WO2018019043A1 - 一种可穿戴设备的佩戴状态检测方法和可穿戴设备 - Google Patents

一种可穿戴设备的佩戴状态检测方法和可穿戴设备 Download PDF

Info

Publication number
WO2018019043A1
WO2018019043A1 PCT/CN2017/087897 CN2017087897W WO2018019043A1 WO 2018019043 A1 WO2018019043 A1 WO 2018019043A1 CN 2017087897 W CN2017087897 W CN 2017087897W WO 2018019043 A1 WO2018019043 A1 WO 2018019043A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
wearable device
measured value
current
reference value
Prior art date
Application number
PCT/CN2017/087897
Other languages
English (en)
French (fr)
Inventor
楼厦厦
李娜
李波
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US16/304,623 priority Critical patent/US10477319B2/en
Publication of WO2018019043A1 publication Critical patent/WO2018019043A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3231Monitoring the presence, absence or movement of users
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/03Aspects of the reduction of energy consumption in hearing devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of wearable devices, and in particular, to a wearable state detecting method and a wearable device of a wearable device.
  • Wearable devices are hot spots in recent years, such as smart bracelets, smart watches and smart headphones.
  • the wearing state detection of the wearable device is an important function that the wearable device needs to have, and some functions can be controlled or optimized according to the detection result of the wearing state, for example, the static state can be prevented from being mistaken for sleep according to the wearing state of the wristband.
  • wear status detection is an important function.
  • the smart headset adopts Bluetooth or WiFi (Wireless Fidelity, wireless LAN based on IEEE802.11b standard) wireless module, which reduces the tie of the wire, can make calls and listen to music in a more comfortable way, but the wireless module consumes a lot of power.
  • the smart headset is used for a short period of time. To this end, the user wants to stop the running application in the smart headset when the smart headset is not worn, so as to reduce power consumption.
  • the mechanical button is often used for the control of the wearing state of the wearable device.
  • the solution has the following disadvantages: First, the frequent use of the mechanical button causes the mechanical button to wear, which not only reduces its life but also affects the appearance. Second, it is relatively troublesome to operate the mechanical button to observe the button position, and the user may forget to turn off the wearable device, so that the application in the wearable device is still running when not in use, such as music. Play and more.
  • embodiments of the present invention provide a wearable state detecting method and a wearable device of a wearable device to solve the above problems or at least partially solve the above problems.
  • a method for detecting a wearing state of a wearable device comprising:
  • the measured value is collected from the sensor according to a preset sampling frequency
  • the wearable device When the wearable device is in the non-wearing state, the wearable device is controlled to close the corresponding function that is running.
  • determining whether the current wearable device is in a wearing state according to the measured value and the reference value includes:
  • obtaining the smoothed value corresponding to each measured value that is collected includes:
  • the smoothed value corresponding to the current measured value is calculated by using the smoothed value corresponding to the previously collected measured value and the current measured value;
  • the smoothed value corresponding to the previously collected measured value is taken as the smoothed value corresponding to the current measured value.
  • determining whether the current measured value is in a stable state includes:
  • determining whether the current wearable device is in a wearing state according to the smoothed value and the reference value corresponding to the current measured value includes:
  • the smoothing value corresponding to the current measured value is compared with the reference value, and when the difference between the two is greater than the third preset threshold, determining that the current wearable device is in the wearing state;
  • the reference value indicates that the wearable device is not worn.
  • determining whether the current wearable device is in a worn state according to the smoothed value and the reference value corresponding to the current measured value Also includes:
  • the wearable device If the last detection result is that the wearable device is in a non-wearing state, it is determined that the current wearable device is in a non-wearing state;
  • the wearable device If the result of the last detection is that the wearable device is in the wearing state, whether the difference between the maximum value of the smoothed value corresponding to the preset number of measured values before the current measured value and the smoothed value corresponding to the current measured value exceeds the fourth pre-determination
  • the threshold is set, and then, it is determined that the current wearable device is in the non-wearing state; otherwise, it is determined that the current wearable device is in the wearing state.
  • the method further includes:
  • the reference value is updated when it is judged that the reference value update condition is satisfied
  • the reference value update condition is:
  • the measured value of the current measured value is in a steady state, and the preset number of measured values before and after the current measured value are in a steady state or a preset number of measured values before the current measured value are in a steady state, and the wearable device is currently in a non-wearing state. Or, when the current measured value is less than the fifth preset threshold;
  • the reference value update condition is:
  • the current measured value is in a steady state, and the preset number of measured values before and after the current measured value are in a steady state or a preset number of measured values before the current measured value are in a steady state, and the wearable device is currently in the worn state. Or, when the current measured value is greater than the preset threshold.
  • updating the reference value includes: calculating a preliminary reference value by using the current measured value and the reference value;
  • the reference value is updated with the preliminary reference value.
  • a wearable device comprising: a sensor and a control circuit;
  • the sensor is disposed in an area of the wearable device that can contact the human skin, and the sensor outputs different measurements when the user wears and removes the wearable device;
  • the control circuit comprises: an acquisition module, a detection processing module and a control output module;
  • the acquisition module is connected to the sensor. After the wear detection is started, the acquisition module collects the measured value from the sensor according to the preset sampling frequency;
  • the detection processing module is connected to the collection module, and the detection processing module receives the measurement value collected by the collection module, and obtains a reference value indicating whether the wearable device is worn, and determines whether the current wearable device is in a wearing state according to the measurement value and the reference value;
  • the detection processing module is connected to the control output module, and the detection processing module notifies the control output module when detecting that the wearable device is in the non-wearing state, and the control output module controls the wearable device to close the corresponding function that is running.
  • the detection processing module obtains a smoothing value corresponding to each measured value collected by the collecting module, and determines whether the current measured value is in a stable state for the current measured value, and determines the current measured value before and after the current measured value is stable. Whether the measured values of the number are all in a stable state, or whether the preset number of measured values before the current measured value are all in a stable state; if yes, determining the current wearable according to the smoothed value and the reference value corresponding to the current measured value Whether the device is worn.
  • the wearable device is a smart earphone, and the smart earphone includes a headphone tail and an earphone cover;
  • the control circuit is disposed in the tail of the earphone;
  • a protrusion for engaging the earphone cover is provided on the inner side edge of the earphone cover, the protrusion protruding toward one side of the earphone cover; and the sensor is disposed at the top of the protrusion.
  • the senor is a capacitive sensor composed of a copper foil that is in the shape of a closed loop or a non-closed loop.
  • the technical solution provided by the embodiment of the present invention utilizes the characteristics that the wearable device has different measured values of the sensor in contact with the skin when worn and not worn, and the sensor is disposed at an appropriate position of the wearable device, and is combined by the reference value.
  • Control logic implements a new type of wear detection.
  • the accuracy of wearing the detection result of the solution is high, and the wearability of the wearable device is improved while minimizing the unnecessary power consumption of the wearable device, and when the wearable device is removed, the user does not need to manually operate.
  • the function that is running in the wearable device can be automatically stopped, the user operation is simplified, the intelligence is good, and the wearable device is used.
  • FIG. 1 shows a flow chart of a wearing state detecting method of a wearable device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing a capacitance signal output by a capacitive sensor when a user wears and removes a smart earphone according to an embodiment of the present invention
  • FIG. 3 shows a partial view of a capacitance signal output by a capacitive sensor in accordance with one embodiment of the present invention
  • FIG. 4 is a flow chart showing a method for detecting a wearing state of a wearable device according to another embodiment of the present invention.
  • FIG. 5 shows a schematic diagram of a wearable device in accordance with one embodiment of the present invention
  • FIG. 6 shows a schematic diagram of a smart earphone according to an embodiment of the present invention.
  • the sensor can detect whether the device is worn or not, and the anti-jamming algorithm and the anti-interference flow control method are used to improve the accuracy of the wearing state detection, thereby controlling some of the wearable devices according to the wearing state of the wearable device.
  • Functions such as music playback, lighting, ANC (Active Noise Control) switch, etc., not only reduce power consumption, avoid mechanical button wear, but also bring more convenience and comfort to users.
  • ANC Active Noise Control
  • FIG. 1 shows a flow chart of a wearing state detecting method of a wearable device according to an embodiment of the present invention. As shown in Figure 1, the method includes:
  • a sensor is disposed in an area of the wearable device that can contact the skin of the user, and the sensor outputs different measured values when the user wears and removes the wearable device.
  • step S120 a reference value indicating whether the wearable device is worn is acquired.
  • Step S130 after the wearing detection is started, the measured value is collected from the sensor according to a preset sampling frequency.
  • the process of collecting measurement values from the sensor according to the preset sampling frequency is a process of converting the analog signal output by the sensor into a digital signal.
  • Step S140 determining whether the wearable device is currently in a wearing state according to the measured value and the reference value.
  • the reference value is a comprehensive basis for detecting the wearing state of the wearable device, and avoiding the detection error caused by detecting the wearing state of the wearable device based on the measured value alone.
  • Step S150 when the wearable device is in the non-wearing state, control the wearable device to close the corresponding function that is running.
  • the method shown in FIG. 1 utilizes the measured value of the sensor in contact with the skin when the wearable device is worn and not worn. Different characteristics, the sensor is set at the appropriate position of the wearable device, and a new type of wearing detection method is realized by the reference value combined with the control logic. The accuracy of wearing the test result of the solution is high, and the comfort of the device is improved while minimizing unnecessary power consumption of the wearable device, and the user can automatically operate without manual operation when the wearable device is removed. Stop the corresponding functions that are running in the wearable device, simplify user operations, be smart, and meet the needs of wearable devices.
  • the measured values collected from the sensor are not smooth, there is noise interference, and the jitter is large, and cannot be directly used as a detection basis of the wearing state of the wearable device. Therefore, based on the embodiment shown in FIG.
  • further filtering processing is required for each measurement value to eliminate interference in the measurement value, and then the measurement value is used.
  • the smoothing value is used for subsequent detection processing, which can greatly improve the anti-interference of the detection and ensure the accuracy of the detection result.
  • the present embodiment adopts smoothing filtering to remove interference in the signal, wherein the manner of obtaining the smoothed value corresponding to each measured value is: for the current measured value (the current measured value refers to the currently processed measured value, Similarly, the current measured value is compared with the previously collected measured value to determine whether the absolute difference between the two (absolute difference means the absolute value of the difference, hereinafter the same) is less than the first pre- Set the threshold; if the absolute difference between the current measured value and the previously collected measured value is less than the first preset threshold, the current measured value has no larger jitter than the previously collected measured value, and the current measurement The value is not a sudden value.
  • the interference can be filtered by median filtering or smoothing filtering to obtain the smoothed value corresponding to the current measured value.
  • the smoothed value corresponding to the previously collected measured value and the current measured value are used for filtering.
  • the algorithm calculates a smoothed value corresponding to the current measured value; if the absolute difference between the current measured value and the previously collected measured value is not less than the first preset threshold, The current measured value has a larger jitter than the previously collected measured value, and a sudden change occurs between the two. At this time, the current measured value is not reliable, so the corresponding smoothed value cannot be obtained by the filtering method.
  • the smoothed value corresponding to the current measured value will maintain the previous smoothing result, that is, the smoothed value corresponding to the previously collected measured value is used as the smoothed value corresponding to the current measured value.
  • the user's adjustment of the wearable position of the wearable device, radio frequency interference, and the like may cause the measured value of the sensor output to change frequently in a short time, if the wearing state corresponding to each measured value is Performing the tracking detection, the frequent change of the measured value will cause the user to frequently switch the wearable device during the wearing of the wearable device, causing trouble to the user; to avoid this problem, the detection process of the wearing state of the wearable device in this embodiment The smoothness judgment of the signal is added, and if the signal satisfies the smooth condition, the wearing state is detected.
  • determining the current measurement for the current measured value Whether the value is in a stable state; when the current measured value is stable, it is determined whether the measured value of the preset number of the current measured value is in a stable state, or whether the measured value of the preset number before the current measured value is stable.
  • the state indicates that the signal satisfies the smooth condition, and then the current wearing state of the wearable device is detected according to the smoothed value and the reference value corresponding to the current measured value.
  • the method for determining whether the current measured value is in a stable state is: comparing the current measured value with the smoothed value corresponding to the current measured value, and determining whether the absolute difference between the two is less than a second preset threshold; The jitter of the current measured value relative to the smoothed value is not large, and the current measured value is determined to be in a stationary state; otherwise, the jitter of the current measured value relative to the smoothed value is large, and the current measured value is determined to be in a non-stationary state.
  • determining whether the preset measurement number of the current measurement value is in a steady state or determining whether the preset measurement value before the current measurement value is in a stable state is: preset for the current measurement value Comparing the measured value with the preset measured value of the current measured value, comparing the measured value with the smoothed value corresponding to the measured value, and determining whether the absolute difference between the two is less than a second preset threshold, if the absolute difference corresponding to each measured value is smaller than the second preset threshold, indicating that the collected multiple measured values in a time period in which the current measured value is collected are corresponding to the smoothing The value is close, and it is determined that the signal corresponding to the measured value in the time period is stable.
  • the wearable device After determining that the signal satisfies the smooth condition by the foregoing manner, it may determine whether the wearable device is in a wearing state according to the reference value and the smoothing value corresponding to the current measured value; for example, the reference value indicates that the wearable device is not worn, and the wearable device is in the wearable device.
  • the measured value that is output when the wearable device is worn is large, and the measured value that is output when the wearable device is removed is small, and determining the wearing state of the wearable device includes: smoothing the smoothed value corresponding to the current measured value The reference value is compared.
  • the difference between the two is greater than the third preset threshold, it indicates that the smoothed value corresponding to the current measured value is sufficiently large, which is far greater than the reference value indicating that the wearable device is not worn, and the current wearable is determined.
  • the device is in the wearing state, and the current running state of the wearable device is not changed.
  • the smoothing value corresponding to the current measured value is close to the reference value. It may be preliminarily determined that the wearable device is in a non-wearing state, but is wearable after detecting the non-wearing state of the wearable device. The operating state of the device is changed, so that the detection error of the non-wearing state affects the user's use.
  • the detection of the non-wearing state of the wearable device should be more accurate; for this, the smoothing value and the reference corresponding to the current measured value are required.
  • the difference between the values is not greater than the third preset threshold.
  • the detection result of the last wearing state of the wearable device is obtained; if the last detection result is that the wearable device is not worn Status, indicating current The initially determined detection result is the same as the previous detection result, and the current wearable device is determined to be in a non-wearing state according to the continuity of the wearing state of the wearable device; if the last detection result is that the wearable device is in the wearing state, The currently determined detection result is different from the previous detection result, and a change is made.
  • the degree which in turn indicates that the wearing state of the wearable device changes during the period of time, determines that the current wearable device is in the non-wearing state according to the previous detection result, and controls the wearable device to close the corresponding function that is running; otherwise, the description a period of time up to the acquisition time corresponding to the current measurement
  • the smoothed value corresponding to the collected measured value does not change to a certain extent, and further indicates that the wearing state of the wearable device does not change during the period of time, and then the current wearable device is determined to be worn according to the previous detection result, and the current wearable device is maintained.
  • the wearable device's operating status remains the same.
  • the method shown in FIG. 1 further includes: determining that the reference is satisfied.
  • the wearable device is used for the next wearing state detection of the wearable device; wherein the wearable device uses the initialized preset value as the reference value for the first time after the power is turned on.
  • the preset value of the detection is initialized by multiple statistics on the historical reference value.
  • the reference value update condition may include two types: one is that the current measurement value is in a steady state, and the preset measurement number before and after the current measurement value is in a steady state or current measurement.
  • the preset number of measurements before the value are in a steady state, and the wearable device is currently in the non-wearing state, and the other is when the current measured value is less than the fifth preset threshold.
  • updating the reference value includes: calculating the preliminary reference value by using the current measured value and the reference value; comparing the preliminary reference value with the smoothed value corresponding to the current measured value, if the preliminary reference value is prepared The reference value is updated by the smoothed value greater than the smoothed value, and the reference value is updated by the preliminary reference value if the preliminary reference value is smaller than the smoothed value.
  • the reference value update condition may include two types: one is: the current measurement value is in a steady state, and the preset number of measurement values before and after the current measurement value are in a steady state or the current measurement value.
  • the previous preset number of measurements are in a steady state and the wearable device is currently in the worn state, the other is: current measurement
  • the value is greater than the preset threshold.
  • the specific values of the various preset thresholds described above may be determined according to the specific performance of the wearable device, the measurement accuracy desired to be achieved, and the like.
  • the foregoing implementation process is described by taking a wearable device as a smart earphone as an example.
  • the embodiments of the present invention are not limited to smart headphones, and are equally applicable to wearable devices such as smart bracelets and smart glasses.
  • the wearable device is a smart earphone (see Figure 6)
  • the sensor is a capacitive sensor
  • the measured value of the capacitive sensor output is a capacitance value.
  • 2 is a schematic diagram showing a capacitance signal output by a capacitive sensor when a user wears and removes a smart earphone according to an embodiment of the present invention. As shown in FIG. 2, when the smart earphone is in an unworn state, the capacitive sensor outputs a capacitance. The value is at a low level.
  • the capacitance value of the capacitive sensor output is at a high level, and the wearing state of the smart earphone can be detected by the capacitance value output by the capacitive sensor.
  • the wearing detection is started. After that, the measured value is collected from the capacitive sensor according to a preset sampling frequency, and the measured value is a capacitance value.
  • FIG. 3 shows a partial view of the capacitive signal output by the capacitive sensor according to an embodiment of the present invention.
  • the capacitance value of the capacitive sensor output has a strong interference noise, and the jitter is large, which will affect the detection result of the wearing state of the smart earphone. Therefore, after collecting the capacitance value from the capacitive sensor, a certain method needs to be eliminated. The effect of noise interference.
  • the smoothing method is used to perform anti-interference processing on the capacitance value.
  • the current measured value that is, the current capacitance value is recorded as SenData(n), where n represents the acquisition time of the current measurement value, and the current capacitance value SenData(n) is compared with the previous acquired capacitance value SenData (n- 1) For comparison, (n-1) indicates the acquisition time of the previous measurement value. If the absolute difference between the two is less than the first preset threshold, the capacitance signal between the current acquisition and the previous acquisition is smoother.
  • the smoothing value SmoothS(n-1) corresponding to the previous acquired capacitance value SenData(n-1) and the current capacitance value SenData(n) are used to calculate the current capacitance value SenData(n) by the filtering algorithm.
  • the corresponding smoothing value SmoothS(n) is calculated as follows:
  • alphaF is the first smoothing factor
  • the interference in the capacitive signal can be filtered out by selecting an appropriate smoothing factor to ensure that the original capacitance value of the capacitive sensor output can be quickly tracked.
  • the capacitance signal is jittered between the current acquisition and the previous acquisition. , the measurement that was collected the previous time
  • the wearing state of the smart earphone is detected according to the smoothed value corresponding to the obtained capacitance value.
  • some behaviors of the user also affect the capacitance value of the capacitive sensor output, so that the secondary capacitive sensor
  • the collected capacitance value changes frequently.
  • the capacitance value of the capacitive sensor output changes, such as when the user wears the smart earphone and undergoes a manual adjustment of the earphone position.
  • the process is worn in a comfortable position. This adjustment process also causes frequent changes in the capacitance value of the capacitive sensor output.
  • the strategy adopted in this embodiment is: after determining that the capacitance signal output by the capacitive sensor is in a stable state, the wearing state of the smart earphone is detected to ensure that the detection result is accurate, effective, and does not affect the user's use.
  • the current capacitance value SenData(n) collected from the capacitive sensor is first compared with the smoothed value SmoothS(n) corresponding to the current capacitance value SenData(n), and the two are determined.
  • the threshold it is determined, it is determined that the current measured value is in a non-stationary state; after determining that the current capacitance value SenData(n) is stable, it is determined whether the N capacitance values before and after the current capacitance value SenData(n) are in a stationary state, or determining the current capacitance value. Whether the N capacitor values before SenData(n) are in a stable state.
  • N is selected according to actual needs, and the value of N selected in a specific example is the number of capacitance values sampled in 0.5 second.
  • the scheme compares the smooth value SmoothS(n) corresponding to the current capacitance value SenData(n) with the reference value Baseline to determine whether the smart earphone is in a wearing state, wherein The reference value Baseline indicates the output value corresponding to the capacitive sensor when the wearable device is not worn. Since the reference value Baseline has not been updated when the wearing state detection is performed according to the current capacitance value SenData(n), the current capacitance value SenData is (n) The comparison is performed using the baseline value Baseline(n-1) after the previous update.
  • the smoothed value SmoothS(n) corresponding to the current capacitance value SenData(n) is compared with the reference value Baseline(n-1), and when the difference between the two is greater than the third preset threshold, the current The capacitance value SenData(n) is sufficiently large compared to the reference value Baseline(n-1) to determine that the current wearable device is in the wearing state; when the difference between the two is not greater than the third preset threshold, the current capacitance is indicated.
  • the value SenData(n) is near the reference value Baseline(n-1), and it can be determined that the current smart headset is in a non-wearing state.
  • the smart earphone in the actual use process, when the smart earphone is determined to be in the non-wearing state, the smart earphone stops the running function, and if the smart earphone is The detection result of the non-wearing state does not match the actual state, that is, the detection error will cause the function that the user is using to suddenly stop or close. If the user is turning off the music player in the smart earphone while listening to music, the user will be very bad.
  • the experience can be seen that the detection fault tolerance of the wearable device in the non-wearing state is far lower than the detection fault tolerance of the wearable device wearing state. Therefore, the present solution further proposes a preferred embodiment to optimize the above judgment that the wearable device is not worn.
  • the detection process of the state to further improve the detection accuracy of the wearable state of the wearable device.
  • the smart earphone when it is determined that the difference between the smoothed value SmoothS(n) corresponding to the current capacitance value SenData(n) and the reference value Baseline(n-1) is not greater than a third preset threshold, the smart earphone is in a non-wearing state.
  • the detection result is used as the detection result to be optimized; the detection result of the last wearing state of the smart earphone is obtained again. If the previous detection result is that the smart earphone is in the non-wearing state, the test result to be optimized is consistent with the previous detection result.
  • the current smart headset is in a non-wearing state; if the last detection result is that the smart headset is in a wearing state, the current to-be-optimized detection result is opposite to the previous detection result, and the detection result to be optimized this time is The optimization is performed to determine whether the difference between the maximum value of the smoothing value corresponding to the preset capacitance value of the current capacitance value SenData(n) and the smoothing value SmoothS(n) corresponding to the current capacitance value SenData(n) exceeds the fourth value.
  • the preset threshold value is that the smooth value corresponding to the capacitance value collected from the capacitive sensor is continuously decreased to a certain extent within a preset acquisition period, and is determined to be Intelligent headset is non-wearing state, otherwise, to determine the current status of smart headset is worn.
  • the detection result of the wearing state of the current smart earphone is output, and when the current smart earphone is in the non-wearing state, the smart earphone is controlled to turn off the function that is running in the smart earphone.
  • the baseline Baseline After detecting the wearing state of the smart earphone, if the capacitance signal of the current capacitance value SenData(n) is in a stable state and confirming that the smart earphone is currently in a non-wearing state, or the current capacitance value is sufficiently small, for example, less than the fifth preset At the threshold, the baseline Baseline is updated, and the baseline value Baseline(n-1) after the previous update is updated to this update.
  • the baseline value Baseline(n) first calculates the baseline reference value BaselineBuf(n) after the update by using the previous updated Baseline(n-1) and the current capacitance value SenData(n). The calculation formula is as follows:
  • BaselineBuf(n) Baseline(n-1) ⁇ alphaS+(1-alphaS) ⁇ SenData(n);
  • alphaS is the second smoothing factor. Since the capacitance value of the capacitive sensor when the smart earphone is worn must be greater than the capacitance value output when the smart earphone is not worn, the reference value Baseline(n) is not greater than the current capacitance value SenData. (n) Corresponding smoothing value SmoothS(n), so by comparing the calculated preliminary reference value BaselineBuf(n) with the smoothing value SmoothS(n) corresponding to the current capacitance value SenData(n), the smaller one is taken as the present The baseline value Baseline(n) after the update is used for the next time the smart headset is worn.
  • the above description describes the principle of detecting the wearing state of the wearable device by using the wearable device as a smart earphone, and the sensor in the wearable device is an example of a capacitive sensor.
  • the wearable device may be a smart wristband.
  • Other types of wearable devices such as smart watches and smart belts.
  • the sensors in the wearable device can be capacitive sensors, resistive pressure sensors, piezoelectric sensors, and the like, which can be output when the wearable device is worn or removed. Sensors with different measured values can be accurately and effectively detected based on the above principles.
  • initialization is required, and the reference value and the historical measurement value, the smooth value corresponding to the historical measurement value, and the like are performed. Initialize the assignment to provide a calculation basis for the current measurement in the smoothing process, the stationarity judgment process, the detection result judgment process, and the reference value update process during the first detection process.
  • FIG. 4 is a flowchart of a wearing state detecting method of a wearable device, illustrating a process of first wearing state detection after the wearable device is powered on, wherein the sensor is set in the wearable device according to another embodiment of the present invention.
  • the capacitance value of the capacitive sensor output is different when the wearable device is worn and removed, as shown in FIG. 4, the method includes:
  • step S410 the current capacitance value is collected.
  • step S420 it is judged whether it has been initialized, if yes, step S430 is performed, otherwise step S490 is performed.
  • Step S430 obtaining a smoothed value corresponding to the current capacitance value.
  • step S440 it is determined whether the capacitance signal in the acquisition period corresponding to the current capacitance value is stable. If yes, step S450 is performed; otherwise, the process returns to step S410.
  • step S450 the wearing state of the current wearable device is detected. If the wearable device is in the wearing state, the wearing identifier is set to 1, and if the wearable device is in the non-wearing state, the wearing identifier is set to 0.
  • step S460 it is determined whether the reference value update condition is satisfied, if yes, step S470 is performed, otherwise, step S410 is returned.
  • step S470 the reference value is updated.
  • Step S480 outputting a wearable device wearing state detection result according to the wearing identifier.
  • Step S490 initialization, and then step S430 is performed.
  • the present application further provides a wearable device comprising a processor and a machine readable storage medium storing machine executable instructions executable by the processor, the processor being Executing the instructions causes the steps of the wearable state detecting method of the aforementioned wearable device to be implemented.
  • the embodiment of the present invention further provides a machine readable storage medium storing machine executable instructions, when invoked and executed by a processor, the machine executable instructions cause the processor to implement the foregoing wearable device.
  • the steps to wear the status detection method are described below.
  • the wearable device of the present application includes a processor, an internal bus, a network interface, a volatile memory, and a non-volatile memory, and further, other hardware may be included according to the actual function of the wearable device. I will not go into details here.
  • the non-volatile memory may be: a storage drive (such as a hard drive), a solid state drive, any type of storage disk (such as a compact disc, a DVD, etc.), or a similar storage medium, or combination.
  • the volatile memory may be: RAM (Radom Access Memory).
  • the nonvolatile memory and the volatile memory are machine readable storage media on which machine executable instructions corresponding to the wearing state detecting method of the wearable device executed by the processor are stored.
  • FIG. 5 shows a schematic diagram of a wearable device in accordance with one embodiment of the present invention.
  • the wearable device 500 includes a sensor 510 and a control circuit 520.
  • the sensor 510 is disposed in an area of the wearable device 500 that is in contact with human skin, and the sensor 510 outputs a different measurement value when the user wears and removes the wearable device 500.
  • the control circuit 520 includes an acquisition module 521, a detection processing module 522, and a control output module 523.
  • the acquisition module 521 is connected to the sensor 510. After the wear detection is initiated, the acquisition module 521 collects the measured value from the sensor 510 according to a preset sampling frequency.
  • the detection processing module 522 is connected to the collection module 521, and the detection processing module 522 receives the measurement value collected by the collection module 521, and obtains a reference value indicating whether the wearable device 500 is worn, and determines whether the current wearable device 500 is in accordance with the measured value and the reference value. Wearing state.
  • the detection processing module 522 is connected to the control output module 523. When the detection processing module 522 detects that the wearable device 500 is in the non-wearing state, it notifies the control output module 523 that the control output module 523 controls the wearable device 500 to close the corresponding function that is running.
  • the wearable device shown in FIG. 5 is provided with a sensor in a designated area of the wearable device, and the measured value of the sensor that is in contact with the skin when the wearable device is worn and not worn is combined with the control logic by the reference value.
  • a new type of wearing detection method has been realized.
  • the accuracy of wearing the test result of the solution is high, and the comfort of the device is improved while minimizing unnecessary power consumption of the wearable device, and the user can automatically operate without manual operation when the wearable device is removed. Stop the corresponding functions that are running in the wearable device, simplify user operations, be smart, and meet the needs of wearable devices.
  • the detection processing module 522 acquires a smoothed value corresponding to each measured value collected by the collecting module 521, and determines whether the current measured value is in a stable state for the current measured value, and determines whether the current measured value is stable. Whether the measured value of the preset number of the current measured value is in a stable state, or whether the measured value of the preset number before the current measured value is in a stable state; if yes, according to the smoothed value corresponding to the current measured value The reference value determines whether the current wearable device 500 is in a worn state.
  • the detection processing module 522 compares the current measurement value with the previously collected measurement value for the current measurement value, and determines whether the absolute difference between the two is less than the first preset threshold; The smoothed value corresponding to the measured value and the current measured value are calculated, and the smoothed value corresponding to the current measured value is calculated; otherwise, the smoothed value corresponding to the previously collected measured value is used as the smoothed value corresponding to the current measured value.
  • the detection processing module 522 compares the current measured value with the smoothed value corresponding to the current measured value, and determines whether the absolute difference between the two is less than a second preset threshold; The measured value is in a steady state; otherwise, it determines that the current measured value is in a non-stationary state.
  • the detection processing module 522 compares the smoothed value corresponding to the current measured value with the reference value, and determines that the current wearable device 500 is at a time when the difference between the two is greater than the third preset threshold. a wearing state; wherein the reference value indicates that the wearable device 500 is not worn.
  • the detection processing module 522 acquires the last wearing state of the wearable device 500 when the difference between the smoothed value corresponding to the current measured value and the reference value is not greater than the third preset threshold. If the result of the last detection is that the wearable device 500 is in the non-wearing state, it is determined that the current wearable device 500 is in the non-wearing state; if the last detection result is that the wearable device 500 is in the wearing state, before determining the current measurement value Determining whether the difference between the maximum value of the smoothed value corresponding to the preset number of measured values and the smoothed value corresponding to the current measured value exceeds a fourth preset threshold, and determining that the current wearable device 500 is in a non-wearing state; otherwise, It is determined that the current wearable device 500 is in a worn state.
  • the detection processing module 522 is further configured to: when determining that the reference value update condition is met, The reference value is updated; the wearing status detection of the next wearable device 500 is performed by using the updated reference value; wherein the reference value indicates that the wearable device 500 is not worn, the reference value update condition is: the current measurement value is at The steady state, the preset measurement value before and after the current measurement value are all in a steady state or a preset number of measurement values before the current measurement value are in a steady state, and it is confirmed that the wearable device 500 is currently in a non-wearing state, or When the current measured value is less than the fifth preset threshold; when the reference value indicates that the wearable device 500 is worn, the reference value update condition is: the current measured value is in a steady state, and the preset number of measurements before and after the current measured value is measured. When the value is in a steady state or a preset number of measurements before the current measurement value are in a steady state, and it is confirmed that the wearable device 500 is
  • the detection processing module 522 calculates a preliminary reference value by using the current measured value and the reference value; comparing the preliminary reference value with a smoothed value corresponding to the current measured value, if the preliminary reference value is greater than the smoothed value And updating the reference value by using the smoothed value; and if the preliminary reference value is smaller than the smoothed value, updating the reference value by using the preliminary reference value.
  • FIG. 6 shows a schematic diagram of a smart earphone including a sensor 610, a control circuit (not shown), an earphone tail 620, and an earphone cover 630, as shown in FIG. .
  • the operation of the sensor 610 and the control circuit are the same as those of the sensor 510 and the control circuit 520 shown in FIG. 5 , and details are not described herein again.
  • the control circuit is disposed in the earphone tail 620; the sensor 610 is a capacitive sensor, and the sensor 610 is disposed at a predetermined position in the smart earphone 600, the predetermined position corresponding to an area of the earphone cover 630 that can contact the skin of the human ear, the sensor 610 being at the user
  • the measured value of the output when wearing and removing the smart earphone is different.
  • a protrusion 631 for engaging the earphone cover 630 is provided on the inner side edge of the earphone cover 630, the protrusion 631 protruding toward one side of the earphone cover 630, and the sensor 610 is disposed at the top of the protrusion; the smart earphone 600 is When worn, the sensor 610 and the human ear form a capacitor.
  • the dielectric constant is constant, the contact area and distance between the sensor 610 and the capacitor formed by the human ear will affect the measured value, that is, the capacitance value, because the human ear is irregular.
  • the shape of the cavity in order to ensure that the sensor 610 and the human ear can form an effective capacitor, it is necessary to ensure the contact area between the two, so in this example, a certain area of conductive material is selected as the capacitive sensor, specifically, considering the cost And conductive properties, a closed annular copper foil is placed on top of the protrusion of the protrusion of the smart earphone as the sensor 610.
  • the closed annular copper foil is composed of more than two concentric rings.
  • the shape of the copper foil as the sensor 610 may also be a non-closed loop, which takes into account the effect that the contact of the hand with the earphone cover may have on the sensor 610 when the user wears or adjusts the smart earphone 600 by hand.
  • a notch is formed at a position of the copper foil corresponding to the user's customary position which is easy to be contacted by the hand to form a non-closed ring shape; in other modes, the shape of the copper foil as the sensor 610 may also be a circle or a half.
  • the circular or fan shape, etc. all increase the contact area of the capacitor formed by the sensor 610 and the human ear to increase the sensitivity of the sensor 610, and enable the setting of the sensor to flexibly adapt to the internal structure of the wearable device without affecting the Wear other devices in the device.
  • the smart earphone 600 is a headset, including two earphone tails 620, two earphone covers 630, and a connecting portion.
  • Each earphone cover 630 covers one earphone tail 620 to form an earphone head.
  • the two earphone tails 620 are connected by a connecting portion; at least one earphone head is provided with a control circuit and a sensor 610.
  • sensor 610 can be a resistive pressure sensor or a piezoelectric sensor.
  • the smart earphone 600 further includes: a Bluetooth module and/or a WiFi module; the Bluetooth module and/or the WiFi module are disposed in a control circuit of the earphone tail 620.
  • FIG. 5 to FIG. 6 are the same as the embodiments shown in FIG. 1 to FIG. 4 above, and the detailed description above is not described herein again.
  • the technical solution provided by the embodiment of the present invention is different from the measured value output by the sensor when the wearable device is worn and not worn, in the wearable device.
  • the sensor is set in the designated area, and after the wearing detection is started, the detection result outputted from the sensor and the reference value indicating whether the wearable device is worn are obtained, and the detection result of the wearing state of the current wearable device is obtained, and the detection process uses various methods.
  • Anti-interference processing such as smoothness processing, smoothness judgment, and some judgment logic to improve the validity and accuracy of wearable state detection of the wearable device, and then control the wearable device according to the detection result, and realize the picking in the wearable device
  • the technical effect of the function that is running in the wearable device can be stopped, and the unnecessary power consumption of the wearable device is reduced, which meets the requirements of the wearable device.

Abstract

一种可穿戴设备(500)的佩戴状态检测方法及设备,检测方法包括:在可穿戴设备(500)的能与用户皮肤接触的区域中设置传感器(510),传感器(510)在用户佩戴和摘下可穿戴设备(500)时输出的测量值不同(S110);获取指示可穿戴设备(500)是否佩戴的基准值(S120);启动佩戴检测后,按照预设采样频率从传感器(510)采集测量值(S130);根据测量值和基准值判断可穿戴设备(500)当前是否处于佩戴状态(S140);当可穿戴设备(500)处于非佩戴状态时,控制可穿戴设备(500)关闭正在运行的相应功能(S150)。能够降低功耗,简化用户操作。

Description

一种可穿戴设备的佩戴状态检测方法和可穿戴设备 技术领域
本发明涉及可穿戴设备领域,尤其涉及一种可穿戴设备的佩戴状态检测方法和可穿戴设备。
背景技术
可穿戴设备是近几年发展的热点,比如智能手环、智能手表和智能耳机等。可穿戴设备的佩戴状态检测是可穿戴设备需要具备的一个重要功能,根据佩戴状态的检测结果可以控制或优化一些功能,比如可以根据手环的佩戴状态避免将静止误判为睡眠等。特别地,对于智能耳机,佩戴状态检测是一个很重要的功能。智能耳机采用蓝牙或WiFi(Wireless Fidelity,基于IEEE802.11b标准的无线局域网)无线模块,减少了电线的牵绊,可以以更舒适的方式打电话、听音乐等等,但无线模块功耗大,导致智能耳机使用时间短,为此,用户希望未佩戴智能耳机的时候,能够停止智能耳机中正在运行的应用程序,以减少功耗。
针对可穿戴设备的佩戴状态检测问题,现有技术中往往采用机械按键进行控制,该方案具有以下弊端:一是机械按键的频繁使用会导致机械按键的磨损,不仅减少其寿命,还会影响美观;二是操作机械按键需要观察到按键位置才能有效操作,相对比较麻烦;三是使用者可能忘记关闭可穿戴设备,从而导致未使用时,可穿戴设备中的应用程序仍在运行,比如音乐一直播放等等。
因此,如何准确检测可穿戴设备是否处于佩戴状态是一项至关重要的前提工作,如果检测不准确可能会给用户带来不舒适的体验,严重的可能会影响可穿戴设备的使用效果。
发明内容
鉴于上述问题,本发明实施例提供了一种可穿戴设备的佩戴状态检测方法和可穿戴设备,以解决上述问题或者至少部分地解决上述问题。
依据本发明实施例的一个方面,提供了一种可穿戴设备的佩戴状态检测方法,该方法包括:
在可穿戴设备的能与用户皮肤接触的区域中设置传感器,该传感器在用户佩戴和摘下可穿 戴设备时输出的测量值不同;
获取指示可穿戴设备是否佩戴的基准值;
启动佩戴检测后,按照预设采样频率从传感器采集测量值;
根据测量值和基准值判断可穿戴设备当前是否处于佩戴状态;
当可穿戴设备处于非佩戴状态时,控制可穿戴设备关闭正在运行的相应功能。
可选地,根据测量值和基准值判断当前可穿戴设备是否处于佩戴状态包括:
获取采集到的每个测量值对应的平滑值;
对于当前测量值,判断当前测量值是否处于平稳状态;
当前测量值平稳时,判断当前测量值前后预设个数的测量值是否都处于平稳状态,或者,判断当前测量值之前的预设个数的测量值是否都处于平稳状态;
是则,根据当前测量值对应的平滑值和基准值,判断可穿戴设备当前是否处于佩戴状态。
可选地,获取采集到的每个测量值对应的平滑值包括:
对于当前测量值,将当前测量值与前一次采集到的测量值进行比较,判断二者之间的绝对差值是否小于第一预设阈值;
是则,利用前一次采集到的测量值对应的平滑值和当前测量值,计算当前测量值对应的平滑值;
否则,将前一次采集到的测量值对应的平滑值作为当前测量值对应的平滑值。
可选地,判断当前测量值是否处于平稳状态包括:
将当前测量值和当前测量值对应的平滑值进行比较,判断二者之间的绝对差值是否小于第二预设阈值;
是则,确定当前测量值处于平稳状态;
否则,确定当前测量值处于非平稳状态。
可选地,根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备是否处于佩戴状态包括:
将当前测量值对应的平滑值与基准值进行比较,当二者之间的差值大于第三预设阈值时,确定当前可穿戴设备处于佩戴状态;
其中,基准值指示可穿戴设备未被佩戴。
可选地,根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备是否处于佩戴状态 还包括:
如果当前测量值对应的平滑值与基准值之间的差值不大于第三预设阈值,获取上一次对可穿戴设备佩戴状态的检测结果;
若上一次的检测结果为可穿戴设备处于非佩戴状态,确定当前可穿戴设备处于非佩戴状态;
若上一次的检测结果为可穿戴设备处于佩戴状态,判断当前测量值之前预设个数的测量值对应的平滑值中的最大值与当前测量值对应的平滑值的差值是否超过第四预设阈值,是则,确定当前可穿戴设备处于非佩戴状态,否则,确定当前可穿戴设备处于佩戴状态。
可选地,该方法进一步包括:
判断满足基准值更新条件时,对基准值进行更新;
利用更新后的基准值进行下一次可穿戴设备的佩戴状态检测;
其中,基准值指示可穿戴设备未佩戴时,基准值更新条件为:
当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备当前处于非佩戴状态时,或者,当前测量值小于第五预设阈值时;
基准值指示可穿戴设备被佩戴时,基准值更新条件为:
当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备当前处于被佩戴状态时,或者,当前测量值大于预设阈值时。
可选地,对基准值进行更新包括:利用当前测量值和基准值,计算预备基准值;
将预备基准值与当前测量值对应的平滑值进行比较,如果预备基准值大于该平滑值,利用该平滑值更新基准值;
如果预备基准值小于该平滑值,利用预备基准值更新基准值。
依据本发明实施例的另一个方面,提供了一种可穿戴设备,该可穿戴设备包括:传感器和控制电路;
传感器设置于可穿戴设备的能与人体皮肤接触的区域中,传感器在用户佩戴和摘下可穿戴设备时输出的测量值不同;
控制电路包括:采集模块、检测处理模块和控制输出模块;
采集模块与传感器连接,在启动佩戴检测后,采集模块按照预设采样频率从传感器采集测量值;
检测处理模块与采集模块连接,检测处理模块接收采集模块采集的测量值,并获取指示可穿戴设备是否佩戴的基准值,根据测量值和基准值判断当前可穿戴设备是否处于佩戴状态;
检测处理模块与控制输出模块连接,检测处理模块在检测出可穿戴设备处于非佩戴状态时,通知控制输出模块,控制输出模块控制可穿戴设备关闭正在运行的相应功能。
可选地,检测处理模块获取采集模块采集到的每个测量值对应的平滑值,对于当前测量值,判断当前测量值是否处于平稳状态,当前测量值平稳时,判断当前测量值前后预设个数的测量值是否都处于平稳状态,或者,判断当前测量值之前的预设个数的测量值是否都处于平稳状态;是则,根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备是否处于佩戴状态。
可选地,可穿戴设备为智能耳机,该智能耳机包括耳机尾部和耳机罩;
控制电路设置在耳机尾部中;
在耳机罩的内侧边缘上设置有用于卡合耳机罩的突起部,该突起部向耳机罩的一侧突起;传感器设置在突起的顶部。
可选地,传感器为由铜箔构成的电容传感器,该铜箔的形状为闭合环形或非闭合环形。
由上述可知,本发明实施例提供的技术方案,利用可穿戴设备在佩戴和不佩戴时,与皮肤接触的传感器的测量值不同的特性,在可穿戴设备的适当位置设置传感器,通过基准值结合控制逻辑实现了一种新型的佩戴检测方式。本方案佩戴检测结果的准确度高,在尽可能减少可穿戴设备的不必要功耗的同时,提高了可穿戴设备使用的舒适度,且在可穿戴设备被摘下时,无需用户手动操作即可自动停止可穿戴设备中正在运行的相应功能,简化用户操作,智能化好,符合可穿戴设备的使用需求。
附图说明
图1示出了根据本发明一个实施例的一种可穿戴设备的佩戴状态检测方法的流程图;
图2示出了根据本发明一个实施例的电容传感器在用户佩戴和摘下智能耳机时输出的电容信号的示意图;
图3示出了根据本发明一个实施例的电容传感器输出的电容信号的局部图;
图4示出了根据本发明另一个实施例的一种可穿戴设备的佩戴状态检测方法的流程图;
图5示出了根据本发明一个实施例的一种可穿戴设备的示意图;
图6示出了根据本发明一个实施例的一种智能耳机的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施例的实施方式作进一步地详细描述。
本方案鉴于佩戴检测所存在的问题而提出,其目的是提高可穿戴设备佩戴状态检测的准确性。本方案根据电容传感器等可以检测出设备佩戴与否的传感器,通过抗干扰算法及抗干扰流程控制的方法来提高佩戴状态检测的准确性,从而根据可穿戴设备的佩戴状态控制可穿戴设备的一些功能,比如音乐播放,灯光的亮灭,ANC(Active Noise Control,主动噪声控制)的开关等等,这样不但减少功耗、避免机械按键的磨损,还能给使用者带来更多便利和舒适的体验。
图1示出了根据本发明一个实施例的一种可穿戴设备的佩戴状态检测方法的流程图。如图1所示,该方法包括:
步骤S110,在可穿戴设备的能与用户皮肤接触的区域中设置传感器,该传感器在用户佩戴和摘下可穿戴设备时输出的测量值不同。
步骤S120,获取指示可穿戴设备是否佩戴的基准值。
本步骤中,所获取的为指示可穿戴设备未被佩戴时的基准值,或者,所获取的为指示可穿戴设备被佩戴时的基准值。
步骤S130,启动佩戴检测后,按照预设采样频率从传感器采集测量值。
本步骤按照预设采样频率从传感器采集测量值的过程是将传感器输出的模拟信号转换成数字信号的过程。
步骤S140,根据测量值和基准值判断可穿戴设备当前是否处于佩戴状态。
由于可穿戴设备中的传感器输出的测量值也会受到外界环境中温度和湿度的影响,在不同的温度或湿度下,相同的佩戴状态下的测量值会发生变化,因此本步骤以测量值和基准值为综合依据来检测可穿戴设备的佩戴状态,避免单独以测量值为依据对可穿戴设备的佩戴状态进行检测所造成的检测失误。
步骤S150,当可穿戴设备处于非佩戴状态时,控制可穿戴设备关闭正在运行的相应功能。
可见,图1所示的方法利用可穿戴设备在佩戴和不佩戴时,与皮肤接触的传感器的测量值 不同的特性,在可穿戴设备的适当位置设置传感器,通过基准值结合控制逻辑实现了一种新型的佩戴检测方式。本方案佩戴检测结果的准确度高,在尽可能减少可穿戴设备的不必要功耗的同时,提高了设备使用的舒适度,且在可穿戴设备被摘下时,无需用户手动操作即可自动停止可穿戴设备中正在运行的相应功能,简化用户操作,智能化好,符合可穿戴设备的使用需求。
在一些场景中,从传感器采集到的测量值不平滑,存在噪声干扰,抖动较大,不能够直接作为可穿戴设备的佩戴状态的检测依据,因此,基于图1所示的实施例,在本发明的另一个实施例中,在按照预设采样频率从传感器采集到每个测量值后,还需要对每个测量值进行进一步的滤波处理,以消除测量值中的干扰,再利用测量值的平滑值来进行后续的检测处理,可以极大地提高检测的抗干扰性,保证检测结果的准确性。
优选地,本实施例采用平滑滤波来去除信号中的干扰,其中,获取采集到的每个测量值对应的平滑值的方式是:对于当前测量值(当前测量值指当前处理的测量值,下文中同理),将当前测量值与前一次采集到的测量值进行比较,判断二者之间的绝对差值(绝对差值指差值的绝对值,下文中同理)是否小于第一预设阈值;如果当前测量值与前一次采集到的测量值之间的绝对差值小于第一预设阈值,说明当前测量值与前一次采集到的测量值相比没有较大的抖动,当前测量值不是一个突变值,可以通过中值滤波、平滑滤波等方式来滤除干扰,获取当前测量值对应的平滑值,如利用前一次采集到的测量值对应的平滑值和当前测量值,通过滤波算法计算当前测量值对应的平滑值;如果当前测量值与前一次采集到的测量值之间的绝对差值不小于第一预设阈值,说明当前测量值与前一次采集到的测量值相比具有较大的抖动,二者之间发生了突变,此时当前测量值不可靠,因此不能再通过滤波方式获得相应的平滑值,则本实施例中当前测量值对应的平滑值将维持前一次的平滑结果,即,将前一次采集到的测量值对应的平滑值作为当前测量值对应的平滑值。
可穿戴设备在使用过程中,用户对可穿戴设备的佩戴位置的调整、射频干扰等事件均可能导致传感器输出的测量值在短时间内的频繁变化,如果对于每个测量值对应的佩戴状态均进行跟踪检测,测量值的频繁变化将导致用户在佩戴可穿戴设备的过程中可穿戴设备的频繁开关,给用户造成困扰;为避免此问题,本实施例在可穿戴设备的佩戴状态的检测过程中加入了对信号的平稳性判断,如果信号满足平稳条件,再对佩戴状态进行检测。
具体地,在上述获取到当前测量值对应的平滑值之后,对于当前测量值,先判断当前测量 值是否处于平稳状态;当前测量值平稳时,接着判断当前测量值前后预设个数的测量值是否都处于平稳状态,或者,判断当前测量值之前的预设个数的测量值是否都处于平稳状态;是则表明信号满足平稳条件,再根据当前测量值对应的平滑值和基准值,对可穿戴设备当前的佩戴状态进行检测。
其中,判断当前测量值是否处于平稳状态的方式是:将当前测量值和当前测量值对应的平滑值进行比较,判断二者之间的绝对差值是否小于第二预设阈值;是则,说明当前测量值相对于平滑值的抖动不大,确定当前测量值处于平稳状态;否则,说明当前测量值相对于平滑值的抖动较大,确定当前测量值处于非平稳状态。以及,判断当前测量值前后预设个数的测量值是否都处于平稳状态或者判断当前测量值之前的预设个数的测量值是否都处于平稳状态的方式是:对于当前测量值前后预设个数的测量值或当前测量值之前的预设个数的测量值中的每个测量值,对该测量值和该测量值对应的平滑值进行比较,判断二者之间的绝对差值是否小于第二预设阈值,如果每个测量值对应的绝对差值均小于第二预设阈值,说明在当前测量值的采集时刻所在的一个时间段内的采集的多个测量值均与对应的平滑值接近,确定该时间段内的测量值对应的信号是平稳的。
在通过上述方式确定信号满足平稳条件后,则可以根据基准值和当前测量值对应的平滑值,判断可穿戴设备是否处于佩戴状态;例如,基准值指示可穿戴设备未被佩戴,可穿戴设备中的传感器在可穿戴设备被佩戴时输出的测量值较大,在可穿戴设备被摘下时输出的测量值较小,则判断可穿戴设备的佩戴状态包括:将当前测量值对应的平滑值与基准值进行比较,当二者之间的差值大于第三预设阈值时,说明当前测量值对应的平滑值足够大,远大于指示可穿戴设备未被佩戴的基准值,则确定当前可穿戴设备处于佩戴状态,对可穿戴设备的当前运行状态不做改变;当二者之间的差值不大于第三预设阈值时,说明当前测量值对应的平滑值与基准值相接近,此时可以初步确定可穿戴设备处于非佩戴状态,但是由于在检测出可穿戴设备的非佩戴状态后要对可穿戴设备的运行状态进行改变,使得非佩戴状态的检测失误会影响到用户的使用,因此对于可穿戴设备的非佩戴状态的检测应当更加精确;为此,需要在当前测量值对应的平滑值与基准值之间的差值不大于第三预设阈值,初步确定可穿戴设备处于非佩戴状态后进一步进行如下的处理:
如果当前测量值对应的平滑值与基准值之间的差值不大于第三预设阈值,获取上一次对可穿戴设备佩戴状态的检测结果;若上一次的检测结果为可穿戴设备处于非佩戴状态,说明当前 初步确定的检测结果与上一次的检测结果相同,则根据可穿戴设备的佩戴状态的延续性,确定当前可穿戴设备处于非佩戴状态;若上一次的检测结果为可穿戴设备处于佩戴状态,说明当前初步确定的检测结果与上一次的检测结果不同,发生了变化,此时需要对初步确定的检测结果进行进一步判断:判断当前测量值之前预设个数的测量值对应的平滑值中的最大值与当前测量值对应的平滑值的差值是否超过第四预设阈值,是则,说明到当前测量值对应的采集时间为止的一段时间内采集的测量值对应的平滑值连续下降了一定的程度,进而说明可穿戴设备的佩戴状态在这一段时间内发生了变化,则根据上一次的检测结果确定当前可穿戴设备处于非佩戴状态,控制可穿戴设备关闭正在运行的相应功能;否则,说明到当前测量值对应的采集时间为止的一段时间内采集的测量值对应的平滑值没有发生一定程度的下降变化,进而说明可穿戴设备的佩戴状态在这一段时间内未发生变化,则根据上一次的检测结果确定当前可穿戴设备处于佩戴状态,维持可穿戴设备的运行状态不变。
上述说明了本发明实施例对可穿戴设备的佩戴进行检测的过程,其中需要用到基准值,可穿戴设备处于不同的环境中其对应的基准值是不同的,因此在佩戴检测过程中,需要根据一定的方法来跟踪基准值,对基准值进行更新;则在本发明的一个实施例中,在获得可穿戴设备的佩戴状态的检测结果后,图1所示的方法进一步包括:判断满足基准值更新条件时,对基准值进行更新;利用更新后的基准值进行下一次可穿戴设备的佩戴状态检测;其中,可穿戴设备在开机后利用初始化的预设值作为基准值进行佩戴状态的首次检测,初始化的预设值是通过对历史基准值的多次统计得到的。
其中,当基准值指示可穿戴设备未佩戴时,基准值更新条件可以包括两种:一种为当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备当前处于非佩戴状态时,另一种为当前测量值小于第五预设阈值时。当基准值指示可穿戴设备未佩戴时,对基准值进行更新包括:利用当前测量值和基准值,计算预备基准值;将预备基准值与当前测量值对应的平滑值进行比较,如果预备基准值大于所述平滑值,利用所述平滑值更新基准值;如果预备基准值小于所述平滑值,利用所述预备基准值更新基准值。
当基准值指示可穿戴设备被佩戴时,基准值更新条件可以包括两种:一种为:当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备当前处于被佩戴状态时,另一种为:当前测量 值大于预设阈值时。
上述各种预设阈值的具体数值可以根据可穿戴设备的具体性能、期望达到的测量精度等来确定。
在本发明又一个实施例中,以可穿戴设备为智能耳机为例对上述实施过程进行说明。但本发明实施例并不局限于智能耳机,同样适用于智能手环、智能眼镜等可穿戴设备。
在本例中,可穿戴设备为智能耳机(参见图6所示),传感器为电容传感器,电容传感器输出的测量值为电容值。图2示出了根据本发明一个实施例的电容传感器在用户佩戴和摘下智能耳机时输出的电容信号的示意图,如图2所示,当智能耳机在未佩戴状态时,电容传感器输出的电容值处于低电平,当智能耳机在佩戴状态时,电容传感器输出的电容值处于高电平,则可以通过电容传感器输出的电容值来检测智能耳机的佩戴状态,在本例中,启动佩戴检测后,按照预设采样频率从电容传感器采集测量值,该测量值为电容值。
大多数情况下智能耳机中的电容传感器输出的电容信号存在噪声干扰,如图3所示,图3示出了根据本发明一个实施例的电容传感器输出的电容信号的局部图,可以看出,电容传感器输出的电容值有很强的干扰噪声,抖动较大,将会对智能耳机佩戴状态的检测结果造成影响,为此,在从电容传感器采集到电容值后,需要通过一定的方法来消除噪声干扰的影响。
本例中采用平滑滤波方法对电容值进行抗干扰处理。具体地,将采集到的当前测量值即当前电容值记作SenData(n),n表示当前测量值的采集时刻,将当前电容值SenData(n)与前一次采集到的电容值SenData(n-1)进行比较,(n-1)表示前一次测量值的采集时刻,如果二者之间的绝对差值小于第一预设阈值,说明本次采集和前一次采集之间电容信号较为平滑没有太大的抖动,则利用前一次采集到的电容值SenData(n-1)对应的平滑值SmoothS(n-1)与当前电容值SenData(n),通过滤波算法计算当前电容值SenData(n)对应的平滑值SmoothS(n),计算公式如下:
SmoothS(n)=SmoothS(n-1)×alphaF+(1-alphaF)×SenData(n);
其中,alphaF是第一平滑因子,通过选择合适的平滑因子以保证能够快速跟踪电容传感器输出的原始电容值的同时,可以滤除电容信号中的干扰。
如果当前电容值SenData(n)与前一次采集到的电容值SenData(n-1)之间的绝对差值不小于第一预设阈值,说明本次采集和前一次采集之间电容信号发生抖动,则将前一次采集到的测量 值对应的平滑值作为当前测量值对应的平滑值,即:SmoothS(n)=SmoothS(n-1)。
上述获得各电容值对应的平滑值的过程中,消除了抖动的干扰,以各电容值对应的平滑值来更加理想化地反映从电容传感器采集的电容信号。
接着要根据上述获取到的电容值对应的平滑值来对智能耳机的佩戴状态进行检测,然而,在实际使用过程中,用户的一些行为也会影响到电容传感器输出的电容值,使得从电容传感器采集的电容值频繁地变化,如当用户的手指或胳膊不经意间触碰了智能耳机,会导致电容传感器输出的电容值的变化,如当用户在佩戴智能耳机时会经历一个耳机位置的手动调整过程以佩戴在一个舒服的位置,这个调整过程也会导致电容传感器输出的电容值的频繁变化,这些情况均会使得从电容传感器采集到的电容值频繁变化,如果仅仅根据当前电容值或当前电容值对应的平滑值来进行检测的话,毫无疑问会导致检测结果不断频繁变化,影响检测结果与智能耳机的实际佩戴状态的一致性。为此,本实施例所采取的策略是:在确定电容传感器输出的电容信号处于稳定状态后,再对智能耳机的佩戴状态进行检测,以确保检测结果准确、有效、以及不影响用户的使用。
具体的,对于本次从电容传感器采集的当前电容值SenData(n),先将当前电容值SenData(n)与当前电容值SenData(n)对应的平滑值SmoothS(n)进行比较,判断二者之间的绝对差值是否小于第二预设阈值;当二者之间的绝对差值小于第二阈值时,确定当前测量值处于平稳状态;当二者之间的绝对差值不小于第二阈值时,确定当前测量值处于非平稳状态;在确定当前电容值SenData(n)平稳后,再判断当前电容值SenData(n)前后N个电容值是否都处于平稳状态,或者,判断当前电容值SenData(n)之前的N个电容值是否都处于平稳状态,如果从电容传感器采集的连续N个电容值均处于平稳状态,则确定当前电容值SenData(n)所在的电容信号处于稳定状态,可以接着利用当前电容值进行智能耳机的佩戴状态的检测。其中,根据实际需求来选择N,在一个具体的例子中所选择的N的数值为0.5秒内采样到的电容值的个数。
由于环境的温度和湿度会影响电容传感器输出的电容值的大小,如果仅仅根据从电容传感器采集的当前电容值和/或当前电容值对应的平滑值的绝对值作为检测依据,当环境的温度和湿度变化时,可能会引起检测失误,为此,本方案采用将当前电容值SenData(n)对应的平滑值SmoothS(n)与基准值Baseline进行比较的方法来判断智能耳机是否处于佩戴状态,其中,基准值Baseline指示了可穿戴设备未被佩戴时电容传感器对应的输出值,由于在根据当前电容值SenData(n)进行佩戴状态检测时基准值Baseline还没有被更新,则在与当前电容值SenData(n) 进行比较时采用的是前一次更新后的基准值Baseline(n-1)。
本例中,将当前电容值SenData(n)对应的平滑值SmoothS(n)与基准值Baseline(n-1)进行比较,当二者之间的差值大于第三预设阈值时,表示当前电容值SenData(n)与基准值Baseline(n-1)相比足够大,则确定当前可穿戴设备处于佩戴状态;当二者之间的差值不大于第三预设阈值时,表示当前电容值SenData(n)在基准值Baseline(n-1)附近,则可以确定当前智能耳机处于非佩戴状态。
进一步地,在对智能耳机的佩戴状态进行检测的过程中,智能耳机在实际使用过程中,当判断出智能耳机当前处于非佩戴状态时,控制智能耳机停止正在运行的功能,而如果智能耳机的非佩戴状态的检测结果与实际状态不符,即检测失误,将导致用户正在使用的功能突然停止或关闭,如用户正在听音乐时关闭智能耳机中的音乐播放器,将给用户带来非常不好的体验,可见,可穿戴设备非佩戴状态的检测容错程度要远远低于可穿戴设备佩戴状态的检测容错程度,因此,本方案进一步提出了优选实施例以优化上述判断可穿戴设备处于非佩戴状态的检测过程,以进一步提高对可穿戴设备的非佩戴状态的检测精确度。
具体的,在判断出当前电容值SenData(n)对应的平滑值SmoothS(n)与基准值Baseline(n-1)的差值不大于第三预设阈值时,将智能耳机处于非佩戴状态的检测结果作为本次待优化检测结果;再获取上一次对智能耳机佩戴状态的检测结果,若上一次的检测结果为智能耳机处于非佩戴状态,本次待优化检测结果和上一次的检测结果一致,从状态延续的角度可以确定当前智能耳机处于非佩戴状态;若上一次的检测结果为智能耳机处于佩戴状态,本次待优化检测结果和上一次的检测结果相反,对本次待优化检测结果进行优化,判断当前电容值SenData(n)之前预设个数的电容值对应的平滑值中的最大值与当前电容值SenData(n)对应的平滑值SmoothS(n)的差值是否超过第四预设阈值,是则,说明从电容传感器采集的电容值对应的平滑值在预设采集时间段内连续下降了一定程度,确定当前智能耳机处于非佩戴状态,否则,确定当前智能耳机处于佩戴状态。
最后,输出当前智能耳机的佩戴状态的检测结果,并且在当前智能耳机处于非佩戴状态时,控制智能耳机关闭智能耳机中正在运行的功能。
当检测出智能耳机的佩戴状态后,如果当前电容值SenData(n)所在的电容信号处于稳定状态且确认智能耳机当前处于非佩戴状态时,或者,当前电容值足够小,例如小于第五预设阈值时,对基准值Baseline进行更新,即将前一次更新后的基准值Baseline(n-1)更新为本次更新后 的基准值Baseline(n),首先利用前一次更新后的Baseline(n-1)和当前电容值SenData(n)通过滤波算法计算本次更新后的预备基准值BaselineBuf(n),计算公式如下:
BaselineBuf(n)=Baseline(n-1)×alphaS+(1-alphaS)×SenData(n);
其中,alphaS是第二平滑因子,由于电容传感器在智能耳机被佩戴时输出的电容值一定大于在智能耳机未被佩戴时输出的电容值,因此基准值Baseline(n)不会大于当前电容值SenData(n)对应的平滑值SmoothS(n),因此通过比较计算出的预备基准值BaselineBuf(n)和当前电容值SenData(n)对应的平滑值SmoothS(n),将较小的那一个作为本次更新后的基准值Baseline(n),以供下次检测智能耳机的佩戴状态时使用。
上述以可穿戴设备为智能耳机,可穿戴设备中的传感器为电容传感器的例子对可穿戴设备的佩戴状态的检测原理进行了说明,在本发明的其他例子中,可穿戴设备可以是智能手环、智能手表、智能腰带等其他种类的可穿戴设备,可穿戴设备中的传感器可以是电容传感器、电阻式压力传感器、压电传感器等其他种类的能够在可穿戴设备被佩戴或被摘下时输出不同测量值的传感器,均可以基于以上原理进行准确、有效的检测。
在本发明的实施例中,在可穿戴设备开机后,进行可穿戴设备的首次佩戴状态的检测之前,需要先进行初始化,对基准值以及历史测量值、历史测量值对应的平滑值等变量进行初始化赋值,以在首次检测过程中为当前测量值在平滑过程中、平稳性判断过程中、检测结果判断过程中、基准值更新过程中等处理提供计算依据。
图4示出了根据本发明另一个实施例的一种可穿戴设备的佩戴状态检测方法的流程图,说明了可穿戴设备开机后首次进行佩戴状态检测的过程,其中可穿戴设备中设置的传感器为电容传感器,在可穿戴设备佩戴和摘下时电容传感器输出的电容值不同,如图4所示,该方法包括:
步骤S410,采集当前电容值。
步骤S420,判断是否已初始化,是则执行步骤S430,否则执行步骤S490。
步骤S430,获得当前电容值对应的平滑值。
步骤S440,判断当前电容值对应的采集时间段内电容信号是否稳定,是则执行步骤S450,否则返回步骤S410。
步骤S450,检测当前可穿戴设备的佩戴状态,如果可穿戴设备处于佩戴状态,将佩戴标识置为1,如果可穿戴设备处于非佩戴状态,将佩戴标识置为0。
步骤S460,判断是否满足基准值更新条件,是则执行步骤S470,否则返回步骤S410。
步骤S470,更新基准值。
步骤S480,根据佩戴标识输出可穿戴设备佩戴状态检测结果。
步骤S490,初始化,之后接着执行步骤S430。
与前述方法相对应,本申请还提供了一种可穿戴设备,包括处理器和机器可读存储介质,机器可读存储介质存储有能够被处理器执行的机器可执行指令,处理器被机器可执行指令促使实现前述可穿戴设备的佩戴状态检测方法的步骤。
另外,本发明实施例中还提供了一种机器可读存储介质,存储有机器可执行指令,在被处理器调用和执行时,机器可执行指令促使所述处理器:实现前述可穿戴设备的佩戴状态检测方法的步骤。
从硬件层面而言,本申请的可穿戴设备包括处理器、内部总线、网络接口、易失性存储器、以及非易失性存储器,此外,根据该可穿戴设备的实际功能,还可以包括其他硬件,对此不再赘述。
在不同的实施例中,所述非易失性存储器可以是:存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。所述易失性存储器可以是:RAM(Radom Access Memory,随机存取存储器)。进一步,非易失性存储器和易失性存储器作为机器可读存储介质,其上可存储由处理器执行的可穿戴设备的佩戴状态检测方法对应的机器可执行指令。
图5示出了根据本发明一个实施例的一种可穿戴设备的示意图。如图5所示,该可穿戴设备500包括:传感器510和控制电路520。
传感器510设置于可穿戴设备500的能与人体皮肤接触的区域中,传感器510在用户佩戴和摘下可穿戴设备500时输出的测量值不同。控制电路520包括:采集模块521、检测处理模块522和控制输出模块523。
采集模块521与传感器510连接,在启动佩戴检测后,采集模块521按照预设采样频率从传感器510采集测量值。检测处理模块522与采集模块521连接,检测处理模块522接收采集模块521采集的测量值,并获取指示可穿戴设备500是否佩戴的基准值,根据测量值和基准值判断当前可穿戴设备500是否处于佩戴状态。检测处理模块522与控制输出模块523连接,检测处理模块522在检测出可穿戴设备500处于非佩戴状态时,通知控制输出模块523,控制输出模块523控制可穿戴设备500关闭正在运行的相应功能。
可见,图5所示的可穿戴设备在可穿戴设备的指定区域中设置传感器,利用可穿戴设备在佩戴和不佩戴时,与皮肤接触的传感器的测量值不同的特性,通过基准值结合控制逻辑实现了一种新型的佩戴检测方式。本方案佩戴检测结果的准确度高,在尽可能减少可穿戴设备的不必要功耗的同时,提高了设备使用的舒适度,且在可穿戴设备被摘下时,无需用户手动操作即可自动停止可穿戴设备中正在运行的相应功能,简化用户操作,智能化好,符合可穿戴设备的使用需求。
在本发明的一个实施例中,检测处理模块522获取采集模块521采集到的每个测量值对应的平滑值,对于当前测量值,判断当前测量值是否处于平稳状态,当前测量值平稳时,判断当前测量值前后预设个数的测量值是否都处于平稳状态,或者,判断当前测量值之前的预设个数的测量值是否都处于平稳状态;是则,根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备500是否处于佩戴状态。
其中,检测处理模块522对于当前测量值,将当前测量值与前一次采集到的测量值进行比较,判断二者之间的绝对差值是否小于第一预设阈值;是则,利用前一次采集到的测量值对应的平滑值和当前测量值,计算当前测量值对应的平滑值;否则,将前一次采集到的测量值对应的平滑值作为当前测量值对应的平滑值。
在本发明的一个实施例中,检测处理模块522将当前测量值和当前测量值对应的平滑值进行比较,判断二者之间的绝对差值是否小于第二预设阈值;是则,确定当前测量值处于平稳状态;否则,确定当前测量值处于非平稳状态。
在本发明的一个实施例中,检测处理模块522将当前测量值对应的平滑值与基准值进行比较,当二者之间的差值大于第三预设阈值时,确定当前可穿戴设备500处于佩戴状态;其中,所述基准值指示可穿戴设备500未被佩戴。
在本发明的一个实施例中,检测处理模块522还在当前测量值对应的平滑值与基准值之间的差值不大于第三预设阈值时,获取上一次对可穿戴设备500佩戴状态的检测结果;若上一次的检测结果为可穿戴设备500处于非佩戴状态,确定当前可穿戴设备500处于非佩戴状态;若上一次的检测结果为可穿戴设备500处于佩戴状态,判断当前测量值之前预设个数的测量值对应的平滑值中的最大值与当前测量值对应的平滑值的差值是否超过第四预设阈值,是则,确定当前可穿戴设备500处于非佩戴状态,否则,确定当前可穿戴设备500处于佩戴状态。
在本发明的一个实施例中,检测处理模块522还用于在判断满足基准值更新条件时,对基 准值进行更新;利用更新后的基准值进行下一次可穿戴设备500的佩戴状态检测;其中,所述基准值指示可穿戴设备500未佩戴时,所述基准值更新条件为:当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备500当前处于非佩戴状态时,或者,当前测量值小于第五预设阈值时;所述基准值指示可穿戴设备500被佩戴时,所述基准值更新条件为:当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备500当前处于被佩戴状态时,或者,当前测量值大于预设阈值时。
在本发明的一个实施例中,检测处理模块522利用当前测量值和基准值,计算预备基准值;将预备基准值与当前测量值对应的平滑值进行比较,如果预备基准值大于所述平滑值,利用所述平滑值更新基准值;如果预备基准值小于所述平滑值,利用所述预备基准值更新基准值。
图6示出了根据本发明一个实施例的一种智能耳机的示意图,如图6所示,该智能耳机600包括传感器610、控制电路(图中未示出)、耳机尾部620和耳机罩630。
其中,传感器610、控制电路分别与图5所示的传感器510、控制电路520的工作原理一致,在此不再赘述。
控制电路设置在耳机尾部620中;传感器610为电容传感器,传感器610设置在智能耳机600中的预定位置,该预定位置对应于耳机罩630的能与人耳皮肤接触的区域,该传感器610在用户佩戴和摘下智能耳机时输出的测量值即电容值不同。
具体地,在耳机罩630的内侧边缘上设置有用于卡合耳机罩630的突起部631,该突起部631向耳机罩630的一侧突起,传感器610设置在突起的顶部;在智能耳机600被佩戴时,传感器610和人耳形成一个电容器,当介电常数一定时,传感器610和人耳形成的电容器两极的接触面积和距离都会对测量值即电容值产生影响,由于人耳为不规则形状的腔体,为了保证传感器610和人耳能够形成有效电容器,需要保证二者之间的接触面积,因此本例中选择一定面积的具有导电性能的材料作为电容传感器,具体地,考虑到成本及导电性能,将一闭合环形铜箔设置在智能耳机的突起部的突起的顶部作为传感器610。
一种变形的方式中,该闭合环形铜箔由两个以上同心环构成。
在另一个方式中,作为传感器610的铜箔的形状也可以是非闭合环形,非闭合环形考虑到了用户在用手佩戴或调整智能耳机600时手与耳机罩的接触可能对传感器610产生的影响,为 避免该影响,在符合用户习惯的、易于被手的接触位置对应的铜箔位置处设置缺口,形成非闭合环形;在其他方式中,作为传感器610的铜箔的形状也可以是圆形、半圆形或扇形等,均为了尽量增加传感器610与人耳的形成的电容器的接触面积,以增加传感器610的灵敏度,并使传感器的设置能够灵活适配可穿戴设备的内部构造,不会影响可穿戴设备中的其他器件。
如图6所示,该智能耳机600为头戴式耳机,包括两个耳机尾部620、两个耳机罩630和一个连接部,每个耳机罩630覆盖在一个耳机尾部620上形成一个耳机头,两个耳机尾部620通过连接部连接;至少一个耳机头中设置有控制电路和传感器610。
在本发明的一个实施例中,传感器610可以为电阻式压力传感器或压电传感器。
在本发明的一个实施例中,该智能耳机600还包括:蓝牙模块和/或WiFi模块;该蓝牙模块和/或WiFi模块设置在耳机尾部620的控制电路中。
需要说明的是,图5-图6所示装置的各实施例与上文中图1-图4所示的各实施例对应相同,上文中已有详细说明在此不再赘述。
综上所述,为了提高可穿戴设备的佩戴状态检测的准确率,本发明实施例提供的技术方案根据可穿戴设备佩戴和未佩戴时,传感器所输出的测量值的不同,在可穿戴设备的指定区域中设置传感器,在启动佩戴检测后,通过从传感器输出的测量值和指示可穿戴设备是否佩戴的基准值,获得当前可穿戴设备的佩戴状态的检测结果,检测过程中运用多种方式的抗干扰处理,如平滑性处理、平稳性判断、以及一些判断逻辑来提高可穿戴设备的佩戴状态检测的有效性和准确性,进而根据检测结果控制可穿戴设备,实现了在可穿戴设备被摘下时,无需用户手动操作即可停止可穿戴设备中正在运行的功能的技术效果,减少可穿戴设备的不必要功耗,符合可穿戴设备的使用需求。
以上所述仅为本发明的较佳实施例而已,并非用于限定实施例的保护范围。凡在本发明实施例的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明实施例的保护范围内。

Claims (15)

  1. 一种可穿戴设备的佩戴状态检测方法,其中,该方法包括:
    在可穿戴设备的能与用户皮肤接触的区域中设置传感器,该传感器在用户佩戴和摘下可穿戴设备时输出的测量值不同;
    获取指示可穿戴设备是否佩戴的基准值;
    启动佩戴检测后,按照预设采样频率从所述传感器采集测量值;
    根据所述测量值和基准值判断可穿戴设备当前是否处于佩戴状态;
    当可穿戴设备处于非佩戴状态时,控制可穿戴设备关闭正在运行的相应功能。
  2. 如权利要求1所述的方法,其中,根据所述测量值和基准值判断当前可穿戴设备是否处于佩戴状态包括:
    获取采集到的每个测量值对应的平滑值;
    对于当前测量值,判断当前测量值是否处于平稳状态;
    当前测量值平稳时,判断当前测量值前后预设个数的测量值是否都处于平稳状态;
    是则,根据当前测量值对应的平滑值和基准值,判断可穿戴设备当前是否处于佩戴状态。
  3. 如权利要求2所述的方法,其中,所述获取采集到的每个测量值对应的平滑值包括:
    对于当前测量值,将当前测量值与前一次采集到的测量值进行比较,判断二者之间的绝对差值是否小于第一预设阈值;
    是则,利用前一次采集到的测量值对应的平滑值和当前测量值,计算当前测量值对应的平滑值;
    否则,将前一次采集到的测量值对应的平滑值作为当前测量值对应的平滑值。
  4. 如权利要求2所述的方法,其中,所述判断当前测量值是否处于平稳状态包括:
    将当前测量值和当前测量值对应的平滑值进行比较,判断二者之间的绝对差值是否小于第二预设阈值;
    是则,确定当前测量值处于平稳状态;
    否则,确定当前测量值处于非平稳状态。
  5. 如权利要求2所述的方法,其中,所述根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备是否处于佩戴状态包括:
    将当前测量值对应的平滑值与基准值进行比较,当二者之间的差值大于第三预设阈值时,确定当前可穿戴设备处于佩戴状态;
    其中,所述基准值指示可穿戴设备未被佩戴。
  6. 如权利要求5所述的方法,其中,所述根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备是否处于佩戴状态还包括:
    如果当前测量值对应的平滑值与基准值之间的差值不大于第三预设阈值,获取上一次对可穿戴设备佩戴状态的检测结果;
    若上一次的检测结果为可穿戴设备处于非佩戴状态,确定当前可穿戴设备处于非佩戴状态;
    若上一次的检测结果为可穿戴设备处于佩戴状态,判断当前测量值之前预设个数的测量值对应的平滑值中的最大值与当前测量值对应的平滑值的差值是否超过第四预设阈值,是则,确定当前可穿戴设备处于非佩戴状态,否则,确定当前可穿戴设备处于佩戴状态。
  7. 如权利要求1所述的方法,其中,该方法进一步包括:
    判断满足基准值更新条件时,对基准值进行更新;
    利用更新后的基准值进行下一次可穿戴设备的佩戴状态检测;
    其中,所述基准值指示可穿戴设备未佩戴时,所述基准值更新条件为:
    当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备当前处于非佩戴状态时;
    所述基准值指示可穿戴设备被佩戴时,所述基准值更新条件为:
    当前测量值处于平稳状态、当前测量值前后预设个数的测量值都处于平稳状态或当前测量值之前的预设个数的测量值都处于平稳状态、且确认可穿戴设备当前处于被佩戴状态时。
  8. 如权利要求7所述的方法,其中,所述对基准值进行更新包括:利用当前测量值和基准值,计算预备基准值;
    将预备基准值与当前测量值对应的平滑值进行比较,如果预备基准值大于所述平滑值,利用所述平滑值更新基准值;
    如果预备基准值小于所述平滑值,利用所述预备基准值更新基准值。
  9. 如权利要求1所述的方法,其中,根据所述测量值和基准值判断当前可穿戴设备是否处于佩戴状态包括:
    获取采集到的每个测量值对应的平滑值;
    对于当前测量值,判断当前测量值是否处于平稳状态;
    当前测量值平稳时,判断当前测量值之前的预设个数的测量值是否都处于平稳状态;
    是则,根据当前测量值对应的平滑值和基准值,判断可穿戴设备当前是否处于佩戴状态。
  10. 如权利要求1所述的方法,其中,该方法进一步包括:
    判断满足基准值更新条件时,对基准值进行更新;
    利用更新后的基准值进行下一次可穿戴设备的佩戴状态检测;
    其中,所述基准值指示可穿戴设备未佩戴时,所述基准值更新条件为:当前测量值小于第五预设阈值时;
    所述基准值指示可穿戴设备被佩戴时,所述基准值更新条件为:当前测量值大于预设阈值时。
  11. 一种可穿戴设备,其中,该可穿戴设备包括:传感器和控制电路;
    所述传感器设置于可穿戴设备的能与人体皮肤接触的区域中,所述传感器在用户佩戴和摘下可穿戴设备时输出的测量值不同;
    所述控制电路包括:采集模块、检测处理模块和控制输出模块;
    所述采集模块与所述传感器连接,在启动佩戴检测后,所述采集模块按照预设采样频率从所述传感器采集测量值;
    所述检测处理模块与所述采集模块连接,所述检测处理模块接收所述采集模块采集的测量值,并获取指示可穿戴设备是否佩戴的基准值,根据所述测量值和基准值判断当前可穿戴设备是否处于佩戴状态;
    所述检测处理模块与所述控制输出模块连接,所述检测处理模块在检测出可穿戴设备处于非佩戴状态时,通知所述控制输出模块,所述控制输出模块控制可穿戴设备关闭正在运行的相应功能。
  12. 如权利要求11所述的可穿戴设备,其中,
    所述检测处理模块获取所述采集模块采集到的每个测量值对应的平滑值,对于当前测量值,判断当前测量值是否处于平稳状态,当前测量值平稳时,判断当前测量值前后预设个数的测量值是否都处于平稳状态,或者,判断当前测量值之前的预设个数的测量值是否都处于平稳状态;是则,根据当前测量值对应的平滑值和基准值,判断当前可穿戴设备是否处于佩戴状态。
  13. 如权利要求11所述的可穿戴设备,其中,
    所述可穿戴设备为智能耳机,该智能耳机包括耳机尾部和耳机罩;
    所述控制电路设置在耳机尾部中;
    在耳机罩的内侧边缘上设置有用于卡合耳机罩的突起部,该突起部向耳机罩的一侧突起;所述传感器设置在突起的顶部。
  14. 如权利要求13所述的可穿戴设备,其中,
    所述传感器为由铜箔构成的电容传感器,所述铜箔的形状为闭合环形或非闭合环形。
  15. 如权利要求13所述的可穿戴设备,其中,所述传感器为电阻式压力传感器或压电传感器。
PCT/CN2017/087897 2016-07-29 2017-06-12 一种可穿戴设备的佩戴状态检测方法和可穿戴设备 WO2018019043A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/304,623 US10477319B2 (en) 2016-07-29 2017-06-12 Wearing state detection method for wearable device, and wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610624325.6 2016-07-29
CN201610624325.6A CN106291121B (zh) 2016-07-29 2016-07-29 一种可穿戴设备的佩戴状态检测方法和可穿戴设备

Publications (1)

Publication Number Publication Date
WO2018019043A1 true WO2018019043A1 (zh) 2018-02-01

Family

ID=57664301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087897 WO2018019043A1 (zh) 2016-07-29 2017-06-12 一种可穿戴设备的佩戴状态检测方法和可穿戴设备

Country Status (3)

Country Link
US (1) US10477319B2 (zh)
CN (1) CN106291121B (zh)
WO (1) WO2018019043A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114003124A (zh) * 2020-07-28 2022-02-01 荣耀终端有限公司 确定可穿戴设备的穿戴状态的方法和电子设备
TWI797880B (zh) * 2021-12-08 2023-04-01 仁寶電腦工業股份有限公司 應用於入耳式耳機的偵測系統及偵測方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291121B (zh) * 2016-07-29 2023-10-13 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN106325057B (zh) * 2016-08-16 2018-10-23 广东小天才科技有限公司 一种检测用户佩戴手表方向的方法及装置
US10750302B1 (en) * 2016-09-26 2020-08-18 Amazon Technologies, Inc. Wearable device don/doff sensor
CN106645978B (zh) * 2016-10-28 2019-07-19 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN107065016B (zh) * 2017-03-01 2019-04-12 歌尔科技有限公司 一种用于头戴式耳机的佩戴检测方法、装置及头戴式耳机
CN107106044B (zh) * 2017-03-30 2021-03-16 深圳市汇顶科技股份有限公司 可穿戴设备、佩戴质量检测方法及装置
CN107172555B (zh) * 2017-04-11 2023-03-31 歌尔科技有限公司 旋转检测装置、控制装置、分离式通话手环及其控制方法
WO2019000742A1 (zh) * 2017-06-29 2019-01-03 华为技术有限公司 可穿戴设备的检测方法及可穿戴设备
CN108697329B (zh) * 2017-06-29 2021-05-18 华为技术有限公司 可穿戴设备的检测方法及可穿戴设备
US20190098388A1 (en) * 2017-09-25 2019-03-28 Apple Inc. Earphones With Sensors
CN107907916B (zh) * 2017-10-20 2019-04-02 歌尔科技有限公司 一种智能穿戴设备的佩戴状态检测方法及装置
CN107894840A (zh) * 2017-11-30 2018-04-10 武汉久乐科技有限公司 可穿戴设备及其佩戴检测方法、计算机可读存储介质
CN108388373B (zh) * 2018-02-28 2024-01-26 歌尔股份有限公司 触控方法及可穿戴设备
CN108416388B (zh) * 2018-03-13 2022-03-11 武汉久乐科技有限公司 状态校正方法、装置及可穿戴设备
CN110413134B (zh) * 2018-04-26 2023-03-14 Oppo广东移动通信有限公司 佩戴状态检测方法及相关设备
CN108955759B (zh) * 2018-04-26 2021-03-12 Oppo广东移动通信有限公司 可穿戴式设备的佩戴检测方法及相关产品
US20190335267A1 (en) 2018-04-27 2019-10-31 Avnera Corporation Earbud operation during earbud insertion detection
CN108810788B (zh) * 2018-06-12 2021-09-03 歌尔科技有限公司 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN108834017A (zh) * 2018-07-09 2018-11-16 深圳市沃特沃德股份有限公司 耳机声压控制方法及装置
KR102434142B1 (ko) * 2018-09-25 2022-08-18 선전 구딕스 테크놀로지 컴퍼니, 리미티드 이어폰, 장착 검출 방법 및 터치 제어 조작방법
CN109358832A (zh) * 2018-09-30 2019-02-19 Oppo广东移动通信有限公司 音频传输方法、装置、电子设备以及存储介质
EP3900630A4 (en) * 2018-12-19 2021-12-22 NEC Corporation INFORMATION PROCESSING DEVICE, WEARABLE DEVICE, INFORMATION PROCESSING METHODS AND STORAGE MEDIUM
EP3764657A4 (en) 2018-12-26 2021-04-28 Shenzhen Goodix Technology Co., Ltd. PORT DETECTION APPARATUS AND METHOD, AND DEVICE THAT CAN BE CARRIED AND SUPPORTING INFORMATION
WO2020155102A1 (zh) * 2019-02-01 2020-08-06 深圳市汇顶科技股份有限公司 佩戴检测装置、方法和耳机
CN110299100B (zh) * 2019-07-01 2024-03-22 努比亚技术有限公司 显示方向调整方法、可穿戴设备及计算机可读存储介质
US11172298B2 (en) * 2019-07-08 2021-11-09 Apple Inc. Systems, methods, and user interfaces for headphone fit adjustment and audio output control
BR112021013949A2 (pt) * 2019-07-12 2022-02-15 Lee Robertson Delaney Sistema e método de monitoramento de uso de dispositivo médico
CN110631790B (zh) * 2019-09-25 2022-01-25 歌尔科技有限公司 一种穿戴类设备及其检测方法
CN110677763A (zh) * 2019-10-22 2020-01-10 北京耐德佳显示技术有限公司 一种状态检测装置及耳机
CN110888620A (zh) 2019-11-29 2020-03-17 歌尔科技有限公司 一种头戴式设备及其佩戴检测方法、装置、介质
CN111083271B (zh) * 2019-12-27 2022-03-18 歌尔股份有限公司 一种佩戴检测方法、系统、设备及计算机可读存储介质
US11722178B2 (en) 2020-06-01 2023-08-08 Apple Inc. Systems, methods, and graphical user interfaces for automatic audio routing
US11941319B2 (en) 2020-07-20 2024-03-26 Apple Inc. Systems, methods, and graphical user interfaces for selecting audio output modes of wearable audio output devices
US11375314B2 (en) 2020-07-20 2022-06-28 Apple Inc. Systems, methods, and graphical user interfaces for selecting audio output modes of wearable audio output devices
CN112116793A (zh) * 2020-09-16 2020-12-22 歌尔科技有限公司 可穿戴设备丢失检测方法、可穿戴设备、终端及介质
US11523243B2 (en) 2020-09-25 2022-12-06 Apple Inc. Systems, methods, and graphical user interfaces for using spatialized audio during communication sessions
TW202215860A (zh) * 2020-10-12 2022-04-16 聯陽半導體股份有限公司 具有配戴感測功能的耳機
CN112449297B (zh) * 2020-10-19 2022-04-29 安克创新科技股份有限公司 一种耳机佩戴状态的检测方法
CN112596366B (zh) * 2020-12-07 2022-02-08 四川写正智能科技有限公司 一种智能手表佩戴状态的检测方法、检测系统及手表
CN112630861A (zh) * 2020-12-14 2021-04-09 安徽华米信息科技有限公司 无线耳机的接近传感器校准方法、装置、耳机及存储介质
CN112690758B (zh) * 2020-12-21 2022-04-22 歌尔光学科技有限公司 数据的处理方法、装置、终端设备及计算机可读存储介质
CN112653983A (zh) * 2020-12-24 2021-04-13 中国建设银行股份有限公司 蓝牙耳机佩戴状态的智能检测方法及装置
KR20220117011A (ko) * 2021-02-16 2022-08-23 삼성전자주식회사 자이로 센서를 이용한 착용 상태 확인 방법 및 웨어러블 디바이스
CN115336968A (zh) * 2021-05-12 2022-11-15 华为技术有限公司 一种睡眠状态检测方法与电子设备
CN113377237A (zh) * 2021-06-30 2021-09-10 歌尔科技有限公司 一种防误触方法、可穿戴设备及存储介质
CN113759439A (zh) * 2021-08-20 2021-12-07 深圳曦华科技有限公司 可穿戴设备、佩戴检测方法、装置及存储介质
CN113721768A (zh) * 2021-08-30 2021-11-30 歌尔科技有限公司 一种穿戴设备的控制方法、装置、系统及可读存储介质
CN114268872A (zh) * 2021-11-29 2022-04-01 歌尔科技有限公司 无线耳机佩戴检测方法、设备和存储介质
CN114485739B (zh) * 2021-12-27 2022-11-29 荣耀终端有限公司 参数校准方法和穿戴设备
CN114401480B (zh) * 2021-12-30 2024-04-30 歌尔科技有限公司 Tws耳机电容式传感器的校准方法、设备及介质
CN114630242B (zh) * 2022-03-23 2024-04-09 歌尔股份有限公司 耳机佩戴检测方法、耳机及存储介质
US20230342748A1 (en) * 2022-04-21 2023-10-26 Capital One Services, Llc Enhanced credential security based on a usage status of a wearable device
CN114845203B (zh) * 2022-07-01 2022-09-20 龙旗电子(惠州)有限公司 电容式耳机的播放控制方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223024B1 (en) * 2011-09-21 2012-07-17 Google Inc. Locking mechanism based on unnatural movement of head-mounted display
US20140044275A1 (en) * 2012-08-13 2014-02-13 Apple Inc. Active noise control with compensation for error sensing at the eardrum
CN105122182A (zh) * 2013-04-22 2015-12-02 Lg电子株式会社 智能表及其控制方法
CN105302541A (zh) * 2014-07-23 2016-02-03 联想(新加坡)私人有限公司 配置可穿戴式装置
CN105554616A (zh) * 2016-02-29 2016-05-04 宇龙计算机通信科技(深圳)有限公司 一种耳机控制方法及耳机
CN105677012A (zh) * 2014-12-03 2016-06-15 盛思锐股份公司 可穿戴电子设备
CN106291121A (zh) * 2016-07-29 2017-01-04 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN205941703U (zh) * 2016-07-29 2017-02-08 歌尔股份有限公司 一种可穿戴设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8948832B2 (en) * 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US9402124B2 (en) * 2013-04-18 2016-07-26 Xiaomi Inc. Method for controlling terminal device and the smart terminal device thereof
KR102043200B1 (ko) * 2013-05-07 2019-11-11 엘지전자 주식회사 스마트 워치 및 제어 방법
CN105324073B (zh) * 2013-07-12 2018-02-13 精工爱普生株式会社 生物体信息检测装置
US9719871B2 (en) * 2014-08-09 2017-08-01 Google Inc. Detecting a state of a wearable device
US9808185B2 (en) * 2014-09-23 2017-11-07 Fitbit, Inc. Movement measure generation in a wearable electronic device
WO2016058145A1 (zh) * 2014-10-15 2016-04-21 华为技术有限公司 一种用于可穿戴设备脱落检测的方法及可穿戴设备
US20180039086A1 (en) * 2015-04-03 2018-02-08 Shenzhen Royole Technologies Co., Ltd. Head-mounted electronic device
CN105338447B (zh) * 2015-10-19 2019-03-15 京东方科技集团股份有限公司 耳机控制电路及方法、耳机以及音频输出装置及方法
CN105373227B (zh) * 2015-10-29 2019-03-26 小米科技有限责任公司 一种智能关闭电子设备的方法及装置
US9866671B1 (en) * 2016-06-21 2018-01-09 Apple Inc. Tracking activity data between wearable devices paired with a companion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223024B1 (en) * 2011-09-21 2012-07-17 Google Inc. Locking mechanism based on unnatural movement of head-mounted display
US20140044275A1 (en) * 2012-08-13 2014-02-13 Apple Inc. Active noise control with compensation for error sensing at the eardrum
CN105122182A (zh) * 2013-04-22 2015-12-02 Lg电子株式会社 智能表及其控制方法
CN105302541A (zh) * 2014-07-23 2016-02-03 联想(新加坡)私人有限公司 配置可穿戴式装置
CN105677012A (zh) * 2014-12-03 2016-06-15 盛思锐股份公司 可穿戴电子设备
CN105554616A (zh) * 2016-02-29 2016-05-04 宇龙计算机通信科技(深圳)有限公司 一种耳机控制方法及耳机
CN106291121A (zh) * 2016-07-29 2017-01-04 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN205941703U (zh) * 2016-07-29 2017-02-08 歌尔股份有限公司 一种可穿戴设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114003124A (zh) * 2020-07-28 2022-02-01 荣耀终端有限公司 确定可穿戴设备的穿戴状态的方法和电子设备
TWI797880B (zh) * 2021-12-08 2023-04-01 仁寶電腦工業股份有限公司 應用於入耳式耳機的偵測系統及偵測方法
US11733378B2 (en) 2021-12-08 2023-08-22 Compal Electronics, Inc. Detection system and detection method for in-ear earphone

Also Published As

Publication number Publication date
US20190215611A1 (en) 2019-07-11
US10477319B2 (en) 2019-11-12
CN106291121A (zh) 2017-01-04
CN106291121B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2018019043A1 (zh) 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
EP3855757B1 (en) Earphone and method for implementing wearing detection and touch operation
EP3688998B1 (en) On/off head detection using capacitive sensing
WO2017147966A1 (zh) 一种耳机控制方法、耳机和终端
CN205941703U (zh) 一种可穿戴设备
KR102635868B1 (ko) 전자 장치 및 그의 제어방법
CN109257674B (zh) 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN108510963A (zh) 屏幕亮度的调整方法、装置、存储介质及智能终端
EP2767076A1 (en) Controlling power for a headset
CN112055296B (zh) 耳机佩戴状态检测方法、装置及耳机
CN113573226B (zh) 一种耳机及其耳机的出入耳检测方法、存储介质
US20130039513A1 (en) Electronic device and method for adjusting volume
CN112911438A (zh) 耳机佩戴状态检测方法、设备和耳机
CN112217699A (zh) 智能家居设备的控制方法和装置
CN115052221A (zh) 耳机控制方法及耳机
CN108882078A (zh) 头戴式耳机以及检测头戴式耳机佩戴的方法
TWI825697B (zh) 可偵測佩戴狀態的頭戴式耳機及其控制方法
US20240152313A1 (en) Wearing detection method, wearable device, and storage medium
KR20140079214A (ko) 내이(귀 안)온도를 이용한 열감지 이어폰의 착용여부에 따른 on/off 기능 및 그 방법
CN211128146U (zh) 一种耳机
CN108063994B (zh) 移动终端及耳机检测控制方法、存储介质及耳机
US11985470B2 (en) Method and device for detecting wearing state of earphones, and earphones
CN114640922B (zh) 智能耳机及其入耳适配方法和介质
CN110928203B (zh) 一种可穿戴终端及其关机方法
CN117319870B (zh) 一种耳机佩戴状态检测方法、装置、耳机和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833347

Country of ref document: EP

Kind code of ref document: A1