mLにBH・THF(1.0M、16.7mL、16.7mmol)を-78℃で添加し、10℃で1時間撹拌した。BH・ジメチルスルフィド(10M、1.7mL、16.7mmol)を-78℃で加え、10℃で12時間撹拌した。この反応溶液に、氷水10mLを0℃で添加し、揮発成分は減圧下で留去した。水20mL添加し、酢酸エチル(20mLx3)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで白色固体を得た。白色固体は酢酸エチル10mLで再結晶し、化合物33dを得た(1.5g、5.1mmol、収率36.4%)。
(3)リガンドB-399の合成
 アルゴン雰囲気下で、化合物33d(5.4g、18.2mmol)のジクロロメタン20mLにHCl/酢酸エチル(4M、80.0mL、320.0mmol)を0℃で添加し、10℃で3時間撹拌した。揮発成分は減圧下で留去し、ジクロロメタン100mLを加えた。有機相は、飽和炭酸水素ナトリウム水溶液100mLで洗浄し、濃縮することでリガンドB-399を得た(4.0g、16.8mmol、収率92.1%)。
HNMR(400MHz,CDCl,δ,ppm):7.85(s,1H),7.57(dt,J=7.6Hz,1.4Hz,1H),7.28(td,J=7.7Hz,1.6Hz,1H),6.94(td,J=7.2Hz,1.2Hz,1H),6.87(td,J=7.5Hz,1.2Hz,1H),1.32(s,9H),1.29(s,9H);
31PNMR(162MHz,CDCl,δ,ppm):-6.21(s).
2-3.錯体の合成
(実施例2-1):錯体(B-349)Ni((1,4,5-η)-COE)の合成
 以下の操作は、すべて高純度アルゴン雰囲気下で行った。以下、ビス-1、5-シクロオクタジエンニッケル(0)をNi(COD)と称し、(1,4,5-η)-4-シクロオクテン-1-イル配位子を(1,4,5-η)-COEと称する。
 初めに25mLのナスフラスコに、上記リガンドB-349(50mg、0.12mmol)を秤り取った。次に、Ni(COD)(40mg、0.15mmol)を別のフラスコに秤り取り、トルエン(7.3mL)に溶解させ、20mmol/mLのNi(COD)トルエン溶液を調製した。得られた溶液は、黄色透明であった。ここで得られたNi(COD)トルエン溶液6.2mLを、リガンドB-349を入れたナスフラスコに加え、溶液を得た。その後、室温で1時間撹拌した。この時、溶液の色が次第に暗黄色~褐色に変化し、沈殿がないことを確認し、B-349とNi(COD)の反応生成物((B-349)Ni((1,4,5-η)-COE))の20mmol/mL溶液を得た。ここで、反応生成物の濃度は、B-349とNi(COD)が1対1で反応してニッケル錯体を形成しているとして計算した。
(実施例2-2):錯体(B-395)Ni((1,4,5-η)-COE)の合成
 上記実施例2-1において、リガンドB-349の替わりにリガンドB-395を用いたこと以外は、実施例2-1と同様の手順により、錯体(B-395)Ni((1,4,5-η)-COE)を合成した。
(実施例2-3):錯体(B-396)Ni((1,4,5-η)-COE)の合成
 上記実施例2-1において、リガンドB-349の替わりにリガンドB-396を用いたこと以外は、実施例2-1と同様の手順により、錯体(B-396)Ni((1,4,5-η)-COE)を合成した。
(実施例2-4):錯体(B-395)NiPhPyの合成
 以下のスキームにしたがって錯体(B-395)NiPhPyを合成した。
Figure JPOXMLDOC01-appb-C000051

 グローブボックス中、15mLバイアルにリガンドB-395(53mg、0.17mmol)と水素化カリウム(17mg、0.43mmol)を入れて、ジエチルエーテル5mLを加え、30分間撹拌した。反応混合物はセライトを通してろ過し、セライトはジエチルエーテル3mLで洗浄した。NiPhCl(TMEDA)(TMEDA:テトラメチルエチレンジアミン)は、非特許文献Marshall, W. J.; Grushin, V. V. Can. J. Chem. 2005, 83, 640を参考に合成した。NiPhCl(TMEDA)(49mg、0.17mmol)を上記ジエチルエーテルろ液に添加し、終夜撹拌した。反応溶液は、セライトを通してろ過し、セライトはジエチルエーテル3mLで洗浄した。このろ液に、ピリジン(13mg、0.17mmol)を添加し、室温で終夜撹拌した。その後、反応混合物は、セライトを通してろ過し、セライトはジエチルエーテル1.5mLで洗浄し、揮発成分を減圧下で除去し、粗生成物を得た。粗生成物にペンタン1mLを加え、-35℃で終夜静置した。生成した固体をろ過で回収し、冷やしたペンタン1mLで洗浄し、室温で1時間減圧乾燥することで、(B-395)NiPhPyを得た(60mg、収率67%)。
H-NMR(400MHz,C)δ8.72-8.70(m,2H),7.91(d,J=8.0Hz,2H),7.54-7.52(m,1H),7.48-7.44(m,1H),6.98(t,J=7.4Hz,2H),6.82(t,J=7.4Hz,1H),6.67-6.60(m,2H),6.38(t,J=6.8Hz,2H),1.42(s,9H),1.39(s,9H),0.25(s,9H);
31P-NMR(162MHz,C)δ58.416.
(実施例2-5):錯体(B-349)NiPh(PEt)の合成
 以下のスキームにしたがって錯体(B-349)NiPh(PEt)を合成した。
Figure JPOXMLDOC01-appb-C000052
 80mLシュレンクチューブに、Ni(COD)(1.57g、5.71mmol)を加え、ジエチルエーテル10mLに溶解した。この溶液を氷水で冷却し、トリエチルホスフィン(25mmol、1.0MのTHF溶液)を加えた。室温まで昇温し、2時間撹拌した。溶媒を取り除いた後、シュレンクチューブをグローブボックスに移送した。ヘキサン5mLを加え、セライトを通してろ過した。その後セライトをヘキサン5mLで洗浄した。ろ液にクロロベンゼン(1.10g、9.77mmol)を加え、室温で更に4時間撹拌した。その後、溶媒を減圧下で取り除き、ペンタン5mLを添加した。得られた混合物はセライトを通してろ過し、セライトはペンタン5mLで洗浄した。ろ液はその後-35℃で終夜保管し、結晶を得た。結晶は冷やしたペンタンで洗浄し、得られた結晶を2時間室温で減圧乾燥し、目的物NiPhCl(PEtをオレンジ固体として得た(2.00g、86%)。
HNMR(500MHz,C)δ7.43(d,J=7.5Hz,2H),6.97(t,J=7.3Hz,2H),6.80(t,J=7.0Hz,1H),1.32(m,12H),1.02(m,18H);
13CNMR(126MHz,C):155.31(t,J=54Hz,1C),137.54(t,J=6Hz,2C),126.79(t,J=4Hz,2C),121.33(t,J=4Hz,1C),14.25(t,J=20Hz,6C),8.32(s,6C);
31PNMR(202MHz,C)δ11.1;
Elemental analysis,Calcd for C1835ClNiP;C,53.05;H,8.66.found C,52.81;H,8.57.
 グローブボックス中、15mLバイアルに採取したリガンドB-349(50mg、0.12mmol)に、カリウムビス(トリメチルシリル)アミド(26mg、0.12mmol)のジエチルエーテル溶液3mLをゆっくりと加えた。反応混合物は室温で10分撹拌した。この反応溶液に、NiPhCl(PEt)(49mg、0.12mmol)のジエチルエーテル溶液1.5mLを滴下し、THF3mLを添加した後、室温で、終夜撹拌した。反応混合物はセライトを通してろ過し、セライトはTHF2mLで洗浄した。揮発成分減圧下で留去した後、生成物をヘキサンで抽出し、セライトを通してろ過し、セライトはヘキサン3mLで洗浄した。再度揮発成分を減圧下で留去し、ペンタン1.5mLを加え、-35℃で終夜静置した。生成した固体をろ過で回収し、冷やしたペンタン1mLで洗浄し、室温で1時間減圧乾燥することで(B-349)NiPh(PEt)(40mg、収率52%)を得た。
HNMR(500MHz,C)δ7.53(d,J=7.5Hz,2H),7.48(t,J=6.3Hz,1H),6.93(t,J=7.3Hz,1H),6.78(t,J=7.3Hz,1H),6.56(t,J=8.0Hz,1H),1.28(s,9H),1.25(s,9H),0.89-0.79(m,15H);
31PNMR(202MHz,C)δ48.710(d,J=265Hz,1P),13.120(d,J=265Hz,1P)
(比較例2-1):錯体(B-399)Ni((1,4,5-η)-COE)の合成
 上記実施例2-1において、リガンドB-349の替わりにリガンドB-399を用いたこと以外は、実施例2-1と同様の手順により、錯体(B-399)Ni((1,4,5-η)-COE)を合成した。
2-4.プロピレン重合又は共重合
(実施例2-1A):実施例2-1の錯体を用いたプロピレン重合
 内容積2Lの誘導攪拌式オートクレーブに、プロピレン(500mL)を導入した。実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))を窒素ガスでオートクレーブに導入した。混合物を攪拌しながらオートクレーブを50℃に昇温した。50℃に達した時点から所定時間重合させた。未反応モノマーを除去した後、オートクレーブを開放し、加熱乾燥を行い、重合体を得た。
(実施例2-2A):実施例2-2の錯体を用いたプロピレン重合
 実施例2-1Aにおいて、実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))の替わりに実施例2-2の錯体((B-395)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例2-1Aと同様の手順により、重合体を得た。
(実施例2-3A):実施例2-3の錯体を用いたプロピレン重合
 実施例2-1Aにおいて、実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))の替わりに実施例2-3の錯体((B-396)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例2-1Aと同様の手順により、重合体を得た。
(実施例2-4A):実施例2-4の錯体を用いたプロピレン重合
 実施例2-1Aにおいて、実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))の替わりに実施例2-4の錯体((B-395)NiPhPy)を用いたこと以外は、実施例2-1Aと同様の手順により、重合体を得た。
(実施例2-5A):実施例2-5の錯体を用いたプロピレン重合
 実施例2-1Aにおいて、実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))の替わりに実施例2-5の錯体((B-349)NiPh(PEt))を用いたこと以外は、実施例2-1Aと同様の手順により、重合体を得た。
(実施例2-2B~実施例2-2D):実施例2-2の錯体を用いた共重合
 実施例2-1Aにおいて、実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))の替わりに実施例2-2の錯体((B-395)Ni((1,4,5-η)-COE))を用いたこと、及び実施例2-2の錯体を窒素ガスでオートクレーブに導入した後に、さらにオートクレーブにトリエトキシビニルシラン(実施例2-2B)、10-ウンデセン酸エチル(実施例2-2C)、又は3-ブテン-1-オール(実施例2-2D)を加えたこと以外は、実施例2-1Aと同様の手順により、共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、エチレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(実施例2-4E):実施例2-4の錯体を用いた共重合
 50mLステンレス鋼オートクレーブを120℃の乾燥機で3時間乾燥した後に、組み立てて、125℃で2時間減圧乾燥した。室温まで冷却後、アルゴン下で、オートクレーブに実施例2-4の錯体((B-395)NiPhPy)(5.0μmol、10.0mL、0.50mmol/Lトルエン溶液)とトルエン(5mL)を加えた。その後、酢酸アリルを加えた。その後、オートクレーブはエチレン4.0MPaで充填し、50℃で、16時間撹拌した。室温まで冷却後、エチレンをパージし、反応はエタノール20mLでクエンチし、重合物をろ過により回収した。重合物を100~120℃で2時間減圧乾燥し、目的とする共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、エチレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(比較例2-1A):比較例2-1の錯体を用いたプロピレン重合
 実施例2-1Aにおいて、実施例2-1の錯体((B-349)Ni((1,4,5-η)-COE))の替わりに比較例2-1の錯体((B-399)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例2-1Aと同様の手順により、重合体を得た。
 下記表5-1は、実施例2-1~実施例2-5及び比較例2-1の錯体の合成に用いたニッケル原料及びリガンドを比較したものである。
Figure JPOXMLDOC01-appb-T000053
 下記表5-2は、プロピレンを用いた重合又は共重合について、実施例2-1A~実施例2-5A、実施例2-2B~実施例2-2D及び比較例2-1Aの重合条件及び重合結果をまとめたものである。また、下記表5-3は、エチレンを用いた共重合について、実施例2-4Eの重合条件及び重合結果をまとめたものである。これらの表中の重合活性は、重合に用いた錯体1molあたり、重合時間1時間あたりの共重合体収量(g)を表す。これらの表には、重合体に関するGPC測定結果として、重量平均分子量Mw、及び分子量分布Mw/Mnを載せた。これらの表中の共重合量は、重合に供した全モノマー量中における、コモノマーの取込量の割合を示す。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
2-5.考察
 上記表5-2の比較例2-1Aから分かるように、従来の錯体(比較例2-1)を用いたポリプロピレン重合では、重合活性が4.0×10(g/mol/hr)と低く、得られる重合体の分子量Mwは3,200と小さい。これに対し、上記表5-2の実施例2-1A~実施例2-5Aから分かるように、本開示の金属錯体(実施例2-1~実施例2-5)を用いたポリプロピレン重合では、重合活性が6.5×10(g/mol/hr)以上と高く、得られる重合体の分子量Mwは4,900以上と大きい。このように、Rにヘテロ原子を含有する置換基を用いた本開示の金属錯体は、Rが水素の場合(比較例2-1)と比較して、ポリプロピレン重合において高い重合活性を発揮でき、かつより高分子量のポリプロピレンが得られる。また、得られたポリプロピレンの分子量分布Mw/Mnは2.2以下に収まる。
 また、上記表5-2の実施例2-2B~実施例2-2D、及び上記表5-3の実施例2-4Eから分かるように、本開示の金属錯体により、α-オレフィンと極性基含有モノマーとの共重合が、良好な重合活性で達成される。
 以上より、本開示の金属錯体は、従来よりも高い重合活性でより高分子量のα-オレフィン単独重合体が得られ、かつ、良好な重合活性でα-オレフィンと極性基含有モノマーとの共重合を達成でき、優れた技術的意義を持つことが明らかである。
<本開示の第3の実施形態>
3-1.評価法
(1)重量平均分子量Mw、数平均分子量Mnおよび分子量分布Mw/Mn:以下のGPC測定により求めた。
 はじめに、試料約20mgをポリマーラボラトリー社製高温GPC用前処理装置PL-SP 260VS用のバイアル瓶に採取し、安定剤としてBHTを含有するo-ジクロロベンゼン(BHT濃度=0.5g/L)を加え、ポリマー濃度が0.1質量%になるように調整した。ポリマーを上記高温GPC用前処理装置PL-SP 260VS中で135℃に加熱して溶解させ、グラスフィルターにて濾過して試料を調製した。なお、本開示におけるGPC測定において、グラスフィルターに捕捉されたポリマーはなかった。次に、カラムとして、東ソー社製TSKgel GMH-HT(30cm×4本)およびRI検出器を装着したウォーターズ社製GPCV 2000を使用してGPC測定を行った。測定条件としては、試料溶液注入量:約520μL、カラム温度:135℃、溶媒:o-ジクロロベンゼン、流量:1.0mL/minを採用した。分子量の算出は以下のように行った。すなわち、標準試料として市販の単分散のポリスチレンを使用し、該ポリスチレン標準試料およびエチレン系重合体の粘度式から、保持時間と分子量に関する校正曲線を作成し、該校正曲線に基づいて分子量の算出を行った。なお、粘度式としては、[η]=K×Mαを使用し、ポリスチレンに対しては、K=1.38E-4、α=0.70を使用し、エチレン系重合体に対しては、K=4.77E-4、α=0.70を使用し、プロピレン系重合体に対しては、K=1.03E-4、α=0.78を使用した。
3-2.リガンドの合成
(合成例3-1):リガンドB-394の合成
 以下のスキームに従ってリガンドB-394を合成した。
 なお、以降の化学式中、-OMOMとはメトキシメトキシ基(-OCHOCH)を表す。
Figure JPOXMLDOC01-appb-C000056
(1)化合物19の合成
 2-tert-ブチルフェノール(化合物18、100.0g、66.6mmol、10.2mL)に、水素化ナトリウム(7.46g、186.4mmol、純度60%)のTHF懸濁溶液250mLを0℃で加え、0℃で30分撹拌した。反応混合物にクロロメチルエーテル(10.7g、133.1mmol、10.1mL)を0℃で加え、15℃で15時間撹拌した。その後、反応混合物に水酸化カリウム水溶液(2M、200mL)をゆっくりと加え、15℃で30分撹拌した。その後、酢酸エチル(100mLx2)で抽出し、無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル)で精製し、化合物19を得た(8.8g、45.3mmol、収率68.1%)。
(2)化合物20の合成
 化合物19(5.0g、25.7mmol)のTHF60mL溶液に、n-ブチルリチウム(2.5M、10.3mL、25.8mmol)を0℃で加え、0℃で1時間撹拌した。その後、ヨウ素(6.5g、25.7mmol、5.2mL)を0℃で加え、15℃で15時間撹拌した。反応混合物に氷水20mLを加え、酢酸エチル(20mLx2)で抽出した。有機相はチオ硫酸ナトリウム20mL、水20mLで洗浄し、無水硫酸ナトリウムで乾燥した後に、濃縮することで、化合物20を得た。その後精製することなく、次反応に用いた。
(3)化合物55の合成
 窒素雰囲気下で、水素化アルミニウムリチウム(4.2g、110.7mmol)のTHF懸濁溶液110mLに、化合物54(20.0g、110.7mmol、21.1mL)のジエチルエーテル40mL溶液を0℃でゆっくりと加えた。混合物は35℃で5時間撹拌した。反応混合物にTHF20mLと水20mLを0℃でゆっくりと加え、その後35℃で3時間撹拌した。反応混合物は蒸留により、すべての揮発物を回収した。その後、有機相は硫酸マグネシウムで乾燥し、溶媒を除去した。70mmHgで蒸留し、沸点50-55℃の画分を回収し、化合物55を無色透明オイルとして得た(8.2g、55.7mmol、収率50.4%)。
(4)化合物56aの合成
 窒素雰囲気下で、化合物20(200.0mg、468.5μmol)、化合物55(68.5mg、468.5μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(42.9mg、46.9μmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(50.5mg、93.7μmol)、ナトリウム-tert-ブトキシド(90.1mg、937.0μmol)にトルエン5mLを加え、100℃で16時間撹拌した。反応混合物を濃縮し、水15mLを加えた後に、酢酸エチル(15mLx2)で抽出した。有機相は塩水15mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル)で精製し、化合物56aを得た。
(5)リガンドB-394の合成
 化合物56a(2.5g、7.4mmol)のジクロロメタン溶液20mLにHCl/酢酸エチル(4M、40.0mL)を0℃で加え、25℃で2時間撹拌した。反応混合物を濃縮し、粗生成物を得た。粗生成物は飽和炭化水素ナトリウム水溶液30mLでpH6.5~7.0に調製し、その後ジクロロメタン(25mLx3)で抽出した。有機相は塩水25mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮することでリガンドB-394を得た(1.6g、5.4mmol、収率73.5%)。
HNMR(400MHz,CDCl,δ,ppm):8.21(d,J=12Hz,1H),7.41(dt,J=7.6Hz,2.8Hz,1H),6.81-6.76(m,1H),6.79(t,J=7.6Hz,1H),1.40(s,9H),1.23(s,9H),1.20(s,9H);
31PNMR(162MHz,CDCl,δ,ppm)-6.75(s).
(合成例3-2):リガンドB-400の合成
 以下のスキームにしたがってリガンドB-400を合成した。
Figure JPOXMLDOC01-appb-C000057
(1)化合物62の合成
 化合物61(5.0g、24.2mmol)とp-トルエンスルホン酸(378.5mg、2.4mmol)のジクロロメタン溶液にN-ヨードスクシンイミド(6.0g、26.7mmol)を加え、25℃で16時間撹拌した。反応混合物は飽和チオ硫酸ナトリウム30mLでクエンチし、その後酢酸エチル(20mLx3)で抽出した。有機相は塩水25mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル)で精製し、化合物62を得た(8.0g、24.1mmol、収率99.4%)。
(2)化合物63の合成
 化合物62(8.0g、24.1mmol)のTHF溶液20mLに水素化ナトリウム(1.4g、36.1mmol、純度60%)を0℃で加えた。その後、クロロメチルメチルエーテル(2.5g、31.3mmol、2.4mL)を加え、25℃で16時間撹拌した。反応混合物は飽和炭化水素ナトリウム水溶液25mLを0℃で加えクエンチし、酢酸エチル(15mLx3)で抽出した。有機相は塩水10mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物は、シリカゲルカラム(展開溶媒に石油エーテル)で精製し、化合物63を得た(5.2g、13.8mmol、収率57.4%)。
(3)化合物56bの合成
 窒素雰囲気下で、化合物63(5.2g、13.8mmol)、上記リガンドB-394の合成に用いた化合物55(2.0g、13.8mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(1.3g、1.4mmol)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(1.5g、2.8mmol)、ナトリウム-tert-ブトキシド(2.7g、27.6mmol)にトルエン20mLを加え、100℃で16時間撹拌した。その後、反応混合物を濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル/酢酸エチル=10/1)で精製し、その後石油エーテル中での再結晶によって化合物56bを得た(3.0g、7.6mmol、収率55.0%)。
(4)リガンドB-400の合成
 化合物56b(2.8g、7.1mmol)のジクロロメタン20mLにHCl/酢酸エチル(4M、20.0mL)を0℃で加え、25℃で2時間撹拌した。その後、反応混合物を濃縮し、粗生成物を得た。粗生成物は飽和炭化水素ナトリウム水溶液30mLでpH6.5~7.0に調製し、ジクロロメタン(25mLx3)で抽出した。有機相は塩水25mLで洗浄し、無水硫酸ナトリウムで乾燥し、濃縮することでリガンドB-400を得た(2.2g、6.3mmol、収率88.4%)。
HNMR(400MHz,CDCl,δ,ppm):7.98(d,J=12.4Hz,1H),7.34(t,J=2.5Hz,1H),7.26-7.21(m,1H),1.32(s,9H),1.23(s,9H),1.14(s,9H),1.11(s,9H);
31PNMR(162MHz,CDCl,δ,ppm)-5.35(s).
(比較合成例3-1):リガンドB-399の合成
 以下のスキームにしたがってリガンドB-399を合成した。
Figure JPOXMLDOC01-appb-C000058
(1)化合物32の合成
 化合物15(4.0g、29.0mmol)のTHF溶液30mLにn-ブチルリチウム(2.5M、12.2mL、30.0mmol)を0℃で添加し、0℃で1時間撹拌した。その後、ジ-tert-ブチルクロロホスフィン(5.2g、29.0g、5.5mL)を-78℃で添加し、15℃で12時間撹拌した。反応溶液は、氷水20mLに注ぎ入れ、酢酸エチル(20mLx2)で抽出した。有機相は、無水硫酸ナトリウムで乾燥し、濃縮することで粗生成物を得た。粗生成物はシリカゲルカラム(展開溶媒に石油エーテル:酢酸エチル=1:0-50:1)で精製し、化合物32を得た(3.5g、9.0g、収率31.2%)。
(2)化合物33dの合成
 アルゴン雰囲気下で、化合物32(3.9g、13.9mmol)のTHF溶液10mLにBH・THF(1.0M、16.7mL、16.7mmol)を-78℃で添加し、10℃で1時間撹拌した。BH・ジメチルスルフィド(10M、1.7mL、16.7mmol)を-78℃で加え、10℃で12時間撹拌した。この反応溶液に、氷水10mLを0℃で添加し、揮発成分は減圧下で留去した。水20mL添加し、酢酸エチル(20mLx3)で抽出した。有機相は無水硫酸ナトリウムで乾燥し、濃縮することで白色固体を得た。白色固体は酢酸エチル10mLで再結晶し、化合物33dを得た(1.5g、5.1mmol、収率36.4%)。
(3)リガンドB-399の合成
 アルゴン雰囲気下で、化合物33d(5.4g、18.2mmol)のジクロロメタン20mLにHCl/酢酸エチル(4M、80.0mL、320.0mmol)を0℃で添加し、10℃で3時間撹拌した。揮発成分は減圧下で留去し、ジクロロメタン100mLを加えた。有機相は、飽和炭酸水素ナトリウム水溶液100mLで洗浄し、濃縮することでリガンドB-399を得た(4.0g、16.8mmol、収率92.1%)。
HNMR(400MHz,CDCl,δ,ppm):7.85(s,1H),7.57(dt,J=7.6Hz,1.4Hz,1H),7.28(td,J=7.7Hz,1.6Hz,1H),6.94(td,J=7.2Hz,1.2Hz,1H),6.87(td,J=7.5Hz,1.2Hz,1H),1.32(s,9H),1.29(s,9H);
31PNMR(162MHz,CDCl,δ,ppm)-6.21(s).
3-3.錯体の合成
(実施例3-1):錯体(B-394)Ni((1,4,5-η)-COE)の合成
 以下の操作は、すべて高純度アルゴン雰囲気下で行った。以下、ビス-1、5-シクロオクタジエンニッケル(0)をNi(COD)と称し、(1,4,5-η)-4-シクロオクテン-1-イル配位子を(1,4,5-η)-COEと称する。
 初めに25mLのナスフラスコに、上記リガンドB-394(42mg、0.14mmol)を秤り取った。次に、Ni(COD)(43mg、0.16mmol)を別のフラスコに秤り取り、トルエン(8.0mL)に溶解させ、20mmol/mLのNi(COD)トルエン溶液を調製した。得られた溶液は、黄色透明であった。ここで得られたNi(COD)トルエン溶液7.1mLを、リガンドB-394を入れたナスフラスコに加え、溶液を得た。その後、室温で1時間撹拌した。この時、溶液の色が次第に暗黄色~褐色に変化し、沈殿がないことを確認し、B-394とNi(COD)の反応生成物((B-394)Ni((1,4,5-η)-COE))の20mmol/mL溶液を得た。ここで、反応生成物の濃度は、B-394とNi(COD)が1対1で反応してニッケル錯体を形成しているとして計算した。
(実施例3-2):錯体(B-400)Ni((1,4,5-η)-COE)の合成
 上記実施例3-1において、リガンドB-394の替わりにリガンドB-400を用いたこと以外は、実施例3-1と同様の手順により、錯体(B-400)Ni((1,4,5-η)-COE)を合成した。
(実施例3-3):錯体(B-394)Ni(4-Fluorophenyl)Pyの合成
 以下のスキームにしたがって錯体(B-394)Ni(4-Fluorophenyl)Pyを合成した。
Figure JPOXMLDOC01-appb-C000059
 グローブボックス中、15mLバイアルにリガンドB-394(100mg、0.34mmol)と水素化カリウム(27mg、0.68mmol)を入れて、ジエチルエーテル5mLを加え、室温で10分撹拌した。反応混合物はセライトを通してろ過し、セライトはジエチルエーテル5mLで洗浄した。Ni(4-Fluorophenyl)Br(TMEDA)(TMEDA:テトラメチルエチレンジアミン)は、非特許文献Molecules (2014), 19(9), 13603-13613.を参考に合成した。Ni(4-Fluorophenyl)Br(TMEDA)(126mg、0.36mmol)を上記ジエチルエーテルろ液に加え、室温で12時間撹拌した。反応混合物はセライトを通してろ過し、セライトはジエチルエーテル3mLで洗浄した。このろ液に、ピリジン(29mg、0.37mmol)を加え、室温で10時間撹拌した。その後、反応混合物中の溶媒を留去することにより、固体を得た。得られた固体をヘキサン20mLに加え、この混合物をセライトに通してろ過し、セライトをヘキサン5mLで洗浄し、得られたろ液中の溶媒を留去し、粗生成物を得た。粗生成物にヘキサン1.5mLを加え、-35℃で終夜静置した。析出した固体をろ過により回収し、冷やしたヘキサンで洗浄した。得られた黄色固体を室温で2時間減圧乾燥することで、錯体(B-394)Ni(4-Fluorophenyl)Pyを得た(144mg、80%)。
HNMR(400MHz,δ,C)8.63(d,J=5.6Hz,2H),7.68(t,J=7.0Hz,2H),7.34-7.31(m,2H),6.78(t,J=9.0Hz,2H),6.66(t,J=7.4Hz,1H),6.58(td,J=7.6,2.0Hz,1H),6.36(t,J=7.0Hz,2H),1.41(d,J=4.0Hz,18H),1.38(s,9H);
31PNMR(162MHz,δ,C)60.3;
19FNMR(376MHz,δ,C)-124.0;
13CNMR(101MHz,δ,C)175.54(d,J=17Hz,1C),161.58(dd,J=240,1.3Hz,1C),150.35(s,2C),144.43(dd,J=37,3.2Hz,1C),139.24(d,J=4.9Hz,2C),138.47(d,J=7.4Hz,1C),136.52(s,1C),131.93(d,J=1.1Hz,1C),129.11(d,J=1.7Hz,1C),123.37(s,2C),118.02(d,J=41Hz,1C),113.14(dd,J=18,2.2Hz,2C),112.71(d,J=6.6Hz,1C),36.33(d,J=18Hz,2C),34.97(d,J=1.4Hz,1C),30.17(d,J=4.1Hz,6C),29.65(s,3C).
Elemental analysis,Calcd for C2939FNNiOP;C,66.18;H,7.47;N,2.66;found C,66.19;H,7.73;N,2.54.
(比較例3-1):錯体(B-399)Ni((1,4,5-η)-COE)の合成
 上記実施例3-1において、リガンドB-394の替わりにリガンドB-399を用いたこと以外は、実施例3-1と同様の手順により、錯体(B-399)Ni((1,4,5-η)-COE)を合成した。
3-4.プロピレン重合又は共重合
(実施例3-1A):実施例3-1の錯体を用いたプロピレン重合
 内容積2Lの誘導攪拌式オートクレーブに、プロピレン(500mL)を導入した。実施例3-1の錯体((B-394)Ni((1,4,5-η)-COE))を窒素ガスでオートクレーブに導入した。混合物を攪拌しながらオートクレーブを50℃に昇温した。50℃に達した時点から所定時間重合させた。未反応モノマーを除去した後、オートクレーブを開放し、加熱乾燥を行い、重合体を得た。
(実施例3-2A):実施例3-2の錯体を用いたプロピレン重合
 実施例3-1Aにおいて、実施例3-1の錯体((B-394)Ni((1,4,5-η)-COE))の替わりに実施例3-2の錯体((B-400)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例3-1Aと同様の手順により、重合体を得た。
(実施例3-3A):実施例3-3の錯体を用いたプロピレン重合
 実施例3-1Aにおいて、実施例3-1の錯体((B-394)Ni((1,4,5-η)-COE))の替わりに実施例3-3の錯体((B-394)Ni(4-Fluorophenyl)Py)を用いたこと以外は、実施例3-1Aと同様の手順により、重合体を得た。
(実施例3-1B):実施例3-1の錯体を用いた共重合
 実施例3-1Aにおいて、実施例3-1の錯体を窒素ガスでオートクレーブに導入した後に、さらに3-ブテン-1-オールを加えたこと以外は、実施例3-1Aと同様の手順により、共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、プロピレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(実施例3-2C):実施例3-2の錯体を用いた共重合
 実施例3-1Aにおいて、実施例3-1の錯体((B-394)Ni((1,4,5-η)-COE))の替わりに実施例3-2の錯体((B-400)Ni((1,4,5-η)-COE))を用いたこと、及び実施例3-2の錯体を窒素ガスでオートクレーブに導入した後に、さらに10-ウンデセン酸エチルを加えたこと以外は、実施例3-1Aと同様の手順により、共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、プロピレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(実施例3-3D):実施例3-3の錯体を用いた共重合
 50mLステンレス鋼オートクレーブを120℃の乾燥機で3時間乾燥した後に、組み立てて、125℃で2時間減圧乾燥した。室温まで冷却後、アルゴン下で、オートクレーブに実施例3-3の錯体((B-394)Ni(4-Fluorophenyl)Py)(10.0μmol、10.0mL、1.00mmol/Lトルエン溶液)とトルエン(10mL)を加えた。その後、プロピレン10g、アクリル酸メチルを加えた。その後、オートクレーブの温度を50℃とし、内容物を64時間撹拌した。室温まで冷却後、プロピレンをパージし、エタノール20mLにより反応をクエンチし、重合物をろ過により回収した。重合物を100~120℃で2時間減圧乾燥し、目的とする共重合体を得た。共重合体中のコモノマー含有率は、HNMR測定により、プロピレン:コモノマーのモル比を決定し、コモノマー含量mol%という表記で表に記載した。
(比較例3-1A):比較例3-1の錯体を用いたプロピレン重合
 実施例3-1Aにおいて、実施例3-1の錯体((B-394)Ni((1,4,5-η)-COE))の替わりに比較例3-1の錯体((B-399)Ni((1,4,5-η)-COE))を用いたこと以外は、実施例3-1Aと同様の手順により、重合体を得た。
 下記表6-1は、実施例3-1~実施例3-3及び比較例3-1の錯体の合成に用いたニッケル原料及びリガンドを比較したものである。
Figure JPOXMLDOC01-appb-T000060
 下記表6-2は、プロピレンを用いた重合又は共重合について、実施例3-1A~実施例3-3A、実施例3-1B、実施例3-2C、実施例3-3D、及び比較例3-1Aの重合条件及び重合結果をまとめたものである。表6-2中の重合活性は、重合に用いた錯体1molあたり、重合時間1時間あたりの共重合体収量(g)を表す。表6-2には、重合体に関するGPC測定結果として、重量平均分子量Mw、及び分子量分布Mw/Mnを載せた。表6-2中の共重合量は、重合に供した全モノマー量中における、コモノマーの取込量の割合を示す。
Figure JPOXMLDOC01-appb-T000061
3-5.考察
 上記表6-2の比較例3-1Aから分かるように、従来の錯体(比較例3-1)を用いたポリプロピレン重合では、重合活性が4.0×10(g/mol/hr)と低く、得られる重合体の分子量Mwは3,200と小さい。これに対し、上記表6-2の実施例3-1A~実施例3-3Aから分かるように、本開示の金属錯体(実施例3-1~実施例3-3)を用いたポリプロピレン重合では、重合活性が1.1×10(g/mol/hr)以上と高く、得られる重合体の分子量Mwは15,900以上と大きい。このように、Rに炭化水素基を用いた本開示の金属錯体は、Rが水素の場合(比較例3-1)と比較して、ポリプロピレン重合において高い重合活性を発揮でき、かつより高分子量のポリプロピレンが得られる。また、得られたポリプロピレンの分子量分布Mw/Mnは2.3以下に収まる。
 また、上記表6-2の実施例3-1B、実施例3-2C及び実施例3-3Dから分かるように、本開示の金属錯体により、α-オレフィンと極性基含有モノマーとの共重合が、良好な重合活性で達成される。
 以上より、本開示の金属錯体は、従来よりも高い重合活性でより高分子量のα-オレフィン単独重合体が得られ、かつ、良好な重合活性でα-オレフィンと極性基含有モノマーとの共重合を達成でき、優れた技術的意義を持つことが明らかである。
 本開示の金属錯体を用いることにより、新規機能性ポリオレフィンが製造可能となるため、特に接着性や意匠性が必要な用途において産業上大いに有用である。

Claims (34)

  1.  下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000001
    [一般式[I]および[II]中のR~R、E、Xは以下の通りである。
     R,R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数7~30の直鎖状アルキル基、炭素数7~30の分岐した非環状アルキル基、炭素数7~30のアルケニル基、炭素数7~30の側鎖を有していてもよいシクロアルキル基、または炭素数7~30のアリールアルキル基を表す。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     また、一般式[I]中、
     Zは、水素、または脱離基を表し、
     mはZの価数を表す。]
  2.  下記一般式[III]で表されることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000002
    [一般式[III]中のR~R、E、X、M、Lは以下の通りである。
     R,R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数7~30の直鎖状アルキル基、炭素数7~30の分岐した非環状アルキル基、炭素数7~30のアルケニル基、炭素数7~30の側鎖を有していてもよいシクロアルキル基、または炭素数7~30のアリールアルキル基を表す。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     Mは、周期表の9族、10族または11族に属する遷移金属を表す。
     Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
     Lは、Mに配位したリガンドを表す。
     RとLが互いに結合して環を形成してもよい。]
  3.  Mが周期表の10族に属する遷移金属であることを特徴とする請求項2に記載の金属錯体。
  4.  Rが水素であることを特徴とする請求項1~3のいずれか1項に記載の金属錯体。
  5.  下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、下記一般式[III]で表される金属錯体を製造することを特徴とする金属錯体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [一般式[I]および[II]中のR~R、E、Xは以下の通りである。
     R,R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数7~30の直鎖状アルキル基、炭素数7~30の分岐した非環状アルキル基、炭素数7~30のアルケニル基、炭素数7~30の側鎖を有していてもよいシクロアルキル基、または炭素数7~30のアリールアルキル基を表す。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     また、一般式[I]中、
     Zは、水素、または脱離基を表し、
     mはZの価数を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [一般式[III]中のM、R、Lは以下の通りである。
     Mは、周期表の9族、10族または11族に属する遷移金属を表す。
     Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
     Lは、Mに配位したリガンドを表す。
     RとLが互いに結合して環を形成してもよい。
     なお、一般式[III]中のR~R、E、Xは一般式[I]および[II]と同様である。]
  6.  請求項1~4のいずれか1項に記載の金属錯体または請求項5に記載の製造方法で得られる金属錯体を含むことを特徴とするオレフィン重合用触媒成分。
  7.  下記の成分(A)および(B)、更に必要に応じて(C)を含むことを特徴とする、オレフィン重合用触媒。
     成分(A):請求項1~4のいずれか1項に記載の金属錯体または請求項5に記載の製造方法で得られる金属錯体
     成分(B):成分(A)と反応してイオン対を形成する化合物またはイオン交換性層状珪酸塩
     成分(C):有機アルミニウム化合物
  8.  前記成分(B)がアルミノキサンであることを特徴とする請求項7に記載のオレフィン重合用触媒。
  9.  請求項7または8に記載の重合用触媒の存在下に、(a)α-オレフィンを重合または共重合することを特徴とするα-オレフィン重合体の製造方法。
  10.  請求項7または8に記載の重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマーまたはアリルモノマーとを共重合することを特徴とするα-オレフィン共重合体の製造方法。
  11.  下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000005
    [一般式[I]および[II]中のR~R、E、Xは以下の通りである。
     R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     Rは、下記(v)および(vi)からなる群より選ばれる基を表す。
    (v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (vi)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、R、R、M’、x、yは上記の通りである。
     R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐した非環状アルキル基、または炭素数2~6のアルケニル基を表す。
     RおよびRが互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     また、一般式[I]中、
     Zは、水素、または脱離基を表し、
     mはZの価数を表す。]
  12.  下記一般式[III]で表されることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000006
    [一般式[III]中のR~R、E、X、M、Lは以下の通りである。
     R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     Rは、下記(v)および(vi)からなる群より選ばれる基を表す。
    (v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (vi)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、R、R、M’、x、yは上記の通りである。
     R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐した非環状アルキル基、または炭素数2~6のアルケニル基を表す。
     RおよびRが互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     Mは、周期表の9族、10族または11族に属する遷移金属を表す。
     Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
     Lは、Mに配位したリガンドを表す。
     RとLが互いに結合して環を形成してもよい。]
  13.  Mが周期表の10族に属する遷移金属であることを特徴とする請求項12に記載の金属錯体。
  14.  Rが、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する炭素数6~30のアリール基またはSi(OR3-x(Rであることを特徴とする請求項11~13のいずれか1項に記載の金属錯体。
  15.  Rが水素、またはヘテロ原子を含有する基を有する炭素数1~30の直鎖状アルキル基であることを特徴とする請求項11~14のいずれか1項に記載の金属錯体。
  16.  Rが水素であることを特徴とする請求項15に記載の金属錯体。
  17.  下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、下記一般式[III]で表される金属錯体を製造することを特徴とする金属錯体の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    [一般式[I]および[II]中のR~R、E、Xは以下の通りである。
     R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     Rは、下記(v)および(vi)からなる群より選ばれる基を表す。
    (v)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有する、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (vi)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、R、R、M’、x、yは上記の通りである。
     R,R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~6の直鎖状アルキル基、炭素数3~6の分岐した非環状アルキル基、または炭素数2~6のアルケニル基を表す。
     RおよびRが互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     また、一般式[I]中、
     Zは、水素、または脱離基を表し、
     mはZの価数を表す。]
    Figure JPOXMLDOC01-appb-C000008
    [一般式[III]中のM、R、Lは以下の通りである。
     Mは、周期表の9族、10族または11族に属する遷移金属を表す。
     Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
     Lは、Mに配位したリガンドを表す。
     RとLが互いに結合して環を形成してもよい。
     なお、一般式[III]中のR~R、E、Xは一般式[I]および[II]と同様である。]
  18.  請求項11~16のいずれか1項に記載の金属錯体または請求項17に記載の製造方法で得られる金属錯体を含むことを特徴とするオレフィン重合用触媒成分。
  19.  下記の成分(A)および(B)、更に必要に応じて(C)を含むことを特徴とする、オレフィン重合用触媒。
     成分(A):請求項11~16のいずれか1項に記載の金属錯体または請求項17に記載の製造方法で得られる金属錯体
     成分(B):成分(A)と反応してイオン対を形成する化合物またはイオン交換性層状珪酸塩
     成分(C):有機アルミニウム化合物
  20.  前記成分(B)がアルミノキサンであることを特徴とする請求項19に記載のオレフィン重合用触媒。
  21.  請求項19または20に記載の重合用触媒の存在下に、(a)α-オレフィンを重合または共重合することを特徴とするα-オレフィン重合体の製造方法。
  22.  請求項19または20に記載の重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマーまたはアリルモノマーとを共重合することを特徴とするα-オレフィン共重合体の製造方法。
  23.  下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより得られることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000009
    [一般式[I]および[II]中のR~R、E、Xは以下の通りである。
     Rは、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基を表す。
     R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数4~6の直鎖状アルキル基、炭素数4~6の2級アルキル基、炭素数4~6の3級アルキル基、または炭素数4~6のアルケニル基を表す。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     また、一般式[I]中、
     Zは、水素、または脱離基を表し、
     mはZの価数を表す。]
  24.  下記一般式[III]で表されることを特徴とする金属錯体。
    Figure JPOXMLDOC01-appb-C000010
    [一般式[III]中のR~R、E、X、M、Lは以下の通りである。
     Rは、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基を表す。
     R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数4~6の直鎖状アルキル基、炭素数4~6の2級アルキル基、炭素数4~6の3級アルキル基、または炭素数4~6のアルケニル基を表す。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     Mは、周期表の9族、10族または11族に属する遷移金属を表す。
     Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
     Lは、Mに配位したリガンドを表す。
     RとLが互いに結合して環を形成してもよい。]
  25.  Mが周期表の10族に属する遷移金属であることを特徴とする請求項24に記載の金属錯体。
  26.  R及びRが、tert-ブチル基であることを特徴とする請求項23~25のいずれか1項に記載の金属錯体。
  27.  Rが、tert-ブチル基であることを特徴とする請求項23~26のいずれか1項に記載の金属錯体。
  28.  下記一般式[I]または[II]で表される化合物と、周期表の9族、10族または11族に属する遷移金属を含む遷移金属化合物とを接触させることにより、下記一般式[III]で表される金属錯体を製造することを特徴とする金属錯体の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    [一般式[I]および[II]中のR~R、E、Xは以下の通りである。
     Rは、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基を表す。
     R,RおよびRは、それぞれ独立に、下記(i)~(iv)からなる群より選ばれる原子または基を表す。
    (i)水素
    (ii)ハロゲン
    (iii)ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数1~30の直鎖状アルキル基、炭素数3~30の分岐した非環状アルキル基、炭素数2~30のアルケニル基、炭素数3~30の側鎖を有していてもよいシクロアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、または炭素数7~30のアルキルアリール基
    (iv)OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、P(O)(ORM’、またはエポキシ含有基。ここで、Rは水素または炭素数1~20の炭化水素基を表す。また、Rは炭素数1~20の炭化水素基を表す。M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウムまたはホスホニウムを表し、xは0から3までの整数、yは0から2までの整数を表す。
     R,RおよびRから適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素および硫黄からなる群より選ばれるヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
     RおよびRは、それぞれ独立に、ヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい、炭素数4~6の直鎖状アルキル基、炭素数4~6の2級アルキル基、炭素数4~6の3級アルキル基、または炭素数4~6のアルケニル基を表す。
     Eは、リン、砒素またはアンチモンを表す。
     Xは、酸素または硫黄を表す。
     また、一般式[I]中、
     Zは、水素、または脱離基を表し、
     mはZの価数を表す。]
    Figure JPOXMLDOC01-appb-C000012
    [一般式[III]中のM、R、Lは以下の通りである。
     Mは、周期表の9族、10族または11族に属する遷移金属を表す。
     Rは、水素、またはヘテロ原子およびヘテロ原子を含有する基からなる群より選ばれる基を有していてもよい炭素数1~20の炭化水素基を表す。
     Lは、Mに配位したリガンドを表す。
     RとLが互いに結合して環を形成してもよい。
     なお、一般式[III]中のR~R、E、Xは一般式[I]および[II]と同様である。]
  29.  請求項23~27のいずれか1項に記載の金属錯体または請求項28に記載の製造方法で得られる金属錯体を含むことを特徴とするオレフィン重合用触媒成分。
  30.  下記の成分(A)および(B)、更に必要に応じて(C)を含むことを特徴とする、オレフィン重合用触媒。
     成分(A):請求項23~27のいずれか1項に記載の金属錯体または請求項28に記載の製造方法で得られる金属錯体
     成分(B):成分(A)と反応してイオン対を形成する化合物またはイオン交換性層状珪酸塩
     成分(C):有機アルミニウム化合物
  31.  前記成分(B)がアルミノキサンであることを特徴とする請求項30に記載のオレフィン重合用触媒。
  32.  請求項30または31に記載の重合用触媒の存在下に、(a)α-オレフィンを重合または共重合することを特徴とするα-オレフィン重合体の製造方法。
  33.  請求項30または31に記載の重合用触媒の存在下に、(a)α-オレフィンと、(b)(メタ)アクリル酸エステルモノマー、ビニルモノマーまたはアリルモノマーとを共重合することを特徴とするα-オレフィン共重合体の製造方法。
  34.  (a)α-オレフィンがプロピレンであることを特徴とする、請求項32に記載のα-オレフィン重合体の製造方法、又は請求項33に記載のα-オレフィン共重合体の製造方法。
PCT/JP2017/027134 2016-07-27 2017-07-26 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα-オレフィン重合体及び共重合体の製造方法 WO2018021446A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/320,046 US11149099B2 (en) 2016-07-27 2017-07-26 Metal complex and method for producing the same, catalyst component for olefin polymerization and catalyst for olefin polymerization containing the metal complex, and methods for producing α-olefin polymer and copolymer using the catalyst for olefin polymerization
EP17834448.7A EP3476858A4 (en) 2016-07-27 2017-07-26 METAL COMPLEX AND PRODUCTION METHOD THEREFOR, A CATALYST COMPONENT FOR OLEFIN POLYMERIZATION AND A CATALYST FOR OLEFINE POLYMERIZATION WITH THE METAL COMPLEX, AND METHOD FOR PRODUCING POLYMER AND COPOLYMER OF OLEFINE USING A CATALYST FOR OLEFINE POLYMERIZATION
CN201780046126.4A CN109601002B (zh) 2016-07-27 2017-07-26 金属配合物及其制备方法、用于烯烃聚合的催化剂及α-烯烃聚合物的制备方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016147880 2016-07-27
JP2016-147876 2016-07-27
JP2016-147877 2016-07-27
JP2016147877A JP6867761B2 (ja) 2016-07-27 2016-07-27 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体の製造方法
JP2016-147880 2016-07-27
JP2016147876 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018021446A1 true WO2018021446A1 (ja) 2018-02-01

Family

ID=61017473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027134 WO2018021446A1 (ja) 2016-07-27 2017-07-26 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα-オレフィン重合体及び共重合体の製造方法

Country Status (4)

Country Link
US (1) US11149099B2 (ja)
EP (1) EP3476858A4 (ja)
CN (1) CN109601002B (ja)
WO (1) WO2018021446A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320558A (zh) * 2018-09-10 2019-02-12 天津大学 一种萘酚骨架酚-膦中性镍催化剂制备方法和制备乙烯/乙烯基极性单体共聚物的应用
CN111116805A (zh) * 2018-10-31 2020-05-08 中国石油化工股份有限公司 一种烯烃-烯烃醇共聚物的制备方法
WO2022211091A1 (ja) * 2021-03-31 2022-10-06 日本ポリケム株式会社 オレフィン系重合体の重合触媒
WO2024071415A1 (ja) * 2022-09-30 2024-04-04 日本ポリケム株式会社 化合物、金属錯体、オレフィン重合用触媒組成物、オレフィン重合用触媒、及び、オレフィン系重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402641B (zh) * 2021-06-02 2022-09-20 北京化工大学 茂金属催化剂及制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559326B1 (en) * 1999-11-17 2003-05-06 Basf Aktiengesellschaft Substituted phosphinophenoxide-metal complexes for the polymerization of olefins
JP2005307021A (ja) * 2004-04-22 2005-11-04 Sumitomo Chemical Co Ltd オレフィン重合触媒成分及びオレフィン重合体の製造方法
WO2010050256A1 (ja) * 2008-10-30 2010-05-06 日本ポリプロ株式会社 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
WO2013159229A1 (en) * 2012-04-24 2013-10-31 Dalhousie University Silanyloxyaryl phosphine ligand and uses thereof in c-n cross-coupling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649812B2 (ja) 2008-11-20 2015-01-07 日本ポリプロ株式会社 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。
US20170002120A1 (en) * 2014-01-28 2017-01-05 Japan Polyethylene Corporation Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559326B1 (en) * 1999-11-17 2003-05-06 Basf Aktiengesellschaft Substituted phosphinophenoxide-metal complexes for the polymerization of olefins
JP2005307021A (ja) * 2004-04-22 2005-11-04 Sumitomo Chemical Co Ltd オレフィン重合触媒成分及びオレフィン重合体の製造方法
WO2010050256A1 (ja) * 2008-10-30 2010-05-06 日本ポリプロ株式会社 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
WO2013159229A1 (en) * 2012-04-24 2013-10-31 Dalhousie University Silanyloxyaryl phosphine ligand and uses thereof in c-n cross-coupling

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DUBINSKY-DAVIDCHIK, INA ET AL.: "Selective Aryl-Fluoride Reductive Elimination from a Platinum (IV) Complex", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 54, no. 42, 2015, pages 12447 - 12451, XP 055457292, ISSN: 1433-7851 *
EMPSALL, H. DAVID ET AL.: "Complexes of Platinum and Palladium with Tertiary Dimethoxyphenylphosphines: Attempts to Effect 0- or C-Metallation", JOURNAL OF THE CHEMICAL SOCIETY , DALTON TRANSACTIONS : INORGANIC CHEMISTRY (1972-1999, vol. 3, 1978, pages 257 - 262, XP 002132764, ISSN: 0300-9246 *
EMPSALL, H. DAVID ET AL.: "Some Unusual Iridium Complexes formed from (2,6-Dimethoxyphenyl)- and (2,3-Dimethoxyphenyl)-di-t-butylphosphine: Crystal Structure of [2-Di-t-butylphosphino-3- methoxyphenoxo-OP] {2-[(2-hydroxy-6- methoxyphenyl)t-butylphosphino]-2- methylpropanato(2-)-ClP02}-(methyl isocyanide) iridium(III", JOURNAL OF THE CHEMICAL SOCIETY , DALTON TRANSACTIONS : INORGANIC CHEMISTRY (1972- 1999, vol. 9, 1978, pages 1119 - 1126, XP009511489, ISSN: 0300-9246 *
IONKIN, ALEX S. ET AL.: "Rare Organometallic Complex of Divalent, Four-Coordinate Iridium: Synthesis, Structural Characterization, and First Insights into Reactivity", ORGANOMETALLICS, vol. 23, no. 25, 2004, pages 6031 - 6041, XP 002455587, ISSN: 0276-7333 *
See also references of EP3476858A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320558A (zh) * 2018-09-10 2019-02-12 天津大学 一种萘酚骨架酚-膦中性镍催化剂制备方法和制备乙烯/乙烯基极性单体共聚物的应用
CN109320558B (zh) * 2018-09-10 2021-09-28 天津大学 一种萘酚骨架酚-膦中性镍催化剂制备方法和制备乙烯/乙烯基极性单体共聚物的应用
CN111116805A (zh) * 2018-10-31 2020-05-08 中国石油化工股份有限公司 一种烯烃-烯烃醇共聚物的制备方法
WO2022211091A1 (ja) * 2021-03-31 2022-10-06 日本ポリケム株式会社 オレフィン系重合体の重合触媒
WO2024071415A1 (ja) * 2022-09-30 2024-04-04 日本ポリケム株式会社 化合物、金属錯体、オレフィン重合用触媒組成物、オレフィン重合用触媒、及び、オレフィン系重合体の製造方法

Also Published As

Publication number Publication date
CN109601002B (zh) 2022-05-13
US11149099B2 (en) 2021-10-19
EP3476858A4 (en) 2019-07-24
US20190263945A1 (en) 2019-08-29
CN109601002A (zh) 2019-04-09
EP3476858A1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2018021446A1 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα-オレフィン重合体及び共重合体の製造方法
US10550211B2 (en) Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer
JP4524335B2 (ja) 新規な金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP5232718B2 (ja) 新規な金属錯体を含む重合触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・(メタ)アクリル酸エステル共重合体の製造方法
JP5812764B2 (ja) 金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP5597582B2 (ja) 金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP6618290B2 (ja) オレフィン重合触媒及びオレフィン重合体の製造方法
JP5863538B2 (ja) 金属錯体およびそれを用いたα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP5863539B2 (ja) 金属錯体およびそれを用いたα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP6867761B2 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体の製造方法
JP6356507B2 (ja) オレフィン重合触媒及びオレフィン重合体の製造方法
JP5622376B2 (ja) 新規な金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンとプロペン酸誘導体エステル共重合体の製造方法
JP6938265B2 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体の製造方法
JP6938264B2 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体及び共重合体の製造方法
JP7329937B2 (ja) α-オレフィン/(メタ)アクリル酸エステル共重合体の製造方法
BRPI0710329A2 (pt) complexo metálico, processo para a preparação de um complexo de háfnio, processo de polimerização por adição, processo para a bromação seletiva, processo para preparar um éster borato de benzofuran-3-ila 2- substituìdo estável e processo para preparar um 2-formilimidazol
JP5989572B2 (ja) 金属錯体およびそれを用いたα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP6913051B2 (ja) 金属錯体、及びそれを用いたα−オレフィン/(メタ)アクリル酸エステル共重合体の製造方法
JP6771946B2 (ja) 新規固体担持オレフィン重合触媒及びその製造方法
JP2024056642A (ja) 金属錯体、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP2022159184A (ja) 金属錯体、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP2021113174A (ja) 金属錯体、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該金属錯体を用いたオレフィン重合体及び共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834448

Country of ref document: EP

Effective date: 20190123