WO2018019143A1 - 图像拍摄对位方法和系统 - Google Patents

图像拍摄对位方法和系统 Download PDF

Info

Publication number
WO2018019143A1
WO2018019143A1 PCT/CN2017/093087 CN2017093087W WO2018019143A1 WO 2018019143 A1 WO2018019143 A1 WO 2018019143A1 CN 2017093087 W CN2017093087 W CN 2017093087W WO 2018019143 A1 WO2018019143 A1 WO 2018019143A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sub
area
platform
photographing
Prior art date
Application number
PCT/CN2017/093087
Other languages
English (en)
French (fr)
Inventor
盛司潼
冀高
Original Assignee
广州康昕瑞基因健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州康昕瑞基因健康科技有限公司 filed Critical 广州康昕瑞基因健康科技有限公司
Publication of WO2018019143A1 publication Critical patent/WO2018019143A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00249Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a photographic apparatus, e.g. a photographic printer or a projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/06Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface
    • H04N1/0664Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface with sub-scanning by translational movement of the picture-bearing surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/10Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
    • H04N1/1008Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of the picture-bearing surface

Definitions

  • the present invention relates to the field of gene sequencing, and more particularly to an image capture alignment method and system.
  • the field of gene sequencing usually requires image capture and recognition of the sample. Since the scope of the lens of the camera is much smaller than the area of the sample, the lens can only shoot part of the sample at a time.
  • a plurality of small areas of an observation range of an imaging device are sequentially captured in a continuous step manner, and then image stitching of a plurality of small areas is restored to a sample image. Due to the need to take multiple shots of each small area of the sample, the movement error generated during the movement of the loading platform back and forth makes the images taken multiple times not completely overlap. In addition, the error accumulation of the load platform in different directions is more serious, and it also causes displacement errors in small-area image capture of different rows and affects the quality of sample image mosaic reduction.
  • An image capturing alignment method includes: providing an imaging device, the imaging device including a capturing device for acquiring an image and a loading platform facing the capturing device, the loading platform being movable from the reset point along the X coordinate axis direction and/or Or move along the Y coordinate axis; place the sample on the load platform and move the load platform Having the photographing device step by step scanning the sample to determine a rectangular photographing area in the sample area; dividing the rectangular photographing area into a plurality of sub-areas arranged in a matrix; and moving the loading platform to perform two image capturing on the predetermined sub-area, and The movement error of the load platform when each of the sub-regions of the photographing device is aligned is corrected according to the two image capturing results.
  • the moving load platform performs two image capturing on the predetermined sub-area, and corrects the movement error of the loading platform when each of the sub-regions of the photographing device is aligned according to the two image capturing results, including: moving the load from the reset point a platform, in a first condition, aligning the predetermined sub-region with the photographing device and performing a first image capturing to obtain a first image; moving the loading platform from the reset point, and aligning the photographing device with the predetermined condition under the first condition
  • the sub-area is subjected to secondary image capturing to obtain a second image; and an offset between the first image and the second image is calculated and converted into a movement error of the carrier platform.
  • the method further includes: moving the load platform to capture an image of the sub-area within the photographing area under the second condition.
  • the first condition is that the sample area is illuminated with a light
  • the second condition is autofluorescence of the sample area
  • the third image of the predetermined sub-region is controlled by the photographing device and the movement error of the loading platform is calculated again, including: moving the load platform and correcting the offset, under the first condition
  • the photographing device performs a third image capturing on the predetermined sub-area and obtains a third image; calculates an offset between the first image and the third image; if an offset between the first image and the third image Within a preset threshold range, and the offset between the first image and the third image is smaller than the offset between the first image and the second image, correcting the position of the imaging device when each sub-region is aligned Mobile Coordinates, otherwise the load platform motion error correction is ended.
  • the preset threshold range is 8-800 pixel distances.
  • the movement error of the calibration platform further includes: moving the loading platform in the same direction to sequentially capture images of the plurality of sub-regions in the photographing area.
  • the moving the platform in the same direction to sequentially capture images of the plurality of sub-regions in the photographing area comprises: stepping the loading platform in the same direction to sequentially perform image capturing on each sub-area of the row; and moving the loading platform to After resetting the X coordinate of the reset point, the workpiece platform is stepped in the same direction, and the image is taken sequentially for each sub-area of another line. This step is repeated to complete the image capturing of the entire rectangular photographing area.
  • the method before performing image capturing for each sub-area of a row, the method further includes: moving the carrier platform from the X coordinate of the reset point to cause the camera to be positioned in a boundary sub-region of the row sub-region.
  • the boundary sub-region is a sub-region closest to the X coordinate of the reset point, and the same direction is the X coordinate axis direction.
  • the boundary sub-region is a sub-region farthest from the X coordinate of the reset point, and the same direction is the reverse direction of the X coordinate axis.
  • An image capturing alignment system includes: an imaging device including a photographing device that acquires an image and a load platform facing the photographing device, the load platform being movable from the reset point in the X coordinate axis direction and/or along Moving in the Y coordinate axis direction; the photographing area determining module is configured to control the moving load platform to cause the photographing device to step scan the sample located on the loading platform, thereby determining a rectangular photographing area in the sample area; a segmentation module, the photographing region segmentation module is configured to control the segmentation of the rectangular photographing region into a plurality of sub-regions, the plurality of sub-regions comprising a plurality of rows of sub-regions arranged along an X coordinate axis direction; a platform movement correction module, the platform movement correction module For controlling the moving platform to perform two image capturing on the predetermined sub-area, and correcting the pair of shooting devices according to the two image capturing results The movement error of the load platform at each sub-area.
  • the platform movement correction module further includes a movement coordinate correction module for correcting movement coordinates of the cargo platform when each of the sub-regions of the photographing device is aligned.
  • the image capturing alignment system further includes a common photographing module for controlling moving the loading platform in the same direction to sequentially perform image capturing under the second condition for each sub-area of a row.
  • a reset photographing module wherein the reset photographing module is configured to control the X coordinate of the moving load platform to the reset point to be reset, and then move the load platform in the same direction step by step to sequentially perform the second condition on each of the other sub-areas The image is taken until the entire rectangular photo area is captured.
  • the first condition is to illuminate the sample area with a light illumination, the second condition being autofluorescence of the sample area.
  • the reset photographing module is further configured to: before each image sub-area is image-captured, move the load platform from the X coordinate of the reset point so that the photographing device is located in a boundary sub-area of the row sub-area.
  • the boundary sub-region is a sub-region closest to the X coordinate of the reset point, and the same direction is the X coordinate axis direction.
  • the boundary sub-region is a sub-region farthest from the X coordinate of the reset point, and the same direction is the reverse direction of the X coordinate axis.
  • the platform movement correction module further includes a secondary correction module, configured to determine, when the offset is within a preset threshold range, controlling the camera to capture a third image of the predetermined sub-area And calculate the movement error of the load platform again.
  • the secondary correction module further determines that the offset between the first image and the third image is within a preset threshold range, and the offset between the first image and the third image is smaller than the first image with When the offset between the second images is corrected, the movement coordinates of the load platform when each of the sub-regions is aligned by the photographing device is corrected.
  • the image capturing alignment method and system of the present invention performs two image capturing on a predetermined sub-area (alignment reference sub-area) before capturing images in a plurality of sub-areas, and shooting according to two images.
  • the movement error of the loading platform can be corrected, and the displacement error of the platform can be minimized or reduced, resulting in a large deviation between multiple images taken before and after the same sub-area, and the accuracy of subsequent image data processing by gene sequencing is improved.
  • the image capturing alignment method and system of the present invention resets the mobile platform before shooting different sub-regions, and can also eliminate the accumulated error caused by the stepping movement of the loading platform when continuously shooting multiple rows of sub-region images, and optimize all Sub-area image stitching effect.
  • FIG. 1 is a schematic flow chart of a method for image capturing alignment according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing a movement route of a loading platform in the photographing method of FIG. 1.
  • FIG. 3 is a schematic diagram showing the specific flow of the step of correcting the movement error of the loading platform when each of the sub-areas is aligned in FIG. 1 .
  • FIG. 4 is a first image diagram of a feature region having a predetermined sub-region captured in the flow of FIG.
  • FIG. 5 is a schematic diagram of a second image having the same feature area captured for a predetermined sub-area in the flow of FIG.
  • Figure 6 is a schematic illustration of the offset between the first image and the second image shown in Figures 4-5.
  • FIG. 7 is a schematic flow chart of a secondary calibration step further added to the flow of FIG. 3.
  • FIG. 7 is a schematic flow chart of a secondary calibration step further added to the flow of FIG. 3.
  • FIG. 8 is a schematic diagram of the offset between the first image and the third image in the flow of FIG. 7.
  • FIG. 8 is a schematic diagram of the offset between the first image and the third image in the flow of FIG. 7.
  • FIG. 9 is a schematic flow chart of a method for image capturing alignment according to a second embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of sequentially capturing images of multiple rows of sub-regions in a photographing area in FIG. 9.
  • FIG. 10 is a schematic flow chart of sequentially capturing images of multiple rows of sub-regions in a photographing area in FIG. 9.
  • FIG. 11 is a schematic diagram showing the movement route of the loading platform in the shooting process of FIG.
  • FIG. 12 is a schematic view showing another moving route of the loading platform in the shooting process of FIG. 10.
  • FIGS. 13-14 are block diagrams showing an image capturing alignment system according to an embodiment of the present invention.
  • a first embodiment of the present invention provides an image capturing alignment method, which includes steps S11-S14.
  • an imaging device comprising a capturing device for acquiring an image and a loading platform 10 facing the capturing device, the loading platform 10 being movable from the reset point o in the direction of the X coordinate axis and/or along the Y Move in the direction of the coordinate axis.
  • the photographing device includes a lens and a CCD image sensor that acquires an image.
  • step S12 the sample 20 is placed on the loading platform 10, and the loading platform 10 is moved to cause the photographing device to scan the sample 20 step by step to determine a rectangular photographing area 30 in the sample area.
  • the sample 20 is a high-throughput genetic sequencing sample, and the sample 20 includes a plurality of magnetic beads to be identified, and the high-pass is selected because the magnetic beads are small in size and difficult to identify near the edges.
  • a rectangular area near the center of the quantized sample is taken as a rectangular photographing area 30 to accurately recognize the information of the image corresponding to the rectangular photographing area 30.
  • the reset point is located outside the photographing area 30.
  • step S13 the rectangular photographing area 30 is divided into a plurality of sub-areas 31 arranged in a matrix, and the matrix sub-areas 31 are arranged in a matrix including a plurality of sub-areas arranged in the X coordinate axis direction.
  • the focusing range of the imaging device is much smaller than the area of the standard 20, and the imaging of the genetically sequenced sample is performed with a rectangular photographing area 30 having a better pre-selected imaging effect.
  • the preselected rectangular photographing area 30 is divided into a plurality of small areas 31 of the focus range of the adaptive imaging device, and then the moving imaging apparatus respectively photographs each of the small areas 31, and finally combines the images of the entire rectangular photographing area 30.
  • the plurality of sub-regions 31 are arranged in a matrix and include a plurality of rows of sub-regions arranged in the X-axis direction.
  • Step S14 the moving load platform performs two image capturing on the predetermined sub-area, and corrects the movement error of the loading platform when each of the sub-areas is aligned by the shooting device according to the two image capturing results.
  • step S14 further includes steps S141-S144 shown in FIG.
  • a predetermined sub-area is defined as a reference reference sub-area.
  • the sub-area A1 closest to the reset point is defined as a reference reference sub-area.
  • Step S142 moving the loading platform from the reset point, and under the first condition, the photographing device is aligned with the predetermined sub-area and the first image is taken to obtain the first image.
  • the carrier platform 10 is moved from the reset point o in the Y-axis direction, such as the line Y1 in FIG. 2, so that the Y coordinate of the photographing device and the first row sub-area A1-A5 (0, Y1) Alignment. Then, the carrier platform 10 is moved along the X coordinate, such as the line X1 in FIG. 2, that is, moving the loading platform 10 from the X coordinate (0, Y1) of the reset point, so that the camera pair is located in the first row sub-area A1-A5.
  • the right boundary sub-area A1 performs the first shooting to obtain the first image.
  • the right-edge sub-area A1 in the present embodiment is the sub-area 31 whose first sub-area is the closest to the X-coordinate of the reset point.
  • the first condition is to illuminate the sample area with a light.
  • Step S143 moving the loading platform from the reset point, and under the first condition, the photographing device is aligned with the predetermined sub-area and performing secondary image capturing to obtain a second image.
  • the carrier platform 10 is again moved from the reset point o in the Y-axis direction, such as the line Y1 in FIG. 2, so that the Y coordinate of the photographing device and the first row sub-area A1-A5 (0, Y1) Alignment.
  • the carrier platform 10 is then moved along the X coordinate, as in line X1 of Figure 2, starting from the X coordinate (0, Y1) of the reset point.
  • the loading platform 10 is moved such that the photographing device performs a second shot on the right border sub-area A1 located in the first row sub-area A1-A5 to obtain a second image.
  • the first condition is to illuminate the sample area with a light.
  • step S144 the offset between the first image and the second image is calculated and converted into a movement error of the carrier platform.
  • the first relative coordinates of the feature region 42 within the first image shown in Figure 4 relative to the first image corner 41 are calculated. Identifying the same feature area 52 in the second image shown in FIG. 5, and calculating the second relative coordinate of the same feature area 52 with respect to the second image corresponding corner 51, and then defining the difference between the first and second relative coordinates as the first.
  • the offset between an image and the second image converts the offset into a movement error of the carrier platform based on the image and sample magnification relationship k.
  • the feature area is the same standard part that is clearly identified by the image recognition method from the first image and the second image. In an alternative embodiment, the feature area may also be multiple.
  • Step S145 correcting the movement coordinates of the loading platform when each of the sub-areas is aligned by the photographing device.
  • the loading platform moves from the reset point o in the X-axis and Y-axis directions and corrects the movement error, so that the imaging device sequentially aligns each sub-region and performs image capturing.
  • the coordinates of each sub-area are (x, y), and the offset between the first image and the second image is (w 1 , h 1 ) as shown in FIG. 6, and the movement error is corrected.
  • the coordinates of each subsequent sub-area are (x-kw 1 , y-kh 1 ).
  • step S144 further includes a secondary correction step, and the secondary correction step determines that the offset amount ⁇ 1 is within a preset threshold range, and moves the load platform to correct the offset and then controls the shooting.
  • the device takes a third image of the predetermined sub-area and again calculates a movement error of the payload platform, which includes S146-S150.
  • the step S146 is configured to determine whether the generated offset ⁇ 1 in step S144 is within a preset threshold range, and if the offset ⁇ 1 is smaller than the first threshold or greater than the second preset threshold, The beam process stops the carrier platform from correcting the movement error. If the offset ⁇ 1 is within the preset threshold range, that is, the second preset value ⁇ the offset ⁇ 1 ⁇ the preset threshold, step S147 is performed.
  • the step S147 is used to control the moving platform to correct the offset ⁇ 1, for example, moving the platform to the coordinates of the predetermined sub-area after correction.
  • the original coordinates of the predetermined sub-area are For (x 0 , y 0 )
  • the offset between the first image and the second image is (w 1 , h 1 ) as shown in FIG. 6, and the coordinates of the predetermined sub-region after the offset ⁇ 1 is corrected are ( x 0 -kw 1 , y 0 -kh 1 )
  • the photographing device is aligned with the predetermined sub-region and a third image is taken to obtain a third image.
  • the step S148 is used to calculate the offset ⁇ 2 between the first image and the third image and convert it into a movement error of the carrier platform.
  • the feature area 62 in the third image is identified, and the third relative coordinate of the feature area 62 is calculated, and then the difference between the first and third relative coordinates is defined as the first
  • the offset between the image and the third image converts the offset into a movement error of the carrier platform based on the image and sample magnification relationship k.
  • the feature area is the same standard part that is clearly identified by the image recognition method from the first image and the third image. In an alternative embodiment, the feature area may also be plural.
  • the current coordinate of the predetermined sub-region 62 is (x 0 -kw 1 , y 0 -kh 1 ), and the offset ⁇ 2 between the first image and the third image is as shown in FIG. 8 (w 2 , h 2 ), the coordinates of the predetermined sub-area after correcting the movement error are (x 0 -kw 2 -kw 1 , y 0 -kh 2 -kh 1 ).
  • step S149 is used to determine whether the generated offset ⁇ 2 is in the preset threshold range in step S148. If the offset ⁇ 2 is smaller than the first threshold or greater than the second preset threshold, the process ends. Stop the load platform to correct the movement error. If the offset ⁇ 2 is within the preset threshold range, that is, the second preset value ⁇ the offset ⁇ 1 ⁇ the preset threshold, step S150 is performed.
  • the step S150 is used to further determine whether the offset ⁇ 2 is smaller than the offset ⁇ 1. If the offset ⁇ 2 is smaller than the offset ⁇ 1, step S145 is performed, and the offsets are corrected according to the offsets ⁇ 1 and ⁇ 2. The movement coordinates of the loading platform when the camera aligns each sub-area. If the offset ⁇ 2 is greater than or equal to the offset ⁇ 1, the flow is terminated, and the load platform correction movement error is stopped or ended.
  • the offset is determined by using an absolute value, where the first preset threshold may be 6-10 pixel distances, and the second preset threshold may be 700-900 pixel distance.
  • the first preset threshold is 8 pixel distances, and the second preset threshold may be 800 pixel distances, and the preset threshold ranges from 8 to 800 pixel distances.
  • an error alarm prompt is issued before ending the process, and the error prompt may be one or more of an audible alarm, a text alarm, or a pop-up alarm.
  • a second embodiment of the present invention provides an image capturing alignment method, which is different from the first embodiment in that it further includes step S15: moving the loading platform in the same direction to sequentially shoot a plurality of sub-regions in the photographing region. image.
  • the step S15 includes steps S151-S152.
  • Step S151 stepping the moving platform in the same direction to sequentially perform image capturing under the second condition for each sub-area of a row.
  • the loading platform 10 is first moved from the reset point o in the Y-axis direction, such as the line Y1 in FIG. 2, so that the Y coordinate of the imaging device and the first row sub-area A1-A5 ( 0, Y1) aligned.
  • the loading platform 10 is moved along the X coordinate, as shown by the line X1 in FIG. 11, that is, moving the loading platform 10 from the X coordinate (0, Y1) of the reset point, so that the camera pair is located in the first row sub-area A1-A5.
  • the left boundary sub-area A5 in the present embodiment is the sub-area 31 which is the farthest from the X coordinate of the reset point.
  • the carrier platform 10 is stepwise moved, as shown by line P1 in FIG. 11, and image images are sequentially taken for each sub-area A5-A1 of the first row.
  • Step S152 after the X coordinate of the moving platform to the reset point is reset, the workpiece platform is stepped again in the same direction, and then the image of the second condition is performed for each sub-area of another row, and the entire rectangular photographing area is completed by repeating this step. Image taken.
  • step S151 the X coordinate (0, Y1) of the moving platform 10 to the reset point is reset from the first line right boundary sub-area A1 (the sub-area closest to the X coordinate of the reset point). , as shown by line R1 in FIG.
  • the load platform 10 is moved in the Y-axis direction from the Y coordinate (0, Y1) of the first row A1-A5, as shown by line Y2 in FIG. 11, so that the Y coordinate of the photographing device and the second row sub-region B1-AB (0) , Y1+Y2) aligned.
  • the left boundary sub-region B5 of the region B1-AB is the sub-region farthest from the X coordinate of the reset point.
  • the carrier platform 10 is stepwise moved, as shown by line P2 in FIG. 11, and image images are sequentially taken for each sub-region B5-B1 of the second row.
  • Step S152 sequentially performs image capturing on each sub-area of the third row C1-C5 and the fourth row D1-D5 to complete image capturing of the entire rectangular photographing area.
  • the present embodiment may also synthesize the image of each sub-area into an image of the entire rectangular photographing area 30 by image processing.
  • the second condition is autofluorescence of the sample region.
  • the same direction is the X coordinate axis direction, and at this time, image shooting is performed on each sub-area of each line in order from the right border sub-area A1-D1, such as lines P1 and P2. Show.
  • the X coordinate (0, Y1) of the moving platform 10 to the reset point is then reset from the left boundary sub-area A5-D5, as indicated by lines R1, R2.
  • a third embodiment of the present invention provides an image capturing alignment system 100.
  • the image capturing alignment system 100 includes an imaging device 110, a photographing region determining module 120, a photographing region segmentation module 130, and a platform movement correction module. 160.
  • the module or system may be an integrated circuit that performs a specific function, or may be stored in A software program that performs a specific function is executed in the memory and through the processor.
  • the imaging device 110 includes a photographing device that acquires an image and a load platform 10 that faces the photographing device.
  • the load platform 10 can move from the reset point o in the X coordinate axis direction and/or along Y. Move in the direction of the coordinate axis.
  • the photographing device includes a lens and a CCD image sensor that acquires an image.
  • the photographing area determining module 120 is configured to control the moving load platform 10 to cause the photographing apparatus to step scan the sample 20 located on the loading platform 10, thereby determining a rectangular photographing area 30 in the sample area.
  • the sample 20 is a high-throughput genetic sequencing sample, and the sample 20 includes a plurality of magnetic beads to be identified, and the high-pass is selected because the magnetic beads are small in size and difficult to identify near the edges.
  • a rectangular area near the center of the quantized sample is taken as a rectangular photographing area 30 to accurately recognize the information of the image corresponding to the rectangular photographing area 30.
  • the reset point is located outside the photographing area 30.
  • the photographing region segmentation module 130 is configured to control the division of the rectangular photographing region 30 into a plurality of sub-regions 31, and the plurality of sub-regions 31 include a plurality of rows of sub-regions arranged along the X coordinate axis direction.
  • the focusing range of the imaging device is much smaller than the area of the standard 20, and the imaging of the genetically sequenced sample is performed with a rectangular photographing area 30 having a better pre-selected imaging effect.
  • the pre-selected rectangular photographing area 30 is divided into a plurality of small areas 31 of the focusing range of the adaptive imaging device, and then the moving imaging device respectively photographs each small area 31, and finally synthesizes the entire rectangular photographing area. 30 images.
  • the plurality of sub-regions 31 are arranged in a matrix.
  • the platform movement correction module 160 is configured to control the moving load platform to perform two image capturing on the predetermined sub-area, and correct the movement error of the loading platform when each of the sub-areas is aligned by the shooting device according to the two image capturing results.
  • the common photographing module 140 is configured to control the stepwise moving of the load platform in the same direction to sequentially perform image capturing under the second condition for each sub-area of a row.
  • the reset shot The photographing module 150 is configured to control the X coordinate of the moving load platform to the reset point to be reset, and then move the loading platform in the same direction step by step to sequentially perform image shooting under the second condition for each of the other sub-areas until the entire rectangle is photographed. Image capture of the area.
  • the second condition is autofluorescence of the sample region.
  • the second condition is autofluorescence of the sample region.
  • the carrier platform 10 is first moved from the reset point o in the Y-axis direction, such as the line Y1 in FIG. 12, so that the Y coordinate of the photographing device and the first row sub-area A1-A5 (0, Y1) Alignment.
  • the carrier platform 10 is moved along the X coordinate, such as the line X1 in FIG. 12, that is, moving the loading platform 10 from the X coordinate (0, Y1) of the reset point, so that the camera pair is located in the first row sub-area A1-A5.
  • the right boundary sub-area A1 in the present embodiment is the sub-area 31 closest to the X coordinate of the reset point.
  • the load platform 10 is stepwise moved in the same direction, that is, the X coordinate axis direction, as shown by line P1 in FIG. 12, and image shooting is sequentially performed for each of the sub-areas A1-A5 of the first line.
  • the X coordinate (0, Y1) of the moving load platform 10 to the reset point is reset, as shown by line R1 in FIG. .
  • the load platform 10 is moved in the Y-axis direction from the Y coordinate (0, Y1) of the first row A1-A5, as shown by the line Y2 in FIG. 12, so that the Y coordinate of the photographing device and the second row sub-region B1-AB (0) , Y1+Y2) aligned.
  • the right boundary sub-region B1 of the region B1-AB is the sub-region 31 closest to the X coordinate of the reset point.
  • the load platform 10 is stepwise moved in the same direction, that is, the X coordinate axis direction, as shown by line P2 in FIG. 12, and image shooting is sequentially performed for each of the sub-regions B1-B5 of the second row.
  • Image capturing of each sub-area of the third line C1-C5 and the fourth line D1-D5 is performed in sequence to complete image capturing of the entire rectangular photographing area. Then, the entire rectangular photographing area 30 is synthesized by image processing.
  • the same direction is the reverse direction of the X coordinate axis, and at this time, image shooting is performed on each sub-area of each line in order from the left boundary sub-area A5-D5 of each line, such as lines P1 and P2. Shown.
  • the X coordinate (0, Y1) of the moving platform 10 to the reset point is then reset from the left boundary sub-area A1-D1, as indicated by lines R1, R2.
  • the platform movement correction module 160 includes a reference sub-region definition module 161, a first image capture module 162, a second image capture module 163, a movement error calculation module 164, and a platform movement correction module. 165 and secondary correction module 166.
  • the reference sub-area definition module 161 is configured to define a predetermined sub-area as a reference reference sub-area.
  • the sub-area A1 that is closest to the reset point is defined as a reference reference sub-area.
  • the first image capturing module 162 is configured to control moving the loading platform from the reset point. Under the first condition, the capturing device is aligned with the predetermined sub-region and the first image capturing is performed to obtain the first image.
  • the carrier platform 10 is first moved from the reset point o in the Y-axis direction, such as the line Y1 in FIG. 2, so that the Y coordinate of the photographing device and the first row sub-area A1-A5 (0, Y1) Alignment. Then, the carrier platform 10 is moved along the X coordinate, such as the line X1 in FIG.
  • the right boundary sub-area A1 performs the first shooting to obtain the first image.
  • the right-edge sub-area A1 in the present embodiment is the sub-area 31 whose first sub-area is the closest to the X-coordinate of the reset point.
  • the second image capturing module 163 is configured to control moving the loading platform from the reset point. Under the first condition, the capturing device aligns the predetermined sub-region and performs secondary image capturing to obtain a second image.
  • the carrier platform 10 is again moved from the reset point o in the Y-axis direction, such as the line Y1 in FIG. 2, so that the Y coordinate of the photographing device and the first row sub-area A1-A5 (0, Y1) Alignment. Then, the carrier platform 10 is moved along the X coordinate, as shown by the line X1 in FIG. 2, that is, moving the load from the X coordinate (0, Y1) of the reset point.
  • the platform 10 causes the photographing device to photograph the right border sub-area A1 located in the first row sub-area A1-A5 to obtain a second image.
  • the first condition is to illuminate the sample area with a light.
  • the movement error calculation module 164 is configured to calculate an offset between the first image and the second image and convert it into a movement error of the load platform.
  • the first relative coordinates of the feature region 42 in the first image shown in FIG. 4 with respect to the first image corner 41 are calculated, the same feature region 52 in the second image of FIG. 5 is identified, and the same feature region is calculated.
  • 52 is opposite to the second relative coordinate of the second image corresponding to the corner 51, and then defines the difference between the first and second relative coordinates as the offset between the first image and the second image, and enlarges the proportional relationship k according to the image and the sample.
  • the offset is converted to the movement error of the load platform.
  • the feature area is the same standard part that is clearly identified by the image recognition method from the first image and the second image. In an alternative embodiment, the feature area may also be multiple.
  • the moving coordinate correction module 165 is configured to correct the movement coordinates of the load platform when each of the sub-regions of the photographing device is aligned.
  • the loading platform moves from the reset point o in the X-axis and Y-axis directions and corrects the movement error, so that the imaging device sequentially aligns each sub-region and performs image capturing.
  • the coordinates of each sub-area are (x, y), and the offset between the first image and the second image is (w, h) as shown in FIG. 6, and each motion error is corrected.
  • the coordinates of the sub-areas are (x-kw, y-kh).
  • the secondary correction module 166 is configured to determine that when the offset is within a preset threshold range, the camera is controlled to capture a third image of the predetermined sub-region and calculate a movement error of the load platform again. When the offset between the first image and the third image is within a preset threshold range, and the offset between the first image and the third image is less than an offset between the first image and the second image And correcting the movement coordinates of the loading platform when each of the sub-areas is aligned by the photographing device.
  • the movement error calculation module 164 calculates whether the generated offset ⁇ 1 exceeds a preset threshold range, and if the preset threshold range is exceeded, the movement coordinate correction module 165 ends the flow and stops the movement of the platform. Error correction. If within the preset threshold range, move the load platform to The offset amount ⁇ 1 is corrected, and the first sub-region is again positioned by the photographing device and the third image is captured to obtain a third image. Then calculating an offset ⁇ 2 between the first image and the third image; then determining whether the offset ⁇ 2 exceeds a preset threshold range, and if the preset threshold range is exceeded, the moving coordinate correction module 165 ends the flow, stops loading Object platform movement error correction.
  • the offset ⁇ 2 is within the preset threshold range, it is further determined whether the offset ⁇ 2 is smaller than the offset ⁇ 1, and if the offset ⁇ 2 is smaller than the offset ⁇ 1, the alignment of the camera is corrected according to the offsets ⁇ 1 and ⁇ 2.
  • the preset threshold ranges from 8 to 800 pixels.
  • a detailed description of the secondary correction module 166 can also be seen in the aforementioned steps S144-S150.
  • the image capturing alignment method and system of the present invention performs two image capturing on a predetermined sub-area (alignment reference sub-area) before capturing images in a plurality of sub-areas, and shooting according to two images.
  • the movement error of the loading platform can be corrected, and the displacement error of the platform can be minimized or reduced, resulting in a large deviation between multiple images taken before and after the same sub-area, and the accuracy of subsequent image data processing by gene sequencing is improved.
  • the present invention can also control the camera to capture the third image of the predetermined sub-area and calculate the movement error of the carrier platform again, further preventing excessive correction of the movement error.
  • the image capturing alignment method and system of the present invention resets the mobile platform before shooting different sub-regions, and can also eliminate the accumulated error caused by the stepping movement of the loading platform when continuously shooting multiple rows of sub-region images, and optimize all Sub-area image stitching effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Studio Devices (AREA)
  • Microscoopes, Condenser (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种图像拍摄对位方法和系统,所述方法包括:提供一成像装置,所述成像装置包括获取图像的拍摄装置以及正对拍摄装置的载物平台,载物平台可从复位点开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动;放置样本于载物平台上,移动载物平台使拍摄装置步进扫描样本,以确定样本区域内一矩形拍照区域;分割所述矩形拍照区域为多个呈矩阵排列的子区域;以及移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差。本发明的图像拍摄对位方法和系统可以消除图像拍摄时载物平台的移动误差。

Description

图像拍摄对位方法和系统 技术领域
本发明涉及基因测序领域,更具体地说,本发明涉及一种图像拍摄对位方法和系统。
背景技术
基因测序领域通常需要对样本进行图像拍摄和识别,由于拍摄装置的镜头观测范围远小于样本的面积,因此镜头每次只能对样本的局部进行拍摄。现有技术通常采用连续步进的方式依次拍摄适配成像装置的观测范围的多个小区域,然后将多个小区域的图像拼接还原为样本图像。由于需要对样本每个小区域进行多次拍摄,载物平台来回移动的过程中产生的移动误差使得多次拍摄的图像不能完全重叠。另外,载物平台在不同方向的误差累积更为严重,还会导致不同行的小区域图像拍摄出现位移误差进而影响样本图像拼接还原的质量。
发明内容
本发明的目的在于提供一种图像拍摄对位方法和系统,旨在解决现有技术图像拍时载物平台移动误差的问题。
一种图像拍摄对位方法包括:提供一成像装置,所述成像装置包括获取图像的拍摄装置以及正对拍摄装置的载物平台,载物平台可从复位点开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动;放置样本于载物平台上,移动载物平台 使拍摄装置步进扫描样本,以确定样本区域内一矩形拍照区域;分割所述矩形拍照区域为多个呈矩阵排列的子区域;以及移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差。
作为改进,所述移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差包括:从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行第一次图像拍摄,获得第一图像;从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行二次图像拍摄,获得第二图像;以及计算第一图像和第二图像之间的偏移量并换算为载物平台的移动误差。
作为改进,校正平台的移动误差后进一步包括:第二条件下移动载物平台对拍照区域内的子区域拍摄图像。
作为改进,所述第一条件为使用灯光照亮样本区域,所述第二条件为样本区域自发荧光
作为改进,进一步包括当所述偏移量在预设阈值范围内时候,移动载物平台以校正偏移量后控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差。
作为改进,移动载物平台以校正偏移量后控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差包括:移动载物平台并校正偏移量,第一条件下使拍摄装置对位所述预定子区域进行第三次图像拍摄并获得第三图像;计算第一图像和第三图像之间的偏移量;如果第一图像和第三图像之间的偏移量在预设阈值范围内,且第一图像和第三图像之间的偏移量小于第一图像和第二图像之间的偏移量,则校正拍摄装置对位每个子区域时载物平台的移动 坐标,否则结束载物平台移动误差校正。
作为改进,所述预设阈值范围为8-800像素距离。
作为改进,校正平台的移动误差后进一步包括:相同方向移动载物平台对拍照区域内的多行子区域依次拍摄图像。
作为改进,所述相同方向移动载物平台对拍照区域内的多行子区域依次拍摄图像包括:沿相同方向步进移动载物平台依次对一行每个子区域进行图像拍摄;以及移动载物平台至复位点的X坐标进行复位后沿相同方向步进移动载物平台依次对另一行每个子区域进行图像拍摄,重复本步骤完成整个矩形拍照区域的图像拍摄。
作为改进,对一行每个子区域进行图像拍摄之前进一步包括:从复位点的X坐标移动载物平台使拍摄装置对位于该行子区域的边界子区域。
作为改进,所述边界子区域为距离复位点的X坐标最近的子区域,所述相同方向为X坐标轴方向。
作为改进,所述边界子区域为距离复位点的X坐标最远的子区域,所述相同方向为X坐标轴反方向。
一种图像拍摄对位系统包括:成像装置,所述成像装置包括获取图像的拍摄装置以及正对拍摄装置的载物平台,载物平台可从复位点开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动;拍照区域确定模块,所述拍照区域确定模块用于控制移动载物平台使拍摄装置步进扫描位于载物平台上的样本,进而确定样本区域内一矩形拍照区域;拍照区域分割模块,所述拍照区域分割模块用于控制分割所述矩形拍照区域为多个子区域,多个子区域包括沿X坐标轴方向排列的多行子区域;平台移动校正模块,所述平台移动校正模块用于控制移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对 位每个子区域时载物平台的移动误差。
作为改进,所述平台移动校正模块进一步包括移动坐标校正模块,用于校正拍摄装置对位每个子区域时载物平台的移动坐标。
作为改进,所述的图像拍摄对位系统,进一步包括普通拍照模块,所述普通拍照模块用于控制沿相同方向步进移动载物平台依次对一行每个子区域进行在第二条件下的图像拍摄;以及复位拍照模块,所述复位拍照模块用于控制移动载物平台至复位点的X坐标进行复位后沿相同方向步进移动载物平台依次对另外多行每个子区域进行第二条件下的图像拍摄,直到整个矩形拍照区域的图像拍摄。
作为改进,所述第一条件为使用灯光照亮样本区域,所述第二条件为样本区域自发荧光。
作为改进,所述复位拍照模块进一步用于控制:对每一行子区域进行图像拍摄前,从复位点的X坐标移动载物平台使拍摄装置对位于该行子区域的边界子区域。
作为改进,所述边界子区域为距离复位点的X坐标最近的子区域,所述相同方向为X坐标轴方向。
作为改进,所述边界子区域为距离复位点的X坐标最远的子区域,所述相同方向为X坐标轴反方向。
作为改进,所述平台移动校正模块进一步包括二次校正模块,所述二次校正模块用于判断当所述偏移量在预设阈值范围内时,控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差。
作为改进,所述二次校正模块进一步判断当第一图像和第三图像之间的偏移量在预设阈值范围内,且第一图像和第三图像之间的偏移量小于第一图像和 第二图像之间的偏移量时,校正拍摄装置对位每个子区域时载物平台的移动坐标。
相对于现有技术,本发明的图像拍摄对位方法和系统在对多个子区域正式拍摄图像之前,先对预定子区域(对位参考子区域)进行两次图像拍摄,并根据两次图像拍摄结果校正载物平台的移动误差,可以最大限度消除或减少平台移动误差导致相同子区域前后拍摄的多幅图像之间发生较大的偏移,提高基因测序后续图像数据处理的准确性。进一步地,本发明图像拍摄对位方法和系统在对不同行子区域拍摄之前对移动平台进行复位,还可以消除连续拍摄多行子区域图像时载物平台步进移动产生的累积误差,优化所有子区域图像拼接的效果。
附图说明
图1为本发明第一实施方式图像拍摄对位方法的流程示意图。
图2为图1拍摄方法中载物平台移动路线示意图。
图3为图1中校正拍摄装置对位每个子区域时载物平台的移动误差步骤的具体流程示意图。
图4为图3流程中对预定子区域拍摄的具有特征区域的第一图像示意图。
图5为图3流程中对预定子区域拍摄的具有相同特征区域的第二图像的示意图。图6为图4-5所示第一图像和第二图像之间的偏移量示意图。
图7为图3流程进一步增加的二次校正步骤流程示意图。
图8为图7流程中第一图像和第三图像之间的偏移量示意图。
图9为本发明第二实施方式图像拍摄对位方法的流程示意图。
图10为图9中对拍照区域内的多行子区域依次拍摄图像的具体流程示意图。
图11为图10拍摄流程中载物平台移动路线示意图。
图12为图10拍摄流程中载物平台另一移动路线示意图。
图13-14为本发明一实施方式图像拍摄对位系统的方框示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。
请参考图1-图2,本发明第一实施方式提供一种图像拍摄对位方法,其包括步骤S11-S14。
步骤S11,提供一成像装置,所述成像装置包括获取图像的拍摄装置以及正对拍摄装置的载物平台10,载物平台10可从复位点o开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动。本实施方式中,拍摄装置包括镜头和获取图像的CCD图像传感器。
步骤S12,放置样本20于载物平台10上,移动载物平台10使拍摄装置步进扫描样本20,以确定样本区域内一矩形拍照区域30。一实施方式中,所述样本20为高通量基因测序样本,所述样本20包括多个待识别磁珠,由于磁珠体积较小且在边缘附近有不易识别的情况,因此选定高通量基因测序样本的中心附近矩形区域作为矩形拍照区域30,以便准确识别矩形拍照区域30对应图像的信息。本实施中,所述复位点位于拍照区域30之外。
步骤S13,分割所述矩形拍照区域30为多个呈矩阵排列的子区域31,呈矩阵排列子区域31包括沿X坐标轴方向排列的多行子区域。
一实施方式中,拍摄装置的聚焦范围远小于标样20的面积,对基因测序样本的拍摄以预先选择的成像效果较好的矩形拍照区域30进行。实际拍摄时,将 预先选好的矩形拍照区域30分割为多个适配成像装置的聚焦范围的小区域31,然后移动成像装置分别对每个小区域31进行拍摄,最后合成将整个矩形拍照区域30的图像。本实施方式中,多个子区域31呈矩阵排列且包括沿X坐标轴方向排列的多行子区域。
步骤S14,移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差。本实施方式中,步骤S14进一步包括图3所示的步骤S141-S144。
步骤S141,将一预定子区域定义为对位参考子区域,本实施方式中定义距离复位点最近的子区域A1为对位参考子区域。
步骤S142,从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行第一次图像拍摄,获得第一图像。
一实施方式中,请继续参考图2,从复位点o沿Y轴方向移动载物平台10,如图2中线路Y1,使拍摄装置和第一行子区域A1-A5的Y坐标(0,Y1)对齐。然后沿X坐标移动载物平台10,如图2中线路X1,即从复位点的X坐标(0,Y1)开始移动载物平台10,使拍摄装置对位于该第一行子区域A1-A5的右边界子区域A1进行第一次拍摄,以获得第一图像,本实施方式所述右边界子区域A1作为预定子区域为第一行距离复位点的X坐标最近的子区域31。较佳实施方式中,所述第一条件为使用灯光照亮样本区域。
步骤S143,从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行二次图像拍摄,获得第二图像。
一实施方式中,请参考图2,再次从复位点o沿Y轴方向移动载物平台10,如图2中线路Y1,使拍摄装置和第一行子区域A1-A5的Y坐标(0,Y1)对齐。然后沿X坐标移动载物平台10,如图2中线路X1,即从复位点的X坐标(0,Y1)开始 移动载物平台10,使拍摄装置对位于该第一行子区域A1-A5的右边界子区域A1进行第二次拍摄,以获得第二图像。较佳实施方式中,所述第一条件为使用灯光照亮样本区域。
步骤S144,计算第一图像和第二图像之间的偏移量并换算为载物平台的移动误差。
参考图4-5,计算图4所示的第一图像内的特征区域42相对第一图像角落41的第一相对坐标。识别图5所示的第二图像内的相同特征区域52,并计算相同特征区域52相对第二图像对应角落51的第二相对坐标,然后将第一、第二相对坐标的差值定义为第一图像和第二图像之间的偏移量,根据图像和样本放大比例关系k将偏移量换算为载物平台的移动误差。本实施方式中,特征区域为通过图像识别方法从第一图像和第二图像中识别的特征明显的相同标样部分,替代实施方式中,所述特征区域也可以为多个。
步骤S145,校正拍摄装置对位每个子区域时载物平台的移动坐标。
本实施方式中,载物平台从复位点o沿X轴、Y轴方向移动并校正移动误差,使拍摄装置依次对位每个子区域并进行图像拍摄。一实施方式中,设原来每个子区域的坐标为(x,y),第一图像和第二图像之间的偏移量如图6所示为(w1,h1),则校正移动误差后每个子区域的坐标为(x-kw1,y-kh1)。
参考图7,替代实施方式中,步骤S144之后还包括二次校正步骤,所述二次校正步骤判断偏移量δ1在预设阈值范围内时候,移动载物平台以校正偏移量后控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差,其包括S146-S150。
本实施方式中,所述步骤S146,用于判断步骤S144计算产生的偏移量δ1是否在预设阈值范围内,如果偏移量δ1小于第一阈值或大于第二预设阈值,则结 束流程,停止载物平台校正移动误差。如果偏移量δ1在预设阈值范围内,即第二预设值≥偏移量δ1≥预设阈值,则执行步骤S147。
本实施方式中,所述步骤S147用于控制移动载物平台以校正偏移量δ1,例如将载物平台移动至校正后预定子区域的坐标,一实施方式中,如果预定子区域的原坐标为(x0,y0),第一图像和第二图像之间的偏移量如图6所示为(w1,h1),则校正偏移量δ1后预定子区域的坐标为(x0-kw1,y0-kh1),第一条件下使拍摄装置对位所述预定子区域并进行第三次图像拍摄,获得第三图像。
本实施方式中,所述步骤S148用于计算第一图像和第三图像之间的偏移量δ2并换算为载物平台的移动误差。一实施方式中,参考图8和步骤S144相同的方法,识别第三图像内的特征区域62,并计算特征区域62第三相对坐标,然后将第一、第三相对坐标的差值定义为第一图像和第三图像之间的偏移量,根据图像和样本放大比例关系k将偏移量换算为载物平台的移动误差。本实施方式中,特征区域为通过图像识别方法从第一图像和第三图像中识别的特征明显的相同标样部分,替代实施方式中,所述特征区域也可以为多个。一具体实施方式中,预定子区域62的当前坐标为(x0-kw1,y0-kh1),第一图像和第三图像之间的偏移量δ2如图8所示为(w2,h2),则校正移动误差后预定子区域的坐标为(x0-kw2-kw1,y0-kh2-kh1)。
本实施方式中,所述步骤S149用于判断步骤S148计算产生的偏移量δ2是否在预设阈值范围内,如果偏移量δ2小于第一阈值或大于第二预设阈值,则结束流程,停止载物平台校正移动误差。如果偏移量δ2在预设阈值范围内,即第二预设值≥偏移量δ1≥预设阈值,执行步骤S150.
本实施方式中,所述步骤S150用于进一步判断偏移量δ2是否小于偏移量δ1,如果偏移量δ2小于偏移量δ1,则执行步骤S145,根据偏移量δ1和δ2校正 拍摄装置对位每个子区域时载物平台的移动坐标。如果偏移量δ2大于等于偏移量δ1,则结束流程,停止或结束载物平台校正移动误差。
本实施方式中,所述偏移量使用绝对值进行判断,所述第一预设阈值可以为6-10个像素距离,第二预设阈值可以为700-900个像素距离,较佳实施方式中,所述第一预设阈值为8个像素距离,第二预设阈值可以为800个像素距离,所述预设阈值范围为8-800像素距离。
替代实施方式中,结束流程前还发出错误报警提示,所述错误提示可以是声音报警、文字报警或弹窗报警中的一种或多种。
参考图9,本发明第二实施方式提供一种图像拍摄对位方法,其和第一实施方式的区别在于进一步包括步骤S15:相同方向移动载物平台对拍照区域内的多行子区域依次拍摄图像。如图10所示,所述步骤S15包括步骤S151-S152。
步骤S151,沿相同方向步进移动载物平台依次对一行每个子区域进行在第二条件下的图像拍摄。
请一并参考图11,一实施方式中,先从复位点o沿Y轴方向移动载物平台10,如图2中线路Y1,使拍摄装置和第一行子区域A1-A5的Y坐标(0,Y1)对齐。
然后沿X坐标移动载物平台10,如图11中线路X1,即从复位点的X坐标(0,Y1)开始移动载物平台10,使拍摄装置对位于该第一行子区域A1-A5的左边界子区域A5,本实施方式所述左边界子区域A5为距离复位点的X坐标最远的子区域31。
然后沿相同方向,即X坐标轴反方向,步进移动载物平台10,如图11中线路P1,依次对第一行每个子区域A5-A1进行图像拍摄。
步骤S152,移动载物平台至复位点的X坐标进行复位后再次沿相同方向步进移动载物平台依次对另一行每个子区域进行第二条件下的图像拍摄,重复本步骤完成整个矩形拍照区域的图像拍摄。
本实施方式中,接续步骤S151,从第一行右边界子区域A1(距离复位点的X坐标最近的子区域)开始,移动载物平台10至复位点的X坐标(0,Y1)进行复位,如图11中的线路R1。
然后从第一行A1-A5的Y坐标(0,Y1)沿Y轴方向移动载物平台10,如图11中线路Y2,使拍摄装置和第二行子区域B1-AB的Y坐标(0,Y1+Y2)对齐。
再次沿X坐标移动载物平台10,如图11中线路X2,即从复位点的X坐标(0,Y1+Y2)开始移动载物平台10,使拍摄装置的镜头对位于该第二行子区域B1-AB的左边界子区域B5,本实施方式所述左边界子区域B1为距离复位点的X坐标最远的子区域。
然后沿相同方向,即X坐标轴反方向,步进移动载物平台10,如图11中线路P2,依次对第二行每个子区域B5-B1进行图像拍摄。
重复本步骤S152依次对第三行C1-C5、第四行D1-D5的每个子区域进行图像拍摄完成整个矩形拍照区域的图像拍摄。可选择地,本实施方式还可通过图像处理将每个子区域的图像合成为整个矩形拍照区域30的图像。本实施方式中,所述第二条件为样本区域自发荧光。
替代实施方式中,如图12所示,相同方向为X坐标轴方向,此时从每行右边界子区域A1-D1开始顺序对每行的每个子区域进行图像拍摄,如线路P1、P2所示。然后从左边界子区域A5-D5开始移动载物平台10至复位点的X坐标(0,Y1)进行复位,如线路R1、R2所示。
请参考图13,本发明第三实施方式提供一种图像拍摄对位系统100,所述图像拍摄对位系统100包括成像装置110、拍照区域确定模块120、拍照区域分割模块130、平台移动校正模块160、普通拍照模块140以及复位拍照模块150。本实施方式中,所述模块或系统可以是执行特定功能的集成电路,也可以是存储在 存储器中并通过处理器执行完成特定功能的软件程序。
请一并参考图11,所述成像装置110包括获取图像的拍摄装置以及正对拍摄装置的载物平台10,载物平台10可从复位点o开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动。本实施方式中,拍摄装置包括镜头和获取图像的CCD图像传感器。
所述拍照区域确定模块120用于控制移动载物平台10使拍摄装置步进扫描位于载物平台10上的样本20,进而确定样本区域内一矩形拍照区域30。一实施方式中,所述样本20为高通量基因测序样本,所述样本20包括多个待识别磁珠,由于磁珠体积较小且在边缘附近有不易识别的情况,因此选定高通量基因测序样本的中心附近矩形区域作为矩形拍照区域30,以便准确识别矩形拍照区域30对应图像的信息。本实施中,所述复位点位于拍照区域30之外。
所述拍照区域分割模块130用于控制分割所述矩形拍照区域30为多个子区域31,多个子区域31包括沿X坐标轴方向排列的多行子区域。一实施方式中,拍摄装置的聚焦范围远小于标样20的面积,对基因测序样本的拍摄以预先选择的成像效果较好的矩形拍照区域30进行。实际拍摄时,将预先选好的矩形拍照区域30分割为多个适配成像装置的聚焦范围的小区域31,然后移动成像装置分别对每个小区域31进行拍摄,最后合成将整个矩形拍照区域30的图像。本实施方式中,多个子区域31呈矩阵排列。
所述平台移动校正模块160用于控制移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差。
校正平台的移动误差后,所述普通拍照模块140用于控制沿相同方向步进移动载物平台依次对一行每个子区域进行在第二条件下的图像拍摄。所述复位拍 照模块150用于控制移动载物平台至复位点的X坐标进行复位后沿相同方向步进移动载物平台依次对另外多行每个子区域进行在第二条件下的图像拍摄,直到整个矩形拍照区域的图像拍摄。本实施方式中,所述第二条件为样本区域自发荧光。本实施方式中,所述第二条件为样本区域自发荧光。
一实施方式中,请参考图12,先从复位点o沿Y轴方向移动载物平台10,如图12中线路Y1,使拍摄装置和第一行子区域A1-A5的Y坐标(0,Y1)对齐。
然后沿X坐标移动载物平台10,如图12中线路X1,即从复位点的X坐标(0,Y1)开始移动载物平台10,使拍摄装置对位于该第一行子区域A1-A5的右边界子区域A1,本实施方式所述右边界子区域A1为距离复位点的X坐标最近的子区域31。
然后沿相同方向,即X坐标轴方向步进移动载物平台10,如图12中线路P1,依次对第一行每个子区域A1-A5进行图像拍摄。从第一行左边界子区域A5(距离复位点的X坐标最远的子区域)开始,移动载物平台10至复位点的X坐标(0,Y1)进行复位,如图12中的线路R1。
然后从第一行A1-A5的Y坐标(0,Y1)沿Y轴方向移动载物平台10,如图12中线路Y2,使拍摄装置和第二行子区域B1-AB的Y坐标(0,Y1+Y2)对齐。
再次沿X坐标移动载物平台10,如图12中线路X2,即从复位点的X坐标(0,Y1+Y2)开始移动载物平台10,使拍摄装置的镜头对位于该第二行子区域B1-AB的右边界子区域B1,本实施方式所述右边界子区域B1为距离复位点的X坐标最近的子区域31。
然后沿相同方向,即X坐标轴方向步进移动载物平台10,如图12中线路P2,依次对第二行每个子区域B1-B5进行图像拍摄。
重复依次对第三行C1-C5、第四行D1-D5的每个子区域进行图像拍摄完成整个矩形拍照区域的图像拍摄。然后通过图像处理合成将整个矩形拍照区域30的 图像
替代实施方式中,如图11所示,相同方向为X坐标轴反方向,此时从每行左边界子区域A5-D5开始顺序对每行的每个子区域进行图像拍摄,如线路P1、P2所示。然后从左边界子区域A1-D1开始移动载物平台10至复位点的X坐标(0,Y1)进行复位,如线路R1、R2所示。
一实施方式中,如图14所示,所述平台移动校正模块160包括参考子区域定义模块161、第一图像拍摄模块162、第二图像拍摄模块163、移动误差计算模块164、平台移动校正模块165和二次校正模块166。
所述参考子区域定义模块161用于将一预定子区域定义为对位参考子区域,本实施方式中定义距离复位点最近的子区域A1为对位参考子区域。
所述第一图像拍摄模块162用于控制从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行第一次图像拍摄,获得第一图像。一实施方式中,请参考图2,先从复位点o沿Y轴方向移动载物平台10,如图2中线路Y1,使拍摄装置和第一行子区域A1-A5的Y坐标(0,Y1)对齐。然后沿X坐标移动载物平台10,如图2中线路X1,即从复位点的X坐标(0,Y1)开始移动载物平台10,使拍摄装置对位于该第一行子区域A1-A5的右边界子区域A1进行第一次拍摄,以获得第一图像,本实施方式所述右边界子区域A1作为预定子区域为第一行距离复位点的X坐标最近的子区域31。
所述第二图像拍摄模块163用于控制从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行二次图像拍摄,获得第二图像。一实施方式中,请参考图2,再次从复位点o沿Y轴方向移动载物平台10,如图2中线路Y1,使拍摄装置和第一行子区域A1-A5的Y坐标(0,Y1)对齐。然后沿X坐标移动载物平台10,如图2中线路X1,即从复位点的X坐标(0,Y1)开始移动载物 平台10,使拍摄装置对位于该第一行子区域A1-A5的右边界子区域A1进行拍摄,以获得第二图像。较佳实施方式中,所述第一条件为使用灯光照亮样本区域。
所述移动误差计算模块164用于计算第一图像和第二图像之间的偏移量并换算为载物平台的移动误差。参考图4-5,计算图4所示的第一图像内的特征区域42相对第一图像角落41的第一相对坐标,识别图5第二图像内的相同特征区域52,并计算相同特征区域52相对第二图像对应角落51的第二相对坐标,然后将第一、第二相对坐标的差值定义为第一图像和第二图像之间的偏移量,根据图像和样本放大比例关系k将偏移量换算为载物平台的移动误差。本实施方式中,特征区域为通过图像识别方法从第一图像和第二图像中识别的特征明显的相同标样部分,替代实施方式中,所述特征区域也可以为多个。
所述移动坐标校正模块165用于校正拍摄装置对位每个子区域时载物平台的移动坐标。本实施方式中,载物平台从复位点o沿X轴、Y轴方向移动并校正移动误差,使拍摄装置依次对位每个子区域并进行图像拍摄。一实施方式中,设原来每个子区域的坐标为(x,y),第一图像和第二图像之间的偏移量如图6所示为(w,h),则校正移动误差后每个子区域的坐标为(x-kw,y-kh)。
所述二次校正模块166用于判断当所述偏移量在预设阈值范围内时候,控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差。当第一图像和第三图像之间的偏移量在预设阈值范围内,且第一图像和第三图像之间的偏移量小于第一图像和第二图像之间的偏移量时,校正拍摄装置对位每个子区域时载物平台的移动坐标。
一具体实施方式中,所述移动误差计算模块164计算产生的偏移量δ1是否超出预设阈值范围,如果超出预设阈值范围,则所述移动坐标校正模块165结束流程,停止载物平台移动误差校正。如果在预设阈值范围内,移动载物平台以 校正偏移量δ1,第一条件下再次使拍摄装置对位所述预定子区域并进行第三次图像拍摄,获得第三图像。然后计算第一图像和第三图像之间的偏移量δ2;接着判断偏移量δ2是否超出预设阈值范围,如果超出预设阈值范围,则所述移动坐标校正模块165结束流程,停止载物平台移动误差校正。如果偏移量δ2在预设阈值范围内,进一步判断偏移量δ2是否小于偏移量δ1,如果偏移量δ2小于偏移量δ1,则根据偏移量δ1和δ2校正拍摄装置对位每个子区域时载物平台的移动坐标。如果偏移量δ2大于等于偏移量δ1,则结束流程,停止载物平台校正移动误差。本实施方式中,所述预设阈值范围为8-800像素距离。替代实施方式中,关于二次校正模块166的详细描述还可以参见前述步骤S144-S150。
相对于现有技术,本发明的图像拍摄对位方法和系统在对多个子区域正式拍摄图像之前,先对预定子区域(对位参考子区域)进行两次图像拍摄,并根据两次图像拍摄结果校正载物平台的移动误差,可以最大限度消除或减少平台移动误差导致相同子区域前后拍摄的多幅图像之间发生较大的偏移,提高基因测序后续图像数据处理的准确性。当偏移量超出预设阈值时候,本发明还可以控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差,进一步防止移动误差校正过度。进一步地,本发明图像拍摄对位方法和系统在对不同行子区域拍摄之前对移动平台进行复位,还可以消除连续拍摄多行子区域图像时载物平台步进移动产生的累积误差,优化所有子区域图像拼接的效果。
以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种图像拍摄对位方法,其特征在于包括:
    提供一成像装置,所述成像装置包括获取图像的拍摄装置以及正对拍摄装置的载物平台,载物平台可从复位点开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动;
    放置样本于载物平台上,移动载物平台使拍摄装置步进扫描样本,以确定样本区域内一矩形拍照区域;
    分割所述矩形拍照区域为多个呈矩阵排列的子区域;以及
    移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差。
  2. 根据权利要求1所述的图像拍摄对位方法,其特征在于,所述移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差包括:
    从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行第一次图像拍摄,获得第一图像;
    从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行二次图像拍摄,获得第二图像;以及
    计算第一图像和第二图像之间的偏移量并换算为载物平台的移动误差。
  3. 根据权利要求2所述的图像拍摄对位方法,其特征在于,校正平台的移动误差后进一步包括:第二条件下移动载物平台对拍照区域内的子区域拍摄图像。
  4. 根据权利要求3所述的图像拍摄对位方法,其特征在于,所述第一条件为使用灯光照亮样本区域,所述第二条件为样本区域自发荧光。
  5. 根据权利要求2所述的图像拍摄对位方法,其特征在于,进一步包括当所述偏移量在预设阈值范围内时候,移动载物平台以校正偏移量后控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差。
  6. 根据权利要求5所述的图像拍摄对位方法,其特征在于,移动载物平台以校正偏移量后控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差包括:
    移动载物平台并校正偏移量,第一条件下使拍摄装置对位所述预定子区域进行第三次图像拍摄并获得第三图像;
    计算第一图像和第三图像之间的偏移量;
    如果第一图像和第三图像之间的偏移量在预设阈值范围内,且第一图像和第三图像之间的偏移量小于第一图像和第二图像之间的偏移量,则校正拍摄装置对位每个子区域时载物平台的移动坐标,
    否则结束载物平台移动误差校正。
  7. 根据权利要求6所述的图像拍摄对位方法,其特征在于,所述预设阈值范围为8-800像素距离。
  8. 根据权利要求1所述的图像拍摄对位方法,其特征在于,校正平台的移动误差后进一步包括:相同方向移动载物平台对拍照区域内的多行子区域依次拍摄图像。
  9. 根据权利要求8所述的图像拍摄对位方法,其特征在于,所述相同方向移动载物平台对拍照区域内的多行子区域依次拍摄图像包括:
    沿相同方向步进移动载物平台依次对一行每个子区域进行图像拍摄;以及
    移动载物平台至复位点的X坐标进行复位后沿相同方向步进移动载物平台依次对另一行每个子区域进行图像拍摄,重复本步骤完成整个矩形拍照区域的 图像拍摄。
  10. 根据权利要求9所述的图像拍摄对位方法,其特征在于,对一行每个子区域进行图像拍摄之前进一步包括:从复位点的X坐标移动载物平台使拍摄装置对位于该行子区域的边界子区域。
  11. 根据权利要求10所述的图像拍摄对位方法,其特征在于,所述边界子区域为距离复位点的X坐标最近的子区域,所述相同方向为X坐标轴方向。
  12. 根据权利要求10所述的图像拍摄对位方法,其特征在于,所述边界子区域为距离复位点的X坐标最远的子区域,所述相同方向为X坐标轴反方向。
  13. 一种图像拍摄对位系统,其特征在于包括:
    成像装置,所述成像装置包括获取图像的拍摄装置以及正对拍摄装置的载物平台,载物平台可从复位点开始沿X坐标轴方向移动和/或沿Y坐标轴方向移动;
    拍照区域确定模块,所述拍照区域确定模块用于控制移动载物平台使拍摄装置步进扫描位于载物平台上的样本,进而确定样本区域内一矩形拍照区域;
    拍照区域分割模块,所述拍照区域分割模块用于控制分割所述矩形拍照区域为多个子区域,多个子区域包括沿X坐标轴方向排列的多行子区域;
    平台移动校正模块,所述平台移动校正模块用于控制移动载物平台对预定子区域进行两次图像拍摄,并根据两次图像拍摄结果校正拍摄装置对位每个子区域时载物平台的移动误差。
  14. 根据权利要求13所述的图像拍摄对位系统,其特征在于,所述平台移动校正模块包括:
    第一图像拍摄模块,用于控制从复位点开始移动载物平台,第一条件下使拍摄装置对位所述预定子区域并进行第一次图像拍摄,获得第一图像;
    第二图像拍摄模块,用于控制从复位点开始移动载物平台,第一条件下使 拍摄装置对位所述预定子区域并进行二次图像拍摄,获得第二图像;以及
    移动误差计算模块,用于计算第一图像和第二图像之间的偏移量并换算为载物平台的移动误差。
  15. 根据权利要求14所述的图像拍摄对位系统,其特征在于,所述平台移动校正模块进一步包括移动坐标校正模块,用于校正拍摄装置对位每个子区域时载物平台的移动坐标。
  16. 根据权利要求14所述的图像拍摄对位系统,进一步包括,
    普通拍照模块,所述普通拍照模块用于控制沿相同方向步进移动载物平台依次对一行每个子区域进行在第二条件下的图像拍摄;以及
    复位拍照模块,所述复位拍照模块用于控制移动载物平台至复位点的X坐标进行复位后沿相同方向步进移动载物平台依次对另外多行每个子区域进行第二条件下的图像拍摄,直到整个矩形拍照区域的图像拍摄。
  17. 根据权利要求16所述的图像拍摄对位系统,其特征在于,所述第一条件为使用灯光照亮样本区域,所述第二条件为样本区域自发荧光。
  18. 根据权利要求16所述的图像拍摄对位系统,其特征在于,所述复位拍照模块进一步用于控制:对每一行子区域进行图像拍摄前,从复位点的X坐标移动载物平台使拍摄装置对位于该行子区域的边界子区域。
  19. 根据权利要求18所述的图像拍摄对位系统,其特征在于,所述边界子区域为距离复位点的X坐标最近的子区域,所述相同方向为X坐标轴方向。
  20. 根据权利要求15所述的图像拍摄对位系统,其特征在于,所述边界子区域为距离复位点的X坐标最远的子区域,所述相同方向为X坐标轴反方向。
  21. 根据权利要求14所述的图像拍摄对位系统,其特征在于,所述平台移动校正模块进一步包括二次校正模块,所述二次校正模块用于判断当所述偏移 量在预设阈值范围内时候,移动载物平台以校正偏移量后控制拍摄装置拍摄预定子区域的第三图像并再次计算载物平台的移动误差。
  22. 根据权利要求22所述的图像拍摄对位系统,其特征在于,所述二次校正模块进一步判断当第一图像和第三图像之间的偏移量在预设阈值范围内,且第一图像和第三图像之间的偏移量小于第一图像和第二图像之间的偏移量时,校正拍摄装置对位每个子区域时载物平台的移动坐标。
PCT/CN2017/093087 2016-07-29 2017-07-17 图像拍摄对位方法和系统 WO2018019143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610614885.3A CN107666546B (zh) 2016-07-29 2016-07-29 图像拍摄对位方法和系统
CN201610614885.3 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018019143A1 true WO2018019143A1 (zh) 2018-02-01

Family

ID=61017305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093087 WO2018019143A1 (zh) 2016-07-29 2017-07-17 图像拍摄对位方法和系统

Country Status (2)

Country Link
CN (1) CN107666546B (zh)
WO (1) WO2018019143A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808188A (zh) * 2021-08-17 2021-12-17 苏州市路远智能装备有限公司 元件的拍摄方法
CN114747198A (zh) * 2019-12-10 2022-07-12 深圳迈瑞生物医疗电子股份有限公司 细胞图像分析装置及相机安装平行性校验方法
CN114827429A (zh) * 2021-01-19 2022-07-29 苏州浩科通电子科技有限公司 一种微小目标的大面积图像识别检测方法
US11981124B2 (en) 2022-09-16 2024-05-14 Electronics For Imaging, Inc. Method and system for aligning images printed with digital printer and analog cylinders

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108320276A (zh) * 2017-01-13 2018-07-24 广州康昕瑞基因健康科技有限公司 图像拍摄对位方法和系统
CN111363673B (zh) * 2018-12-26 2021-09-28 深圳市真迈生物科技有限公司 定位方法、定位装置和测序系统
CN111157529B (zh) * 2020-04-04 2020-07-07 博奥生物集团有限公司 图像采集方法及装置、自动对准方法及设备、核酸检测器
CN112501271B (zh) * 2020-11-19 2022-09-02 武汉华大智造科技有限公司 载片平台调平方法、检测装置及存储介质
WO2024000288A1 (zh) * 2022-06-29 2024-01-04 深圳华大生命科学研究院 图像拼接方法、基因测序系统及相应的基因测序仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470945A (zh) * 2002-06-10 2004-01-28 ������������ʽ���� 曝光装置及载物台装置、以及器件制造方法
CN102368283A (zh) * 2011-02-21 2012-03-07 麦克奥迪实业集团有限公司 一种基于数字切片的数字病理远程诊断系统及其方法
CN102788552A (zh) * 2012-02-28 2012-11-21 王锦峰 一种线性坐标校正方法
CN103399015A (zh) * 2013-08-14 2013-11-20 宁波江丰生物信息技术有限公司 病理切片扫描仪及其载片平台定位精度测量方法及装置
CN104865893A (zh) * 2014-02-24 2015-08-26 大族激光科技产业集团股份有限公司 运动平台控制系统和运动平台误差计算方法
WO2015184124A1 (en) * 2014-05-30 2015-12-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging large intact tissue samples

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625022B (zh) * 2011-01-29 2014-05-28 麦克奥迪实业集团有限公司 一种带有像方补偿运动的快速显微切片扫描方法及装置
CN103257438B (zh) * 2013-05-29 2015-02-18 哈尔滨工业大学 一种基于自动控制电动平移台的平面二维矩形扫描装置及其扫描方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470945A (zh) * 2002-06-10 2004-01-28 ������������ʽ���� 曝光装置及载物台装置、以及器件制造方法
CN102368283A (zh) * 2011-02-21 2012-03-07 麦克奥迪实业集团有限公司 一种基于数字切片的数字病理远程诊断系统及其方法
CN102788552A (zh) * 2012-02-28 2012-11-21 王锦峰 一种线性坐标校正方法
CN103399015A (zh) * 2013-08-14 2013-11-20 宁波江丰生物信息技术有限公司 病理切片扫描仪及其载片平台定位精度测量方法及装置
CN104865893A (zh) * 2014-02-24 2015-08-26 大族激光科技产业集团股份有限公司 运动平台控制系统和运动平台误差计算方法
WO2015184124A1 (en) * 2014-05-30 2015-12-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging large intact tissue samples

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747198A (zh) * 2019-12-10 2022-07-12 深圳迈瑞生物医疗电子股份有限公司 细胞图像分析装置及相机安装平行性校验方法
CN114747198B (zh) * 2019-12-10 2024-04-02 深圳迈瑞生物医疗电子股份有限公司 细胞图像分析装置及相机安装平行性校验方法
CN114827429A (zh) * 2021-01-19 2022-07-29 苏州浩科通电子科技有限公司 一种微小目标的大面积图像识别检测方法
CN113808188A (zh) * 2021-08-17 2021-12-17 苏州市路远智能装备有限公司 元件的拍摄方法
CN113808188B (zh) * 2021-08-17 2023-09-19 苏州市路远智能装备有限公司 元件的拍摄方法
US11981124B2 (en) 2022-09-16 2024-05-14 Electronics For Imaging, Inc. Method and system for aligning images printed with digital printer and analog cylinders

Also Published As

Publication number Publication date
CN107666546B (zh) 2020-01-07
CN107666546A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2018019143A1 (zh) 图像拍摄对位方法和系统
JP5075757B2 (ja) 画像処理装置、画像処理プログラム、画像処理方法、および電子機器
EP3291004A1 (en) Ranging method, automatic focusing method and device
US11244436B2 (en) Method for inspecting mounting state of component, printed circuit board inspection apparatus, and computer readable recording medium
EP1343332A2 (en) Stereoscopic image characteristics examination system
CN109479082B (zh) 图象处理方法及装置
WO2021012122A1 (zh) 机器人手眼标定方法、装置、计算设备、介质以及产品
JP2009031150A (ja) 三次元形状計測装置、三次元形状計測方法、三次元形状計測プログラム、および記録媒体
JP2010041417A (ja) 画像処理装置、画像処理方法、画像処理プログラム、及び、撮像装置
WO2017215108A1 (zh) 一种调整投影图像的方法及投影仪
US20190320166A1 (en) Calibration system and method
US20190162529A1 (en) 3d scanning device and method
CN110853102B (zh) 一种新的机器人视觉标定及引导方法、装置及计算机设备
US20180059398A1 (en) Image processing device, imaging device, microscope system, image processing method, and computer-readable recording medium
JP2014178141A (ja) キャリブレーションシステム、およびキャリブレーション方法
JP2009301181A (ja) 画像処理装置、画像処理プログラム、画像処理方法、および電子機器
CN111131801A (zh) 投影仪校正系统、方法及投影仪
JP2008298589A (ja) 位置検出装置及び位置検出方法
US9813620B2 (en) Image processing apparatus, image processing method, program, and camera
JP2007122328A (ja) 歪曲収差補正装置及び歪曲収差補正方法
JP5446285B2 (ja) 画像処理装置及び画像処理方法
JP2017037017A (ja) 距離測定装置及び距離測定方法
JP4321225B2 (ja) 撮影システム及び撮影方法
CN112734721B (zh) 一种光轴偏转角度检测方法、装置、设备和介质
CN114295331A (zh) 一种多摄模组光轴测试方法、装置、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17833446

Country of ref document: EP

Kind code of ref document: A1