WO2018019147A1 - 电动汽车、电动汽车的车载充电器及其控制方法 - Google Patents

电动汽车、电动汽车的车载充电器及其控制方法 Download PDF

Info

Publication number
WO2018019147A1
WO2018019147A1 PCT/CN2017/093202 CN2017093202W WO2018019147A1 WO 2018019147 A1 WO2018019147 A1 WO 2018019147A1 CN 2017093202 W CN2017093202 W CN 2017093202W WO 2018019147 A1 WO2018019147 A1 WO 2018019147A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bridge
switch tube
controlling
sampling
Prior art date
Application number
PCT/CN2017/093202
Other languages
English (en)
French (fr)
Inventor
王兴辉
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to US16/319,994 priority Critical patent/US20200186051A1/en
Priority to EP17833450.4A priority patent/EP3493356A4/en
Priority to JP2019503985A priority patent/JP2019525708A/ja
Publication of WO2018019147A1 publication Critical patent/WO2018019147A1/zh

Links

Images

Classifications

    • H02J7/027
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the field of electric vehicle technology, and in particular to an on-board charger for an electric vehicle, a method for controlling an on-board charger for an electric vehicle, and an electric vehicle.
  • the pre-charging circuit including the pre-charging resistor is an indispensable part.
  • the design of the pre-charging circuit including the pre-charging resistor undoubtedly makes the structure of the vehicle charger more complicated and costly.
  • the service life and effectiveness of the pre-charging circuit also affect the stability of the vehicle charger.
  • an object of the present invention is to provide an on-board charger for an electric vehicle that not only realizes protection of the charging circuit, but also has a simple structure, low cost, and high reliability.
  • a second object of the present invention is to provide an electric vehicle.
  • a third object of the present invention is to provide a method of controlling an on-vehicle charger for an electric vehicle.
  • an embodiment of the first aspect of the present invention provides an in-vehicle charger for an electric vehicle, the in-vehicle charger including: a charging contactor, the first end of the charging contactor is coupled to an AC power supply An H-bridge, the H-bridge includes a first AC terminal, a second AC terminal, a first DC terminal, and a second DC terminal, wherein the first DC terminal and the second DC terminal are coupled to a power battery, the first AC end is for coupling to a second end of the charging contactor, the second AC end is for coupling to a second end of the AC power source; a first voltage sampling module, a first voltage sampling module is configured to sample the first end of the charging contactor to obtain a first sampling voltage; a second voltage sampling module, the second voltage sampling module is configured to be the first to the charging contactor The voltage of the two terminals is sampled to obtain a second sampling voltage; the control module is configured to control the H-bridge to perform an inverter operation to enable the second sampling when the AC
  • the first end of the charging contactor is subjected to voltage sampling by the first voltage sampling module to obtain a first sampling voltage
  • the second voltage sampling module is used to charge the contactor.
  • the two ends are sampled to obtain a second sampling voltage.
  • the control module performs the inverter operation after controlling the H bridge to synchronize the phase of the second sampling voltage with the first sampling voltage and the amplitude is the same.
  • the charging contactor is controlled to be closed, and the H-bridge is controlled to perform rectification work so that the AC power source charges the power battery.
  • an embodiment of the second aspect of the present invention provides an electric vehicle including an in-vehicle charger for an electric vehicle according to the first aspect of the present invention.
  • the on-vehicle charger can not only realize the protection of the charging circuit, but also has a simple structure, and thus the cost is low and the reliability is high.
  • a third aspect of the present invention provides a method for controlling an in-vehicle charger of an electric vehicle, wherein the in-vehicle charger includes an H-bridge and a charging contactor, and a DC terminal of the H-bridge is coupled to a power battery of the vehicle, the AC end is coupled to the AC power source through the charging contactor; the first end of the charging contactor is coupled to one end of the AC power source, and the second end of the charging contactor is coupled to an AC end of the H-bridge,
  • the control method includes: performing voltage sampling on a first end of the charging contactor to obtain a first sampling voltage, and sampling a voltage of the second end of the charging contactor to obtain a second sampling voltage;
  • controlling the H-bridge to perform an inverter operation to synchronize the phase of the second sampling voltage with the first sampling voltage and having the same amplitude; at the second sampling voltage After synchronizing with the phase of the first sampling voltage and having the
  • the first sampling voltage is obtained by voltage sampling the first end of the charging contactor, and the voltage of the second end of the charging contactor is sampled to obtain the first Two sampling voltages, when the AC power source is coupled to the vehicle charger, after controlling the H-bridge to perform the inverter operation so that the second sampling voltage is synchronized with the phase of the first sampling voltage and the amplitude is the same, then the charging contactor is controlled to be closed. And control the H-bridge to perform rectification work to enable the AC power to charge the power battery.
  • FIG. 1 is a schematic structural view of an in-vehicle charger of an electric vehicle according to an embodiment of the present invention
  • FIG. 2 is a block schematic diagram of an electric vehicle according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of controlling an on-vehicle charger of an electric vehicle according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of an in-vehicle charger of an electric vehicle according to an embodiment of the present invention.
  • an on-board charger for an electric vehicle includes: a charging contactor 10 , an H-bridge 20 , a first voltage sampling module 30 , a second voltage sampling module 40 , and a control module 50 .
  • the first end r1 of the charging contactor 10 is for coupling to the first end s1 of the AC power source AC.
  • the H-bridge 20 includes a first AC terminal a, a second AC terminal b, a first DC terminal c, and a second DC terminal d.
  • the first DC terminal c and the second DC terminal d are coupled to the power battery, first
  • the AC terminal a is for coupling to the second end r2 of the charging contactor 10
  • the second AC terminal b is for coupling to the second end s2 of the AC power source AC.
  • the first voltage sampling module 30 is configured to sample the voltage of the AC power source AC (that is, the voltage of the first end of the charging contactor 10) to obtain a first sampling voltage
  • the second voltage sampling module 40 is used for the H-bridge 20
  • the AC terminal voltage i.e., the voltage at the second end of the charging contactor 10) is sampled to obtain a second sampling voltage.
  • the control module 50 is configured to control the H-bridge 20 to perform an inverter operation when the AC power source AC is coupled to the vehicle-mounted charger to synchronize the phase of the second sampling voltage with the phase of the first sampling voltage and the amplitude is the same, and then control the charging contactor 10 to suck And, the H-bridge 20 is controlled to perform rectification work so that the AC power source AC charges the power battery.
  • the H-bridge 20 may include a first switch tube T1, a second switch tube T2, a third switch tube T3, and a fourth switch tube T4, wherein the first switch tube T1 and the second switch tube T2 constitutes the first bridge arm of the H-bridge 20, and the node a between the first switch tube T1 and the second switch tube T2 is connected to the second end r2 of the charging contactor 10 through the first inductor L1; the third switch tube T3 and The fourth switch tube T4 constitutes the second bridge arm of the H bridge 20, and the node b between the third switch tube T3 and the fourth switch tube T4 is connected to the second end s2 of the AC power source AC through the second inductor L2, the second bridge The arm is connected in parallel with the first bridge arm.
  • the first to fourth switch tubes may be IGBTs (insulated gate bipolar transistors) or MOSFETs (metal-oxide-semiconductor field effect transistors). Field effect transistor).
  • the vehicle charger of the embodiment of the present invention may further include a first capacitor C1 and a second capacitor C2, wherein the first capacitor C1 is connected to the second end r2 of the charging contactor 10 and the AC power source AC. Between the two ends s2, the second capacitor C2 is connected between the first DC terminal c and the second DC terminal d.
  • the first voltage sampling module 30 can be connected to the first end r1 of the charging contactor 10, and the second voltage sampling module 40 can be coupled to the second end of the charging contactor 10. R2 is connected.
  • the control module 50 can control the first switch tube T1 to be in a always-on state and control the second switch tube T2 to be in a always-off state, and control the third when the second sampling voltage is greater than zero.
  • the switch tube T3 and the fourth switch tube T4 are alternately turned on and off alternately.
  • the third switch tube T3 is controlled to be in a always-on state
  • the fourth switch tube T4 is controlled to be in a always-off state.
  • controlling the first switching transistor T1 and the second switching transistor T2 to alternately turn on and off alternately, so that the second sampling voltage is synchronized with the phase of the first sampling voltage and the amplitude is the same.
  • the first voltage sampling module performs voltage sampling on the AC power source coupled to the vehicle charger to obtain the first sampling voltage
  • the second voltage sampling module exchanges the H bridge.
  • the terminal voltage is sampled to obtain a second sampling voltage.
  • the control module performs an inverter operation on the control H bridge to synchronize the phase of the second sampling voltage with the first sampling voltage and has the same amplitude.
  • the charging contactor is controlled to be closed, and the H-bridge is controlled to perform rectification work to enable the AC power source to charge the power battery.
  • the vehicle charger of the above embodiment can realize safe and reliable charging without using a pre-charging resistor and/or a pre-charging capacitor with respect to a charging circuit that controls pre-charging resistor and capacitor operation through complicated operation.
  • the on-board charger of the electric vehicle according to the embodiment of the present invention can also be applied to a circuit including a pre-charge resistor, and can be controlled by the above-mentioned structure and control module when the pre-charge resistor and its related circuit fail. It ensures the normal charging, which improves the reliability of the car charger.
  • the present invention also proposes an electric vehicle.
  • An electric vehicle according to an embodiment of the present invention includes an in-vehicle charger for an electric vehicle according to the above embodiment of the present invention.
  • the electric vehicle 100 of the embodiment of the present invention includes a charging contactor 10, an H-bridge 20, a first voltage sampling module 30, a second voltage sampling module 40, and a control module 50.
  • a charging contactor 10 for an electric vehicle 100 of the embodiment of the present invention includes a charging contactor 10, an H-bridge 20, a first voltage sampling module 30, a second voltage sampling module 40, and a control module 50.
  • the on-vehicle charger can not only realize the protection of the charging circuit, but also has a simple structure, and thus the cost is low and the reliability is high.
  • the present invention also provides a method for controlling an on-board charger of an electric vehicle.
  • the vehicle charger of the embodiment of the invention comprises an H-bridge and a charging contactor.
  • the vehicle charger includes an H-bridge and a charging contactor, the DC terminal of the H-bridge is used to couple to the power battery of the vehicle, and the AC terminal is used to couple to the AC power source through the charging contactor.
  • the first end of the charging contact is coupled to one end of an alternating current source, and the second end of the charging contact is coupled to an alternating end of the H-bridge.
  • a method for controlling an in-vehicle charger of an electric vehicle includes the following steps:
  • the H-bridge when the AC power source is coupled to the vehicle charger, the H-bridge is controlled to perform an inverter operation to synchronize the phase of the second sampling voltage with the first sampling voltage and the amplitude is the same.
  • the H-bridge may include a first switching transistor, a second switching transistor, a third switching transistor, and a fourth switching transistor.
  • the controlling the H-bridge to perform the inverter operation to synchronize the phase of the second sampling voltage with the phase of the first sampling voltage and the same amplitude may specifically include: when the second sampling voltage is greater than 0, controlling the first switching tube to be in a always-on state.
  • the charging contactor is controlled to be closed, and the H-bridge is controlled to perform rectification work to enable the AC power source to charge the power battery.
  • the first sampling voltage is obtained by voltage sampling the AC power source coupled to the vehicle charger, and the voltage of the AC terminal of the H bridge is sampled to obtain
  • the second sampling voltage when the AC power source is coupled to the vehicle charger, controls the H-bridge to perform the inverter operation to synchronize the phase of the second sampling voltage with the first sampling voltage and has the same amplitude, and then controls the charging contactor to pull in. And control the H-bridge to perform rectification work to enable the AC power source to charge the power battery.
  • Coupled represents the interlinkage between two otherwise separate circuits or between two originally separate portions of a circuit, which may be direct or indirect. "Coupling” allows energy or signals to be transferred from one circuit to another or from one part of the circuit to another.
  • “coupled” in this application will include, but is not limited to, a physical connection in the form of electrical connections and signal transmissions.
  • the coupling between the ports of the two two-port networks may be two terminals on one side of the first two-port network and one side of the second two-port network. The two terminals are electrically connected.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

一种电动汽车、电动汽车的车载充电器及其控制方法,其中,该车载充电器包括:充电接触器(10),其第一端(r1)用于耦合到交流电源(AC)的第一端(s1);H桥(20),包括第一交流端(a)、第二交流端(b)和第一直流端(c)、第二直流端(d),第一交流端(a)、第二交流端(b)用于耦合到动力电池,第一交流端(a)用于耦合到充电接触器(10)的第二端(r2),第二交流端(b)用于耦合到交流电源(AC)的第二端(s2);第一电压采样模块(30),用于对充电接触器(10)的第一端(r1)的电压进行采样以获得第一采样电压;第二电压采样模块(40),用于对充电接触器(10)的第二端(r2)的电压进行采样以获得第二采样电压;控制模块(50),用于在交流电源(AC)耦合到车载充电器时控制H桥(20)进行逆变工作以使所述第二采样电压与第一采样电压的相位同步且幅值相同后,再控制充电接触器(10)吸合,并控制H桥(20)进行整流工作以使交流电源(AC)对动力电池充电。

Description

电动汽车、电动汽车的车载充电器及其控制方法 技术领域
本发明涉及电动汽车技术领域,特别涉及一种电动汽车的车载充电器、一种电动汽车的车载充电器的控制方法以及一种电动汽车。
背景技术
伴随着电动汽车商业化进度,电动汽车车载充电系统已成为电动汽车重要零部件之一,整车车载系统充电方法也比较多。
在目前的车载充电器中,为防止接入充电电源产生的大电流对充电电路造成损坏,包括预充电阻的预充电路是必不可少的一部分。然而,包含预充电阻的预充电路的设计无疑使车载充电器的结构更复杂,成本也更高,另外,预充电路的使用寿命及有效性等也会影响车载充电器的稳定性。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的一个目的在于提出一种电动汽车的车载充电器,不仅能够实现对充电电路的保护,而且其结构简单,成本较低,可靠性较高。
本发明的第二个目的在于提出一种电动汽车。
本发明的第三个目的在于提出一种电动汽车的车载充电器的控制方法。
为达到上述目的,本发明第一方面实施例提出了一种电动汽车的车载充电器,该车载充电器包括:充电接触器,所述充电接触器的第一端用于耦合到交流电源的第一端;H桥,所述H桥包括第一交流端、第二交流端、第一直流端和第二直流端,所述第一直流端和所述第二直流端用于耦合到动力电池,所述第一交流端用于耦合到所述充电接触器的第二端,所述第二交流端用于耦合到所述交流电源的第二端;第一电压采样模块,所述第一电压采样模块用于对所述充电接触器的第一端的进行采样以获得第一采样电压;第二电压采样模块,所述第二电压采样模块用于对所述充电接触器的第二端的电压进行采样以获得第二采样电压;控制模块,所述控制模块用于在所述交流电源耦合到所述车载充电器时控制所述H桥进行逆变工作以使所述第二采样电压与所述第一采样电压的相位同步且幅值相同后,再控制所述充电接触器吸合,并控制所述H桥进行整流工作以使所述交流电源对所述动力电池进行充电。
根据本发明实施例的电动汽车的车载充电器,通过第一电压采样模块对充电接触器的第一端进行电压采样以获得第一采样电压,并通过第二电压采样模块对充电接触器的第二端的进行采样以获得第二采样电压,当交流电源耦合到车载充电器时,控制模块在控制H桥进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同后,再控制充电接触器吸合,并控制H桥进行整流工作以使交流电源对动力电池进行充电。由 此,不仅能够实现对充电电路的保护,而且其结构简单,因而成本较低,可靠性较高。
为达到上述目的,本发明第二方面实施例提出了一种电动汽车,该电动汽车包括本发明第一方面实施例提出的电动汽车的车载充电器。
根据本发明实施例的电动汽车,其车载充电器不仅能够实现对充电电路的保护,而且结构简单,因而成本较低,可靠性较高。
为达到上述目的,本发明第三方面实施例提出了一种电动汽车的车载充电器的控制方法,其中,所述车载充电器包括H桥和充电接触器,H桥的直流端用于耦合到车辆的动力电池,交流端用于通过充电接触器耦合到交流电源;所述充电接触器的第一端耦合到交流电源的一端,充电接触器的第二端耦合到H桥的一个交流端,所述控制方法包括:对所述充电接触器的第一端进行电压采样以获得第一采样电压,并对所述充电接触器的第二端的电压进行采样以获得第二采样电压;当所述交流电源耦合到所述车载充电器时,控制所述H桥进行逆变工作以使所述第二采样电压与所述第一采样电压的相位同步且幅值相同;在所述第二采样电压与所述第一采样电压的相位同步且幅值相同后,控制所述充电接触器吸合,并控制所述H桥进行整流工作以使所述交流电源对所述动力电池进行充电。
根据本发明实施例的电动汽车的车载充电器的控制方法,通过对充电接触器的第一端进行电压采样以获得第一采样电压,并对充电接触器的第二端的电压进行采样以获得第二采样电压,当交流电源耦合到车载充电器时,在控制H桥进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同后,再控制充电接触器吸合,并控制H桥进行整流工作以使交流电源对动力电池进行充电。由此,不仅能够实现对充电电路的保护,还能够大大简化车载充电器的结构,从而能够降低车载充电器的成本,并提高车载充电器的可靠性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为根据本发明一个实施例的电动汽车的车载充电器的结构示意图;
图2为根据本发明实施例的电动汽车的方框示意图;
图3为根据本发明实施例的电动汽车的车载充电器的控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例的电动汽车、电动汽车的车载充电器及其控制方法。
图1为根据本发明一个实施例的电动汽车的车载充电器的结构示意图。
参见图1,本发明实施例的电动汽车的车载充电器,包括:充电接触器10、H桥20、第一电压采样模块30、第二电压采样模块40和控制模块50。
其中,充电接触器10的第一端r1用于耦合到交流电源AC的第一端s1。H桥20包括第一交流端a、第二交流端b、第一直流端c和第二直流端d,第一直流端c和第二直流端d用于耦合到动力电池,第一交流端a用于耦合到充电接触器10的第二端r2,第二交流端b用于耦合到交流电源AC的第二端s2。第一电压采样模块30用于对交流电源AC的电压(亦即充电接触器10的第一端的电压)进行采样以获得第一采样电压,第二电压采样模块40用于对H桥20的交流端电压(亦即充电接触器10的第二端的电压)进行采样以获得第二采样电压。控制模块50用于在交流电源AC耦合到车载充电器时控制H桥20进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同后,再控制充电接触器10吸合,并控制H桥20进行整流工作以使交流电源AC对动力电池进行充电。
具体地,如图1所示,H桥20可包括第一开关管T1、第二开关管T2、第三开关管T3和第四开关管T4,其中,第一开关管T1与第二开关管T2构成H桥20的第一桥臂,第一开关管T1与第二开关管T2之间的节点a通过第一电感L1与充电接触器10的第二端r2相连;第三开关管T3与第四开关管T4构成H桥20的第二桥臂,第三开关管T3与第四开关管T4之间的节点b通过第二电感L2与交流电源AC的第二端s2相连,第二桥臂与第一桥臂并联。在本发明的一个实施例中,第一开关管至第四开关管可为IGBT(insulated gate bipolar transistor,绝缘栅双极型晶体管)或MOSFET(metal-oxide-semiconductor field effect transistor,金属氧化物半导体场效应晶体管)。
如图1所示,本发明实施例的车载充电器还可包括第一电容C1和第二电容C2,其中,第一电容C1连接在充电接触器10的第二端r2与交流电源AC的第二端s2之间,第二电容C2连接在第一直流端c与第二直流端d之间。
在本发明的一个实施例中,如图1所示,第一电压采样模块30可与充电接触器10的第一端r1相连,第二电压采样模块40可与充电接触器10的第二端r2相连。
在本发明的一个实施例中,控制模块50可在第二采样电压大于0时控制第一开关管T1处于一直导通状态、并控制第二开关管T2处于一直关断状态、以及控制第三开关管T3和第四开关管T4交替互补导通和关断,在第二采样电压小于0时控制第三开关管T3处于一直导通状态、并控制第四开关管T4处于一直关断状态、以及控制第一开关管T1和第二开关管T2交替互补导通和关断,以使第二采样电压与第一采样电压的相位同步且幅值相同。
根据本发明实施例的电动汽车的车载充电器,通过第一电压采样模块对耦合到车载充电器的交流电源进行电压采样以获得第一采样电压,并通过第二电压采样模块对H桥的交流端电压进行采样以获得第二采样电压,当交流电源耦合到车载充电器时,控制模块在控制H桥进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同 后,再控制充电接触器吸合,并控制H桥进行整流工作以使交流电源对动力电池进行充电。由此,不仅能够实现对充电电路的保护,而且其结构简单,因而成本较低,可靠性较高。
需要说明的是,一方面,相对于通过复杂操作控制预充电电阻、电容工作的充电电路,上述实施例的车载充电器可以不使用预充电电阻和/或预充电电容,而实现安全可靠的充电。另一方面,本发明实施例的电动汽车的车载充电器还可应用于包括预充电阻的电路中,通过上述的结构及控制模块的控制,能够在预充电阻及其相关电路发生故障时,保证充电的正常进行,从而提高了车载充电器的可靠性。
对应上述实施例,本发明还提出一种电动汽车。
本发明实施例的电动汽车,包括本发明上述实施例提出的电动汽车的车载充电器。如图2所示,本发明实施例的电动车100,包括充电接触器10、H桥20、第一电压采样模块30、第二电压采样模块40和控制模块50。其更具体的实施方式可参照上述实施例,为避免冗余,在此不再赘述。
根据本发明实施例的电动汽车,其车载充电器不仅能够实现对充电电路的保护,而且结构简单,因而成本较低,可靠性较高。
对应上述实施例,本发明还提出一种电动汽车的车载充电器的控制方法。
其中,本发明实施例的车载充电器包括H桥和充电接触器。车载充电器包括H桥和充电接触器,H桥的直流端用于耦合到车辆的动力电池,交流端用于通过充电接触器耦合到交流电源。所述充电接触器的第一端耦合到交流电源的一端,充电接触器的第二端耦合到H桥的一个交流端。
如图3所示,本发明实施例的电动汽车的车载充电器的控制方法,包括以下步骤:
S1,对耦合到车载充电器的交流电源(亦即电接触器的第一端)进行电压采样以获得第一采样电压,并对H桥的交流端(亦即电接触器的第二端)电压进行采样以获得第二采样电压。
S2,当交流电源耦合到车载充电器时,控制H桥进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同。
参照图1,H桥可包括第一开关管、第二开关管、第三开关管和第四开关管。其中,控制H桥进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同可具体包括:当第二采样电压大于0时,控制第一开关管处于一直导通状态、并控制第二开关管处于一直关断状态、以及控制第三开关管和第四开关管交替互补导通和关断;当第二采样电压小于0时控制第三开关管处于一直导通状态、并控制第四开关管处于一直关断状态、以及控制第一开关管和第二开关管交替互补导通和关断。
S3,在第二采样电压与第一采样电压的相位同步且幅值相同后,控制充电接触器吸合,并控制H桥进行整流工作以使交流电源对动力电池进行充电。
根据本发明实施例的电动汽车的车载充电器的控制方法,通过对耦合到车载充电器的交流电源进行电压采样以获得第一采样电压,并对H桥的交流端电压进行采样以获得 第二采样电压,当交流电源耦合到车载充电器时,在控制H桥进行逆变工作以使第二采样电压与第一采样电压的相位同步且幅值相同后,再控制充电接触器吸合,并控制H桥进行整流工作以使交流电源对动力电池进行充电。由此,不仅能够实现对充电电路的保护,还能够大大简化车载充电器的结构,从而能够降低车载充电器的成本,并提高车载充电器的可靠性。
在对各个实施例的描述中,涉及到“耦合”一词。耦合表示两个本来分开的电路之间或一个电路的两个本来相互分开的部分之间的交链,耦合可以是直接的也可以间接的。“耦合”可使能量或者信号从一个电路传送到另一个电路,或由电路的一个部分传送到另一部分。因此,本申请中的“耦合”将包括但不限于物理上的电连接和信号传输形式的通信链接。具体地,对两个等价的二端口网络而言,两个二端口网络的端口之间的耦合,可以是第一二端口网络的一侧的两个端子与第二二端口网络的一侧的两个端子分别电连接。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性 表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种电动汽车的车载充电器,其特征在于,包括:
    充电接触器,所述充电接触器的第一端用于耦合到交流电源的第一端;
    H桥,所述H桥包括第一交流端、第二交流端、第一直流端和第二直流端,所述第一直流端和所述第二直流端用于耦合到动力电池,所述第一交流端用于耦合到所述充电接触器的第二端,所述第二交流端用于耦合到所述交流电源的第二端;
    第一电压采样模块,所述第一电压采样模块用于对所述充电接触器第一端的电压进行采样以获得第一采样电压;
    第二电压采样模块,所述第二电压采样模块用于对所述充电接触器的第二端的电压进行采样以获得第二采样电压;
    控制模块,所述控制模块用于在所述交流电源耦合到所述车载充电器时控制所述H桥进行逆变工作以使所述第二采样电压与所述第一采样电压的相位同步且幅值相同后,再控制所述充电接触器吸合,并控制所述H桥进行整流工作以使所述交流电源对所述动力电池进行充电。
  2. 根据权利要求1所述的车载充电器,其特征在于,所述H桥包括:
    第一开关管和第二开关管,所述第一开关管与所述第二开关管构成所述H桥的第一桥臂,所述第一开关管与所述第二开关管之间的节点通过第一电感与所述充电接触器的第二端相连;
    第三开关管和第四开关管,所述第三开关管与所述第四开关管构成所述H桥的第二桥臂,所述第三开关管与所述第四开关管之间的节点通过第二电感与所述交流电源的第二端相连,所述第二桥臂与所述第一桥臂并联。
  3. 根据权利要求2所述的车载充电器,其特征在于,所述第一开关管至所述第四开关管为IGBT或MOSFET。
  4. 根据权利要求1-3任一项所述的车载充电器,其特征在于,还包括:
    第一电容,所述第一电容耦合在所述充电接触器的第二端与所述交流电源的第二端之间;
    第二电容,所述第二电容耦合在所述H桥的第一直流端与第二直流端之间。
  5. 根据权利要求1-4任一项所述的车载充电器,其特征在于,所述第一电压采样模块与所述充电接触器的第一端相耦合,所述第二电压采样模块与所述充电接触器的第二端相耦合。
  6. 根据权利要求2-5中任一项所述的车载充电器,其特征在于,所述控制模块进一步用于:
    在所述第二采样电压大于0时控制所述第一开关管处于一直开通状态,控制所述第二开关管处于一直关断状态,以及控制所述第三开关管和所述第四开关管交替互补开通和关断;
    在所述第二采样电压小于0时控制所述第三开关管处于一直开通状态,控制所述第四开关管处于一直关断状态,以及控制所述第一开关管和所述第二开关管交替互补开通和关断,以使所述第二采样电压与所述第一采样电压的相位同步且幅值相同。
  7. 一种电动汽车,其特征在于,包括根据权利要求1-6中任一项所述的车载充电器。
  8. 一种电动汽车的车载充电器的控制方法,其特征在于,所述车载充电器包括H桥和充电接触器,H桥的直流端用于耦合到车辆的动力电池,交流端用于通过充电接触器耦合到交流电源;所述充电接触器的第一端耦合到交流电源的一端,充电接触器的第二端耦合到H桥的一个交流端,所述控制方法包括:
    对所述充电接触器的第一端进行电压采样以获得第一采样电压,对所述充电接触器的第二端电压进行采样以获得第二采样电压;
    当所述交流电源耦合到所述车载充电器时,控制所述H桥进行逆变工作以使所述第二采样电压与所述第一采样电压的相位同步且幅值相同;
    在所述第二采样电压与所述第一采样电压的相位同步且幅值相同后,控制所述充电接触器吸合,并控制所述H桥进行整流工作以使所述交流电源对所述动力电池进行充电。
  9. 根据权利要求8所述的车载充电器的控制方法,其特征在于,H桥的第一桥臂包括串联的第一开、第二开关管,二者之间的节点作为一个交流端耦合到充电接触器的第二端;H桥的第二桥臂包括串联的第三、第四开关管,二者之间的节点作为另一个交流端用于耦合到交流电源的第二端,所述第二桥臂与所述第一桥臂并联在H桥的两个直流端之间,其中,控制所述H桥进行逆变工作以使所述第二采样电压与所述第一采样电压的相位同步且幅值相同,包括:
    当所述第二采样电压大于0时,控制所述第一开关管处于一直开通状态、并控制所述第二开关管处于一直关断状态、以及控制所述第三开关管和所述第四开关管交替互补开通和关断;
    当所述第二采样电压小于0时控制所述第三开关管处于一直开通状态、并控制所述第四开关管处于一直关断状态、以及控制所述第一开关管和所述第二开关管交替互补开通和关断。
PCT/CN2017/093202 2016-07-28 2017-07-17 电动汽车、电动汽车的车载充电器及其控制方法 WO2018019147A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/319,994 US20200186051A1 (en) 2016-07-28 2017-07-17 Electric vehicle, car charger for electric vehicle, and control method thereof
EP17833450.4A EP3493356A4 (en) 2016-07-28 2017-07-17 ELECTRIC VEHICLE, VEHICLE INTERNAL CHARGER FOR ELECTRIC VEHICLE AND CONTROL PROCESS THEREFOR
JP2019503985A JP2019525708A (ja) 2016-07-28 2017-07-17 電気車両、電気車両用の自動車充電器、およびその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610617355.4A CN107666171A (zh) 2016-07-28 2016-07-28 电动汽车、电动汽车的车载充电器及其控制方法
CN201610617355.4 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018019147A1 true WO2018019147A1 (zh) 2018-02-01

Family

ID=61015550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093202 WO2018019147A1 (zh) 2016-07-28 2017-07-17 电动汽车、电动汽车的车载充电器及其控制方法

Country Status (5)

Country Link
US (1) US20200186051A1 (zh)
EP (1) EP3493356A4 (zh)
JP (1) JP2019525708A (zh)
CN (1) CN107666171A (zh)
WO (1) WO2018019147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110712561A (zh) * 2019-10-15 2020-01-21 宁波吉利汽车研究开发有限公司 电池管理系统及电动汽车

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110395125A (zh) * 2018-04-20 2019-11-01 比亚迪股份有限公司 车载充电器的自检方法和装置、车载充电器及电动车辆
CN110723005B (zh) * 2018-06-29 2021-09-03 比亚迪股份有限公司 电动汽车的车载充电器及其控制方法、电动汽车
CN110661319A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 电动汽车的车载充电器及其控制方法、电动汽车
CN110661321B (zh) * 2018-06-29 2022-03-15 比亚迪股份有限公司 电动汽车的车载充电器及其控制方法、电动汽车
CN110661323A (zh) * 2018-06-29 2020-01-07 比亚迪股份有限公司 电动汽车的车载充电器及其控制方法、电动汽车
CN110723004B (zh) * 2018-06-29 2021-09-03 比亚迪股份有限公司 电动汽车的车载充电器及其放电控制方法、电动汽车
CN114665707B (zh) * 2020-12-23 2024-06-18 圣邦微电子(北京)股份有限公司 电机驱动电路
CN112721680B (zh) * 2020-12-25 2023-04-18 中国第一汽车股份有限公司 一种电流控制方法、装置、车辆及存储介质
CN114285060A (zh) * 2021-12-28 2022-04-05 苏州汇川控制技术有限公司 混电车辆并网充电方法、设备、装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477128A (en) * 2010-01-22 2011-07-27 Protean Holdings Corp Power source switching arrangement for electric vehicle
JP2012120394A (ja) * 2010-12-03 2012-06-21 Toyota Industries Corp 電源装置
CN103269113A (zh) * 2013-05-02 2013-08-28 深圳市汇川技术股份有限公司 低压电动车驱动控制器及充电方法
CN103296722A (zh) * 2013-05-30 2013-09-11 中国南方电网有限责任公司调峰调频发电公司 应用于h桥级联型电池储能系统相内soc均衡控制方法
CN204835609U (zh) * 2015-07-24 2015-12-02 比亚迪股份有限公司 电动汽车及电动汽车的车载充电器
CN105552972A (zh) * 2014-10-28 2016-05-04 比亚迪股份有限公司 电动汽车的车载充电系统及车载充电系统的控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005804A (zh) * 2009-08-31 2011-04-06 比亚迪股份有限公司 一种车载电池的充放电系统及其控制方法
CN102299643B (zh) * 2011-05-30 2013-12-25 山西太钢不锈钢股份有限公司 一种小容量电压型变频器的充电方法
WO2014186933A1 (en) * 2013-05-20 2014-11-27 Ge Energy Power Conversion Technology Ltd. Input filter pre-charge fed by a medium-voltage grid supply
CN104158423B (zh) * 2014-08-28 2017-10-31 苏州奥曦特电子科技有限公司 高效率直流‑交流逆变器
CN105186646B (zh) * 2015-10-12 2017-06-27 华中科技大学 一种用于动态无线充电的装置及其参数获取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477128A (en) * 2010-01-22 2011-07-27 Protean Holdings Corp Power source switching arrangement for electric vehicle
JP2012120394A (ja) * 2010-12-03 2012-06-21 Toyota Industries Corp 電源装置
CN103269113A (zh) * 2013-05-02 2013-08-28 深圳市汇川技术股份有限公司 低压电动车驱动控制器及充电方法
CN103296722A (zh) * 2013-05-30 2013-09-11 中国南方电网有限责任公司调峰调频发电公司 应用于h桥级联型电池储能系统相内soc均衡控制方法
CN105552972A (zh) * 2014-10-28 2016-05-04 比亚迪股份有限公司 电动汽车的车载充电系统及车载充电系统的控制方法
CN204835609U (zh) * 2015-07-24 2015-12-02 比亚迪股份有限公司 电动汽车及电动汽车的车载充电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493356A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110712561A (zh) * 2019-10-15 2020-01-21 宁波吉利汽车研究开发有限公司 电池管理系统及电动汽车
CN110712561B (zh) * 2019-10-15 2021-06-15 宁波吉利汽车研究开发有限公司 电池管理系统及电动汽车

Also Published As

Publication number Publication date
JP2019525708A (ja) 2019-09-05
EP3493356A1 (en) 2019-06-05
EP3493356A4 (en) 2019-06-19
CN107666171A (zh) 2018-02-06
US20200186051A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2018019147A1 (zh) 电动汽车、电动汽车的车载充电器及其控制方法
WO2020259071A1 (zh) 电池组加热系统及其控制方法
CN102668229B (zh) 电池升温电路和电池升温装置
CN102780242B (zh) 充电装置
US10675991B2 (en) Methods for reconfigurable battery charger control
US8575778B2 (en) Variable voltage converter (VVC) with integrated battery charger
KR102515549B1 (ko) 파워 릴레이 어셈블리(Power Relay Assembly, PRA) 및 파워 릴레이 어셈블리의 제어 방법
US9601812B2 (en) High-voltage contactor switching systems and methods
CN105281552A (zh) 栅极驱动欠压检测
CN103921684A (zh) 电动车辆和用于电动车辆的绝缘状态判定方法
CN106165277A (zh) 逆变器控制装置
US10840712B2 (en) Charging device, charging method and terminal
US10625622B2 (en) Power supply device of vehicle
CN103227610A (zh) 电机控制电路和汽车
CN107284259B (zh) 用于低电压电池系统的直流充电系统及其充电方法
CN107579695B (zh) 能量回馈保护电路及电机控制系统
CN110461641A (zh) 用于车辆的充电电路装置以及用于充电电路装置的方法
JP2014138473A (ja) 電源システムおよびそれを搭載する車両
KR20160066762A (ko) 차량용 배터리 시스템의 전원 단속 장치 및 그 동작 방법
CN107069902A (zh) 用于电池管理系统的供电电路
CN107813731A (zh) 一种电动车用电系统
WO2023050899A1 (zh) 车载充电机和电动汽车
KR20160065818A (ko) 기생 커패시턴스의 전류 소비를 제한하는 트랙션 배터리를 충전하기 위한 시스템 및 방법
JP6638504B2 (ja) インバータ駆動装置
JP2015042013A (ja) 充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017833450

Country of ref document: EP

Effective date: 20190228