WO2018020628A1 - 風力発電設備 - Google Patents

風力発電設備 Download PDF

Info

Publication number
WO2018020628A1
WO2018020628A1 PCT/JP2016/072105 JP2016072105W WO2018020628A1 WO 2018020628 A1 WO2018020628 A1 WO 2018020628A1 JP 2016072105 W JP2016072105 W JP 2016072105W WO 2018020628 A1 WO2018020628 A1 WO 2018020628A1
Authority
WO
WIPO (PCT)
Prior art keywords
nacelle
wind
yaw
power generation
mode
Prior art date
Application number
PCT/JP2016/072105
Other languages
English (en)
French (fr)
Inventor
繁永 康
荘一郎 清木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/072105 priority Critical patent/WO2018020628A1/ja
Priority to TW106125569A priority patent/TWI661121B/zh
Publication of WO2018020628A1 publication Critical patent/WO2018020628A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to wind power generation equipment and relates to yaw control.
  • Wind power generation equipment is a major natural energy power generation facility that has been installed with a large amount of capacity in terms of global warming countermeasures. And since the wind power generation facility generates power using wind power, it has a structure that is greatly affected by wind. Therefore, it is necessary to cope with the load received from the wind during a strong wind.
  • Patent Document 1 describes a horizontal axis wind turbine that can reduce the yaw electromagnetic brake force at the time of a power failure than that during an energization operation and can cope with a strong wind even at the time of a power failure.
  • Patent Document 2 describes a horizontal axis windmill having a function of controlling a yaw turning speed while adopting a downwind configuration when an abnormality detection signal is generated in a windmill, and following a wind direction as a passive yaw.
  • Patent Document 3 and Patent Document 4 describe a horizontal axis wind turbine having a function of making it a down-wind form during a strong wind standby and making it a passive yaw.
  • the nacelle rotates in a direction to eliminate the imbalance.
  • the nacelle does not rotate in the original direction unless a reverse imbalance is caused and a wind exceeding the yaw brake force is not generated.
  • the wind power generation facility is operated for a long period of about 20 years, and it is preferable that such load accumulation is reduced as much as possible.
  • an object of the present invention is to provide a wind power generation facility capable of reducing the accumulation of loads as described above and improving the reliability.
  • a wind power generation facility includes a rotor that rotates by receiving wind, a nacelle that rotatably supports the rotor, a tower that rotatably supports the nacelle, and the nacelle. And a yaw actuator that generates a driving force for rotating the tower with respect to the tower.
  • the rotor When the wind speed is higher than a predetermined wind speed, the rotor generates electric power using the first mode in which the rotor is located leeward with respect to the nacelle and the rotational energy of the rotor.
  • a second mode and in the first mode, when the angle difference between the azimuth angle of the nacelle and the wind direction angle is greater than or equal to a first predetermined value, the angle difference is reduced using the output of the yaw actuator.
  • the yaw is rotated so that the yaw actuator is stopped when the angular difference is equal to or smaller than a second predetermined value, and the yaw actuator is stopped when the angular difference is equal to or smaller than the second predetermined value.
  • Braking force between serial and nacelle of the tower characterized by less than the braking force between the tower and the nacelle in the second mode.
  • FIG. 1 is a schematic side view of a downwind horizontal axis wind turbine according to an embodiment of the present invention.
  • the schematic around the nacelle regarding the Example of this invention. 1 is a schematic top view of a downwind horizontal axis wind turbine according to an embodiment of the present invention.
  • FIG. 3 is a schematic top view of a yaw actuator driving state according to an embodiment of the present invention.
  • FIG. 1 shows a schematic structure of a downwind horizontal axis wind turbine according to this embodiment as viewed from the side.
  • the tower has a tower 1 extending almost vertically.
  • the base on the lower side of the tower 1 is installed on a foundation if it is on land, and is joined to a foundation installed from the sea bottom or a floating foundation that floats near the sea surface if it is offshore.
  • a nacelle 2 is installed at the top of the tower 1 so that the nacelle 2 is supported so as to be rotatable in a horizontal plane with respect to the tower 1, and the nacelle 2 rotates with respect to the tower 1 between the tower 1 and the nacelle 2.
  • a yaw actuator 8 that generates a driving force is provided.
  • a rotor 5 is connected to the leeward side of the nacelle 2 via a main shaft, and the rotor 5 is rotatably supported with respect to the nacelle 2 via the main shaft.
  • the nacelle 2 and the rotor 5 adjust the yaw angle by rotating about the center of the tower 1 as an axis.
  • the rotor 5 is mainly composed of the hub 3 and each blade 4 (in this embodiment, three blades are used, but of course not limited to this number).
  • the nacelle 2 is provided with all or part of a generator, a power adjustment device, a power transmission mechanism, and a cooling device.
  • the wind direction meter 15 is installed in the upper part of the nacelle 2, and it can measure a wind direction by it.
  • FIG. 2 mainly shows a schematic structure in which the periphery of the nacelle 2 is viewed from above the opposite side of the rotor 5, and FIG. Show.
  • the rotor 5 mainly composed of the hub 3 and each blade 4 rotates clockwise as viewed from the windward side during power generation
  • the direction of rotation of the windmill is not limited to this.
  • the rotor 5 basically does not rotate, but slightly rotates clockwise as viewed from the windward side. However, it may rotate slightly counterclockwise depending on the wind conditions. In strong winds of a predetermined wind speed or higher, power generation is stopped and the nacelle 2 rotates in the yaw rotation direction, and the state where the rotor 5 becomes the leeward side of the tower 1 corresponding to the wind direction is maintained.
  • FIG. 4 shows an active yaw state in which power generation is stopped by a strong wind of a predetermined wind speed or more and the yaw actuator 8 actively rotates the yaw.
  • An angle difference (yaw error) ⁇ formed between the azimuth angle 6 and the wind direction angle 7 is measured by an anemometer 15 installed in the nacelle 2. If the positional relationship between the anemometer 15 on the nacelle and the nacelle is matched, the angle difference ⁇ can be directly derived from the anemometer 15.
  • the angle difference ⁇ becomes larger than a predetermined value (the angle difference ⁇ is compared with an absolute value and set to ⁇ degree)
  • the nacelle 2 rotates around the center of the tower 1 by driving the yaw actuator 8. Actively control yaw angle. Specifically, the nacelle 2 is actively rotated in a direction in which the value obtained as a result of processing the angle difference ⁇ measured by the anemometer 15 decreases.
  • FIG. 5 shows a passive yaw state in which power generation is stopped by a strong wind of a predetermined wind speed or higher and the yaw is passively rotated by the wind condition (first mode).
  • the result of processing the angle difference ⁇ is a predetermined value. If the angle difference ⁇ is smaller than (the absolute value is compared and ⁇ degrees), the yaw actuator 8 stops driving and stops. Note that the second mode is used during power generation.
  • the angle difference ⁇ itself may be compared, or the comparison may be performed with the result of processing the angle difference as in this embodiment.
  • the angle difference is compared with a predetermined value, both the case where the angle difference ⁇ itself is compared and the case where the result of processing the angle difference are compared are included.
  • ⁇ and ⁇ are, for example, 25 ° or less, and of course ⁇ is always a value of ⁇ or more ( ⁇ ⁇ ⁇ ). Equalizing ⁇ and ⁇ is not excluded.
  • the yaw actuator 8 and the brake mechanism will be described with reference to FIG.
  • the yaw actuator 8 includes an electromagnetic brake 13 and a yaw motor 14, and a pinion gear 9 is provided at the tip of the yaw motor 14 on the tower 1 side via an output shaft.
  • the pinion gear 9 also rotates and the azimuth angle of the nacelle 2 can be changed.
  • the pinion gear 9 meshes with a yaw bearing 10 (particularly, in this embodiment, an outer ring).
  • the outer ring of the yaw bearing 10 is fixed to the tower 1 via a brake disk 11, and a brake caliper 12 is provided so as to sandwich the brake disk 11.
  • the brake caliper 12 is fixed to the nacelle 2.
  • the inner ring of the yaw bearing 10 is fixed with respect to the nacelle 2 and rotates with the pinion gear 9 with respect to the outer ring.
  • the brake disc 11 is sandwiched between the brake calipers 12.
  • an electromagnetic brake 13 can be used.
  • the angle difference ⁇ output from the anemometer 15 is compared with ⁇ , and the comparison result is input to the yaw actuator command generator 161.
  • the yaw actuator command generation unit 161 issues a command to drive the yaw actuator 8 in a direction in which the angle difference ⁇ decreases.
  • the angle difference ⁇ output from the anemometer 15 is also compared with ⁇ , and the comparison result is similarly input to the yaw actuator command generator 161.
  • the yaw actuator command generation unit 161 continues to output a command to drive the yaw actuator 8 in a direction in which the angle difference ⁇ decreases. Then, the output command to the yaw actuator 8 is stopped.
  • the control device 16 is also provided with a brake force calculation unit 162.
  • the brake force calculation unit 162 includes a power generation output P and a wind speed v of a generator (not shown) of a wind power generation facility, and a yaw actuator command generation unit. 161 output is also input.
  • the brake force calculation unit 162 determines the mode according to the presence / absence of the power generation output and the magnitude of the wind speed v. That is, when there is no power generation output and the wind speed v is equal to or higher than the predetermined wind speed, the first mode is determined, and when there is a power generation output, the second mode is determined. When there is no power generation output and the wind speed v is equal to or lower than a predetermined wind speed, another mode may be provided.
  • the output of the yaw actuator command generation unit 161 is also input to the brake force calculation unit 162.
  • the brake force output to the brake caliper 12 according to the magnitude of the angle difference ⁇ is further generated. It can be changed.
  • the braking force can be varied according to the magnitude of the wind speed v, and the braking force can be increased as the wind speed v increases.
  • the braking force in the yaw rotation direction is smaller than that during power generation. For example, it should be less than half of the braking force during power generation. In other words, it will be loosely braked. As a result, when the force from the wind exceeding the loose brake is received, the rotor moves to the leeward side like a weathercock. Furthermore, it is smaller than that during power generation, and the braking force is increased with the wind speed.
  • the reason for applying an appropriate braking force in the passive yaw rotation mode is to suppress the nacelle from rotating unnecessarily and to rotate it appropriately.
  • the reason why the braking force is increased in accordance with the wind speed is that when the wind speed increases, the force received by the rotor 5 from the wind increases, and the braking force is increased corresponding to the force received from the wind to maintain an appropriate rotation.
  • the braking force is varied while the yaw actuator 8 is operating and stopped. Specifically, the brake force during stop is greater than the brake force during operation of the yaw actuator 8.
  • the brake force is controlled by the yaw actuator 8. This is to hinder the operation.
  • the yaw actuator 8 is operated when the angle difference ⁇ is equal to or larger than ⁇ , and the yaw actuator 8 is stopped when the angle difference ⁇ is equal to or smaller than ⁇ .
  • the braking force is increased when the angle difference ⁇ is equal to or smaller than ⁇ than the braking force.
  • the brake force when the angle difference ⁇ is less than or equal to ⁇ is set to be smaller than the brake force in the second mode, so that the brake is loosely applied when the angle difference ⁇ is less than or equal to ⁇ in the first mode. It becomes a state, and the rotor can move to the leeward side like a weathercock. In the loosely braked state, the possibility that the angle difference is increased due to turbulence or the like is not completely eliminated. However, even in this case, in this embodiment, if the angle difference becomes ⁇ or more, the yaw actuator 8 is Since it is operated, the angle difference does not become too large.
  • the angle difference ⁇ when the angle difference ⁇ is equal to or less than ⁇ , it is possible to apply a braking force as large as, for example, the braking force at the time of power generation.
  • the angle difference ⁇ is equal to or less than ⁇ in the first mode, the direction of the wind direction and the rotor should be reduced by applying the brake gently and allowing the weathercock effect. It is preferable because the directions are easily matched.
  • the force received by the rotor 5 is imbalanced on the left and right, and the imbalance is eliminated.
  • the nacelle 2 rotates in the direction in which the air flows and deviates greatly from the average wind direction.
  • the rotor 5 receives wind from an oblique direction rather than from the front, and a relatively large load is applied to the windmill. If the yaw direction is not actively controlled, it is predicted that the nacelle 2 will passively rotate yaw and the rotor 5 will have a high probability of facing the wind direction over time.
  • a relatively large load is applied to the wind turbine by the strong wind from the wind.
  • the angle difference ⁇ is large, the moving distance to the position where the angle difference ⁇ disappears becomes long, and wind is also received from an oblique direction during that time. Therefore, when the angle difference ⁇ becomes large to some extent, it is preferable to rotate the nacelle 2 in a direction to quickly eliminate the error. Therefore, in this embodiment, in the mode in which the rotor 5 is positioned leeward with respect to the nacelle 2 at a predetermined wind speed or higher, basically, the yaw actuator 8 is not actively driven, but information on the angle difference ⁇ is also provided.
  • the yaw actuator 8 When monitoring is performed through the anemometer 15 and the angle difference ⁇ is ⁇ degrees or more, the yaw actuator 8 is driven to control the angle difference ⁇ to be eliminated. In this embodiment, the drive by the yaw actuator 8 is continued until the angle difference ⁇ becomes ⁇ degrees or less. Needless to say, how to determine the ⁇ and ⁇ degrees varies depending on the model. Further, the ⁇ degree may be ⁇ degrees or less. If the yaw direction is actively controlled, the rotor 5 faces the wind direction, and it is possible to prevent a relatively large load from being applied to the windmill by preventing strong wind from being obliquely received.
  • the yaw control having both the passive yaw and the active yaw during storm (standby) is more optimal for the wind direction.
  • the mode is not switched according to the presence or absence of power generation, but the rotor 5 is positioned downstream of the nacelle 2 and passively driven by wind. It can also be divided according to whether or not.
  • controlling the wind turbine as in the present embodiment in a stormy standby state where power generation is not performed is particularly effective in improving reliability and safety.
  • the position where the load is reduced according to the natural wind is maintained, and the yaw actuator is driven only when the angle difference becomes large, so that the yaw actuator is Driving time can be shortened.
  • an uninterruptible power supply device or a battery such as a battery is installed in the wind power generation facility in this embodiment, and the power storage device is consumed even when the yaw actuator is driven by the power storage device provided in the event of a power failure. This is preferable because it can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

信頼性の高い風力発電設備を提供することを目的とし、風を受けて回転するロータ5と、ロータ5を回転可能に支持するナセル2と、ナセル2を回転可能に支持するタワー1と、ナセル2をタワー1に対して回転させる駆動力を生ずるヨーアクチュエータ8を備え、所定風速以上の際にロータ5がナセル2に対して風下に位置する第1のモード及びロータ5の回転エネルギーを用いて発電する第2のモードを有し、第1のモードでは、ナセル2の方位角度と風向角度との角度差が第1の所定値以上の場合にヨーアクチュエータ8の出力を用いて角度差が小さくなる様にヨーを回転させ、角度差が第2の所定値以下の場合にヨーアクチュエータ8の駆動を停止し、角度差が第2の所定値以下の場合におけるナセル2とタワー1の間のブレーキ力は、第2のモードにおけるナセル2とタワー1の間のブレーキ力より小さくすることを特徴とする。

Description

風力発電設備
 本発明は風力発電設備に関するものであり、ヨー制御に関するものである。
 風力発電設備は、地球温暖化対策の観点において多くの設備容量が導入されており、主要な自然エネルギー発電設備である。そして風力発電設備は、風の力を利用して発電を行うため、風の影響を大きく受ける構造となっている。従って、強風時においては風から受ける荷重に対応する必要がある。
 強風時にも信頼性を高めた風車とするためには、ヨーのブレーキ力を調整する手段がある。更には、強風時にはタワーの風下側にロータを配置するダウンウィンド形態とし、能動的にヨー駆動を行うアクティブヨーではなく受動的にヨーが回転するパッシブヨーとする手段がある。
 ブレーキ力に関わる従来技術としては、例えば特許文献1に記載されたものがある。特許文献1には、停電時には通電運転時よりヨーの電磁ブレーキ力を小さくし、停電時にも強風に対応できる水平軸風車について記載されている。
 パッシブヨーに関わる従来技術としては、例えば特許文献2乃至4に記載されたものがある。特許文献2には、風車に異常検知信号が発生するとダウンウィンド形態とし、パッシブヨーとして風向に自然追従するとともにヨー旋回速度を制御する機能を備えた水平軸風車について記載されている。特許文献3および特許文献4には、強風待機時にダウンウィンド形態とし、パッシブヨーとする機能を備えた水平軸風車について記載されている。
特開2011-127551号公報 特開2007-146858号公報 特表2004-536247号公報 特開2007-64062号公報
 特許文献1乃至4のようにロータが風から受ける力によって回転する受動的なヨー駆動は、平均的な風が吹き続けている場合には風向きに沿ってナセルが向くことになり、荷重を最小化することに繋がる。一方で、平均的な風向は変化せずとも、乱流などで局所的にロータが受ける風の左右のアンバランスが生じた場合にナセルは回転し、ナセルの向きには平均的な風向からずれが生ずる。例えば、風上側から見て右側に位置するブレードが受ける風が左側に位置するブレードより大きくなった場合には、ロータが受ける回転力に不均衡が生じ、不均衡を解消する方向にナセルが回転することになる。この場合、次に、逆の不均衡を起こし、かつヨーブレーキ力を上回る風が生じなければ元の向きにナセルは回転しない。この間であっても、上記のナセルの回転を生じさせたのはあくまで乱流に過ぎず、平均的な風向は当初の向きから変化していない。故に、元の向きからずれている間は、ロータは正面からでなく斜め方向から風を受けることになる。その場合、ロータには比較的大きな荷重が加わることになる。風力発電設備は20年程の長期間運用されるものであって、この様な荷重の蓄積はなるべく軽減されることが好ましい。
 そこで、本発明では上記の様な荷重の蓄積を軽減し信頼性を向上させることができる風力発電設備を提供することを目的とする。
 上記の課題を解決するために本発明に係る風力発電設備は、風を受けて回転するロータと、前記ロータを回転可能に支持するナセルと、前記ナセルを回転可能に支持するタワーと、前記ナセルを前記タワーに対して回転させる駆動力を生ずるヨーアクチュエータを備え、所定風速以上の際に前記ロータが前記ナセルに対して風下に位置する第1のモード及び前記ロータの回転エネルギーを用いて発電する第2のモードを有し、前記第1のモードでは、前記ナセルの方位角度と風向角度との角度差が第1の所定値以上の場合に前記ヨーアクチュエータの出力を用いて前記角度差が小さくなる様にヨーを回転させ、前記角度差が第2の所定値以下の場合に前記ヨーアクチュエータの駆動を停止し、前記角度差が第2の所定値以下の場合における前記ナセルと前記タワーの間のブレーキ力は、前記第2のモードにおける前記ナセルと前記タワーの間のブレーキ力より小さくすることを特徴とする。
 本発明によれば信頼性を向上させることができる風力発電設備の提供が可能になる。
本発明の実施例に関するダウンウィンド型の水平軸風車の側面概略図。 本発明の実施例に関するナセル周りの概略図。 本発明の実施例に関するダウンウィンド型の水平軸風車の上面概略図。 本発明の実施例に関するヨーアクチュエータ駆動状態の上面概略図。 本発明の実施例に関するパッシブヨー状態の上面概略図。 本発明の実施例に関するヨーアクチュエータとブレーキ機構を説明する図である。 本発明の実施例に関する制御装置を説明する図である。
 以下に本発明を実施する上で好適となる実施例について図面を参照して説明する。尚、下記はあくまでも実施例であり、本発明の実施態様を限定することを意図する趣旨ではない。本発明は下記実施例以外にも種々の変更等が可能である。
 図1は、本実施例に係るダウンウィンド型の水平軸風車を側面から見た概略構造を示している。
 風車は、ほぼ鉛直方向にタワー1が伸びている。タワー1の下方側の根元は、陸上であれば基礎に設置され、洋上であれば海底から設置されている基礎に接合、或いは海面付近に浮かんだ浮体基礎等に接合される。タワー1の頭頂部にはタワー1に対しておよそ水平面内を回転可能にして支持されるナセル2が設置されており、タワー1とナセル2の間にはナセル2をタワー1に対して回転する駆動力を生ずるヨーアクチュエータ8が設けられる。ナセル2の風下側には主軸を介してロータ5が繋がっており、ロータ5は主軸を介すことでナセル2に対して回転可能に支持されている。ナセル2とロータ5は、タワー1の中心を軸として回転することでヨー角度を調整している。ロータ5は、ハブ3と各ブレード4(本実施例では、3枚のブレードとしているが、無論この枚数に限定されるものではない。)で主に構成される。ナセル2には、ここでは図示を省略するが発電機、電力調整装置、動力伝達機構、冷却装置の全部または一部が備えられる。また、ナセル2の上部には風向計15を設置しており、それにより風向を計測できる。
 図2は主にナセル2の周辺をロータ5の反対側の上方から見た概略構造を示しており、図3は本実施例に係るダウンウィンド型の水平軸風車を上面から見た概略構造を示している。
 本実施例では、発電時、主にハブ3と各ブレード4で構成されるロータ5は、風上側から見て時計回りに回転する場合を例に説明する。無論、風車の回転方向はこれに限定されるものではない。発電をしていない待機時では、ロータ5は基本的に殆ど回転しないが、風上側から見て時計回りに僅かに回転している。但し、風況によっては反時計回りに僅かに回転することもある。所定の風速以上の強風では、発電を停止してナセル2はヨー回転方向へ回転し、風向に対応してロータ5がタワー1の風下側となる状態を維持する。
 図4は、所定風速以上の強風で発電を停止し、ヨーアクチュエータ8により能動的にヨー回転させるアクティブヨーの状態を示している。方位角度6と風向角度7とで成す角度差(ヨーエラー)θは、ナセル2に設置されている風向計15により計測されている。ナセル上の風向計15とナセルの位置関係を合わせておけば、風向計15から直接角度差θを導くことが可能になる。角度差θが所定の値(角度差θは絶対値で比較し、α度とする)より大きくなった場合は、ヨーアクチュエータ8が駆動することでタワー1の中心を軸としてナセル2が回転し、能動的にヨー角度を制御する。具体的には、風向計15により計測される角度差θが処理された結果の値が小さくなる方向にナセル2を能動的に回転させる。
 図5は、所定風速以上の強風で発電を停止し、風況により受動的にヨー回転させるパッシブヨーの状態を示しており(第1のモード)、角度差θが処理された結果が所定の値(角度差θは絶対値で比較し、β度とする)より小さくなった場合は、ヨーアクチュエータ8は駆動を止め停止する。尚、発電時は第2のモードとする。角度差θを用いた比較については、角度差θ自体を比較しても良いし、本実施例の様に角度差を処理した結果を持って比較しても良い。角度差を所定値と比較する場合は、この様に角度差θ自体を比較する場合と、角度差を処理した結果を比較した場合のいずれもを含むものとする。
 αとβの範囲については、例えば25°以下とし、当然ながらαは常にβ以上(α≧β)の値である。αとβを等しくすることも排除されない。
 図6を用いてヨーアクチュエータ8とブレーキ機構について説明する。ヨーアクチュエータ8は、電磁ブレーキ13とヨーモータ14を備えており、ヨーモータ14のタワー1側の先端には、出力軸を介してピニオンギア9が設けられている。ヨーモータ14が回転することで、ピニオンギア9も回転し、ナセル2の方位角を変化させることが出来る。ピニオンギア9はヨーベアリング10(特に本実施例では、外輪)と噛み合っている。ヨーベアリング10の外輪はブレーキディスク11を介してタワー1に固定されており、ブレーキディスク11を挟むようにブレーキキャリパ12が設けられている。ブレーキキャリパ12は、図示しないがナセル2に対して固定されている。ヨーベアリング10の内輪は、ナセル2に対して固定されており、ピニオンギア9と共に外輪に対して回転する。ブレーキをかける場合には、ブレーキキャリパ12により、ブレーキディスク11を挟みこむことで行う。その他、電磁ブレーキ13を用いることも可能である。
 次に、図7を用いて本実施例に係る風力発電設備の制御装置16について説明する。風向計15から出力された角度差θは、αと比較され、比較結果がヨーアクチュエータ指令生成部161に入力される。ヨーアクチュエータ指令生成部161では、角度差θがα以上の場合、ヨーアクチュエータ8に対して、角度差θが小さくなる方向に駆動する様に指令を出す。
 風向計15から出力された角度差θは、βとも比較され、比較結果が同様にヨーアクチュエータ指令生成部161に入力される。角度差θがα以上の場合、ヨーアクチュエータ指令生成部161は、ヨーアクチュエータ8に対して、角度差θが小さくなる方向に駆動する様に指令を出力し続けるが、角度差θがβ以下になると、ヨーアクチュエータ8への出力指令を停止する。
 制御装置16には、ブレーキ力演算部162も設けられており、ブレーキ力演算部162には、風力発電設備の発電機(図示しない)の発電出力Pと風速vの他、ヨーアクチュエータ指令生成部161の出力も入力される。ブレーキ力演算部162は、発電出力の有無と風速vの大きさに応じてモードの判定を行う。即ち、発電出力がなく、かつ風速vが所定風速以上の場合には第1のモードと判定し、発電出力がある場合、第2のモードと判定する。発電出力がなく、かつ風速vが所定風速以下の場合、別のモードを設けていても良い。ブレーキ力演算部162には、更にヨーアクチュエータ指令生成部161の出力も入力されており、第1のモードであって更に、角度差θの大きさに応じてブレーキキャリパ12に出力するブレーキ力を変化させられるようになっている。その他、風速vの大きさに応じてブレーキ力を異ならせることも出来、風速vが大きくなるほど、ブレーキ力を大きくすることも出来る。
 発電時には、風によりロータ5を回転させ、動力伝達機構を介して発電機を回転させることで発電している。高い効率で発電させるため、ロータ5を風向に正対させるようにヨーアクチュエータが駆動し、ほぼ正対した時点でヨー回転方向に大きなブレーキ力をかけ、基本的にはヨー回転しないようにしている。
 発電をしていない待機時においては、ヨー回転方向のブレーキ力は発電時より小さいブレーキ力をかけている。例えば、発電時のブレーキ力の半分以下とする。言わば、緩くブレーキをかけた状態になる。これによって、緩いブレーキを上回る風からの力を受けると風見鶏の様に、ロータが風下側へ移動する。更には、発電時より小さく、且つ、風速に伴ってブレーキ力を大きくする。尚、受動的にヨー回転するモードで適度なブレーキ力を加える理由は、不必要にナセルが回転することを抑制し、適度に回転させるためである。また、風速に伴ってブレーキ力を増加させる理由は、風速が高まるとロータ5が風から受ける力も大きくなり、風から受ける力に対応してブレーキ力も増加させて適度な回転を保つ為である。
 第1のモードでは、ヨーアクチュエータ8の動作中と停止中でブレーキ力を異ならせている。具体的には、ヨーアクチュエータ8の動作中のブレーキ力よりも停止中のブレーキ力が大きくなる様にしている。前述の様に、受動的にヨー回転する場合には、多頻度なナセルの回転を防ぐ観点からブレーキ力をある程度大きくするのが好ましい一方、能動的な制御の場合は、ブレーキ力はヨーアクチュエータ8の動作を妨げるものになるためである。本実施例においては、角度差θがα以上の場合においてヨーアクチュエータ8を動作させ、角度差θがβ以下の場合においてヨーアクチュエータ8を停止させているので、角度差θがα以上の場合におけるブレーキ力よりも角度差θがβ以下の場合におけるブレーキ力を大きくしている。
 第1のモードにおいて角度差θがβ以下の場合のブレーキ力を第2のモードにおけるブレーキ力よりも小さくすることで、第1のモードにおいて角度差θがβ以下の場合では緩くブレーキをかけた状態になり、風見鶏の様にロータが風下側へ移動することが可能になる。緩くブレーキをかけた状態では、乱流等により角度差が大きくなる方向にずれる可能性も完全には排除されないが、その場合でも本実施例では、角度差がα以上になればヨーアクチュエータ8を動作させるので、角度差が大きくなり過ぎることはない。第1のモードにおいて角度差θがβ以下の場合に、例えば発電時のブレーキ力と同程度の大きなブレーキ力をかけることも可能であるが、本実施例の様に、所定以上の角度差でヨーアクチュエータ8によるアクティブ制御を行う様に制御を行っている場合には、第1のモードにおいて角度差θがβ以下の場合、緩くブレーキをかけて風見鶏効果を許容した方が、風向きとロータの方向が一致し易く好ましい。
 ダウンウィンド形態の風車では、風見鶏の原理によって、強風が吹き続けている場合には、小さいブレーキ力としておけば、ブレーキ力を上回る力を風から受けることで受動的にヨー回転する。受動的なヨー回転では、強風を受け流し、風車に発生する荷重を比較的小さくすることができる。しかし、平均的な風向は変化せずとも、乱流などにより局所的にロータ5が受ける風の力に左右のアンバランスが生じた場合には、ロータ5は正対せずに平均的な風向からずれ、角度差θが比較的大きくな状態となる。例えば、風上側から見て右側に位置するブレード4が受ける風の力が左側に位置するブレード4より大きくなった場合には、ロータ5が受ける力に左右で不均衡が生じ、不均衡を解消する方向にナセル2が回転し、平均的な風向から大きくずれることになる。ロータ5が正対せずに平均的な風向からずれた状態である場合、ロータ5は正面からでなく斜め方向から風を受けることになり、風車には比較的大きな荷重が加わることになる。仮に、能動的にヨー方向を制御しない場合、時間が経てば、いずれナセル2は受動的にヨー回転し、ロータ5は風向に正対する確率が高いと予測されるが、暫くの間は斜め方向からの強風によって比較的大きな荷重が風車に加わることになる。角度差θが大きい場合、角度差θが無くなる位置までの移動距離も長くなり、その間も斜め方向から風を受けることになる。よって、角度差θがある程度大きくなった場合には、速やかに誤差を解消する方向にナセル2を回転させることが好ましい。そこで、本実施例では、所定風速以上でロータ5がナセル2に対して風下に位置するモードにおいては、基本的には能動的にヨーアクチュエータ8の駆動を行わないものの、角度差θの情報も風向計15を通じてモニタし、角度差θがα度以上の場合には、ヨーアクチュエータ8を駆動させて角度差θが無くなる方向に制御する。本実施例では、このヨーアクチュエータ8による駆動は角度差θがβ度以下になる迄継続する。α度やβ度の決め方は、言うまでもなく、機種に応じても異なる。また、β度についてはα度以下であれば良い。能動的にヨー方向を制御すれば、ロータ5は風向に正対し、斜め方向から強風を受けることを防ぐことによって、風車に比較的大きな荷重が加わることを回避することができる。
 即ち、本実施例によれば、風向きの変化に追従してナセルがタワーに対して回転する水平軸風車において、暴風(待機)時にパッシブヨーとアクティブヨーを併せ持つヨー制御により、風向に対してより最適な状態でパッシブヨーを維持することで、風車の発生荷重を低減し、信頼性および安全性を高めることが可能になる。
 上述の実施例においては、発電時も含めて常時ロータがナセルよりも風下に位置するダウンウインド型の水平軸風車を例にして説明したが、発電時においてロータがナセルよりも風上に位置する所謂アップウインド型の水平軸風車であっても強風時にダウンウインドモードに移行するものであれば、同様のことが当てはまる。
 また、発電時と発電時以外の待機時に分けて説明したが、発電の有無によってモードを切り分けるのではなく、ロータ5をナセル2よりも風下に位置させて、かつ風により受動的に駆動させるモードになっているかどうかで切り分けることも出来る。勿論、発電を行わない様な暴風の待機状態において本実施例の様に風車を制御することは、信頼性や安全性を高める上ではとりわけ効果的である。
 また、本実施例の様に基本的には自然風に応じて荷重を低減する位置を保つと共に、角度差が大きくなった場合に限ってヨーアクチュエータを駆動させる様にすることで、ヨーアクチュエータを駆動させる時間を短縮できる。これは、本実施例における風力発電設備に例えば、無停電電源装置やバッテリーと言った蓄電装置を併設し、停電時に併設した蓄電装置により、ヨーアクチュエータを駆動させる場合にも、蓄電装置の消耗を少なく出来るので、好適である。
1 タワー
2 ナセル
3 ハブ
4 ブレード
5 ロータ
6 方位角度
7 風向角度
8 ヨーアクチュエータ
9 ピニオンギア
10 ヨーベアリング
11 ブレーキディスク
12 ブレーキキャリパ
13 電磁ブレーキ
14 ヨーモータ
15 風向計
16 制御装置
161 ヨーアクチュエータ指令生成部
162 ブレーキ力演算部

Claims (6)

  1.  風を受けて回転するロータと、前記ロータを回転可能に支持するナセルと、前記ナセルを回転可能に支持するタワーと、前記ナセルを前記タワーに対して回転させる駆動力を生ずるヨーアクチュエータを備え、
     所定風速以上の際に前記ロータが前記ナセルに対して風下に位置する第1のモード及び前記ロータの回転エネルギーを用いて発電する第2のモードを有し、
     前記第1のモードでは、前記ナセルの方位角度と風向角度との角度差が第1の所定値以上の場合に前記ヨーアクチュエータの出力を用いて前記角度差が小さくなる様にヨーを回転させ、前記角度差が第2の所定値以下の場合に前記ヨーアクチュエータの駆動を停止し、
     前記角度差が第2の所定値以下の場合における前記ナセルと前記タワーの間のブレーキ力は、前記第2のモードにおける前記ナセルと前記タワーの間のブレーキ力より小さくすることを特徴とする風力発電設備
  2.  請求項1に記載の風力発電設備であって、
     前記第1のモードにおいて、前記ヨーアクチュエータの駆動を停止する際におけるブレーキ力は、前記ヨーアクチュエータを駆動する際におけるブレーキ力より大きいことを特徴とする風力発電設備
  3.  請求項1または2に記載の風力発電設備であって、
     前記第1のモードにおいて、前記角度差が第2の所定値以下の場合における前記ナセルと前記タワーの間のブレーキ力は、前記角度差が第1の所定値以上の場合における前記ナセルと前記タワーの間のブレーキ力より大きいことを特徴とする風力発電設備。
  4.  請求項3の風力発電設備であって、
     前記第1のモードで前記角度差が第2の所定値以下の場合における前記ブレーキ力は、前記第2のモードの際のブレーキ力の半分以下であることを特徴とする風力発電設備。
  5.  請求項1ないし4のいずれか1項に記載の風力発電設備であって、
     風速が大きくなるにつれて、前記第1のモードの際のブレーキ力を大きくすることを特徴とする風力発電設備。
  6.  請求項1ないし5のいずれか1項に記載の風力発電設備であって、
     前記第1の所定値および前記第2の所定値は25°以下であることを特徴とする風力発電設備。
PCT/JP2016/072105 2016-07-28 2016-07-28 風力発電設備 WO2018020628A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/072105 WO2018020628A1 (ja) 2016-07-28 2016-07-28 風力発電設備
TW106125569A TWI661121B (zh) 2016-07-28 2017-07-28 Wind power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072105 WO2018020628A1 (ja) 2016-07-28 2016-07-28 風力発電設備

Publications (1)

Publication Number Publication Date
WO2018020628A1 true WO2018020628A1 (ja) 2018-02-01

Family

ID=61017130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072105 WO2018020628A1 (ja) 2016-07-28 2016-07-28 風力発電設備

Country Status (2)

Country Link
TW (1) TWI661121B (ja)
WO (1) WO2018020628A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320891A (ja) * 2004-05-07 2005-11-17 Nabtesco Corp 風力発電装置
JP2007146858A (ja) * 2001-12-28 2007-06-14 Mitsubishi Heavy Ind Ltd 風車の運転装置及びその運転方法
JP2008095664A (ja) * 2006-10-16 2008-04-24 Ebara Corp 風車装置
US20100209246A1 (en) * 2009-02-13 2010-08-19 Robert Migliori Yaw controller for downwind wind turbines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201128063A (en) * 2010-02-05 2011-08-16 Mitsubishi Heavy Ind Ltd Wind power generator and rotation direction swinging control method of the same
CN104314754B (zh) * 2014-08-20 2017-04-05 国家电网公司 一种偏航控制方法与偏航控制系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146858A (ja) * 2001-12-28 2007-06-14 Mitsubishi Heavy Ind Ltd 風車の運転装置及びその運転方法
JP2005320891A (ja) * 2004-05-07 2005-11-17 Nabtesco Corp 風力発電装置
JP2008095664A (ja) * 2006-10-16 2008-04-24 Ebara Corp 風車装置
US20100209246A1 (en) * 2009-02-13 2010-08-19 Robert Migliori Yaw controller for downwind wind turbines

Also Published As

Publication number Publication date
TW201804075A (zh) 2018-02-01
TWI661121B (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
EP2003335B1 (en) Horizontal axis wind turbine
JP4468751B2 (ja) 水平軸風車およびその待機方法
JP5101689B2 (ja) 風力発電装置及び風力発電装置のヨー旋回制御方法
EP2404058B1 (en) Yaw system for a windmill
EP2737205B1 (en) A method of yawing a rotor of a wind turbine
ES2398020B1 (es) Métodos y sistemas para aliviar las cargas producidas en los aerogeneradores por las asimetrías del viento.
EP2405133B1 (en) Wind farm and method of controlling power production of a wind turbine of a wind farm
WO2013057836A1 (ja) 風力発電装置及び風力発電装置のヨー旋回制御方法
US9719491B2 (en) Systems for minimizing yaw torque needed to control power output in two-bladed, teetering hinge wind turbines that control power output by yawing
US9033662B2 (en) Horizontal axis wind turbine apparatus
TW201704637A (zh) 風力發電系統
TWI606179B (zh) Horizontal axis type windmill and its standby method
JP2008095664A (ja) 風車装置
JP2014070516A (ja) 風力発電システム
TW201602455A (zh) 風車及其停止方法
JP5550501B2 (ja) 水平軸風車
US20210317817A1 (en) System and method for mitigating loads acting on a rotor blade of a wind turbine
WO2018020628A1 (ja) 風力発電設備
WO2016147245A1 (ja) 水上風力発電システムおよび水上複合発電システム
WO2011131792A2 (en) Wind turbine direction control
JP2017180153A (ja) 風力発電装置またはウィンドファーム
JP6920932B2 (ja) 風力発電装置
WO2021039188A1 (ja) 風力発電装置およびその停止方法
TWI784667B (zh) 在極端風力狀態下之風力渦輪機操作
KR102126732B1 (ko) 풍향 및 풍속 신호를 이용하여 정상 하중보다 큰 축방향 및 반경방향 외란에 강인한 마그네트 베어링 및 그를 구비하는 풍력발전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP