WO2018020619A1 - 香味吸引器、カートリッジ及び香味ユニット - Google Patents

香味吸引器、カートリッジ及び香味ユニット Download PDF

Info

Publication number
WO2018020619A1
WO2018020619A1 PCT/JP2016/072063 JP2016072063W WO2018020619A1 WO 2018020619 A1 WO2018020619 A1 WO 2018020619A1 JP 2016072063 W JP2016072063 W JP 2016072063W WO 2018020619 A1 WO2018020619 A1 WO 2018020619A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
flavor
unit
amount
flow rate
Prior art date
Application number
PCT/JP2016/072063
Other languages
English (en)
French (fr)
Inventor
拓磨 中野
晶彦 鈴木
山田 学
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN201680087986.8A priority Critical patent/CN109561732B/zh
Priority to EP16910522.8A priority patent/EP3488714A4/en
Priority to CA3030101A priority patent/CA3030101C/en
Priority to KR1020197004699A priority patent/KR102311334B1/ko
Priority to PCT/JP2016/072063 priority patent/WO2018020619A1/ja
Priority to JP2018530266A priority patent/JP6670384B2/ja
Priority to EA201990377A priority patent/EA036912B1/ru
Priority to TW106122366A priority patent/TWI670021B/zh
Publication of WO2018020619A1 publication Critical patent/WO2018020619A1/ja
Priority to US16/241,570 priority patent/US11044945B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • A24B15/241Extraction of specific substances
    • A24B15/243Nicotine
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F15/00Receptacles or boxes specially adapted for cigars, cigarettes, simulated smoking devices or cigarettes therefor
    • A24F15/01Receptacles or boxes specially adapted for cigars, cigarettes, simulated smoking devices or cigarettes therefor specially adapted for simulated smoking devices or cigarettes therefor
    • A24F15/015Receptacles or boxes specially adapted for cigars, cigarettes, simulated smoking devices or cigarettes therefor specially adapted for simulated smoking devices or cigarettes therefor with means for refilling of liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/65Devices with integrated communication means, e.g. wireless communication means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof
    • A24F40/95Arrangements or methods specially adapted for charging batteries thereof structurally associated with cases
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/001Particle size control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/002Details of inhalators; Constructional features thereof with air flow regulating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0297Heating of fluids for non specified applications
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present invention relates to a flavor suction device for sucking a flavor, and a cartridge and a flavor unit constituting the flavor suction device.
  • the flavor inhaler includes an atomization unit that atomizes an aerosol source without combustion, and a flavor source (for example, a cigarette source) provided on the suction side of the atomization unit (see Patent Document 1).
  • the first feature is an atomization unit that generates aerosol from an aerosol source, a flavor source provided downstream from the atomization unit, a mouthpiece provided downstream from the flavor source, and the atomization.
  • Correction for correcting a reference aerosol amount that is a pre-designed amount of aerosol generated by the atomizing unit a control unit that controls the unit, an aerosol flow path that communicates from the atomizing unit to the suction port
  • An information source that holds identification information associated with a value, the aerosol flow path between the atomization unit and the flavor source, a first branch flow path that passes through the flavor source, and The flow is branched to a second branch channel different from the first branch channel, and the correction value is a flow rate ratio that is a flow rate of the first branch channel with respect to the predetermined flow rate when the suction port is sucked at a predetermined flow rate.
  • the control unit is configured to provide the reference aerosol And the gist of the flavor inhaler for controlling the atomization unit on the basis of the
  • a second feature is that, in the first feature, when the flow rate ratio is greater than a predesigned value, the target aerosol amount is greater than a target aerosol amount when the flow rate ratio matches the predesigned value.
  • the gist is that when the flow rate ratio is set smaller and the flow rate ratio is smaller than a predesigned value, the target aerosol amount is set larger than the target aerosol amount when the flow rate ratio matches the predesigned value.
  • the third feature is summarized in that, in the first feature or the second feature, the first branch channel and the second branch channel merge downstream of the flavor source.
  • the fourth feature is summarized in that, in any one of the first feature to the third feature, the control unit controls an amount of electric power supplied to the atomizing unit.
  • a fifth feature is that in the fourth feature, the atomizing section is a resistance heating element, and the amount of power supplied to the resistance heating element in one puff operation is represented by E, and the atomization section
  • E the amount of power supplied to the resistance heating element in one puff operation
  • A the amount of aerosol generated in one puffing operation
  • a sixth feature is the fourth feature or the fifth feature, wherein the atomizing portion is a resistance heating element, the target aerosol amount is represented by AT , and the resistance heating element is applied to the resistance heating element by one puff operation.
  • the target power amount to be supplied is represented by E T
  • the specific parameters of the atomization unit are represented by a and b
  • the seventh feature is summarized as comprising the information source having identification information associated with the unique parameter or the unique parameter in the fifth feature or the sixth feature.
  • the information source having the unique parameter or the identification information associated with the unique parameter may be the same as or different from the information source that holds the identification information associated with the correction value. May be.
  • the reference aerosol amount should be passed through the first diversion channel when the flow rate ratio matches the predesigned value.
  • the gist is defined by the design value of the aerosol amount.
  • the ninth feature is summarized in that, in the eighth feature, the target aerosol amount is set to a value obtained by dividing the reference aerosol amount by the flow rate ratio.
  • the reference aerosol amount should be passed through the first diversion channel when the flow rate ratio matches the pre-designed value.
  • the gist is that the design value of the aerosol amount is defined by the value obtained by dividing the design value of the flow rate ratio by the pre-designed value.
  • An eleventh feature is summarized in that, in the tenth feature, the target aerosol amount is set to a value obtained by dividing a product of the reference aerosol amount and the previously designed value by the flow rate ratio.
  • the twelfth feature is any one of the first feature to the eleventh feature, wherein the flavor inhaler includes an atomization unit including the atomization unit, and a flavor unit including the flavor source, and the flavor
  • the flavor inhaler includes an atomization unit including the atomization unit, and a flavor unit including the flavor source, and the flavor
  • the gist is that the unit is configured to be detachable from the atomizing unit.
  • the thirteenth feature is summarized in that, in the twelfth feature, the information source is provided in the flavor unit.
  • the fourteenth feature is summarized in that, in the twelfth feature or the thirteenth feature, the first branch channel and the second branch channel are provided in the flavor unit.
  • the gist of the fifteenth feature is any one of the twelfth feature to the fourteenth feature, wherein the calculation of the target aerosol amount is performed in a state where the flavor unit is attached to the atomization unit.
  • a sixteenth feature is summarized in that, in the fifteenth feature, the calculation of the target aerosol amount is performed when it is detected that the flavor unit is attached to the atomization unit.
  • the gist of the seventeenth feature is any one of the twelfth to fifteenth features, wherein the calculation of the target aerosol amount is performed when a predetermined operation by the user is detected.
  • An eighteenth feature is the seventeenth feature, wherein the flavor inhaler has a suction sensor for detecting a suction operation by a user, and the calculation of the target aerosol amount is performed when the suction sensor detects the suction operation for the first time. The gist is to be done.
  • control unit is configured to correct the correction value via the information source in a state where the flavor unit is attached to the atomization unit.
  • the gist is to read.
  • control unit is configured to correct the correction value via the information source in a state where the flavor unit is not attached to the atomization unit.
  • the gist is to read.
  • the accumulated value of the aerosol amount generated in the atomizing unit or the accumulated value of the aerosol amount passing through the first diversion channel is a first threshold value.
  • the gist is to increase the amount of aerosol generated in the atomizing section when the amount exceeds.
  • the accumulated value of the aerosol amount generated in the atomizing unit or the accumulated value of the aerosol amount passing through the first diversion channel is a second threshold value.
  • the gist is to turn off the power supplied to the atomization section when the value exceeds.
  • the gist of the twenty-third feature is that, in any one of the first to twenty-second features, the flavor inhaler has a battery unit including a battery.
  • the 24th feature is summarized in that, in the 23rd feature, the battery unit is configured to be detachable from the atomizing unit including the atomizing unit.
  • the 25th feature is summarized in that, in the 23rd feature or the 24th feature, the control unit is provided in the battery unit.
  • a twenty-sixth feature is an atomization unit that generates aerosol from an aerosol source, a flavor source provided downstream from the atomization unit, a mouthpiece provided downstream from the flavor source, and the atomization. Holding an identification information associated with a correction value for correcting a reference aerosol amount, which is an amount of aerosol generated in the atomization unit and is a predesigned amount. And an aerosol flow path between the atomization unit and the flavor source, a first branch path that passes through the flavor source, and a second branch path that is different from the first branch path.
  • the correction value is a value that relates to a flow rate ratio that is a flow rate of the second shunt channel with respect to the predetermined flow rate when the suction port is sucked at a predetermined flow rate.
  • a twenty-third feature is a flavor unit detachably attached to an atomization unit including an atomization unit that generates aerosol from an aerosol source, the flavor source, a mouthpiece provided downstream from the flavor source, It is configured to be able to communicate with the atomizing unit of the atomizing unit, and corrects the aerosol flow path leading to the suction port and the amount of aerosol generated in the atomizing unit, which is a predesigned amount
  • An information source that holds identification information associated with a correction value to be performed, and the aerosol flow path is between the atomization unit and the flavor source, and a first branch flow path that passes through the flavor source;
  • the correction value is a flow rate of the second branch channel with respect to the predetermined flow rate when the suction port is sucked at a predetermined flow rate. Summary of values related to flow rate ratio To.
  • the flavor inhaler includes an atomization unit that generates aerosol from an aerosol source, a flavor source provided downstream from the atomization unit, a mouthpiece provided downstream from the flavor source, and a mist A correction value for correcting a reference aerosol amount that is an amount of aerosol generated in the atomizing unit, a control unit that controls the atomizing unit, an aerosol flow path that leads from the atomizing unit to the suction port, and an amount of aerosol generated in the atomizing unit And an information source that holds identification information associated with each other.
  • the aerosol channel is branched between the atomizing portion and the flavor source into a first branch channel that passes through the flavor source and a second branch channel that is different from the first branch channel.
  • the correction value is a value relating to a flow rate ratio, which is a flow rate of the first branch flow channel with respect to a predetermined flow rate when the suction port is sucked at a predetermined flow rate.
  • the control unit controls the atomization unit based on the target aerosol amount calculated based on the reference aerosol amount and the correction value.
  • control unit can change the target aerosol amount to be generated in the atomization unit according to the ratio of the flow rate of the aerosol flowing in the first branch channel and the second branch channel. Thereby, the control part can adjust the amount of aerosols which passes along the 1st distribution channel according to the above-mentioned flow rate ratio.
  • FIG. 1 is a diagram showing a flavor inhaler 100 according to the first embodiment.
  • FIG. 2 is a diagram showing an atomization unit that constitutes the flavor inhaler 100.
  • the flavor suction device 100 is a device for sucking suction components (flavor components) without burning.
  • the flavor suction device 100 may have a shape extending along a predetermined direction L that is a direction from the non-suction end E2 toward the suction end E1.
  • the flavor inhaler 100 includes an atomization unit 111, a battery unit 112, and a flavor unit 130.
  • the atomization unit 111 may be configured to be detachable from the battery unit 112.
  • the flavor unit 130 may be configured to be removable from the atomization unit 111.
  • the atomization unit 111 and the battery unit 112 may be configured integrally, and the flavor unit 130 may be configured to be detachable from the atomization unit 111. Further, the atomization unit 111 and the flavor unit 130 may be configured as an integral cartridge, and the cartridge may be configured to be detachable from the battery unit 112.
  • the atomization unit 111 has at least an atomization unit 111R.
  • the atomizing unit 111R generates aerosol from an aerosol source described later.
  • the atomization unit 111 further includes a reservoir 111P and a wick 111Q.
  • the reservoir 111P holds an aerosol source.
  • the aerosol source may be a liquid such as glycerin or propylene glycol, for example.
  • the aerosol source may contain a flavor source containing a nicotine component or the like, or may not contain a flavor source containing a nicotine component or the like.
  • the aerosol source may contain a flavor source containing components other than the nicotine component, and may not contain a flavor source containing components other than the nicotine component.
  • the reservoir 111P is made of, for example, a fibrous or porous material.
  • the reservoir 111P can hold an aerosol source as a liquid in the gaps between the fibers and the pores of the porous material.
  • the reservoir 111P may be configured from a tank that stores liquid.
  • the reservoir 111P may have a configuration in which the aerosol source can be replenished, or a configuration in which the reservoir itself can be replaced when the aerosol source is exhausted.
  • Wick 111Q sucks up the aerosol source held in reservoir 111P.
  • a part of the wick 111Q communicates with the inside of the reservoir 111P and is in contact with the aerosol source.
  • the other part of the wick 111Q extends to the atomizing portion 111R.
  • the aerosol source is carried from the reservoir 111P to the atomization unit 111R by the capillary effect of the wick 111Q.
  • the wick 111Q is made of glass fiber.
  • the atomization unit 111R atomizes the aerosol source sucked up by the wick 111Q.
  • the atomization part 111R is comprised by the resistance heating element which adjoins or contact
  • This resistance heating element atomizes the aerosol source held by the wick 111Q.
  • the resistance heating element is constituted by, for example, a resistance heating element wound around the wick 111Q at a predetermined pitch, for example, a heating wire.
  • the atomizing unit 111R may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration.
  • the reservoir 111P and the wick 111Q may be provided in the battery unit 112.
  • the atomization part 111R should just adjoin or contact
  • the atomization unit 111 may have an information source 111M that stores unique information of the atomization unit 111R.
  • the information source 111M is constituted by a memory, for example.
  • the control unit 51 described later can acquire the unique information of the atomization unit 111R from the memory. An example of the unique information will be described later.
  • the battery unit 112 has a battery 40 that stores at least electric power.
  • the battery unit may have a control unit 51.
  • the control unit 51 electrically controls the atomization unit 111R. Specifically, the control unit 51 controls the amount of power supplied from the battery 40 to the atomization unit 111R.
  • the control unit 51 is an electronic circuit module configured as a microprocessor or a microcomputer, and is programmed to control the operation of the flavor inhaler 100 according to computer-executable instructions stored in the memory.
  • the memory is an information storage medium such as a ROM, a RAM, or a flash memory. In addition to computer-executable instructions, the memory may store setting data necessary for controlling the flavor inhaler 100.
  • the flavor unit 130 has at least a flavor source 132.
  • the flavor source 132 is provided downstream from the atomization unit 111R and imparts flavor to the aerosol generated by the atomization unit 111R.
  • the flavor source 132 is, for example, made from tobacco, such as chopped tobacco or a processed product obtained by shaping tobacco raw materials into a granular, sheet, or powder form, or a plant other than tobacco (for example, mint or herb). It may be derived from non-tobacco tobacco.
  • the flavor source 132 includes a nicotine component.
  • the flavor source 132 may contain a fragrance component such as menthol.
  • the flavor inhaler 100 may be configured to hold a tobacco-derived flavor substance in the flavor source 132 and to contain a non-tobacco-derived flavor substance in the reservoir.
  • the flavor suction device 100 may have a mouthpiece 160 configured to be detachable on the mouth end side of the flavor unit 130.
  • the mouthpiece 160 is a part that can be received by the user during the suction operation.
  • the mouthpiece 160 may be configured integrally with the end of the flavor unit 130 on the mouthpiece end side.
  • the flavor inhaler 100 has an aerosol channel 140 and an air channel 148.
  • the air flow path 148 can introduce air into the flavor inhaler 100 from the vent 112A.
  • the air flow path 148 reaches the atomization part 111R from the vent 112A.
  • the aerosol flow path 140 communicates with the air flow path 148, and is a flow path that communicates from the atomization portion 111R to the suction port portion.
  • the aerosol flow path 140 guides the fluid mixture of the air from the air flow path 148 and the aerosol generated by the atomization section 111R to the mouthpiece.
  • the aerosol flow path 140 includes a common flow path 140C, a first split flow path 140A, and a second split flow path 140B. Specifically, the aerosol flow path 140 is divided into a first split flow path 140A passing through the flavor source 132 and a second split flow path 140B different from the first split flow path 140A between the atomization unit 111R and the flavor source 132. Branched. A branch point 145 between the first branch flow path 140A and the second branch flow path 140B is located between the atomization unit 111R and the flavor source 132.
  • the common flow path 140C is a flow path from the atomizing portion 111R to the branch point 145.
  • the first branch channel 140A extends from the branch point 145 through the flavor source 132 to the mouthpiece 160.
  • the second branch flow path 140 ⁇ / b> B extends to the mouthpiece 160 without passing through the flavor source 132.
  • the mixed fluid generated in the atomization unit 111R is separated into two paths, the first branch path 140A and the second branch path 140B, at the branch point 145 through the common path 140C.
  • the aerosol that has flowed into the first branch channel 140 ⁇ / b> A is given the flavor component from the flavor source 132 and then guided to the mouthpiece 160.
  • the aerosol that has flowed into the second branch flow path 140 ⁇ / b> B is guided to the mouthpiece 160 without being given the flavor component contained in the flavor source 132.
  • the aerosol from the first diversion channel 140A and the aerosol from the second diversion channel 140B are inhaled by the user through the mouthpiece 160.
  • the first branch flow path 110A and the second branch flow path 110B merge at the suction port 160 downstream from the flavor source 132.
  • this is not essential.
  • the terminal end (downstream end) of the second branch flow path 140B is inside the flavor source 132 so that the aerosol flowing through the second branch flow path 140B passes through a part of the flavor source 132 (for example, a part on the downstream side of the flavor source 132). And may merge with the first branch flow path 140A.
  • the flavor source 132 is provided only in the first branch flow path 140 ⁇ / b> A, but a flavor source different from the flavor source 132, for example, a flavor different from the flavor source 132.
  • a flavor source capable of imparting components to the aerosol may be additionally provided in the second branch flow path 140B.
  • the flavor source 132 is not necessarily limited to the one that emits the flavor itself, but is a substance that enhances the flavor by combining with the flavor component in the aerosol generated in the atomizing section 111R, such as an acidic substance such as pyruvic acid or levulinic acid. There may be.
  • the flavor inhaler 100 may have a sensor that detects the connection of the flavor unit 130 to the atomization unit 111.
  • the flavor unit 130 may have a resistor that is electrically connected to the electrical circuit of the atomization unit 111 when connected to the atomization unit 111.
  • the control unit 51 can detect the connection of the flavor unit 130 to the atomization unit 111 by detecting the change of the electric resistance value or the change of the current or voltage due to the change of the electric resistance value.
  • the connection detection sensor is not limited to this mode, and may be a sensor having an arbitrary configuration.
  • the flavor suction device 100 may have a sensor for detecting the connection of the atomization unit 111 to the battery unit 112.
  • the atomization unit 111 may include a resistor that is electrically connected to the electric circuit of the battery unit 112 when connected to the battery unit 112. Thereby, when the atomization unit 111 is connected to the battery unit 112, the electrical resistance value of a part of the electric circuit provided in the battery unit 112 changes.
  • the control unit 51 can detect the connection of the atomization unit 111 to the battery unit 112 by detecting the change in the electrical resistance value or the change in the current or voltage due to the change in the electrical resistance value.
  • the connection detection resistor provided in the atomization unit 111 may be the atomization unit 111R itself. Further, the connection detection sensor is not limited to this mode, and may be a sensor having an arbitrary configuration.
  • the flavor inhaler 100 may have a contact sensor 52.
  • the contact sensor 52 may be provided at the end of the flavor suction device 100 on the non-suction side E2.
  • the contact sensor 52 can detect that the user has touched the contact sensor 52.
  • the contact sensor 52 has a pair of electrodes spaced apart from each other. When the pair of electrodes is conducted by an external element such as a user's finger, a current flows between the pair of electrodes.
  • the contact sensor 52 can detect the conduction between the pair of electrodes by detecting this current. Therefore, the contact sensor 52 can detect contact with a user's finger.
  • Such a contact sensor 52 can be used, for example, to determine whether or not the user is a regular user. In this case, for example, when the user touches the contact sensor 52 in a predetermined pattern, the control unit 51 may make the flavor inhaler 100 ready to supply power to the atomizing unit 111R.
  • the flavor suction device 100 may include an operation button operated by a user and / or a suction sensor 50 that detects a suction operation by the user.
  • the suction sensor 50 may be, for example, a pressure sensor that detects pressure fluctuations in the air flow path 148 or the aerosol flow path 140.
  • the control unit 51 starts power supply to the atomization unit 111R in response to pressing of an operation button by the user or detection of a suction operation by the suction sensor 50. Thereby, aerosol is generated in the atomization part 111R.
  • the fluid flowing through the aerosol flow path 140 is a mixed fluid including the aerosol generated in the atomization unit 111 ⁇ / b> R and the air taken in from the air flow path 148.
  • the flow rate of air flowing through the common flow path 140C and the flow rate of aerosol are respectively Q and A f
  • the flow rate of air flowing through the first split flow path 140A and the flow rate of aerosol are respectively flowing through Q 1 , A f1 and the second split flow path 140B. to the flow rate and the aerosol flow rate and Q 2, a f2, respectively.
  • Q Q 1 + Q 2
  • a f A f1 + A f2 .
  • air flow rate means volume flow rate (mL / sec)
  • aerosol flow rate means mass flow rate (mg / sec).
  • flow rate means the flow rate of air when it is simply expressed as “flow rate” without being expressed as “aerosol flow rate”.
  • the flow rate of the air flowing through the common flow path 140C and the flow rate of the aerosol substantially match the total flow rate of air flowing through the aerosol flow path 140 and the total flow rate of aerosol, respectively.
  • the flow rate ratio ⁇ depends on the ventilation resistance of each of the first branch flow path 140A and the second branch flow path 140B.
  • the ventilation resistance depends on the cross-sectional area and length of the flow path, the degree of bending, the shape of the branching part and the joining part, and the like.
  • the flow rate ratio ⁇ is a value unique to the flavor unit 130 or a value unique to the combination of the atomization unit 111 and the flavor unit 130, and the atomization unit 111 and / or the flavor unit 130 attached to the battery unit 112. Can vary from one to the other.
  • the branch point 145 and the first branch flow path 140 ⁇ / b> A and the second branch flow path 140 ⁇ / b> B downstream thereof are provided in the flavor unit 130, the flow rate ratio ⁇ changes for each flavor unit 130.
  • the atomization unit 111 and / or the flavor unit 130 that positively have different values of the flow rate ratio ⁇ may be configured to be attachable to the battery unit 112.
  • the flow rate ratio ⁇ can be positively changed according to the type and amount of the flavor source 132 included in the flavor unit 130.
  • the flow rate ratio ⁇ is changed depending on the lot variation caused by the manufacturing error. It may change for each unit 130. Therefore, even when a product (atomization unit 111 and / or flavor unit 130) having a similar design is used, the flow rate ratio ⁇ can be changed.
  • the first branch flow path 140A, the second branch flow path 140B, and the branch point 145 are preferably provided in the flavor unit 130.
  • the flow rate ratio ⁇ is determined for each flavor unit 130 and substantially does not depend on the atomization unit 111. Instead, a part of the first branch channel 140A and the second branch channel 140B and the branch point 145 may be provided in the atomization unit 111. In this case, the flow rate ratio ⁇ is determined by the combination of the flavor unit 130 and the atomization unit 111.
  • the control unit 51 controls the atomization unit 111R to change the amount of aerosol generated by the atomization unit 111R according to the flow rate ratio ⁇ .
  • the flavor inhaler 100 has an information source 134M that holds identification information associated with a correction value.
  • the correction value is specifically a value for correcting the reference aerosol amount
  • a R is the amount that is designed in advance an amount of aerosol to be generated in the atomization unit 111R.
  • the information source 111M described above stores identification information different from the information source 134M, as will be described later.
  • Sources 134M may be a memory that stores identification information associated with the correction value for correcting the example reference aerosol amount A R.
  • the information source 134M may be provided in the flavor unit 130.
  • the information source 134M may be provided in the cartridge, that is, the flavor unit 130 or the atomization unit 111.
  • the information sources 111M and 134M may be composed of the same memory.
  • Correction value is a flow rate ratio values for ⁇ is the flow rate to Q 1 first branch passage 140A with respect to the predetermined flow rate Q A when smoked mouthpiece portion 160 at a predetermined flow rate.
  • the correction value may be the value of the flow rate ratio ⁇ itself.
  • the predetermined flow rate Q A in the suction unit 160 is considered to match the flow rate Q and substantially in the common flow path 140C.
  • the correction value may be a parameter that can be converted into the flow rate ratio ⁇ .
  • the ratio of As such a parameter for example, the ratio of and the flow rate Q 2 of the second branch passage 140B for a given flow rate Q A, a flow rate Q 2 of the flow rate Q 1 and the second branch passage 140B of the first branch passage 140A Etc.
  • the correction value may be any one or more parameters capable of calculating the flow rate ratio ⁇ .
  • the flow rate Q 2 of the first branch passage 140A of the flow rate Q 1 and second branch passage 140B for a given flow rate Q A is determined by being previously measured at the time of manufacture of the atomization unit 111 and / or flavoring unit 130
  • the cartridge comprising a flavor unit 130 or flavor unit 130 and the atomization unit 111, manufactured by each lot, for sucking from the suction unit 160 at a predetermined flow rate Q A.
  • the value of the correction value can be determined by actually measuring the flow rates Q 1 and Q 2 . This correction value is recorded in advance in the information source 134M.
  • the control unit 51 acquires the correction value via the information source 134M at a predetermined timing (step S101). Thereby, the control part 51 can obtain the flow rate ratio ⁇ .
  • the flow rate ratio ⁇ is used to correct the amount of aerosol generated by the atomizing unit 111R.
  • Reference Aerosol amount A R is the amount of aerosol generated in the atomization unit 111R, defined by the amount that is pre-designed.
  • the reference aerosol amount A R is defined by the first branch passage aerosol of the design value to be passed to 140A when the flow ratio matches the pre-designed standard value
  • the Specifically, reference aerosol amount A R is defined by the initial set value of the aerosol volume to be passed to the first branch passage 140A. Therefore, the reference aerosol amount A R does not depend on the actual flow ratio beta.
  • Reference Aerosol amount A R may be previously stored in the memory or information sources 134M of the control unit 51.
  • Reference Aerosol amount A R may have a constant value irrespective of the kind and amount of the flavor source 132. In this case, the reference aerosol amount A R may be stored in the memory of the control unit 51. Alternatively, the reference aerosol amount A R may have a different value for each flavor unit 130 according to the type and amount of flavor source 132. In this case, the reference aerosol amount A R may be stored in the information source 134M.
  • Control unit 51 determines a target aerosol amount A T on the basis of the reference aerosol amount A R and the flow rate ratio beta (step S102). That is, the control unit 51 changes the target aerosol amount AT to be atomized by the atomizing unit 111R according to the flow rate ratio ⁇ .
  • the control unit 51 controls the atomization unit 111R so that the aerosol of the target aerosol amount AT is generated by the atomization unit 111R. (Step S103).
  • the control part 51 is the aerosol of the target aerosol quantity AT determined as mentioned above fog. as produced by the reduction unit 111R, it may be determined target electric energy E T supplied to the atomization unit 111R. For more information about the target electric energy E T will be described later.
  • the cartridge which consists of the flavor unit 130 from which the flow ratio ⁇ differs actively, or the flavor unit 130 and the atomization unit 111 is utilized, it is in the kind and quantity of the flavor source 132 contained in the flavor unit 130. Accordingly, an optimal target aerosol amount AT can be set. Since the control part 51 controls the atomization part 111R so that the aerosol of target aerosol amount AT is produced
  • the target aerosol amount AT is set smaller than the target aerosol amount when the flow rate ratio matches the predesigned value. Is smaller than a predesigned value, the flow rate ratio is set to be larger than the target aerosol amount when it matches the predesigned value.
  • the target aerosol amount A T when the flow rate is increased in the first branch passage 140A becomes small, the target aerosol amount A T is increased when the flow rate of the first branch passage 140A is reduced. Therefore, even if the flow rate ratio ⁇ changes, the amount of aerosol flowing through the first branch flow path 140A in one puff operation can be made uniform to some extent.
  • the control unit 51 equalizes the amount of aerosol flowing through the first diversion channel 140A so as to suppress fluctuations in the flow rate ratio ⁇ caused by manufacturing lot variations. Can do. Therefore, the fluctuation
  • control part 51 should just control the atomization part 111R so that the fluctuation
  • Timing for obtaining correction values The timing at which the control unit 51 acquires a correction value that is a value related to the flow rate ratio ⁇ is performed at least before the target aerosol amount AT is calculated.
  • the control unit 51 in a state in which the flavor unit 130 is attached to the atomization unit 111 or a cartridge in which the flavor unit 130 and the atomization unit 111 are attached to the battery unit 112, the control unit 51 is an information source.
  • the correction value can be read via 134M.
  • control unit 51 may acquire the correction value via the information source 134M when detecting the connection of the flavor unit 130 to the atomization unit 111 attached to the battery unit 112.
  • the control unit 51 detects the correction value via the information source 134M when detecting the connection of the cartridge to the battery unit 112. May be obtained.
  • the control unit 51 may acquire the correction value via the information source 134M.
  • the correction value is acquired after the flavor unit 130 is connected to the atomization unit 111 attached to the battery unit 112 or an integral cartridge of the atomization unit 111 and the flavor unit 130 is connected to the battery unit 112.
  • the operation may be performed when the operation button for starting atomization is pressed for the first time, or when the suction sensor 50 detects the suction operation for the first time.
  • the correction value may be acquired only once after the flavor unit 130 or the cartridge is connected. However, every time the operation button for starting atomization is pressed by the user or the suction sensor 50 detects the suction operation, the control unit 51 may acquire the correction value via the information source 134M.
  • the control unit 51 may acquire a correction value via the information source 134M.
  • the contact sensor When 52 detects conduction of a predetermined pattern the control unit 51 may acquire a correction value via the information source 134M.
  • Timing for calculating the target aerosol amount The timing at which the control unit 51 calculates the target aerosol amount is performed at least after the acquisition of the correction value.
  • the control unit 51 performs the target aerosol. The amount can be calculated.
  • the control unit 51 when detecting the connection of the flavor unit 130 to the atomization unit 111 attached to the battery unit 112, acquires a correction value via the information source 134M, and calculates the target aerosol amount therefrom. May be.
  • the control unit 51 detects the correction value via the information source 134M when detecting the connection of the cartridge to the battery unit 112. And then the target aerosol amount may be calculated.
  • the control unit 51 may calculate the target aerosol amount.
  • the target aerosol amount is calculated after the flavor unit 130 is connected to the atomization unit 111 attached to the battery unit 112, or an integral cartridge of the atomization unit 111 and the flavor unit 130 is added to the battery unit 112.
  • the control unit 51 may calculate the target aerosol amount.
  • the control unit 51 may calculate the target aerosol amount.
  • the contact sensor When 52 detects conduction of a predetermined pattern the control unit 51 may calculate the target aerosol amount.
  • control unit 51 controls the atomization unit 111R so that the aerosol amount generated by the atomization unit 111R becomes the target aerosol amount AT .
  • the control unit 51 can control the amount of aerosol generated by the atomization unit 111R by changing the amount of power supplied from the battery 40 to the atomization unit 111R.
  • the relationship between the amount of power supplied to the atomization unit 111R and the amount of aerosol generated in the atomization unit 111R by the amount of power may be stored in advance in the information source 111M, for example.
  • Control unit 51 by referring to the information source 111M, can be the target aerosol amount A T, to obtain the amount of power to be supplied to the atomization unit 111R.
  • the power supplied to the atomization unit 111R can be calculated based on a relational expression that derives the relationship between the amount of aerosol generated in the atomization unit 111R and the amount of power supplied to the atomization unit 111R. .
  • this point will be described in detail.
  • the inventors have determined that, as a result of intensive studies, the linearity between the amount of power E supplied to the atomizing part 111R and the amount of aerosol A generated in the atomizing part 111R. It has been found that there is a sex relationship, and such a linear relationship is different for each atomization section 111R (see FIG. 5).
  • the vertical axis represents the aerosol amount A [mg / puff]
  • the horizontal axis represents the power amount E [J / puff].
  • the aerosol amount A generated in the atomization unit 111R and the electric energy E supplied to the atomization unit 111R have a linear relationship in the range from the lower limit electric energy E MIN to the upper limit electric energy E MAX .
  • A a ⁇ E + b”.
  • A is the amount of aerosol generated in the atomization section in one puff operation.
  • E is the amount of electric power supplied to the atomization unit 111R in one puff operation.
  • a and “b” are specific parameters of the atomization unit 111.
  • the specific parameters of the atomization unit 111 depend on the composition of the wick 111Q, the composition of the atomization unit 111R, the composition of the aerosol source, the structure of the atomization unit 111 (the wick 111Q and the resistance heating element 111R), and the like. Therefore, the intrinsic parameters a and b have different values for each atomization unit 111. Further, since the parameters E MIN and E MAX are different for each atomizing unit 111, they may be considered as intrinsic parameters of the atomizing unit 111.
  • the intrinsic parameters a and b are preferably stored in advance in an information source 111M provided in the atomization unit 111.
  • the control unit 51 can determine the target aerosol amount AT by acquiring the specific parameters a and b from the information source 111M and the flow rate ratio ⁇ from the information source 134M.
  • the target aerosol amount AT is as described above.
  • the information source 111M provided in the atomization unit 111 may store the values of the parameters a and b. Thereby, the control part 51 can acquire the value of the parameters a and b via the information source 111M.
  • the information source 111M may further store the values of the parameters E MIN and E MAX .
  • E MIN and E MAX can be specified by the voltage Vs and the application time T MIN and T MAX . That is, sources 111M described above, instead of the parameters E MIN and E MAX, may store parameters voltage Vs, application time T MIN and T MAX.
  • the voltage Vs is a parameter used to replace E MIN and E MAX with T MIN and T MAX and may be a constant value.
  • the voltage Vs When the voltage Vs is a constant value, the voltage Vs may not be stored in the information source 111M.
  • the voltage Vs corresponds to a reference voltage value V C described later, and the information source 111M stores parameters T MIN and T MAX .
  • the control unit 51 may control the amount of power supplied to the atomization unit 111R so that the amount of power E (T) in one puff operation does not exceed E MAX (T MAX ). Specifically, for example, when the electric energy E (T) reaches E MAX (T MAX ), the control unit 51 ends the power supply to the resistance heating element 111R.
  • the amount of electric power supplied to the atomization unit 111R is E
  • the output voltage value of the battery 40 is V
  • the voltage application time to the atomization unit is T
  • the electric resistance value of the atomization unit (resistance heating element) 111R is R.
  • the application time T of voltage to V and the atomization part can be calculated.
  • V and T are values that can be detected by the control unit 51
  • R is a value that can be acquired by the control unit 51 by reading from the information source 111M. That is, it is preferable that the information source 111M stores the electrical resistance value R of the atomization unit (resistance heating element) 111R. Note that R may be estimated by the control unit 51.
  • control part 51 should just supply electric power to the atomization part 111R with the output voltage value and application time which were calculated as mentioned above. Thereby, the aerosol of target aerosol amount AT mentioned above can be generated in the atomization part 111R.
  • the control unit 51 may supply power to the atomization unit 111R with the same voltage value and application time in each puff operation. Instead, as shown in FIG. 6, in a case where a voltage drop of the battery 40 is assumed due to an increase in the number of puff operations (puff number), the control unit 51 performs an atomization unit based on the voltage drop of the battery 40. It is preferable to correct the output voltage value and the application time of the battery 40 with the number of puffs so as to suppress a decrease in the power supplied to the battery.
  • the amount of power supplied to the atomizing unit 111R is E
  • the output voltage value of the battery 40 is V
  • the voltage application time to the atomizing unit is T
  • the electric resistance value of the atomizing unit (resistance heating element) 111R is generally satisfied (see FIG. 6).
  • D is a correction term due to the voltage drop.
  • the correction term D is calculated based on the output voltage value V A of the battery 40 and the reference voltage value V C of the battery.
  • the reference voltage value V C is a value that is predetermined according to the type of the battery 40 and the like, and is a voltage that is at least higher than the end voltage of the battery 40. If the battery 40 is a lithium ion battery, for example, the reference voltage value V C may be 3.2 V.
  • the output voltage value VA of the battery decreases as the number of puffs increases. Therefore, when the correction by the correction term D is not performed, the electric energy E supplied to the atomizing unit also decreases as the number of puffs increases (see the one-dot chain line in FIG. 6). As a result, the aerosol amount A generated by one puffing operation changes as the number of puffs increases.
  • the target electric energy E T may be determined based on the target aerosol amount A T as described above.
  • target electric energy E T supplied to the atomization unit 111R from the equation, to determine the voltage value V and the application time T, the target aerosol amount A T, i.e. taking into account the correction values for the flow ratio beta, Even when the voltage of the battery 40 drops, the amount of aerosol generated by one puff operation can be made uniform.
  • the adjustment of the amount of power supplied to the atomizing unit 111R is performed by adjusting the absolute value of the voltage applied to the resistance heating element 111R or the application time of the voltage applied to the resistance heating element 111R (that is, the pulse width and (Pulse interval) can be adjusted, or a combination thereof.
  • amendment of the absolute value of the voltage value applied to the atomization part 111R is implement
  • the DC / DC converter may be a step-down converter or a step-up converter.
  • the amount of the aerosol source consumed can also be estimated from the amount of power supplied to the atomizing unit 111R or the applied voltage and the application time.
  • FIG. 7 is a flowchart showing the operation of the control unit 51 when power is supplied to the atomizing unit 111R, that is, during the puffing operation.
  • the control unit 51 calculates the cumulative value of the aerosol amount generated in the atomization unit 111R during the puffing operation (step S702).
  • the control unit 51 calculates a cumulative value of the amount of aerosol that has passed through the first diversion channel 140A (step S704).
  • the amount of aerosol that has passed through the first diversion channel 110A can be calculated from the estimated value of the amount of aerosol generated by the atomization unit 111R and the flow rate ratio ⁇ .
  • the control unit 51 may similarly calculate the cumulative value of the amount of aerosol that has passed through the second branch flow path 140B. Note that step S704 is optional and may be omitted.
  • the control unit 51 determines whether or not the cumulative value of the aerosol amount generated in the atomization unit 111R exceeds the first threshold value (step S706). If the accumulated value of the aerosol amount exceeds the first threshold value, the process proceeds to step S708, which will be described later. Otherwise, the process returns to step S702 described above.
  • the control unit 51 determines whether or not the cumulative value of the aerosol generation amount in the atomization unit 111R exceeds the first threshold value. Instead of this, it may be determined whether or not the cumulative value of the amount of aerosol that has passed through the first diversion channel 140A exceeds a predetermined threshold value corresponding to the first threshold value.
  • step S706 is, for example, 1) after the end of one puffing operation, 2) after a predetermined time lag time from when the puffing operation is detected by the suction sensor 50 until the atomization of the aerosol is started. 3) It may be performed at any timing during the puffing operation (during the energization period to the atomizing section 111R).
  • step S708 the control unit 51 changes the amount of aerosol generated in the atomizing unit 111R. Specifically, the control unit 51 controls the atomization unit 111R so that the amount of aerosol passing through the first branch channel 140A increases. The ability to release flavor components from the flavor source 132 may gradually decrease due to aerosol aeration. Therefore, in order to compensate for the decrease in the amount of the flavor component released from the flavor source 132, the control unit 51 sets the first value when the accumulated value of the aerosol passing through the first branch channel 140A exceeds a predetermined first threshold value. The amount of aerosol passing through the 1-minute flow path 140A is increased.
  • the first threshold value used in the determination in step S706 corresponds to an accumulated aerosol amount sufficient to consume a certain amount of flavor component from the flavor source 132.
  • the flavor inhaler 100 can suppress the influence by consumption of the flavor source 132, and can equalize the quantity of the flavor component provided to a user over a long period of time.
  • step S710 the control unit 51 determines whether or not the cumulative value of the aerosol amount generated in the atomization unit 111R exceeds the second threshold value. If the accumulated value of the aerosol generation amount exceeds the second threshold value, the process proceeds to step S712, and if not, the process returns to step S702.
  • the second threshold is a value larger than the first threshold.
  • the control unit 51 determines whether or not the cumulative value of the aerosol generation amount in the atomization unit 111R exceeds the second threshold value. Instead of determining, it may be determined whether or not the cumulative value of the amount of aerosol that has passed through the first diversion channel 140A exceeds a predetermined threshold value corresponding to the second threshold value.
  • step S712 the control unit 51 stops power supply to the atomization unit 111R.
  • the flavor suction device 100 can prevent an excessive flavor from being supplied to a user.
  • the discharge capability of the flavor component of a flavor source falls remarkably, the flavor suction device 100 can also be stopped automatically.
  • step S710 is the same as in step S706 described above. For example, after 1) one puff operation is completed, 2) after the puff operation is detected by the suction sensor 50, aerosol atomization is started. It may be performed at any timing during the predetermined time lag time until 3) during the puffing operation (during the energization period to the atomizing unit).
  • step S710 When the determination in step S710 is performed after the end of one puff operation, the atomization of the aerosol is not interrupted during the user's puff operation by the control in step S712, and the user feels uncomfortable. it can.
  • step S706 and the subsequent control in step S708, and the determination in step S710 and the subsequent control in step S712 can be performed in the reverse order.
  • Reference Aerosol amount A R is the amount of aerosol generated in the atomization unit 111R, defined by the amount that is pre-designed.
  • the reference aerosol amount A R is the design value of the aerosol volume to be passed to the first branch passage 140A when the flow rate ratio is equal to the pre-designed value beta ', It is defined by the value divided by the pre-designed value ⁇ ′.
  • the aerosol is passed through the first branch passage 140A It corresponds to the amount of aerosol generated by the atomizing unit 111R so that the amount becomes the above-mentioned design value.
  • Target Aerosol amount A T is calculated based on the reference aerosol amount A R and the flow rate ratio beta.
  • the target aerosol amount AT is set smaller than the target aerosol amount when the flow rate ratio matches the predesigned value ⁇ ′ when the flow rate ratio ⁇ is larger than the predesigned value ⁇ ′.
  • the flow rate ratio ⁇ is set to be larger than the target aerosol amount when it matches the predesigned value ⁇ ′.
  • the target aerosol amount AT is determined so that the amount of aerosol flowing to the first branch flow path 140A in one puff operation is constant regardless of the flow rate ratio ⁇ .
  • the control unit 51 controls the atomization unit 111R so that the aerosol amount generated by the atomization unit 111R becomes the target aerosol amount AT .
  • the information source 134M provided in the flavor source 130 stores a value related to the flow rate ratio ⁇ .
  • the information source 134M stores identification information associated with a value related to the flow rate ratio ⁇ .
  • the information source 111M provided in the atomization unit 111 includes the unique parameters (a, b, T MIN , T MAX ) of the atomization unit 111 and the atomization unit (resistance heating element) 111R.
  • the electrical resistance value (R) and the like are stored.
  • the information source 111M stores identification information associated with these pieces of information.
  • FIG. 8 shows a block configuration of the flavor inhaler 100 according to the second embodiment.
  • FIG. 8 it should be noted that the same components as those in FIG. 8.
  • the communication terminal 200 is a terminal having a function of communicating with the server 300.
  • the communication terminal 200 is a personal computer, a smartphone, a tablet, or the like, for example.
  • the server 300 is an external storage medium that stores a value related to the flow rate ratio ⁇ .
  • the server 300 may further store the intrinsic parameters (a, b, T MIN , T MAX ) of the atomization unit 111 and the resistance value (R) of the resistance heating element 111R. Further, as described above, the information sources 134M and 111M store identification information associated with these pieces of information.
  • the control unit 51 has a function of accessing the server 300 directly or indirectly through the external access unit 53.
  • FIG. 8 illustrates the function of the external access unit 52 accessing the server 300 via the communication terminal 200.
  • the external access unit 53 may be, for example, a module (for example, a USB port) for connecting to the communication terminal 200 by wire, or a module (for example, wirelessly connecting to the communication terminal 200) (for example, , A Bluetooth (registered trademark) module, or an NFC (Near Field Communication module).
  • the external access unit 53 may have a function of directly communicating with the server 300.
  • the external access unit 53 may be a wireless LAN module.
  • the communication terminal 200 reads the identification information from the information sources 111M and 134M, and uses the read identification information to associate information with the identification information, that is, a value related to the flow rate ratio ⁇ and the atomization unit 111.
  • the inherent parameters (a, b, T MIN , T MAX ), the resistance value (R) of the resistance heating element 111R, and the like are acquired from the server 300.
  • the values relating to the flow rate ratio ⁇ , the specific parameters (a, b, T MIN , T MAX ) of the atomization unit 111, the resistance value (R) of the resistance heating element 111 R, etc. are transmitted from the communication terminal 200 via the external access unit 53. It is sent to the control unit 51.
  • the control unit 51 performs power control to be supplied to the atomization unit 111R as described above based on the value regarding the flow rate ratio ⁇ acquired from the server 300 via the communication terminal 200, the unique parameter of the atomization unit 111, and the like. Can do.
  • the information sources 111M and 134M are memories.
  • the information source may be a barcode or an identification label provided in the atomization unit 111 or the flavor unit 130.
  • Such barcodes and identification labels are provided on the outer surface of the atomization unit 111 or the flavor unit 130, for example, or are provided in a manual bundled with the atomization unit 111 or the flavor unit 130. In addition, it may be provided in a box that accommodates the atomization unit 111 or the flavor unit 130.
  • the communication terminal 200 can input information associated with the identification information by inputting identification information such as a barcode or an identification label or reading the identification information, that is, the flow rate ⁇ or the unique parameter of the atomization unit 111.
  • identification information such as a barcode or an identification label or reading the identification information, that is, the flow rate ⁇ or the unique parameter of the atomization unit 111.
  • A, b, T MIN , T MAX ), the resistance value (R) of the resistance heating element 111R, and the like are acquired from the server 300. These pieces of information acquired by the communication terminal 200 are sent to the control unit 51 via the external access unit 53.
  • the control unit 51 is configured such that the flavor unit 130 is not attached to the atomization unit 111, or the cartridge of the flavor unit 130 and the atomization unit 111 is attached to the battery unit 112. In such a state, the correction value can be obtained via the information source 134M. But the control part 51 acquires a correction value in the state in which the flavor unit 130 was attached to the atomization unit 111, or the cartridge of the flavor unit 130 and the atomization unit 111 was attached to the battery unit 112. Also good.
  • the calculation of the target aerosol amount AT may be performed immediately after acquisition of the correction value, or may be performed at a predetermined timing after acquisition of the correction value.
  • the predetermined timing related to the calculation of the target aerosol amount AT is as described in the first embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Nozzles (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Medicinal Preparation (AREA)

Abstract

香味吸引器は、エアロゾル源からエアロゾルを発生させる霧化部と、霧化部よりも下流に設けられた香味源と、香味源よりも下流に設けられた吸口部と、霧化部を制御する制御部と、霧化部から吸口部へ通じるエアロゾル流路と、霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有する。エアロゾル流路は、霧化部と香味源との間で、香味源を通る第1分流路と、第1分流路と異なる第2分流路とに分岐している。補正値は、所定の流量で吸口部を吸ったときの所定の流量に対する第1分流路の流量である流量比に関する値である。制御部は、基準エアロゾル量と補正値とに基づいて算出した目標エアロゾル量に基づき霧化部を制御する。

Description

香味吸引器、カートリッジ及び香味ユニット
 本発明は、香味を吸引するための香味吸引器、並びに香味吸引器を構成するカートリッジ及び香味ユニットに関する。
 燃焼を伴わずに香味を吸引するタイプの香味吸引器が知られている。香味吸引器は、燃焼を伴わずにエアロゾル源を霧化する霧化ユニットと、霧化ユニットよりも吸口側に設けられる香味源(例えば、たばこ源)と、を有する(特許文献1参照)。
特表2010-506594号公報
 第1の特徴は、エアロゾル源からエアロゾルを発生させる霧化部と、前記霧化部よりも下流に設けられた香味源と、前記香味源よりも下流に設けられた吸口部と、前記霧化部を制御する制御部と、前記霧化部から前記吸口部へ通じるエアロゾル流路と、前記霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有し、前記エアロゾル流路は、前記霧化部と前記香味源との間で、前記香味源を通る第1分流路と、前記第1分流路と異なる第2分流路とに分岐しており、前記補正値は、所定の流量で前記吸口部を吸ったときの前記所定の流量に対する前記第1分流路の流量である流量比に関する値であり、前記制御部は、前記基準エアロゾル量と前記補正値とに基づいて算出した目標エアロゾル量に基づき前記霧化部を制御する香味吸引器を要旨とする。
 第2の特徴は、第1の特徴において、前記流量比が予め設計された値より大きいとき、前記目標エアロゾル量は、前記流量比が前記予め設計された値に一致するときの目標エアロゾル量より小さく設定され、前記流量比が予め設計された値より小さいとき、前記目標エアロゾル量は、前記流量比が前記予め設計された値に一致するときの目標エアロゾル量より大きく設定されることを要旨とする。
 第3の特徴は、第1の特徴又は第2の特徴において、前記第1分流路と前記第2分流路は、前記香味源よりも下流で合流していることを要旨とする。
 第4の特徴は、第1の特徴から第3の特徴のいずれかにおいて、前記制御部は、前記霧化部に供給する電力量を制御することを要旨とする。
 第5の特徴は、第4の特徴において、前記霧化部は抵抗発熱体であり、1回のパフ動作で前記抵抗発熱体に供給される電力量は、Eで表され、前記霧化部の固有パラメータは、a及びbで表され、1回のパフ動作で発生するエアロゾル量は、Aで表され、前記制御部は、A=a×E+bの式に従って、エアロゾル量Aを算出することを要旨とする。
 第6の特徴は、第4の特徴又は第5の特徴において、前記霧化部は抵抗発熱体であり、前記目標エアロゾル量はAで表され、1回のパフ動作で前記抵抗発熱体に供給すべき目標電力量は、Eで表され、前記霧化部の固有パラメータは、a及びbで表され、前記制御部は、E=(A-b)/aの式に従って前記抵抗発熱体に供給すべき電力量Eを決定することを要旨とする。
 第7の特徴は、第5の特徴又は第6の特徴において、前記固有パラメータ又は前記固有パラメータと対応付けられた識別情報を有する情報源を備えることを要旨とする。なお、固有パラメータ又は固有パラメータと対応付けられた識別情報を有する情報源は、補正値と対応付けられた識別情報を保持する上述した情報源と同一のものであってもよく、異なるものであってもよい。
 第8の特徴は、第1の特徴から第7の特徴のいずれかにおいて、前記基準エアロゾル量は、前記流量比が前記予め設計された値に一致するときの前記第1分流路に通過させるべきエアロゾル量の設計値によって規定されることを要旨とする。
 第9の特徴は、第8の特徴において、前記目標エアロゾル量は、前記基準エアロゾル量を前記流量比で割った値に設定されることを要旨とする。
 第10の特徴は、第1の特徴から第7の特徴のいずれかにおいて、前記基準エアロゾル量は、前記流量比が前記予め設計された値に一致するときの前記第1分流路に通過させるべきエアロゾル量の設計値を、前記流量比の前記予め設計された値で割った値によって規定されることを要旨とする。
 第11の特徴は、第10の特徴において、前記目標エアロゾル量は、前記基準エアロゾル量と前記予め設計された値との積を前記流量比で割った値に設定されることを要旨とする。
 第12の特徴は、第1の特徴から第11の特徴のいずれかにおいて、香味吸引器が前記霧化部を含む霧化ユニットと、前記香味源を含む香味ユニットと、を有し、前記香味ユニットは前記霧化ユニットに対して着脱可能に構成されていることを要旨とする。
 第13の特徴は、第12の特徴において、前記情報源は、前記香味ユニットに設けられていることを要旨とする。
 第14の特徴は、第12の特徴又は第13の特徴において、前記第1分流路及び前記第2分流路は、前記香味ユニットに設けられていることを要旨とする。
 第15の特徴は、第12の特徴から第14の特徴のいずれかにおいて、前記目標エアロゾル量の算出は、前記香味ユニットが前記霧化ユニットに取り付けられた状態で行われることを要旨とする。
 第16の特徴は、第15の特徴において、前記目標エアロゾル量の算出は、前記香味ユニットが前記霧化ユニットに取り付けられたことが検知されたときに行われることを要旨とする。
 第17の特徴は、第12の特徴から第15の特徴のいずれかにおいて、前記目標エアロゾル量の算出は、ユーザによる所定の操作が検知されたときに行われることを要旨とする。
 第18の特徴は、第17の特徴において、香味吸引器がユーザによる吸引動作を検出する吸引センサを有し、前記目標エアロゾル量の算出は、前記吸引センサが前記吸引動作を初めて検出したときに行われることを要旨とする。
 第19の特徴は、第12の特徴から第18の特徴のいずれかにおいて、前記制御部は、前記香味ユニットが前記霧化ユニットに取り付けられている状態で、前記情報源を介して前記補正値を読み取ることを要旨とする。
 第20の特徴は、第12の特徴から第18の特徴のいずれかにおいて、前記制御部は、前記香味ユニットが前記霧化ユニットに取り付けられていない状態で、前記情報源を介して前記補正値を読み取ることを要旨とする。
 第21の特徴は、第1の特徴から第20の特徴のいずれかにおいて、前記霧化部で発生するエアロゾル量の累積値又は前記第1分流路を通過するエアロゾル量の累積値が第1閾値を上回った場合に、前記霧化部で発生させるエアロゾル量を増加させることを要旨とする。
 第22の特徴は、第1の特徴から第21の特徴のいずれかにおいて、前記霧化部で発生するエアロゾル量の累積値又は前記第1分流路を通過するエアロゾル量の累積値が第2閾値を上回った場合に、前記霧化部への供給電力をオフにすることを要旨とする。
 第23の特徴は、第1の特徴から第22の特徴のいずれかにおいて、香味吸引器がバッテリを備えたバッテリユニットを有することを要旨とする。
 第24の特徴は、第23の特徴において、前記バッテリユニットは、前記霧化部を含む霧化ユニットに対して着脱可能に構成されていることを要旨とする。
 第25の特徴は、第23の特徴又は第24の特徴において、前記制御部は前記バッテリユニットに設けられていることを要旨とする。
 第26の特徴は、エアロゾル源からエアロゾルを発生させる霧化部と、前記霧化部よりも下流に設けられた香味源と、前記香味源よりも下流に設けられた吸口部と、前記霧化部から前記吸口部へ通じるエアロゾル流路と、前記霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有し、前記エアロゾル流路は、前記霧化部と前記香味源との間で、前記香味源を通る第1分流路と、前記第1分流路と異なる第2分流路とに分岐しており、前記補正値は、所定の流量で前記吸口部を吸ったときの前記所定の流量に対する前記第2分流路の流量である流量比に関する値である、カートリッジを要旨とする。
 第23の特徴は、エアロゾル源からエアロゾルを発生させる霧化部を含む霧化ユニットに着脱可能な香味ユニットであって、香味源と、前記香味源よりも下流に設けられた吸口部と、前記霧化ユニットの前記霧化部に連通可能に構成され、前記吸口部へ通じるエアロゾル流路と、前記霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有し、前記エアロゾル流路は、前記霧化部と前記香味源との間で、前記香味源を通る第1分流路と、前記第1分流路と異なる第2分流路とに分岐しており、前記補正値は、所定の流量で前記吸口部を吸ったときの前記所定の流量に対する前記第2分流路の流量である流量比に関する値であることを要旨とする。
第1実施形態に係る香味吸引器の概略構成を示す図である。 霧化ユニット及び香味ユニットの構成を示す図である。 香味吸引器のブロック構成を示す図である。 基準エアロゾル量の補正を示すフローチャートである。 霧化部へ供給する電力量と霧化部で発生するエアロゾル量との関係を示す図である。 バッテリの電圧降下に対する補正を示す図である。 霧化部の制御方法の一例を示すフローチャートである。 第2実施形態に係る香味吸引器のブロック構成を示す図である。
 以下において、実施形態について説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。
 従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。
 [開示の概要]
 開示の概要に係る香味吸引器は、エアロゾル源からエアロゾルを発生させる霧化部と、霧化部よりも下流に設けられた香味源と、香味源よりも下流に設けられた吸口部と、霧化部を制御する制御部と、霧化部から前記吸口部へ通じるエアロゾル流路と、霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有する。エアロゾル流路は、霧化部と香味源との間で、香味源を通る第1分流路と、第1分流路と異なる第2分流路とに分岐している。前記補正値は、所定の流量で吸口部を吸ったときの所定の流量に対する第1分流路の流量である流量比に関する値である。制御部は、基準エアロゾル量と補正値とに基づいて算出した目標エアロゾル量に基づき霧化部を制御する。
 この香味吸引器では、制御部は、第1分流路と第2分流路に流れるエアロゾルの流量の比に応じて、霧化部で発生すべき目標エアロゾル量を変えることができる。これにより、制御部は、前述の流量比に応じて、第1分流路を通るエアロゾル量を調節することができる。
 [第1実施形態]
 (香味吸引器)
 以下において、第1実施形態に係る香味吸引器について説明する。図1は、第1実施形態に係る香味吸引器100を示す図である。図2は、香味吸引器100を構成する霧化ユニットを示す図である。
 香味吸引器100は、燃焼を伴わずに吸引成分(香味成分)を吸引するための器具である。香味吸引器100は、非吸口端E2から吸口端E1に向かう方向である所定方向Lに沿って延びる形状を有していてよい。
 香味吸引器100は、霧化ユニット111と、バッテリユニット112と、香味ユニット130と、を有する。霧化ユニット111は、バッテリユニット112に着脱可能に構成されていてよい。香味ユニット130は、霧化ユニット111に着脱可能に構成されていてよい。
 上記態様の代わりに、霧化ユニット111とバッテリユニット112とが一体的に構成されており、香味ユニット130が霧化ユニット111に着脱可能に構成されていてもよい。また、霧化ユニット111と香味ユニット130とが一体的なカートリッジとして構成されており、当該カートリッジがバッテリユニット112に着脱可能に構成されていてもよい。
 霧化ユニット111は、少なくとも霧化部111Rを有する。霧化部111Rは、後述するエアロゾル源からエアロゾルを発生させる。本実施形態では、霧化ユニット111は、リザーバ111P及びウィック111Qをさらに有する。
 リザーバ111Pは、エアロゾル源を保持する。エアロゾル源は、例えば、グリセリンやプロピレングリコールなどの液体であってよい。なお、エアロゾル源は、ニコチン成分等を含有する香味源を含んでいてもよく、ニコチン成分等を含有する香味源を含まなくてもよい。エアロゾル源は、ニコチン成分以外の成分を含む香味源を含んでいてもよく、ニコチン成分以外の成分を含む香味源を含まなくてもよい。
 リザーバ111Pは、例えば、繊維状又は多孔質性の素材から構成される。この場合、リザーバ111Pは、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持することができる。この代わりに、リザーバ111Pは、液体を収容するタンクから構成されてもよい。リザーバ111Pは、エアロゾル源を補充可能な構成、又はエアロゾル源が消耗した際にリザーバ自体を交換可能な構成を有していてもよい。
 ウィック111Qは、リザーバ111Pに保持されているエアロゾル源を吸い上げる。ウィック111Qの一部はリザーバ111Pの内部に通じ、エアロゾル源と接触している。ウィック111Qの他の一部は霧化部111Rへ延びている。エアロゾル源は、ウィック111Qの毛細管効果によってリザーバ111Pから霧化部111Rへ運ばれる。例えば、ウィック111Qは、ガラス繊維によって構成される。
 霧化部111Rは、ウィック111Qに吸い上げられたエアロゾル源を霧化する。霧化部111Rは、例えば、ウィック111Qに近接又は当接する抵抗発熱体によって構成される。この抵抗発熱体は、ウィック111Qによって保持されるエアロゾル源を霧化する。抵抗発熱体は、例えば、ウィック111Qに所定ピッチで巻き回される抵抗発熱体、例えば電熱線によって構成される。上記実施形態の代わりに、霧化部111Rは、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。
 上記実施形態の代わりに、リザーバ111P及びウィック111Qは、バッテリユニット112に設けられていてもよい。この場合、霧化ユニット111がバッテリユニット112に取り付けられたときに、霧化部111Rがウィック111Qに近接又は当接すればよい。
 さらに、霧化ユニット111は、霧化部111Rの固有情報を記憶する情報源111Mを有していてもよい。情報源111Mは例えばメモリから構成される。この場合、後述する制御部51は、メモリから霧化部111Rの固有情報を取得することができる。なお、固有情報の一例については後述する。
 バッテリユニット112は、少なくとも電力を蓄積するバッテリ40を有する。バッテリユニットは、制御部51を有していてもよい。制御部51は、霧化部111Rを電気的に制御する。具体的には、制御部51は、バッテリ40から霧化部111Rに供給される電力量を制御する。制御部51は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであり、メモリに格納されたコンピュータ実行可能命令に従って香味吸引器100の動作を制御するようにプログラムされる。メモリは、ROM、RAM、フラッシュメモリなどの情報記憶媒体である。メモリには、コンピュータ実行可能命令のほか、香味吸引器100の制御に必要な設定データが格納されていてよい。
 香味ユニット130は、少なくとも香味源132を有する。香味源132は、霧化部111Rより下流に設けられ、霧化部111Rで発生したエアロゾルに香味を付与する。香味源132は、例えば、刻みたばこや、たばこ原料を粒状、シート状、若しくは粉末状に成形した加工物などの、たばこ由来のもの、又は、たばこ以外の植物(例えばミントやハーブ等)から作られた非たばこ由来のものであってよい。一例として、香味源132は、ニコチン成分を含む。香味源132は、メントールなどの香料成分を含有してもよい。例えば、香味吸引器100は、香味源132にたばこ由来の香味物質を保持し、リザーバには非たばこ由来の香味物質を含むように構成されてもよい。
 香味吸引器100は、香味ユニット130の吸口端側に着脱可能に構成された吸口部160を有していてもよい。吸口部160は、吸引動作中にユーザによって咥えられる部分である。なお、吸口部160は、香味ユニット130の吸口端側の端部と一体に構成されていてもよい。
 香味吸引器100は、エアロゾル流路140及び空気流路148を有する。空気流路148は、通気口112Aから香味吸引器100内に空気を導入することができる。空気流路148は、通気口112Aから霧化部111Rに達している。
 エアロゾル流路140は、空気流路148と連通しており、霧化部111Rから吸口部へ通じる流路である。エアロゾル流路140は、空気流路148からの空気と霧化部111Rで生成されたエアロゾルとの混合流体を吸口部まで導く。
 エアロゾル流路140は、共通流路140Cと、第1分流路140Aと、第2分流路140Bと、を含む。具体的には、エアロゾル流路140は、霧化部111Rと香味源132との間で、香味源132を通る第1分流路140Aと、第1分流路140Aと異なる第2分流路140Bとに分岐している。第1分流路140Aと第2分流路140Bとの分岐点145は、霧化部111Rと香味源132との間に位置する。
 共通流路140Cは、霧化部111Rから分岐点145までの流路である。第1分流路140Aは、分岐点145から香味源132を通って吸口部160まで延びている。一方、第2分流路140Bは、香味源132を通ることなく吸口部160まで延びている。
 霧化部111Rで生成された混合流体は、共通流路140Cを通って分岐点145で第1分流路140A及び第2分流路140Bの2つの経路に分離される。第1分流路140Aへ流れ込んだエアロゾルは、香味源132からの香味成分を付与された後、吸口部160まで導かれる。第2分流路140Bへ流れ込んだエアロゾルは、香味源132に含まれる香味成分を付与されることなく吸口部160へ導かれる。第1分流路140Aからのエアロゾルと第2分流路140Bからのエアロゾルは、吸口部160を介してユーザに吸入される。
 本実施形態では、第1分流路110Aと第2分流路110Bは香味源132より下流の吸口部160において合流している。しかしながら、これは必須ではない。例えば、第2分流路140Bを流れるエアロゾルが香味源132の一部分(例えば香味源132の下流側の一部分)を通過するように、第2分流路140Bの終端(下流端)が、香味源132内で第1分流路140Aと合流していてもよい。さらに、図2に例示された香味吸引器100では、第1分流路140Aにのみ香味源132が設けられているが、香味源132とは別の香味源、例えば、香味源132とは異なる香味成分をエアロゾルに付与することができる香味源が、第2分流路140Bに付加的に設けられてもよい。
 香味源132は、必ずしも香味自体を発するものに限られず、霧化部111Rで発生したエアロゾル中の香味成分と結合することで香味を増強する物質、例えばピルビン酸やレブリン酸等の酸性物質等であってもよい。
 香味吸引器100は、霧化ユニット111への香味ユニット130の接続を検知するセンサを有していてもよい。一例として、香味ユニット130は、霧化ユニット111に接続されたときに霧化ユニット111の電気回路に電気的に接続される抵抗器を有していてよい。これにより、香味ユニット130が霧化ユニット111に接続されたとき、霧化ユニット111に設けられた電気回路の一部分の電気抵抗値が変化する。制御部51は、この電気抵抗値の変化、又は電気抵抗値の変化に起因する電流若しくは電圧の変化を検知することにより、霧化ユニット111への香味ユニット130の接続を検知することができる。なお、接続検知用のセンサは、この態様に限られず、任意の構成のセンサであってよい。
 また、香味吸引器100は、バッテリユニット112への霧化ユニットの111の接続を検知するセンサを有していてもよい。一例として、霧化ユニット111は、バッテリユニット112に接続されたときにバッテリユニット112の電気回路に電気的に接続される抵抗器を有していてよい。これにより、霧化ユニット111がバッテリユニット112に接続されたとき、バッテリユニット112に設けられた電気回路の一部分の電気抵抗値が変化する。制御部51は、この電気抵抗値の変化、又は電気抵抗値の変化に起因する電流若しくは電圧の変化を検知することにより、バッテリユニット112への霧化ユニット111の接続を検知することができる。なお、霧化ユニット111に設けられる接続検知用の抵抗器は、霧化部111R自体であってもよい。また、接続検知用のセンサは、この態様に限られず、任意の構成のセンサであってよい。
 香味吸引器100は、接触センサ52を有していてもよい。接触センサ52は、香味吸引器100の非吸口側E2の端部に設けられていてよい。接触センサ52は、ユーザが接触センサ52を触れたことを検知することができる。例えば、接触センサ52は、互いに離間した一対の電極を有する。一対の電極がユーザの指のような外部要素で導通されたとき、一対の電極間に電流が流れる。接触センサ52はこの電流を検知することにより、一対の電極の導通を検知できる。したがって、接触センサ52は、ユーザの指による接触を検知することができる。このような接触センサ52は、例えば、正規ユーザであるか否かを判定するために利用することができる。この場合、例えば、ユーザが所定パターンで接触センサ52に触れたときに、制御部51は、香味吸引器100を、霧化部111Rに電力を供給可能な状態にすればよい。
 香味吸引器100は、ユーザにより操作される操作ボタン、及び/又はユーザによる吸引動作を検出する吸引センサ50を有していてよい。吸引センサ50は、例えば、空気流路148若しくはエアロゾル流路140内の圧力変動を検知する圧力センサであってよい。制御部51は、ユーザによる操作ボタンの押下、又は吸引センサ50による吸引動作の検知に応じて、霧化部111Rへの電力供給を開始する。これにより、霧化部111Rにおいてエアロゾルが発生する。
 上述したように、エアロゾル流路140を流れる流体は、霧化部111Rにおいて生成されたエアロゾルと、空気流路148から取り込まれた空気とを含む混合流体である。共通流路140Cを流れる空気の流量とエアロゾルの流量をそれぞれQ、A、第1分流路140Aを流れる空気の流量とエアロゾルの流量をそれぞれQ、Af1、第2分流路140Bを流れる空気の流量とエアロゾルの流量をそれぞれQ、Af2とする。ただしQ=Q+Q、A=Af1+Af2である。なお、本明細書では、「空気の流量」は、体積流量(mL/sec)を意味し、「エアロゾルの流量」は、質量流量(mg/sec)を意味するものとする。また、以下において、「エアロゾルの流量」と表記することなく、単に「流量」と表記した場合、「流量」は空気の流量を意味することに注意されたい。さらに、共通流路140Cを流れる空気の流量とエアロゾルの流量は、それぞれ、エアロゾル流路140を流れる空気の全流量とエアロゾルの全流量に実質的に一致する。
 本明細書では、流量比βを、エアロゾル流路140を流れる空気の全流量に対する第1分流路110Aを流れる空気の流量として定義する(すなわちβ=Q/Q)。ここで、流量比βは、エアロゾル流路140を流れるエアロゾルの全流量Aに対する第1分流路140Aを流れるエアロゾルの流量Af1と実質的に一致する(すなわちβ=Q/Q=Af1/A)。また、流量比βは、所定時間、例えば1回のパフ動作に要する時間において霧化部111Rで発生されるエアロゾル量Aと、霧化部111Rで発生されるエアロゾル量Aのうちの第1分流路140Aを通るエアロゾル量Aとの比とも実質的に一致する(すなわちβ=Q/Q=A/A)。
 流量比βは、第1分流路140Aと第2分流路140Bのそれぞれの通気抵抗に依存する。通気抵抗は、流路の断面積や長さ、屈曲の度合い、分岐部や合流部の形状等に依存する。
 したがって、流量比βは、香味ユニット130に固有の値、又は霧化ユニット111と香味ユニット130の組合せに固有の値であり、バッテリユニット112に取り付けられた霧化ユニット111及び/又は香味ユニット130ごとに変化し得る。特に、分岐点145及びその下流の第1分流路140A及び第2分流路140Bが香味ユニット130内に設けられている場合には、流量比βは、香味ユニット130ごとに変化する。
 例えば、それぞれ積極的に異なる流量比βの値を有する霧化ユニット111及び/又は香味ユニット130が、バッテリユニット112に取り付け可能に構成されていてよい。この場合、例えば香味ユニット130に含まれる香味源132の種類や量に応じて流量比βを積極的に変えることができる。
 別の例として、設計どおりに霧化ユニット111及び/又は香味ユニット130を製造しようとしたとしても、製造誤差に起因するロットのばらつきに応じて、流量比βが霧化ユニット111及び/又は香味ユニット130ごとに変化することがある。したがって、同様の設計を有する製品(霧化ユニット111及び/又は香味ユニット130)を使用する場合であっても、流量比βは変わり得る。
 流量比βが変わると、霧化部111Rで発生するエアロゾル量が一定であっても、第1分流路140A、すなわち香味源132を通るエアロゾル量が変わる。
 第1分流路140A、第2分流路140B及び分岐点145は、香味ユニット130内に設けられていることが好ましい。この場合、流量比βは、香味ユニット130ごとに決まり、実質的に霧化ユニット111には依らない。この代わりに、第1分流路140A及び第2分流路140Bの一部と分岐点145とが霧化ユニット111に設けられていてもよい。この場合、流量比βは、香味ユニット130と霧化ユニット111との組み合わせによって決まる。
 本実施形態では、制御部51は、流量比βに応じて、霧化部111Rで発生させるエアロゾル量を変えるよう霧化部111Rを制御する。この目的のため、香味吸引器100は、補正値と対応付けられた識別情報を保持する情報源134Mを有する。補正値とは、具体的には、霧化部111Rで発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量Aを補正する値である。なお、前述した情報源111Mは、後述するように、情報源134Mとは異なる識別情報を記憶するものである。
 情報源134Mは、例えば基準エアロゾル量Aを補正する補正値と対応付けられた識別情報を記憶するメモリであってよい。情報源134Mは、香味ユニット130に設けられていてよい。霧化ユニット111と香味ユニット130が一体のカートリッジを構成する場合、情報源134Mは、カートリッジ、すなわち香味ユニット130又は霧化ユニット111に設けられていてよい。この場合、情報源111Mと134Mは、同一のメモリから構成されていてもよい。
 補正値は、所定の流量で吸口部160を吸ったときの当該所定の流量Qに対する第1分流路140Aの流量Qである流量比βに関する値である。具体的には、補正値は、流量比βの値自体であってよい。なお、吸口部160における所定の流量Qは、共通流路140Cにおける流量Qと実質的に一致するものと考えられる。
 この代わりに、補正値は、流量比βに換算可能なパラメータであってもよい。そのようなパラメータとしては、例えば、所定の流量Qに対する第2分流路140Bの流量Qの比や、第1分流路140Aの流量Qと第2分流路140Bの流量Qとの比等が挙げられる。これらの例に限定されず、補正値は、流量比βを算出可能な任意の1以上のパラメータであってよい。
 なお、所定の流量Qに対する第1分流路140Aの流量Qや第2分流路140Bの流量Qは、霧化ユニット111及び/又は香味ユニット130の製造時に予め測定されることによって決定される。例えば、各ロットで製造された香味ユニット130、又は香味ユニット130と霧化ユニット111からなるカートリッジに対して、吸口部160から所定の流量Qで吸引する。この際に、流量Q,Qを実際に測定することによって補正値の値を決定できる。この補正値は、情報源134Mに予め記録される。
 なお、同一の製造ロットで製造された香味ユニット130、又は香味ユニット130と霧化ユニット111からなるカートリッジは、実質的に同一の流量比βを有することが期待される。そのため、必ずしもすべての製品に対して上記測定を行う必要はなく、同一の製造ロットで製造されたものについては同一の流量比βが得られるものとして補正値を決定してもよい。
 (エアロゾル量の補正)
 図4に示すように、制御部51は、所定のタイミングで、情報源134Mを介して上記補正値を取得する(ステップS101)。これにより、制御部51は、流量比βを得ることができる。流量比βは、霧化部111Rで発生させるエアロゾル量を補正するために用いられる。
 基準エアロゾル量Aは、霧化部111Rで生成されるエアロゾルの量であって、予め設計された量によって規定される。第1実施形態では、より具体的には、基準エアロゾル量Aは、流量比が予め設計された基準値と一致するときの第1分流路140Aに通過させるべきエアロゾル量の設計値によって規定される。具体的には、基準エアロゾル量Aは、第1分流路140Aに通過させるべきエアロゾル量の初期設定値によって規定される。したがって、基準エアロゾル量Aは実際の流量比βに依存しない。基準エアロゾル量Aは、制御部51のメモリ又は情報源134Mに予め格納されていてよい。
 基準エアロゾル量Aは、香味源132の種類や量にかかわらず一定の値を有していてよい。この場合、基準エアロゾル量Aは、制御部51のメモリに格納することができる。この代わりに、基準エアロゾル量Aは、香味源132の種類や量に応じて香味ユニット130毎に異なる値を有していてもよい。この場合、基準エアロゾル量Aは、情報源134Mに格納されていてよい。
 制御部51は、所定のタイミングで、基準エアロゾル量Aと流量比βに基づいて目標エアロゾル量Aを決定する(ステップS102)。すなわち、制御部51は、流量比βに応じて霧化部111Rで霧化すべき目標エアロゾル量Aを変える。
 その後、ユーザによる操作ボタンの押下、又は吸引センサ50による吸引動作の検知により、制御部51は、目標エアロゾル量Aのエアロゾルが霧化部111Rで生成されるように霧化部111Rを制御する(ステップS103)。なお、霧化部111Rに供給する電力量によって霧化部111Rで生成されるエアロゾル量が調節可能である場合、制御部51は、上記のように決められた目標エアロゾル量Aのエアロゾルが霧化部111Rで生成されるように、霧化部111Rに供給する目標電力量Eを決定すればよい。目標電力量Eについての詳細は後述する。
 上記態様によれば、積極的に流量比βの異なる香味ユニット130、又は香味ユニット130と霧化ユニット111からなるカートリッジが利用された場合、香味ユニット130に含まれる香味源132の種類や量に応じて最適な目標エアロゾル量Aを設定できる。制御部51は、目標エアロゾル量Aのエアロゾルが霧化部111Rで生成されるように霧化部111Rを制御するので、香味ユニット130に含まれる香味源132の種類や量に応じて香味源132に通すエアロゾルの実際の流量を最適な値に調整できる。
 具体的な一例として、目標エアロゾル量Aは、流量比βが予め設計された値より大きいとき、流量比が予め設計された値に一致するときの目標エアロゾル量より小さく設定され、流量比βが予め設計された値より小さいとき、流量比が予め設計された値に一致するときの目標エアロゾル量より大きく設定される。この場合、第1分流路140Aの流量が大きくなると目標エアロゾル量Aが小さくなり、第1分流路140Aの流量が小さくなると目標エアロゾル量Aが大きくなる。したがって、流量比βが変化したとしても、1回のパフ動作において第1分流路140Aに流れるエアロゾル量をある程度均一化することができる。
 別の具体的な一例として、制御部51は、基準エアロゾル量Aと流量比βに基づいて、目標エアロゾル量Aを次式「A=A/β」を満たすように決定してもよい。すなわち、目標エアロゾル量Aは、基準エアロゾル量Aを流量比βで割った値に設定される。この場合、1回のパフ動作において第1分流路140Aに流れるエアロゾル量が、流量比βによらず一定になるように目標エアロゾル量Aが決められる。これにより、どのような香味ユニット130、又は香味ユニット130と霧化ユニット111のカートリッジを使用したとしても、ユーザは1回のパフ動作において概ね一定量の香味成分を吸引することができる。ここで、上記態様に係る香味吸引器100では、制御部51は、製造ロットのばらつきに起因する流量比βの変動を抑制するように、第1分流路140Aを流れるエアロゾル量を均一化することができる。したがって、製造誤差に起因するロットのばらつきによって生じる、ユーザによって吸引される香味成分の量の変動を抑制できる。また、製造誤差に起因するロットのばらつきによって生じる香味成分の量の変動を抑制することができるので、製造公差を大きくしても安定したエアロゾル量を香味源132に通すことができる。
 なお、ユーザに提供される香味の量は厳密に同一値に維持される必要はない。例えば、制御部51は、第1分流路140Aを通過するエアロゾル量の変動をいくらかでも抑制するように霧化部111Rを制御すればよい。
 (補正値を取得するタイミング)
 制御部51が流量比βに関する値である補正値を取得するタイミングは、少なくとも目標エアロゾル量Aを算出する前に行われる。本実施形態において、香味ユニット130が霧化ユニット111に取り付けられている状態、又は香味ユニット130と霧化ユニット111のカートリッジがバッテリユニット112に取り付けられている状態で、制御部51は、情報源134Mを介して補正値を読み取ることができる。
 一例として、制御部51は、バッテリユニット112に取り付けられた霧化ユニット111への香味ユニット130の接続を検知したときに、情報源134Mを介して補正値を取得してもよい。別の例として、霧化ユニット111と香味ユニット130が一体的なカートリッジを構成する場合、制御部51は、バッテリユニット112へのカートリッジの接続を検知したときに、情報源134Mを介して補正値を取得してもよい。
 別の例として、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された状態、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に取り付けられた状態で、ユーザにより霧化開始用の操作ボタンが押下されたとき、又は吸引センサ50が吸引動作を検知したときに、制御部51は、情報源134Mを介して補正値を取得してもよい。この場合、補正値の取得は、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された後、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に接続された後において、始めて霧化開始用の操作ボタンが押下されたとき、又は吸引センサ50が始めて吸引動作を検知したときに行われればよい。この場合、補正値の取得は、香味ユニット130又はカートリッジの接続後、1度だけ行われればよい。もっとも、ユーザにより霧化開始用の操作ボタンが押下される度、又は吸引センサ50が吸引動作を検知する度に、制御部51は、情報源134Mを介して補正値を取得してもよい。
 また、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された状態、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に取り付けられた状態で、ユーザが所定パターンで霧化開始用の操作ボタンを押したとき、又は吸引センサ50が所定パターンの吸引動作を検知したときに、制御部51は、情報源134Mを介して補正値を取得してもよい。
 さらに、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された状態、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に取り付けられた状態で、接触センサ52が所定パターンの導通を検知したときに、制御部51は、情報源134Mを介して補正値を取得してもよい。
 (目標エアロゾル量を算出するタイミング)
 制御部51が目標エアロゾル量を算出するタイミングは、少なくとも補正値の取得よりも後に行われる。本実施形態において、香味ユニット130が霧化ユニット111に取り付けられている状態、又は香味ユニット130と霧化ユニット111のカートリッジがバッテリユニット112に取り付けられている状態で、制御部51は、目標エアロゾル量を算出することができる。
 一例として、制御部51は、バッテリユニット112に取り付けられた霧化ユニット111への香味ユニット130の接続を検知したときに、情報源134Mを介して補正値を取得し、それから目標エアロゾル量を算出してもよい。別の例として、霧化ユニット111と香味ユニット130が一体的なカートリッジを構成する場合、制御部51は、バッテリユニット112へのカートリッジの接続を検知したときに、情報源134Mを介して補正値を取得し、それから目標エアロゾル量を算出してもよい。
 別の例として、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された状態、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に取り付けられた状態で、ユーザにより霧化開始用の操作ボタンが押下されたとき、又は吸引センサ50が吸引動作を検知したときに、制御部51は、目標エアロゾル量を算出してもよい。この場合、目標エアロゾル量の算出は、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された後、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に接続された後において、始めて霧化開始用の操作ボタンが押下されたとき、又は吸引センサ50が始めて吸引動作を検知したときに行われればよい。この場合、目標エアロゾル量を算出は、香味ユニット130又はカートリッジの接続後、1度だけ行われればよい。もっとも、ユーザにより霧化開始用の操作ボタンが押下される度、又は吸引センサ50が吸引動作を検知する度に、制御部51は、目標エアロゾル量を算出してもよい。
 また、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された状態、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に取り付けられた状態で、ユーザが所定パターンで霧化開始用の操作ボタンを押したとき、又は吸引センサ50が所定パターンの吸引動作を検知したときに、制御部51は、目標エアロゾル量を算出してもよい。
 さらに、バッテリユニット112に取り付けられた霧化ユニット111へ香味ユニット130が接続された状態、又は霧化ユニット111と香味ユニット130の一体的なカートリッジがバッテリユニット112に取り付けられた状態で、接触センサ52が所定パターンの導通を検知したときに、制御部51は、目標エアロゾル量を算出してもよい。
 (霧化部への供給電力の制御)
 前述したように、制御部51は、霧化部111Rによって生成されるエアロゾル量が目標エアロゾル量Aとなるように、霧化部111Rを制御する。制御部51は、バッテリ40から霧化部111Rへ供給する電力量を変化させることで、霧化部111Rで生成されるエアロゾル量を制御することができる。霧化部111Rへの供給電力量と、その電力量により霧化部111Rで発生するエアロゾル量との関係は、例えば、情報源111Mに予め格納されていてもよい。制御部51は、情報源111Mを参照することによって、目標エアロゾル量Aから、霧化部111Rへ供給すべき電力量を取得することができる。
 この代わりに、霧化部111Rへの供給電力は、霧化部111Rで発生されるエアロゾル量と霧化部111Rに供給される電力量との関係を導く関係式に基づいて算出することもできる。以下、この点について詳細に説明する。
 霧化部111Rが抵抗発熱体である場合に、発明者等は、鋭意検討の結果、霧化部111Rに供給される電力量Eと霧化部111Rで発生するエアロゾル量Aとの間に線形性の関係があり、このような線形性の関係が霧化部111R毎に異なることを見出した(図5参照)。図5において、縦軸はエアロゾル量A[mg/puff]を表し、横軸は電力量E[J/puff]を表す。霧化部111Rで発生するエアロゾル量Aと霧化部111Rに供給される電力量Eとは、下限電力量EMINから上限電力量EMAXまでの範囲において、線形性の関係を有する。
 この線形性の関係は、「A=a×E+b」によって表される。ここで、「A」は、1回のパフ動作において霧化部で生成されるエアロゾルの量である。「E」は、1回のパフ動作で霧化部111Rに供給される電力量である。「a」及び「b」は、霧化ユニット111の固有パラメータである。霧化ユニット111の固有パラメータは、ウィック111Qの組成、霧化部111Rの組成、エアロゾル源の組成、霧化ユニット111(ウィック111Q及び抵抗発熱体111R)の構造などに依存する。したがって、固有パラメータa,bは、霧化ユニット111毎に異なった値を有する。また、パラメータEMIN及びEMAXについても、霧化ユニット111毎に異なっているため、霧化ユニット111の固有パラメータと考えてもよい。
 固有パラメータa、bは、霧化ユニット111に設けられた情報源111Mに予め記憶されていることが好ましい。この場合、制御部51は、情報源111Mから固有パラメータa、bを、情報源134Mから流量比βを取得することによって、目標エアロゾル量Aを決定することができる。
 制御部51は、「A=a×E+b」の関係式から目標エアロゾル量Aのエアロゾルを発生させるために必要な目標電力量Eを算出することができる。すなわち、パラメータa,bの値が既知であれば、制御部51は、「E=(A-b)/a」の関係式を満たすように、目標エアロゾル量Aから必要な電力量Eを算出することができる。目標エアロゾル量Aについては前述したとおりである。
 したがって、目標エアロゾル量Aが、基準エアロゾル量Aと流量比βに基づいて関係式「A=A/β」によって決定される場合には、制御部51は、「E=(A/β-b)/a」の関係式を満たすように目標エアロゾル量Aから目標電力量Eを算出することができる。なお、|b|の値が|A/β|の値よりも十分に小さいとき、上記関係式においてb=0と近似してもよい。
 なお、霧化ユニット111に備えられた情報源111Mは、パラメータa,bの値を記憶していてよい。これにより、制御部51は、情報源111Mを介してパラメータa,bの値を取得することができる。
 また、情報源111Mは、パラメータEMIN及びEMAXの値をさらに記憶していてもよい。但し、霧化部111Rが抵抗発熱体である場合、電力量Eは霧化部111Rに印加される電圧Vs及び電圧Vsの印加時間Tに影響される。そのため、EMIN及びEMAXは、電圧Vs、印加時間TMIN及びTMAXによって特定することもできる。すなわち、上述した情報源111Mは、パラメータEMIN及びEMAXの代わりに、パラメータ電圧Vs、印加時間TMIN及びTMAXを記憶していてもよい。なお、電圧Vsは、EMIN及びEMAXをTMIN及びTMAXに置き換えるために用いられるパラメータであり、一定値であってもよい。電圧Vsが一定値である場合、電圧Vsは情報源111Mに記憶されていなくてもよい。実施形態では、電圧Vsは後述する基準電圧値Vに相当し、情報源111Mは、パラメータTMIN及びTMAXを記憶する。
 制御部51は、1回のパフ動作における電力量E(T)がEMAX(TMAX)を超えないように、霧化部111Rに供給される電力量を制御してもよい。具体的には、例えば、電力量E(T)がEMAX(TMAX)に達した場合、制御部51は抵抗発熱体111Rへの電力供給を終了する。
 霧化部111Rへ供給される電力量をE、バッテリ40の出力電圧値をV、霧化部への電圧の印加時間をT、霧化部(抵抗発熱体)111Rの電気抵抗値をRとすると、「E=(V/R)×T」の関係式が満たされる。したがって、制御部51は、「E=(V/R)×T」の関係式に従って、目標エアロゾル量Aを発生させるために必要な目標電力量Eから、バッテリ40の出力電圧値V及び霧化部への電圧の印加時間Tを算出することができる。なお、目標電力量Eは、前述したように目標エアロゾル量Aに基づき決定することができる。「E=(V/R)×T」の関係式に従って、目標エアロゾル量Aを発生させるために必要な出力電圧値と、その出力電圧値を霧化部に印加すべき印加時間とを算出することができる。
 なお、V及びTは、制御部51によって検出可能な値であり、Rは情報源111Mからの読み出しによって制御部51が取得可能な値である。すなわち、情報源111Mは、霧化部(抵抗発熱体)111Rの電気抵抗値Rを記憶していることが好ましい。なお、Rは、制御部51によって推定されてもよい。
 ここで、制御部51は、前述のように算出された出力電圧値及び印加時間で霧化部111Rに電力を供給すればよい。これにより、前述した目標エアロゾル量Aのエアロゾルを霧化部111Rで発生させることができる。
 ユーザが複数回のパフ動作を行う場合、一例として、制御部51は、各回のパフ動作において同一の電圧値及び印加時間で霧化部111Rに電力を供給してもよい。この代わりに、図6に示すように、パフ動作の回数(パフ回数)の増大に伴うバッテリ40の電圧降下が想定されるケースでは、制御部51は、バッテリ40の電圧降下に基づく霧化部への供給電力の低下を抑制するように、バッテリ40の出力電圧値及び印加時間をパフ回数に伴って補正することが好ましい。この場合、霧化部111Rへ供給される電力量をE、バッテリ40の出力電圧値をV、霧化部への電圧の印加時間をT、霧化部(抵抗発熱体)111Rの電気抵抗値をRとすると、概ね「E=D×(V/R)×T」の関係式が満たされる(図6参照)。ここで、Dは、電圧降下に起因する補正項である。
 具体的には、補正項Dは、バッテリ40の出力電圧値V及びバッテリの基準電圧値Vに基づいて算出される。基準電圧値Vは、バッテリ40の種類等に応じて予め定められた値であり、少なくともバッテリ40の終止電圧よりも高い電圧である。バッテリ40がリチウムイオン電池である場合には、例えば、基準電圧値Vを3.2Vとすることができる。
 詳細には、図6に示すように、バッテリの出力電圧値Vは、パフ回数の増大に伴って低下する。従って、補正項Dによる補正をしない場合、霧化部に供給される電力量Eもパフ回数の増大に伴って低下する(図6の一点鎖線参照)。結果として、1回のパフ動作で生成されるエアロゾル量Aがパフ回数の増大とともに変化する。
 このような課題を解決するべく、制御部51は、D=V/Vの式に従って、補正項Dを設定する。このような補正項を導入すると、バッテリの出力電圧値Vが低下したときの、霧化部111Rへの電力量Eの低下を緩和することができる。好ましくは、制御部51は、D=V /V の式に従って、補正項Dを設定する。このような補正項を導入すると、バッテリの出力電圧値Vが低下したときの、霧化部111Rへの電力量Eの低下をより緩和することができる。
 上記のようなバッテリ40の電圧降下の観点から、制御部51は、「E=D×(V/R)×T」の関係式に従って、目標エアロゾル量Aを発生させるために必要な目標電力量Eから、霧化部111Rに印加すべき電圧値V及び印加時間Tを算出することができる。なお、目標電力量Eは、前述したように目標エアロゾル量Aに基づき決定することができる。この関係式から霧化部111Rに供給する目標電力量Eに基づき、電圧値V及び印加時間Tを決定することで、目標エアロゾル量AT、すなわち流量比βに関する補正値を考慮しつつ、バッテリ40が電圧降下したときであっても1回のパフ動作で生成されるエアロゾル量を均一化することができる。
 ここで、霧化部111Rに供給する電力量の調整は、抵抗発熱体111Rに印加される電圧の絶対値の調整、又は抵抗発熱体111Rに印加される電圧の印加時間(すなわち、パルス幅及びパルス間隔)の調整、又はそれらの組み合わせによって行うことができる。なお、霧化部111Rに印加される電圧値の絶対値の補正は、DC/DCコンバータを用いて実現される。DC/DCコンバータは、降圧コンバータであってもよく、昇圧コンバータであってもよい。
 なお、制御部51は、関係式「A=a×E+b」と、「E=(V/R)×T」又は「E=D×(V/R)×T」とに基づいて、霧化部111Rへの供給電力量、又は印加電圧及び印加時間から、霧化部111Rで生成されるエアロゾルの量を推定することもできる。
 ここで、1回のパフ動作で発生するエアロゾル量は、1回のパフ動作で消費されるエアロゾル源の量と実質的に等しい。したがって、制御部51は、関係式「A=a×E+b」と、「E=(V/R)×T」又は「E=D×(V/R)×T」とに基づいて、霧化部111Rへの供給電力量、又は印加電圧及び印加時間から、消費されたエアロゾル源の量を推定することもできる。
 (パフ動作中の霧化部の制御)
 図7は、霧化部111Rに電力供給を行っているとき、すなわちパフ動作中の制御部51の動作を示すフローチャートである。制御部51は、パフ動作中に霧化部111Rにおいて生成されたエアロゾル量の累積値を算出する(ステップS702)。前述したように、エアロゾルの生成量は、霧化部111Rへの供給電力量によって推定できる。すなわち、1回のパフ動作により霧化部111Rで発生するエアロゾルの生成量は、例えば、「A=a×E+b」、具体的には「E=(V/R)×T」、より具体的には「E=D×(V/R)×T」の関係式によって推定できる。
 制御部51は、バッテリ40から霧化部111Rへ供給される電力量(=電力×通電時間)を経時的に観測し、その電力量から推定されるエアロゾルの生成量を逐次加算する。これにより、制御部51は、霧化部111Rにおいて生成されたエアロゾル量の累積値を推定的に得ることができる。
 制御部51は、第1分流路140Aを通過したエアロゾル量の累積値を算出する(ステップS704)。第1分流路110Aを通過したエアロゾル量は、霧化部111Rで生成されたエアロゾル量の推定値と流量比βとから計算できる。制御部51は、第2分流路140Bを通過したエアロゾル量の累積値を同様に算出してもよい。なお、ステップS704は任意であり、省略されてもよい。
 制御部51は、霧化部111Rにおいて生成されたエアロゾル量の累積値が第1閾値を上回ったか否かを判定する(ステップS706)。エアロゾル量の累積値が第1閾値を上回っていれば、後述するステップS708へ進み、そうでなければ、前述のステップS702へ戻る。
 上記ステップS704において第1分流路140Aを通過したエアロゾル量の累積値を算出した場合、制御部51は、霧化部111Rにおけるエアロゾル生成量の累積値が第1閾値を上回ったか否かを判定するのに代えて、第1分流路140Aを通過したエアロゾル量の累積値が前記第1閾値に対応する所定の閾値を上回ったか否かを判定することとしてもよい。
 なお、ステップS706の判定は、例えば、1)1回のパフ動作が終了した後、2)吸引センサ50によってパフ動作が検知されてからエアロゾルの霧化が開始されるまでの所定のタイムラグ時間の間、3)パフ動作中(霧化部111Rへの通電期間中)、のいずれのタイミングで行ってもよい。
 ステップS708において、制御部51は、霧化部111Rにおけるエアロゾルの生成量を変化させる。具体的には、制御部51は、第1分流路140Aを通過するエアロゾル量が増大するように、霧化部111Rを制御する。香味源132からの香味成分の放出能力は、エアロゾルの通気によって徐々に低下することがある。よって、制御部51は、香味源132から放出される香味成分の量の低下を補うために、第1分流路140Aを通過するエアロゾルの累積値が所定の第1閾値を上回ったときに、第1分流路140Aを通過するエアロゾル量を増加させる。この場合、ステップS706の判定で用いられる第1閾値は、香味源132からある一定量の香味成分を消耗させるのに十分な累積エアロゾル量に相当する。このような制御によって、香味吸引器100は、香味源132の消耗による影響を抑え、ユーザに提供する香味成分の量を長期にわたって均一化することができる。
 ステップS710において、制御部51は、霧化部111Rにおいて生成されたエアロゾル量の累積値が第2閾値を上回ったか否かを判定する。エアロゾル生成量の累積値が第2閾値を上回っていれば、ステップS712へ進み、そうでなければ、ステップS702へ戻る。第2閾値は、上記の第1閾値よりも大きな値である。上記のステップS704において第1分流路140Aを通過したエアロゾル量の累積値を算出した場合は、制御部51は、霧化部111Rにおけるエアロゾル生成量の累積値が第2閾値を上回ったか否かを判定するのに代えて、第1分流路140Aを通過したエアロゾル量の累積値が前記第2閾値に対応する所定の閾値を上回ったか否かを判定することとしてもよい。
 ステップS712において、制御部51は、霧化部111Rへの電力供給を停止する。これによって、香味吸引器100は、過剰の香味がユーザに供給されることを防止することができる。また、著しく香味源の香味成分の放出能力が低下したときに、香味吸引器100を自動的に停止することもできる。
 上記のステップS710の判定は、前述したステップS706と同様、例えば、1)1回のパフ動作が終了した後、2)吸引センサ50によってパフ動作が検知されてからエアロゾルの霧化が開始されるまでの所定のタイムラグ時間の間、3)パフ動作中(霧化部への通電期間中)、のいずれのタイミングで行ってもよい。
 1回のパフ動作が終了した後にステップS710の判定を実施する場合、ステップS712の制御によりユーザのパフ動作中にエアロゾルの霧化が中断されることがなく、ユーザに与える違和感を抑制することができる。
 なお、ステップS706の判定及びそれに続くステップS708の制御と、ステップS710の判定及びそれに続くステップS712の制御は、順序を入れ替えて実施することもできる。
 [第2実施形態]
 以下において、第2実施形態について説明する。以下においては、第1実施形態に対する相違点について説明する。
 基準エアロゾル量Aは、霧化部111Rで生成されるエアロゾルの量であって、予め設計された量によって規定される。第2実施形態では、より具体的には、基準エアロゾル量Aは、流量比が予め設計された値β’に一致するときの第1分流路140Aに通過させるべきエアロゾル量の設計値を、予め設計された値β’で割った値によって規定される。言い換えると、基準エアロゾル量Aは、予め設計された値β’と同じ流量比βを有する香味ユニット130及び/又は霧化ユニット111が用いられたときに、第1分流路140Aに通過させるエアロゾル量が上記設計値となるように、霧化部111Rで生成されるエアロゾル量に一致する。
 目標エアロゾル量Aは、基準エアロゾル量Aと流量比βとに基づいて算出される。具体的一例として、目標エアロゾル量Aは、流量比βが予め設計された値β’より大きいとき、流量比が予め設計された値β’に一致するときの目標エアロゾル量より小さく設定され、流量比βが予め設計された値β’より小さいとき、流量比が予め設計された値β’に一致するときの目標エアロゾル量より大きく設定される。
 具体的一例として、目標エアロゾル量Aは、基準エアロゾル量Aと流量比の予め設計された値β’との積を流量比βで割った値に設定される(すなわちA=A×β’/β)。この場合、1回のパフ動作において第1分流路140Aに流れるエアロゾル量が、流量比βによらず一定になるように目標エアロゾル量Aが決められる。
 制御部51は、霧化部111Rによって生成されるエアロゾル量が目標エアロゾル量Aとなるように、霧化部111Rを制御する。
 (霧化部への供給電力の制御)
 第1実施形態と同様に、制御部51は、「E=(A-b)/a」の関係式から目標エアロゾル量Aのエアロゾルを発生させるために必要な目標電力量Eを算出することができる。すなわち、パラメータa,bの値が既知であれば、制御部51は、「E=(A-b)/a」の関係式を満たすように、目標エアロゾル量Aから必要な電力量Eを算出することができる。なお、パラメータa,bについては、第1実施形態で説明したとおりである。
 したがって、目標エアロゾル量Aが、基準エアロゾル量Aと流量比βに基づいて関係式「A=A×β’/β」によって決定される場合には、制御部51は、「E=((A×β’/β)-b)/a」の関係式を満たすように目標エアロゾル量Aから目標電力量Eを算出することができる。目標電力量Eを示す数式が形式的に変更されることを除き、霧化部111Rへの電力制御は、第1実施形態と同様に行うことができる。
 [第3実施形態]
 以下において、第3実施形態について説明する。以下においては、第1実施形態に対する相違点について説明する。
 第1実施形態では、香味源130に備えられた情報源134Mは、流量比βに関する値を記憶していた。これに対して、第3実施形態では、情報源134Mは、流量比βに関する値と対応付けられた識別情報を記憶する。
 また、第1実施形態では、霧化ユニット111に備えられた情報源111Mは、霧化ユニット111の固有パラメータ(a,b,TMIN,TMAX)や、霧化部(抵抗発熱体)111Rの電気抵抗値(R)等を記憶する。これに対して、第2実施形態では、情報源111Mは、これらの情報と対応付けられた識別情報を記憶する。
 (ブロック構成)
 以下において、第2実施形態に係る香味吸引器のブロック構成について説明する。図8は、第2実施形態に係る香味吸引器100のブロック構成を示している。なお、図8では、図3と同様の構成について同様の符号を付していることに留意すべきである。
 ここで、図8において、通信端末200は、サーバ300と通信を行う機能を有する端末である。通信端末200は、例えば、パーソナルコンピュータ、スマートフォン、タブレットなどである。
 サーバ300は、流量比βに関連する値を格納する外部記憶媒体である。サーバ300は、さらに霧化ユニット111の固有パラメータ(a,b,TMIN,TMAX)や抵抗発熱体111Rの抵抗値(R)を格納していてもよい。また、情報源134M,111Mは、上述したように、これらの情報と対応付けられた識別情報を記憶している。
 図8に示すように、制御部51は、外部アクセス部53を通じて、直接的又は間接的にサーバ300にアクセスする機能を有する。図8では、外部アクセス部52が通信端末200を介してサーバ300にアクセスする機能を例示している。このようなケースにおいて、外部アクセス部53は、例えば、通信端末200と有線で接続するためのモジュール(例えば、USBポート)であってもよく、通信端末200と無線で接続するためのモジュール(例えば、Bluetooth(登録商標)モジュール或いはNFC(Near Field Communication)モジュール)であってもよい。
 但し、外部アクセス部53は、サーバ300と直接的に通信を行う機能を有していてもよい。このようなケースにおいて、外部アクセス部53は、無線LANモジュールであってもよい。
 通信端末200は、情報源111M,134Mから識別情報を読み出すとともに、読み出された識別情報を用いて、識別情報と対応付けられた情報、すなわち、流量比βに関する値や、霧化ユニット111の固有パラメータ(a,b,TMIN,TMAX)、抵抗発熱体111Rの抵抗値(R)等をサーバ300から取得する。流量比βに関する値や、霧化ユニット111の固有パラメータ(a,b,TMIN,TMAX)、抵抗発熱体111Rの抵抗値(R)等は、通信端末200から外部アクセス部53を介して制御部51に送られる。
 制御部51は、通信端末200を介してサーバ300から取得した流量比βに関する値や霧化ユニット111の固有パラメータ等に基づいて、前述したように霧化部111Rに供給する電力制御を行うことができる。
 第2実施形態では、情報源111M,134Mはメモリである。これに対して、情報源は、霧化ユニット111や香味ユニット130に設けられるバーコードや識別ラベルであってもよい。また、このようなバーコードや識別ラベルは、例えば霧化ユニット111や香味ユニット130の外側面に設けられたり、霧化ユニット111や香味ユニット130と一緒に同梱される説明書に設けられたり、霧化ユニット111や香味ユニット130を収容する箱などに設けられていてもよい。
 この場合、通信端末200は、バーコードや識別ラベルのような識別情報の入力又は識別情報の読み取りによって、識別情報と対応付けられた情報、すなわち、流量比βや、霧化ユニット111の固有パラメータ(a,b,TMIN,TMAX)、抵抗発熱体111Rの抵抗値(R)等をサーバ300から取得する。通信端末200によって取得されたこれらの情報は、外部アクセス部53を介して制御部51に送られる。
 第2実施形態に係る香味吸引器の場合、制御部51は、香味ユニット130が霧化ユニット111に取り付けられていない状態、又は香味ユニット130と霧化ユニット111のカートリッジがバッテリユニット112に取り付けられていない状態で、情報源134Mを介して補正値を得ることができる。もっとも、制御部51は、香味ユニット130が霧化ユニット111に取り付けられた状態、又は及び香味ユニット130と霧化ユニット111のカートリッジがバッテリユニット112に取り付けられた状態で、補正値を取得してもよい。
 目標エアロゾル量Aの算出は、補正値の取得直後に行ってもよいし、補正値の取得後所定のタイミングで行ってもよい。目標エアロゾル量Aの算出に関する所定のタイミングについては、第1実施形態で説明したとおりである。
 以上、本発明の実施形態を説明したが、本発明はこれに限定されず、その要旨を逸脱しない範囲内において様々な変更が可能である。

Claims (27)

  1.  エアロゾル源からエアロゾルを発生させる霧化部と、
     前記霧化部よりも下流に設けられた香味源と、
     前記香味源よりも下流に設けられた吸口部と、
     前記霧化部を制御する制御部と、
     前記霧化部から前記吸口部へ通じるエアロゾル流路と、
     前記霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有し、
     前記エアロゾル流路は、前記霧化部と前記香味源との間で、前記香味源を通る第1分流路と、前記第1分流路と異なる第2分流路とに分岐しており、
     前記補正値は、所定の流量で前記吸口部を吸ったときの前記所定の流量に対する前記第1分流路の流量である流量比に関する値であり、
     前記制御部は、前記基準エアロゾル量と前記補正値とに基づいて算出した目標エアロゾル量に基づき前記霧化部を制御する、香味吸引器。
  2.  前記流量比が予め設計された値より大きいとき、前記目標エアロゾル量は、前記流量比が前記予め設計された値に一致するときの目標エアロゾル量より小さく設定され、
     前記流量比が予め設計された値より小さいとき、前記目標エアロゾル量は、前記流量比が前記予め設計された値に一致するときの目標エアロゾル量より大きく設定される、請求項1に記載の香味吸引器。
  3.  前記第1分流路と前記第2分流路は、前記香味源よりも下流で合流している、請求項1又は2に記載の香味吸引器。
  4.  前記制御部は、前記霧化部に供給する電力量を制御する、請求項1から3のいずれか1項に記載の香味吸引器。
  5.  前記霧化部は抵抗発熱体であり、
     1回のパフ動作で前記抵抗発熱体に供給される電力量は、Eで表され、
     前記霧化部の固有パラメータは、a及びbで表され、
     1回のパフ動作で発生するエアロゾル量は、Aで表され、
     前記制御部は、A=a×E+bの式に従って、前記エアロゾル量Aを算出する、請求項4に記載の香味吸引器。
  6.  前記霧化部は抵抗発熱体であり、
     前記目標エアロゾル量はAで表され、
     1回のパフ動作で前記抵抗発熱体に供給すべき目標電力量は、Eで表され、
     前記霧化部の固有パラメータは、a及びbで表され、
     前記制御部は、E=(A-b)/aの式に従って前記抵抗発熱体に供給すべき電力量Eを決定する、請求項4又は5に記載の香味吸引器。
  7.  前記固有パラメータ又は前記固有パラメータと対応付けられた識別情報を有する情報源を備える、請求項5又は6に記載の香味吸引器。
  8.  前記基準エアロゾル量は、前記流量比が前記予め設計された値に一致するときの前記第1分流路に通過させるべきエアロゾル量の設計値によって規定される、請求項1から7のいずか1項に記載の香味吸引器。
  9.  前記目標エアロゾル量は、前記基準エアロゾル量を前記流量比で割った値に設定される、請求項8に記載の香味吸引器。
  10.  前記基準エアロゾル量は、前記流量比が前記予め設計された値に一致するときの前記第1分流路に通過させるべきエアロゾル量の設計値を、前記流量比の前記予め設計された値で割った値によって規定される、請求項1から7のいずか1項に記載の香味吸引器。
  11.  前記目標エアロゾル量は、前記基準エアロゾル量と前記予め設計された値との積を前記流量比で割った値に設定される、請求項10に記載の香味吸引器。
  12.  前記霧化部を含む霧化ユニットと、
     前記香味源を含む香味ユニットと、を有し、
     前記香味ユニットは前記霧化ユニットに対して着脱可能に構成されている、請求項1から11のいずれか1項に記載の香味吸引器。
  13.  前記情報源は、前記香味ユニットに設けられている、請求項12に記載の香味吸引器。
  14.  前記第1分流路及び前記第2分流路は、前記香味ユニットに設けられている、請求項12又は13に記載の香味吸引器。
  15.  前記目標エアロゾル量の算出は、前記香味ユニットが前記霧化ユニットに取り付けられた状態で行われる、請求項12から14のいずれか1項に記載の香味吸引器。
  16.  前記目標エアロゾル量の算出は、前記香味ユニットが前記霧化ユニットに取り付けられたことが検知されたときに行われる、請求項15に記載の香味吸引器。
  17.  前記目標エアロゾル量の算出は、ユーザによる所定の操作が検知されたときに行われる、請求項12から15のいずれか1項に記載の香味吸引器。
  18.  ユーザによる吸引動作を検出する吸引センサを有し、
     前記目標エアロゾル量の算出は、前記吸引センサが前記吸引動作を初めて検出したときに行われる、請求項17に記載の香味吸引器。
  19.  前記制御部は、前記香味ユニットが前記霧化ユニットに取り付けられている状態で、前記情報源を介して前記補正値を読み取る、請求項12から18のいずれか1項に記載の香味吸引器。
  20.  前記制御部は、前記香味ユニットが前記霧化ユニットに取り付けられていない状態で、前記情報源を介して前記補正値を読み取る、請求項12から18のいずれか1項に記載の香味吸引器。
  21.  前記霧化部で発生するエアロゾル量の累積値又は前記第1分流路を通過するエアロゾル量の累積値が第1閾値を上回った場合に、前記霧化部で発生させるエアロゾル量を増加させる、請求項1から20のいずれか1項に記載の香味吸引器。
  22.  前記霧化部で発生するエアロゾル量の累積値又は前記第1分流路を通過するエアロゾル量の累積値が第2閾値を上回った場合に、前記霧化部への供給電力をオフにする、請求項1から21のいずれか1項に記載の香味吸引器。
  23.  バッテリを備えたバッテリユニットを有する、請求項1から22のいずれか1項に記載の香味吸引器。
  24.  前記バッテリユニットは、前記霧化部を含む霧化ユニットに対して着脱可能に構成されている、請求項23に記載の香味吸引器。
  25.  前記制御部は前記バッテリユニットに設けられている、請求項23又は24に記載の香味吸引器。
  26.  エアロゾル源からエアロゾルを発生させる霧化部と、
     前記霧化部よりも下流に設けられた香味源と、
     前記香味源よりも下流に設けられた吸口部と、
     前記霧化部から前記吸口部へ通じるエアロゾル流路と、
     前記霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有し、
     前記エアロゾル流路は、前記霧化部と前記香味源との間で、前記香味源を通る第1分流路と、前記第1分流路と異なる第2分流路とに分岐しており、
     前記補正値は、所定の流量で前記吸口部を吸ったときの前記所定の流量に対する前記第2分流路の流量である流量比に関する値である、カートリッジ。
  27.  エアロゾル源からエアロゾルを発生させる霧化部を含む霧化ユニットに着脱可能な香味ユニットであって、
     香味源と、
     前記香味源よりも下流に設けられた吸口部と、
     前記霧化ユニットの前記霧化部に連通可能に構成され、前記吸口部へ通じるエアロゾル流路と、
     前記霧化部で発生させるエアロゾルの量であって予め設計された量である基準エアロゾル量を補正する補正値と対応付けられた識別情報を保持する情報源と、を有し、
     前記エアロゾル流路は、前記霧化部と前記香味源との間で、前記香味源を通る第1分流路と、前記第1分流路と異なる第2分流路とに分岐しており、
     前記補正値は、所定の流量で前記吸口部を吸ったときの前記所定の流量に対する前記第2分流路の流量である流量比に関する値である、香味ユニット。
PCT/JP2016/072063 2016-07-27 2016-07-27 香味吸引器、カートリッジ及び香味ユニット WO2018020619A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201680087986.8A CN109561732B (zh) 2016-07-27 2016-07-27 香味吸入器、烟弹及香味单元
EP16910522.8A EP3488714A4 (en) 2016-07-27 2016-07-27 AROMA INHALATOR, CARTRIDGE AND AROMA UNIT
CA3030101A CA3030101C (en) 2016-07-27 2016-07-27 Flavor inhaler, cartridge, and flavor unit
KR1020197004699A KR102311334B1 (ko) 2016-07-27 2016-07-27 향미 흡인기, 카트리지 및 향미 유닛
PCT/JP2016/072063 WO2018020619A1 (ja) 2016-07-27 2016-07-27 香味吸引器、カートリッジ及び香味ユニット
JP2018530266A JP6670384B2 (ja) 2016-07-27 2016-07-27 香味吸引器、カートリッジ及び香味ユニット
EA201990377A EA036912B1 (ru) 2016-07-27 2016-07-27 Ароматический ингалятор, картридж и ароматизирующий блок
TW106122366A TWI670021B (zh) 2016-07-27 2017-07-04 香味吸嚐器、筒匣及香味單元
US16/241,570 US11044945B2 (en) 2016-07-27 2019-01-07 Flavor inhaler, cartridge, and flavor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072063 WO2018020619A1 (ja) 2016-07-27 2016-07-27 香味吸引器、カートリッジ及び香味ユニット

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/241,570 Continuation US11044945B2 (en) 2016-07-27 2019-01-07 Flavor inhaler, cartridge, and flavor unit

Publications (1)

Publication Number Publication Date
WO2018020619A1 true WO2018020619A1 (ja) 2018-02-01

Family

ID=61016935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072063 WO2018020619A1 (ja) 2016-07-27 2016-07-27 香味吸引器、カートリッジ及び香味ユニット

Country Status (9)

Country Link
US (1) US11044945B2 (ja)
EP (1) EP3488714A4 (ja)
JP (1) JP6670384B2 (ja)
KR (1) KR102311334B1 (ja)
CN (1) CN109561732B (ja)
CA (1) CA3030101C (ja)
EA (1) EA036912B1 (ja)
TW (1) TWI670021B (ja)
WO (1) WO2018020619A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054338A (ja) * 2019-08-20 2020-04-09 日本たばこ産業株式会社 電源ユニット
JP2021516980A (ja) * 2018-03-29 2021-07-15 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
JP2021516983A (ja) * 2018-03-29 2021-07-15 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
EP3871518A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3872952A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3871524A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3871523A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3871517A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler
CN114304736A (zh) * 2020-09-30 2022-04-12 日本烟草产业株式会社 用于气雾剂生成装置的电源单元
WO2022130493A1 (ja) 2020-12-15 2022-06-23 日本たばこ産業株式会社 吸引装置、制御方法、及びプログラム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA036912B1 (ru) * 2016-07-27 2021-01-14 Джапан Тобакко Инк. Ароматический ингалятор, картридж и ароматизирующий блок
TWI671125B (zh) * 2017-09-13 2019-09-11 心誠鎂行動醫電股份有限公司 霧化器
GB201807497D0 (en) * 2018-05-08 2018-06-20 Nicoventures Trading Ltd An aerosol provision device
US12016387B2 (en) * 2018-10-12 2024-06-25 Jt International S.A. Aerosol generation device and heating chamber therefor
CN109924548A (zh) * 2019-04-04 2019-06-25 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置及其控制方法
KR20210014492A (ko) * 2019-07-30 2021-02-09 주식회사 케이티앤지 에어로졸 생성 장치 및 그의 동작 방법
CN110623305A (zh) * 2019-09-05 2019-12-31 深圳麦克韦尔科技有限公司 一种气雾产生装置、发热组件以及数据交互方法
JP6811346B1 (ja) * 2020-03-05 2021-01-13 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット及びエアロゾル吸引器
WO2022003072A1 (en) * 2020-06-30 2022-01-06 Philip Morris Products S.A. Aerosol-generating device and method with puff detection
CN113115989A (zh) * 2020-12-07 2021-07-16 深圳麦克韦尔科技有限公司 调味部件及电子雾化装置
CN112493547A (zh) * 2020-12-07 2021-03-16 深圳麦克韦尔科技有限公司 电子雾化装置
KR20220098932A (ko) * 2021-01-05 2022-07-12 주식회사 케이티앤지 히터의 가열 시간을 제어하는 에어로졸 생성 장치 및 방법
CN115487383B (zh) * 2021-06-17 2023-09-29 深圳麦克韦尔科技有限公司 控制组件及电子雾化装置
CN113598425A (zh) * 2021-07-30 2021-11-05 深圳麦克韦尔科技有限公司 调味部件及电子雾化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506594A (ja) 2006-10-18 2010-03-04 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコを収容する喫煙物品
EP2617303A1 (en) * 2011-09-28 2013-07-24 Joyetech (Changzhou) Electronics Co., Ltd. Replaceable general atomizing head
WO2014110119A1 (en) * 2013-01-08 2014-07-17 L. Perrigo Company Electronic cigarette
WO2014115324A1 (ja) * 2013-01-28 2014-07-31 日本たばこ産業株式会社 非加熱型香味吸引具
EP2989912A1 (en) * 2014-09-01 2016-03-02 Fontem Holdings 2 B.V. Electronic smoking device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672847B1 (de) * 2011-02-11 2015-04-22 Batmark Limited Inhalatorkomponente
TW201332462A (zh) * 2011-12-30 2013-08-16 Philip Morris Prod 氣溶膠產生裝置的氣溶膠產生基體之偵測
US10117460B2 (en) * 2012-10-08 2018-11-06 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
ES2635056T3 (es) * 2012-10-26 2017-10-02 Vectura Gmbh Dispositivo de inhalación para su uso en terapia de aerosol
CN104955508A (zh) * 2012-11-28 2015-09-30 艾尼科提恩科技公司 用于化合物递送的方法和设备
CN105636466B (zh) * 2013-09-30 2018-09-11 日本烟草产业株式会社 非燃烧型香味吸取器
CN103704886B (zh) * 2013-12-31 2016-03-23 广东中烟工业有限责任公司 一种具有吸食量提示功能的烟料加热装置
US20160106936A1 (en) 2014-10-21 2016-04-21 Breathe eCigs Corp. Personal Vaporizer Having Controlled Usage
EP3219212A4 (en) * 2014-11-10 2018-06-20 Japan Tobacco Inc. Non-combusting flavor inhaler
KR101983485B1 (ko) * 2015-01-26 2019-05-29 니뽄 다바코 산교 가부시키가이샤 비연소형 향미 흡인기, 향미원 유닛 및 비연소형 향미 흡인기용 부재의 제조 방법
KR101993072B1 (ko) * 2015-03-10 2019-06-25 니뽄 다바코 산교 가부시키가이샤 무화 유닛의 제조 방법, 비연소형 향미 흡인기, 무화 유닛 및 무화 유닛 패키지
CN204695034U (zh) * 2015-04-21 2015-10-07 惠州市吉瑞科技有限公司深圳分公司 一种电子烟的雾化器控制电路、电子烟及其雾化器
CA2984454C (en) * 2015-05-01 2021-05-25 Japan Tobacco Inc. Non-burning type flavor inhaler, flavor source unit, and atomizing unit
KR101609715B1 (ko) * 2015-05-26 2016-04-20 주식회사 승완 전자담배 관리 시스템
MX2018010186A (es) * 2016-02-25 2019-01-14 Juul Labs Inc Sistemas de control de dispositivo de vaporacion y metodos.
EA036912B1 (ru) * 2016-07-27 2021-01-14 Джапан Тобакко Инк. Ароматический ингалятор, картридж и ароматизирующий блок

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506594A (ja) 2006-10-18 2010-03-04 アール・ジエイ・レイノルズ・タバコ・カンパニー タバコを収容する喫煙物品
EP2617303A1 (en) * 2011-09-28 2013-07-24 Joyetech (Changzhou) Electronics Co., Ltd. Replaceable general atomizing head
WO2014110119A1 (en) * 2013-01-08 2014-07-17 L. Perrigo Company Electronic cigarette
WO2014115324A1 (ja) * 2013-01-28 2014-07-31 日本たばこ産業株式会社 非加熱型香味吸引具
EP2989912A1 (en) * 2014-09-01 2016-03-02 Fontem Holdings 2 B.V. Electronic smoking device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3488714A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516980A (ja) * 2018-03-29 2021-07-15 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
JP2021516983A (ja) * 2018-03-29 2021-07-15 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
US11975142B2 (en) 2018-03-29 2024-05-07 Nicoventures Trading Limited Control device for an electronic aerosol provision system
JP7283017B2 (ja) 2018-03-29 2023-05-30 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
JP7095939B2 (ja) 2018-03-29 2022-07-05 ニコベンチャーズ トレーディング リミテッド 電子エアロゾル供給システム用の制御デバイス
JP2020054338A (ja) * 2019-08-20 2020-04-09 日本たばこ産業株式会社 電源ユニット
EP3871523A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3871517A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler
EP3871524A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3872952A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
EP3871518A1 (en) 2020-02-25 2021-09-01 Japan Tobacco Inc. Power supply unit for aerosol inhaler and aerosol inhaler
CN114304736A (zh) * 2020-09-30 2022-04-12 日本烟草产业株式会社 用于气雾剂生成装置的电源单元
WO2022130493A1 (ja) 2020-12-15 2022-06-23 日本たばこ産業株式会社 吸引装置、制御方法、及びプログラム

Also Published As

Publication number Publication date
CN109561732A (zh) 2019-04-02
TW201806503A (zh) 2018-03-01
JPWO2018020619A1 (ja) 2019-05-16
JP6670384B2 (ja) 2020-03-18
KR102311334B1 (ko) 2021-10-08
US11044945B2 (en) 2021-06-29
EA201990377A1 (ru) 2019-07-31
CN109561732B (zh) 2021-06-29
EA036912B1 (ru) 2021-01-14
CA3030101C (en) 2021-05-25
CA3030101A1 (en) 2018-02-01
EP3488714A4 (en) 2020-05-13
US20190133198A1 (en) 2019-05-09
KR20190032438A (ko) 2019-03-27
TWI670021B (zh) 2019-09-01
EP3488714A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2018020619A1 (ja) 香味吸引器、カートリッジ及び香味ユニット
US10863773B2 (en) Non-burning type flavor inhaler and atomizing unit calculating the amount of aerosol consumed
JP6704454B2 (ja) 香味吸引器
WO2018055761A1 (ja) 香味吸引器
KR102443306B1 (ko) 에어로졸 생성 장치 및 이를 동작시키는 방법 및 프로그램
KR102425243B1 (ko) 에어로졸 생성 장치 및 이를 동작시키는 방법 및 프로그램
JP6812570B2 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
DK201770591A1 (en) Electronic smoking system and method for controlling power consumption of an electronic smoking system
JP7244664B2 (ja) バッテリユニット、情報処理方法、及びプログラム
TWI773697B (zh) 霧氣產生裝置及使該霧氣產生裝置動作之方法及電腦程式產品
JP6941211B2 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530266

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3030101

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004699

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016910522

Country of ref document: EP

Effective date: 20190219