WO2019000742A1 - 可穿戴设备的检测方法及可穿戴设备 - Google Patents

可穿戴设备的检测方法及可穿戴设备 Download PDF

Info

Publication number
WO2019000742A1
WO2019000742A1 PCT/CN2017/108129 CN2017108129W WO2019000742A1 WO 2019000742 A1 WO2019000742 A1 WO 2019000742A1 CN 2017108129 W CN2017108129 W CN 2017108129W WO 2019000742 A1 WO2019000742 A1 WO 2019000742A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
signal
value
threshold
contact state
Prior art date
Application number
PCT/CN2017/108129
Other languages
English (en)
French (fr)
Inventor
杨波
汪婵
孙士友
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780009704.7A priority Critical patent/CN108697329B/zh
Publication of WO2019000742A1 publication Critical patent/WO2019000742A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a method for detecting a wearable device and a wearable device.
  • wearable devices such as smart watches and bracelets
  • the main advantage of wearable devices is to monitor the health of users. For example, using the bracelet to monitor the number of movement steps, heart rate, sleep index, etc.
  • These smart wearable devices integrate a lot of sensors to obtain the wearer's Sign data to record health status. Since pulse or heart rate is one of the important parameters of vital signs, heart rate measurement has become a must-have feature for smart wearable devices.
  • PPG photoplethysmography
  • the photoelectric sensor is used to detect the difference in the intensity of the reflected light absorbed by the human blood and the tissue, and the change in the blood flow rate during the cardiac cycle is traced, and the heart rate is calculated from the obtained pulse waveform.
  • the photosensor may include a transmitter, a receiver, and the like.
  • the transmitter may be a light emitting diode, an infrared emitting diode, or the like
  • the receiver may include a photo transistor or the like. There is some attenuation of the illumination as the light from the emitter passes through the skin tissue and then back to the receiver. Changes in volumetric pulse flow can be achieved by changes in illumination.
  • the irregular wearing method can affect the measurement of heart rate signals, such as light leakage caused by incomplete fitting, swinging of the arm, and smart watch or bracelet on the skin. A slight movement, etc., will affect the measured heart rate signal. Wearing a smart watch or bracelet too tightly, raising your arms and making a fist can also affect blood circulation, which can also affect heart rate signals.
  • the embodiment of the present invention provides a method for detecting a wearable device and a wearable device, which can detect wear of the wearable device, thereby ensuring accuracy of heart rate measurement, and solving the problem that the wearable device is not tightly worn in the prior art. A problem caused by an inaccurate heart rate measurement.
  • an embodiment of the present application provides a method for detecting a wearable device, including:
  • the wearing state of the wearable device If the wearing state of the wearable device is worn, obtaining a signal value generated based on a current contact state of the wearable device and the wearer; wherein the wearing state includes worn and unworn;
  • the first prompt message is sent; wherein the signal threshold includes the first based on the wearable device and the wearer a signal threshold generated by the contact state; the first prompt message is used to prompt adjustment of wearing the wearable device.
  • the wearable device it is possible to automatically detect whether the wearing elastic of the wearable device is suitable, when the wearable device is worn. When the tightness is not suitable, the wearer is prompted to adjust the wearable device in time to improve the accuracy of subsequent measurements.
  • the method further includes: determining, according to the signal value and the signal threshold value, When the current contact state satisfies the measurement condition, measurement of the physiological parameter is started.
  • the physiological parameters are measured to ensure the accuracy of the measurement.
  • the method before the wearing state of the wearable device is worn, and before acquiring a signal value generated based on the current contact state of the wearable device and the wearer, the method further includes: receiving the measurement Instructions for physiological parameters.
  • the embodiment of the present application provides a triggering instruction for measuring a physiological parameter, and then performing a subsequent step after receiving an instruction input by the user, thereby improving the effectiveness of the physiological parameter measurement and saving energy.
  • the method also includes detecting a wearing state of the wearable device.
  • the wearing state of the wearable device is first detected, and when the wearing state of the wearable device is detected as being worn, the signal value is acquired.
  • a triggering method for obtaining a signal value is provided to ensure that the acquired signal value is generated when the wearable device is worn, and the validity of the signal value is ensured.
  • the method before the detecting the wearing state of the wearable device, the method further includes: acquiring a signal threshold value;
  • the signal threshold includes a maximum threshold and a minimum threshold.
  • a signal threshold is provided, and it is determined whether the current wearing tension of the wearable device is appropriate by comparing the currently acquired signal value with the signal threshold.
  • the signal value comprises a PPG signal value.
  • the embodiment of the present application provides a specific parameter, and whether the current wearing tension of the wearable device is suitable by using the PPG signal value.
  • the obtaining is generated based on the current contact state of the wearable device and the wearer.
  • the signal values include:
  • the user when it is detected that the wearing state of the wearable device is worn, the user is prompted to input a specified action for a certain period of time to acquire a signal value generated within the duration.
  • the wearing of the wearable device can be reflected to some extent.
  • the acquiring the signal threshold includes:
  • N Acquiring N times a signal value generated based on a first contact state of the wearable device and the wearer within a preset duration after the second prompt message is sent; wherein the N is a positive integer;
  • the embodiment of the present application provides a method for acquiring a signal threshold value, and determining a signal threshold value by collecting a signal value generated by inputting a specified action in a case where the wearing elastic is appropriate.
  • the signal threshold value represents the critical value of the signal value generated when the elastic fit is appropriate. The more times you collect, the more accurate the resulting signal threshold.
  • the determining the maximum threshold according to the N maximum values, and determining the minimum threshold according to the N minimum values includes:
  • a maximum value of the N maximum values is determined as the maximum threshold value, and a minimum value among the N minimum values is determined as the minimum threshold value.
  • the embodiment of the present application provides a method for determining a maximum threshold value and a minimum threshold value, and provides a comparison reference for a signal value generated based on a current contact state by using a maximum threshold value and a minimum threshold value, thereby determining that the wearable device is worn. Is the tightness appropriate?
  • the determining the maximum threshold according to the N maximum values, and determining the minimum threshold according to the N minimum values includes:
  • An average value of the N maximum values is determined as the maximum threshold value, and an average value of the N minimum values is determined as the minimum threshold value.
  • the embodiment of the present application provides another method for determining a maximum threshold value and a minimum threshold value, and providing a comparison reference for the signal value generated based on the current contact state by using the maximum threshold value and the minimum threshold value, thereby determining the wearable device. Is it appropriate to wear the elastic?
  • the determining that the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold value includes:
  • the first prompt message is sent.
  • the embodiment of the present application provides a specific manner for comparing a signal value generated based on a current contact state with a signal threshold value, and indicates a degree of fluctuation of a current signal value and a signal threshold value by a magnitude of a variance, and when the fluctuation exceeds a certain degree, the embodiment indicates The accuracy of the current signal value is not sufficient. It indicates that the current wearable device is not suitable for wearing tightness and does not meet the measurement conditions.
  • the signal value includes a capacitance value.
  • the embodiment of the present application provides another specific parameter, and it is determined whether the current wearing tension of the wearable device is appropriate by the capacitance value.
  • the acquiring the signal threshold value includes:
  • the maximum threshold is determined according to a maximum of the N signal values
  • the minimum threshold is determined according to a minimum of the N signal values.
  • the embodiment of the present application provides a method for acquiring a signal threshold value, and determining a signal threshold value by collecting a signal value generated by inputting a specified action in a case where the wearing elastic is appropriate.
  • the signal threshold value represents the critical value of the signal value generated when the elastic fit is appropriate. The more times you collect, the more accurate the resulting signal threshold.
  • the determining that the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold value includes:
  • the signal value is greater than the maximum threshold or less than the minimum threshold, it is determined that the current contact state does not satisfy the measurement condition, and the first prompt message is sent.
  • the embodiment of the present application provides a specific manner for comparing a signal value generated based on a current contact state with a signal threshold. If the current signal value exceeds the range represented by the signal threshold, the accuracy of the current signal value is insufficient. . It indicates that the current wearable device is not suitable for wearing tightness and does not meet the measurement conditions.
  • the detecting the wearing state of the wearable device includes:
  • the myoelectric signal is at a low level, detecting that the wearable state of the wearable device is not worn.
  • the embodiment of the present application provides a method for detecting a wearing manner of a wearable device, and determining a wearing manner of the wearable device by using a level value of the myoelectric signal to ensure accuracy of the wearing manner of the wearable device.
  • the wearable device includes a watchband
  • the detecting the wearing state of the wearable device includes:
  • Detecting a buckle state of the wearable device strap wherein the buckle state of the strap includes buckled and unfastened;
  • An embodiment of the present invention provides a method for detecting a wearing manner of a wearable device, and determining a wearing manner of the wearable device by using a buckle manner of the wearable device strap to ensure the accuracy of the wearable device wearing manner detection.
  • the detecting a buckle state of the wearable device strap includes:
  • the method further includes:
  • a pressure sensor is disposed in a target area of the wearable device strap.
  • the embodiment of the present invention provides a method for detecting a buckle state of a wearable device strap, and determining a buckle state of the strap by detecting a voltage value of the target region of the strap to ensure accuracy of the buckle state detection of the wearable device strap.
  • the embodiment of the present application provides a wearable device, including:
  • a first acquiring module configured to acquire a signal value generated based on a current contact state of the wearable device and the wearer if the wearing state of the wearable device is worn; wherein the wearing state includes worn and unworn;
  • a first prompting module configured to send a first prompt message if the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold value; wherein the signal threshold value is based on the wearable a signal threshold generated by the first contact state of the device and the wearer; the first prompt message is used to prompt adjustment of wearing the wearable device.
  • the wearable device further includes: a measuring module, configured to start measuring the physiological parameter if it is determined that the current contact state satisfies the measurement condition according to the signal value and the signal threshold value.
  • the wearable device further includes: a receiving module, configured to receive, before the first acquiring module acquires a signal value generated based on a current contact state of the wearable device and the wearer An instruction to measure physiological parameters.
  • the wearable device further includes:
  • a detecting module configured to detect a wearing state of the wearable device before the first acquiring module acquires a signal value generated based on a current contact state of the wearable device and the wearer.
  • the wearable device further includes:
  • a second acquiring module configured to acquire a signal threshold before the detecting module detects the wearing state of the wearable device, where the signal threshold includes a maximum threshold and a minimum threshold.
  • the signal value comprises a PPG signal value.
  • the first acquiring module includes:
  • a prompting unit configured to send a second prompt message if the wearing state of the wearable device is worn; wherein the second prompt message is used to prompt the wearer to input a specified action;
  • the first obtaining unit is configured to acquire a signal value generated based on a current contact state of the wearable device and the wearer within a preset duration after the second prompt message is sent.
  • the second acquiring module includes:
  • a second acquiring unit configured to acquire, according to a preset duration of the second prompt message after the issuance of the second prompt message, a signal value generated based on a first contact state of the wearable device and the wearer; wherein the N is Positive integer
  • a third acquiring unit configured to separately acquire a preset duration after each sending the second prompt message, based on the location Determining a maximum value and a minimum value of the signal values generated by the first contact state of the wearable device and the wearer, determining N times within a preset time period after the second prompt message is sent, based on the wearable device and wearing N maximum values and N minimum values among signal values generated by the first contact state;
  • a first determining unit configured to determine the maximum threshold according to the N maximum values, and determine the minimum threshold according to the N minimum values.
  • the first determining unit is configured to determine a maximum value of the N maximum values as the maximum threshold value, and determine a minimum value of the N minimum values as The minimum threshold.
  • the first determining unit is configured to determine an average value of the N maximum values as the maximum threshold value, and determine an average value of the N minimum values as the Minimum threshold.
  • the first prompting module includes:
  • a fifth obtaining unit configured to acquire a maximum value and a minimum value of the signal values
  • a calculating unit configured to calculate a first variance of a maximum value of the signal value and the maximum threshold value, and calculate a second variance of a minimum value of the signal value and the minimum threshold value;
  • a first comparing unit configured to compare sizes of the first variance, the second variance, and a variance threshold, respectively;
  • the first prompting unit is configured to: if at least one of the first variance and the second variance is not less than the variance threshold, determine that the current contact state does not satisfy the measurement condition, and issue a first prompt message.
  • the signal value includes a capacitance value.
  • the second acquiring module includes:
  • a sixth acquiring unit configured to acquire N times of N signal values generated based on a preset contact state of the wearable device and the wearer; wherein the N is a positive integer;
  • a seventh acquiring unit configured to acquire a maximum value and a minimum value among the N signal values acquired by the sixth acquiring unit
  • An eighth acquiring unit configured to acquire the maximum threshold value according to a maximum value of the N signal values acquired by the seventh acquiring unit, and obtain the minimum value among the N signal values acquired by the seventh acquiring unit The minimum threshold.
  • the first prompting module includes:
  • a second comparing unit configured to compare the signal value with the maximum threshold value and the minimum threshold value
  • the second prompting unit is configured to: if the signal value is greater than the maximum threshold or less than the minimum threshold, determine that the current contact state does not satisfy the measurement condition, and issue a first prompt message.
  • the detecting module is configured to detect a level value of the myoelectric signal
  • the myoelectric signal is at a low level, detecting that the wearable state of the wearable device is not worn.
  • the wearable device includes a watchband
  • the detecting module is configured to detect a buckle state of the wearable device strap; wherein the buckle state of the strap includes buckled and unfastened;
  • the detecting module is configured to detect a pressure value of a target area of the wearable device strap
  • the wearable device further includes a setting module, configured to set a pressure sensor in a target area of the wearable device strap before the detecting module detects a buckle state of the wearable device strap.
  • an embodiment of the present application provides a wearable device, including:
  • a memory for storing a wearable device detection instruction
  • a processor configured to invoke a wearable device detection instruction stored in the memory and perform the following steps:
  • the wearing state of the wearable device If the wearing state of the wearable device is worn, obtaining a signal value generated based on a current contact state of the wearable device and the wearer; wherein the wearing state includes worn and unworn;
  • the first prompt message is sent; wherein the signal threshold includes the first based on the wearable device and the wearer a signal threshold generated by the contact state; the first prompt message is used to prompt adjustment of wearing the wearable device.
  • the processor is further configured to: if according to the signal value and the signal threshold When it is judged that the current contact state satisfies the measurement condition, measurement of the physiological parameter is started.
  • the processor before the wearing state of the wearable device is worn, and before acquiring a signal value generated based on the current contact state of the wearable device and the wearer, the processor is further configured to: Receive instructions to measure physiological parameters.
  • the method also includes detecting a wearing state of the wearable device.
  • the processor before the detecting the wearing state of the wearable device, is further configured to: acquire a signal threshold value;
  • the signal threshold includes a maximum threshold and a minimum threshold.
  • the signal value comprises a PPG signal value.
  • the processor is configured to acquire a current state based on the wearable device and the wearer if the wearing state of the wearable device is worn
  • the signal values generated by the contact state include:
  • N Acquiring N times a signal value generated based on a first contact state of the wearable device and the wearer within a preset duration after the second prompt message is sent; wherein the N is a positive integer;
  • the processor determines the maximum threshold according to the N maximum values, and determining the minimum threshold according to the N minimum values includes:
  • a maximum value of the N maximum values is determined as the maximum threshold value, and a minimum value among the N minimum values is determined as the minimum threshold value.
  • the processor determines the maximum threshold according to the N maximum values, and determining the minimum threshold according to the N minimum values includes:
  • An average value of the N maximum values is determined as the maximum threshold value, and an average value of the N minimum values is determined as the minimum threshold value.
  • the processor if determining, according to the signal value and the signal threshold value, that the current contact state does not satisfy the measurement condition, is sent out
  • the first prompt message includes:
  • the first prompt message is sent.
  • the signal value includes a capacitance value.
  • the acquiring, by the processor, the signal threshold value includes:
  • the maximum threshold is determined according to a maximum of the N signal values
  • the minimum threshold is determined according to a minimum of the N signal values.
  • First prompt message packet include:
  • the signal value is greater than the maximum threshold or less than the minimum threshold, it is determined that the current contact state does not satisfy the measurement condition, and the first prompt message is sent.
  • the detecting, by the processor, the wearing state of the wearable device includes:
  • the myoelectric signal is at a low level, detecting that the wearable state of the wearable device is not worn.
  • the wearable device includes a watchband
  • the detecting, by the processor, the wearing state of the wearable device includes:
  • Detecting a buckle state of the wearable device strap wherein the buckle state of the strap includes buckled and unfastened;
  • the detecting, by the processor, the buckle status of the wearable device strap includes:
  • the processor Before the detecting the buckle state of the wearable device strap, the processor is further configured to:
  • a pressure sensor is disposed in a target area of the wearable device strap.
  • an embodiment of the present application provides a computer readable storage medium for storing one or more computer programs, where the one or more computer programs include instructions when the computer program runs on a computer.
  • the instruction is used to execute the detection method of the wearable device provided by the foregoing first aspect or any one of the first aspects.
  • an embodiment of the present application provides a computer program, where the computer program includes instructions, when the computer program is executed on a computer, the instruction is used to execute any one of the foregoing first aspect or the first aspect An implementation method for detecting a wearable device.
  • Embodiments of the present application may obtain a signal value generated based on a current contact state of the wearable device and the wearer when detecting that the wearing state of the wearable device is worn, when according to the signal value and the signal threshold
  • the first prompt message is sent to prompt the wearer to adjust the wearing of the wearable device, and the wearable device is intelligently detected to ensure the accuracy of the heart rate measurement, thereby solving the prior art.
  • FIG. 1 is a schematic structural view of a photoelectric sensor in the prior art
  • FIG. 2 is a schematic diagram of a wearing requirement of a smart watch in the prior art
  • Figure 3 is a PPG signal diagram measured when the watch is worn too loosely
  • Figure 4 is a PPG signal diagram measured when the watch is properly worn
  • Figure 5 is a schematic view showing the relationship between the wearing tension of the watch and the accuracy rate of the heart rate
  • FIG. 6 is a schematic flowchart of a method for detecting a wearable device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a first prompt message according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for detecting a wearable device according to another embodiment of the present disclosure.
  • Figure 9 is a schematic view showing the position of each sensor
  • FIG. 10 is a schematic flowchart of a method for acquiring a signal threshold according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a second prompt message according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a scenario according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram showing the correspondence between the wearing degree of the wearable device and the capacitance value
  • FIG. 14 is a schematic flowchart of a method for acquiring a signal threshold according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of a method for sending a first prompt message according to an embodiment of the present disclosure
  • FIG. 16 is a schematic flowchart of another method for sending a first prompt message according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of a wearable device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a first acquiring module according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a second acquiring module according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a first prompting module according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another second acquiring module according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of another first prompting module according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a wearable device according to another embodiment of the present disclosure.
  • the wearable device referred to in the present application may be a smart watch, a smart bracelet, smart glasses, a smart helmet, smart gloves, smart running shoes, and the like.
  • the above wearable device can detect the physiological parameters of the wearer, and the degree of tightness of the wear affects the accuracy of the wearable device measurement parameters.
  • taking the wearable device as a smart watch as an example, using a smart watch to measure the wearer's heart rate is described.
  • FIG. 2 exemplarily shows a schematic diagram of a prior art smart watch wearing requirement.
  • the gap between the watch and the wrist will cause the watch to slide on the wrist, causing the sensor to fail to read the heart rate or to accurately read the heart rate, as shown in Figure 3.
  • the PPG signal measured when the watch is worn too loose can be seen that the PPG signal has changed suddenly. At this time, the user should try to tighten the watch strap.
  • the right diagram in Fig. 2 exemplarily shows the correct wearing manner of the watch, and the watch should be comfortably attached to the wrist to ensure the stability of the measured PPG signal value, as measured by the watch shown in Fig. 4 when the watch is worn correctly.
  • the PPG signal value was stable and no mutation occurred.
  • FIG. 5 is a schematic view showing the relationship between the wearing tension of the watch and the accuracy rate of the heart rate. It can be seen from the figure that the measured heart rate accuracy becomes higher and higher as the wearing elastic is too loose and loose, and when the elastic is tight (the correct wearing method shown in the right figure in Fig. 2), Heart rate The highest accuracy rate, but if the watch is too tight, the heart rate accuracy rate is reduced to a minimum.
  • the accuracy in the figure is specifically the probability that the measured value differs from the standard value by less than 5 bpm (Beat Per Minute).
  • the present application proposes a detection method of a wearable device, which can detect the wearing tightness of the wearable device and ensure the accuracy of the heart rate measurement.
  • FIG. 6 is a schematic flowchart of a method for detecting a wearable device according to an embodiment of the present disclosure. As shown in FIG. 6 , a method for detecting a wearable device may include at least the following steps:
  • the wearing state of the wearable device includes worn and unworn.
  • the signal value generated based on the current contact state of the wearable device and the wearer is a signal value generated based on the wearing degree of the wearable device.
  • the signal value may be a PPG signal value or a capacitance value, and may be other signal values that reflect the wearing degree of the wearable device.
  • the method before determining that the wearing state of the wearable device is worn, and acquiring a signal value generated based on the current contact state of the wearable device and the wearer, the method further includes receiving the input of the wearer. An instruction to measure physiological parameters.
  • the instruction for measuring the physiological parameter may be an instruction of the wearer's voice input, or the wearer inputs an instruction to measure the physiological parameter based on a corresponding control in the operation interface of the wearable device, or the physical button of the wearer pressing the wearable device Alternatively, the wearer inputs a specific gesture as an instruction to measure the physiological parameter, or the wearer issues an instruction to measure the physiological parameter to the wearable device through a terminal such as a mobile phone connected to the wearable device, and the like. It can be understood that the input of the instruction for measuring the physiological parameter can be implemented in various ways, and is not limited herein.
  • S102 Send a first prompt message if it is determined that the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold value.
  • the signal threshold includes a signal threshold value that is generated based on the first contact state of the wearable device and the wearer.
  • the first contact state is suitable for wearing the wearable device, that is, the state in which the wearing elastic is tight in FIG. 5 .
  • the measurement conditions are determined by the above-described signal values, and the measurement conditions corresponding to the different signal values are different.
  • the correspondence between the specific signal values and the measurement conditions can be seen in the description in the subsequent embodiments.
  • the first prompt message is used to prompt the wearer to adjust to wear the wearable device.
  • the first prompt message may be that the wearable device displays a dialog box or an animation prompt through the operation interface; the first prompt message may also be a wearable device voice prompt; the first prompt message may also be a manner of displaying the vibration through the operation interface.
  • the prompt; the first prompt message may also be a way of combining voice and vibration.
  • a first prompt message prompting the manner of combining with the vibration through the operation interface is exemplarily shown in FIG. It is to be understood that the manner of prompting the first prompt message may be implemented in other manners, and is not limited to the foregoing implementation manner, and is not limited herein.
  • the measurement of the physiological parameter is started.
  • Embodiments of the present application may obtain a signal value generated based on a current contact state of the wearable device and the wearer after detecting that the wearable state of the wearable device is worn; if the current contact is determined according to the signal value and the signal threshold value If the status does not meet the measurement condition, a first prompt message is sent to prompt the wearer to adjust the wearing of the wearable device, and the smart detection is performed.
  • the wearable device is worn tightly to ensure the accuracy of heart rate measurement.
  • FIG. 8 is a schematic flowchart of a method for detecting a wearable device according to another embodiment of the present disclosure. As shown in FIG. 8 , the method for detecting a wearable device may include at least the following steps:
  • the signal threshold value includes a signal threshold value generated based on the first contact state of the wearable device and the wearer, and the signal threshold value includes a maximum threshold value and a minimum threshold value.
  • the first contact state is suitable for wearing the wearable device, that is, the state in which the wearing elastic is tight in FIG. 5 .
  • the signal threshold is determined by the value of the signal generated based on the first contact state of the wearable device and the wearer described above.
  • the signal value may be a PPG signal value or a capacitance value, and may be other signal values that reflect the wearing degree of the wearable device.
  • the above signal value may be a PPG signal value.
  • the PPG signal can be measured using a photosensor to obtain a PPG signal value.
  • the photosensor may be disposed inside the dial of the smart watch as shown in the area of 10 in FIG.
  • the method for obtaining the signal threshold value is as shown in FIG. 10, and may include at least the following steps:
  • S301 Acquire N times a signal value generated based on the first contact state of the wearable device and the wearer within a preset duration after the second prompt message is sent.
  • N is a positive integer.
  • N can be, for example, 5, 10, 13, 15, 20, and the like. The larger the value of N, the more accurate the resulting signal threshold.
  • the second prompt message is used to prompt the wearer to input the specified action after detecting that the wearable state of the wearable device is worn.
  • the prompting manner of the second prompt message is similar to the prompting manner of the first message.
  • the second prompt message may be that the wearable device displays a dialog box or an animation prompt through the operation interface; the second prompt message may also be a wearable device voice prompt; and the second prompt message may also be displayed through the operation interface and combined with the vibration.
  • the mode prompt; the second prompt message may also be a way of combining voice and vibration.
  • a second prompt message displayed through the operation interface is exemplarily shown in FIG. It is to be understood that the manner of prompting the second prompt message may be implemented in other manners, and is not limited to the foregoing implementation manner, and is not limited herein.
  • the specified action can be an arm around the word "8", or shaking the arm (shaking the arm up and down, shaking the arm from side to side), raising the arm, swiping the back of the hand at an angle, sweeping the curve, flipping the wrist, rotating the arm clockwise Rotate your arm counterclockwise.
  • the wearer after receiving the second prompt message, the wearer inputs a specified action according to the prompt.
  • the preset duration may be 5 s, 10 s, 20 s, 30 s, or the like. Based on the first contact state of the wearable device and the wearer within the preset duration, the wearer inputs a specified action according to the second prompt message, and the generated signal value is a continuous signal.
  • the wearable device may determine whether the wearer inputs the specified action according to the second prompt message according to the data collected by the gravity sensor or the gyroscope.
  • the data collected by the gravity sensor or the gyroscope in the process of the arm around the "8" word may be pre-acquired as a reference when the wearer wears the above-mentioned wearable device.
  • the data collected by the gravity sensor or the gyroscope is compared with the pre-acquired data. If the deviation is within the error range, the wearer may be determined to input the designation according to the second prompt message. If the deviation is not within the error range, it can be determined that the wearer has not input the designated action according to the second prompt message.
  • N maximum values and N minimum values are determined from the maximum and minimum values of the signal values generated by the first contact state of the wearer.
  • the signal generated based on the first contact state of the wearable device and the wearer is a continuous signal within a preset duration after the second prompt message is sent.
  • S303 Determine the maximum threshold value according to the N maximum values, and determine the minimum threshold value according to the N minimum values.
  • the maximum threshold may be an average of the above N maximum values
  • the minimum threshold may be an average of the above N minimum values
  • the maximum threshold may be a maximum of the above N maximum values
  • the minimum threshold may be a minimum of the N minimum values
  • the above signal value may be a capacitance value.
  • a capacitive sensor can be used to measure the capacitance to obtain a capacitance value.
  • the degree of tightness of the wearable device is different, and the capacitance value collected by the capacitive sensor is also different, as shown in FIG.
  • the capacitance sensor may be disposed at a plurality of places including the inner side 10 of the dial and the inner side 20 of the watch band as shown in FIG.
  • the method for obtaining the signal threshold may also be as shown in FIG. 14, and may include at least the following steps:
  • S401 Acquire N times of signal values generated based on the first contact state of the wearable device and the wearer.
  • N is a positive integer.
  • N can be, for example, 5, 10, 13, 15, 20, and the like. The larger the value of N, the more accurate the resulting signal threshold.
  • the capacitance value generated based on the first contact state of the wearable device and the wearer described above is a single value.
  • the signal values acquired N times are N capacitance values.
  • the maximum value and the minimum value are obtained from the above N capacitance values.
  • S403 Determine the maximum threshold value according to a maximum value among the N signal values, and determine the minimum threshold value according to a minimum value among the N signal values.
  • the maximum value among the N capacitance values is the maximum threshold value
  • the minimum value among the N signal values is the minimum threshold value
  • S202 Receive an instruction to measure a physiological parameter.
  • the instruction for measuring the physiological parameter may be an instruction of the wearer's voice input, or an instruction of the wearer to input a physiological parameter based on a corresponding control input in the operation interface of the wearable device, or the wearer inputs a specific gesture as a measurement physiological Instructions for parameters, etc. It can be known that the input of the instruction for measuring the physiological parameter can be implemented in various ways, and is not limited herein.
  • S203 Detecting a wearing state of the wearable device.
  • the detecting manner of detecting the wearing state of the wearable device may be determined by detecting a level value of the myoelectric signal. If the electromyography signal is at a high level, detecting that the wearable state of the wearable device is worn; if the myoelectric signal is at a low level, detecting that the wearable state of the wearable device is not worn. Among them, can pass The myoelectric signal sensor collects the myoelectric signal, and the myoelectric signal sensor can be distributed similarly to the position of the capacitive sensor, and can be distributed in a plurality of places including the dial inner side 10 and the inner side 20 of the watch band as shown in FIG.
  • the detecting manner of detecting the wearing state of the wearable device may be by detecting a buckle state of the strap.
  • the buckle state of the strap includes the buckled and un buckled. If it is detected that the buckle state of the wearable device strap is buckled, detecting that the wearable state of the wearable device is worn; if the buckle state of the wearable device strap is detected as being unbuttoned, Then, it is detected that the wearable state of the wearable device is not worn.
  • the buckle state of the strap can be judged by setting the pressure value collected by the pressure sensor in the target area of the wearable device strap. If the pressure value of the target area is non-zero, detecting that the buckle state of the wearable device strap is buckled; if the pressure value of the target area is zero, detecting the strap of the wearable device The buckle status is not buckled. Therefore, before detecting the buckle state of the wearable device strap, the method further includes disposing a pressure sensor in the target area of the wearable device strap. Specifically, the pressure sensor can be disposed in the 30 area as shown in FIG.
  • the detecting manner of detecting the wearing state of the wearable device may be determined by combining the above two methods. That is to say, the level value of the myoelectric signal is combined with the buckle state of the strap. If it is detected that the EMG signal is at a high level and the buckle state of the strap is buckled, detecting that the wearable state of the wearable device is worn; otherwise, detecting that the wearable state of the wearable device is Not worn.
  • the wearable device may determine its own wearing state according to the result of the detection by the foregoing detecting manner, or may be that the wearable device uploads the result detected by the detecting manner to the server or other device through the network to make the server or other The device determines the wearing state of the wearable device according to the detection result.
  • the signal value is a PPG signal value
  • obtaining a signal value generated based on the current contact state of the wearable device and the wearer includes:
  • the second prompt message is used to prompt the wearer to input the specified action after detecting that the wearable state of the wearable device is worn.
  • the prompting manner of the second prompt message is similar to the prompting manner of the first message.
  • the second prompt message may be that the wearable device displays a dialog box or an animation prompt through the operation interface; the second prompt message may also be a wearable device voice prompt; and the second prompt message may also be displayed through the operation interface and combined with the vibration.
  • the mode prompt; the second prompt message may also be a way of combining voice and vibration. It is to be understood that the manner of prompting the second prompt message may be implemented in other manners, and is not limited to the foregoing implementation manner, and is not limited herein.
  • the specified action can be an arm around the word "8", or shaking the arm (shaking the arm up and down, shaking the arm from side to side), raising the arm, swiping the back of the hand at an angle, sweeping the curve, flipping the wrist, rotating the arm clockwise Rotate your arm counterclockwise.
  • S2072 Acquire a signal value generated based on a current contact state of the wearable device and the wearer within a preset duration after the second prompt message is sent.
  • the preset duration may be 5 s, 10 s, 20 s, 30 s, or the like. Based on the current contact state of the wearable device and the wearer within the preset duration, the wearer inputs a specified action according to the second prompt message, and the generated signal value is a continuous signal.
  • the wearable device may determine whether the wearer inputs the specified action according to the second prompt message according to the data collected by the gravity sensor or the gyroscope.
  • the data collected by the gravity sensor or the gyroscope in the process of the arm around the "8" word may be pre-acquired as a reference when the wearer wears the above-mentioned wearable device.
  • the data collected by the gravity sensor or the gyroscope is compared with the pre-acquired data. If the deviation is within the error range, the wearer may be determined to input the designation according to the second prompt message. If the deviation is not within the error range, it can be determined that the wearer has not input the designated action according to the second prompt message. It can be known that the data collected by the gravity sensor or the gyroscope when the specified action is input is independent of the current contact state of the wearable device with the wearer.
  • the signal value is a capacitance value
  • the signal value generated based on the current contact state of the wearable device and the wearer is a single capacitance value.
  • the foregoing sending the first prompt message specifically includes the following steps, as shown in FIG. 15:
  • the PPG signal value is a continuous signal, and the maximum value and the minimum value in the continuous signal are obtained.
  • S502 Calculate a first variance of the maximum value of the signal values and the maximum threshold value, and calculate a second variance of the minimum value of the signal values and the minimum threshold value.
  • S503 Compare the sizes of the first variance, the second variance, and the variance threshold, respectively.
  • the variance indicates the degree of dispersion of the data
  • the variance based on the PPG signal value generated by the wearable device and the wearer's current contact state and the previously obtained signal threshold value may be used to determine the wearable device and the wearer based on the wearable device and the wearer.
  • the stability of the PPG signal value produced by the current contact state may be used to determine the wearable device and the wearer based on the wearable device and the wearer.
  • the variance threshold can be, for example, 0.02, 0.05, 0.1, or the like.
  • the first variance and the second variance is not smaller than the variance threshold, that is, the maximum value and/or the minimum value are abrupt, indicating that the current contact state of the wearable device and the wearer is based on The generated PPG signal value is unstable, indicating that the wearing of the wearable device is not suitable, and the first prompt message is sent to prompt the wearer to re-adjust the wearing of the wearable device.
  • the sending the first prompt message specifically includes the following steps, as shown in FIG.
  • S601 Compare the signal value with the maximum threshold value and the minimum threshold value.
  • the signal value is a single capacitance value, and the capacitance value can be directly compared with the maximum threshold value and the minimum threshold value of the signal threshold value obtained in advance.
  • the capacitance value is greater than the maximum threshold or less than the minimum threshold, indicating that the capacitance exceeds
  • the normal range of the capacitance value generated when the wearable device is properly worn is indicated, indicating that the wearing of the wearable device is not suitable at this time, and the first prompt message is sent to prompt the wearer to re-adjust the wearing of the wearable device.
  • the embodiment of the present application further provides a method for detecting a wearing condition of a wearable device, including the following steps:
  • S901 The wearable device detects the PPG signal.
  • the PPG signal can be detected by a photoelectric sensor that is included in the wearable device.
  • the wearable device can detect the PPG signal for a period of time, such as 1 hour, 5 minutes, and the like.
  • the method may further include: detecting whether the user wears the wearable device, and if so, performing S901.
  • the process of detecting whether the user wears the wearable device may refer to S203.
  • S902 The wearable device determines whether the PPG signal is abrupt.
  • the wearable device can analyze whether the mutation occurs by detecting the PPG signal for a period of time.
  • the PPG signal suddenly increases or decreases at a certain moment, the PPG signal is abruptly changed. Refer to Figures 10 and 15 for determining whether the PPG signal is abrupt.
  • the wearable device When the PPG signal is stable, the wearable device is well worn; when the PPG signal suddenly increases or decreases at a certain moment, the wearable device is worn poorly, for example, wearing too loose. Optionally, if it is determined that the wearable device is not properly worn, the user may be prompted to wear it correctly.
  • the embodiment of the present application can detect the wearing state of the wearable device by setting a signal threshold value of the PPG signal value or the capacitance value, and if it is worn, obtaining a signal value generated based on the current contact state of the wearable device and the wearer; Whether the current contact state satisfies the measurement condition by the PPG signal value or the capacitance value; if the current contact state does not satisfy the measurement condition according to the PPG signal value or the capacitance value and the signal threshold value, the first prompt message is sent to prompt the wearer to adjust Wearing wearable devices, intelligently detecting the wearing of the wearable device to ensure the accuracy of heart rate measurement.
  • FIG. 17 is a schematic structural diagram of a wearable device according to an embodiment of the present disclosure.
  • the wearable device 70 may include at least a first acquiring module 710 and a first prompting module 720.
  • the first obtaining module 710 is configured to obtain a signal value generated based on a current contact state of the wearable device 70 and the wearer if the wearing state of the wearable device 70 is worn; wherein the wearing state includes worn and unworn.
  • the first prompting module 720 is configured to: if the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold value, send a first prompt message; wherein the signal threshold value is based on the wearable device 70 and wearing The signal threshold value generated by the first contact state of the person; the first prompt message is used to prompt the adjustment to wear the wearable device 70.
  • the wearable device 70 further includes: a measurement module 730, configured to start measuring the physiological parameter if it is determined that the current contact state satisfies the measurement condition according to the signal value and the signal threshold value.
  • the wearable device 70 further includes: a receiving module 740, configured to receive the measurement physiology before the first acquisition module 710 acquires a signal value generated based on the current contact state of the wearable device 70 and the wearer. The instruction of the parameter.
  • the wearable device 70 further includes: a detecting module 750, configured to be in the first acquiring module The 710 acquires the wearing state of the wearable device 70 before acquiring the signal value generated based on the current contact state of the wearable device 70 and the wearer.
  • the wearable device 70 further includes: a second obtaining module 760, configured to acquire a signal threshold before the detecting module 750 detects the wearing state of the wearable device 70; wherein the signal threshold is Values include the maximum threshold and the minimum threshold.
  • the above signal value comprises a PPG signal value.
  • the first obtaining module 710 may include at least a prompting unit 7110 and a first acquiring unit 7120, where
  • the prompting unit 7110 is configured to issue a second prompt message if the wearing state of the wearable device 70 is worn, wherein the second prompt message is used to prompt the wearer to input a specified action.
  • the first obtaining unit 7120 is configured to acquire a signal value generated based on a current contact state of the wearable device 70 and the wearer within a preset time period after the second prompt message is sent.
  • the second obtaining module 760 may include at least: a second obtaining unit 7610, a third obtaining unit 7620, and a first determining unit 7630, where
  • the second obtaining unit 7610 is configured to acquire, according to a preset duration of the second prompt message after the sending of the second prompt message, a signal value generated based on the first contact state of the wearable device 70 and the wearer; wherein the N is a positive integer .
  • the third obtaining unit 7620 is configured to separately obtain a maximum value and a minimum value of the signal values generated based on the first contact state of the wearable device 70 and the wearer each time the preset duration after the second prompt message is sent. And determining N times and N minimum values among the signal values generated by the first contact state of the wearable device 70 and the wearer within a preset time period after the second prompt message is sent N times.
  • the first determining unit 7630 is configured to determine the maximum threshold value according to the N maximum values, and determine the minimum threshold value according to the N minimum values.
  • the first determining unit 7630 is configured to determine a maximum value of the N maximum values as the maximum threshold value, and determine a minimum value of the N minimum values as the minimum threshold. value.
  • the first determining unit 7630 is configured to determine an average value of the N maximum values as the maximum threshold value, and determine an average value of the N minimum values as the minimum threshold value.
  • the first prompting module 720 may further include: a fifth obtaining unit 7210, a calculating unit 7220, a first comparing unit 7230, and a first prompting unit 7240, where
  • the fifth obtaining unit 7210 is configured to obtain a maximum value and a minimum value among the foregoing signal values.
  • the calculating unit 7220 is configured to calculate a first variance of the maximum value of the signal values and the maximum threshold value, and calculate a second variance of the minimum value of the signal values and the minimum threshold value.
  • the first comparing unit 7230 is configured to compare the sizes of the first variance, the second variance, and the variance threshold, respectively.
  • the first prompting unit 7240 is configured to: if at least one of the first variance and the second variance is not less than the variance threshold, determine that the current contact state does not satisfy the measurement condition, and issue a first prompt message.
  • the signal value comprises a capacitance value.
  • the second obtaining module 760 may include at least a sixth obtaining unit 7640, a seventh obtaining unit 7650, and an eighth obtaining unit 7660, where
  • the sixth obtaining unit 7640 is configured to acquire N times based on the preset contact state of the wearable device 70 and the wearer. N signal values; wherein N is a positive integer.
  • the seventh obtaining unit 7650 is configured to obtain a maximum value and a minimum value among the N signal values acquired by the sixth obtaining unit 7640.
  • the eighth obtaining unit 7660 is configured to obtain the maximum threshold value according to the maximum value of the N signal values acquired by the seventh acquiring unit 7650, and obtain the minimum value according to the minimum value of the N signal values acquired by the seventh acquiring unit 7650. Threshold.
  • the eighth obtaining unit 7660 is configured to use the maximum value of the N signal values acquired by the seventh acquiring unit 7650 as the maximum threshold value, and the N acquiring the seventh acquiring unit 7650.
  • the minimum value of the signal values is taken as the minimum threshold described above.
  • the first prompting module 720 can include at least: a second comparing unit 7250 and a second prompting unit 7260, where
  • the second comparing unit 7250 is configured to compare the signal value with the maximum threshold value and the minimum threshold value.
  • the second prompting unit 7260 is configured to: if the signal value is greater than the maximum threshold value or less than the minimum threshold value, determine that the current contact state does not satisfy the measurement condition, and issue a first prompt message.
  • the detecting module 750 is configured to detect a level value of the myoelectric signal; if the electromyogram signal is at a high level, detecting that the wearing state of the wearable device 70 is worn; When the electrical signal is at a low level, it is detected that the wearing state of the wearable device 70 is not worn.
  • the wearable device 70 includes a watch strap.
  • the detecting module 750 is configured to detect a buckle state of the wearable device strap; wherein the buckle state of the strap includes the buckled and unbuttoned. If it is detected that the buckle state of the wearable device strap is buckled, it is detected that the wearable state of the wearable device 70 is worn; if the buckle state of the wearable device strap is detected as not buckled, the detection is detected. The wearing state of the wearable device 70 is not worn.
  • the detection module 750 is configured to detect a pressure value of a target area of the wearable device strap. If the pressure value of the target area is non-zero, detecting that the buckle state of the wearable device strap is buckled; if the pressure value of the target area is zero, detecting the buckle state of the wearable device strap Not buckled.
  • the wearable device 70 further includes a setting module for setting a pressure sensor in a target area of the wearable device strap before the detecting module 750 detects the buckle state of the wearable device strap.
  • the detection module 750 is configured to detect a level value of the myoelectric signal and a buckle state of the strap. If it is detected that the EMG signal is at a high level and the buckle state of the strap is buckled, it is detected that the wearing state of the wearable device 70 is worn; otherwise, the wearing state of the wearable device 70 is detected as Not worn.
  • FIG. 23 is a schematic structural diagram of another wearable device provided by an embodiment of the present application.
  • the wearable device 80 may at least include: a baseband chip 810, a memory 820 (one or more computer readable storage media), and a peripheral system 830. , RF module 840. These components can communicate over one or more communication buses 850.
  • the peripheral system 830 is mainly used to implement the interaction function between the wearable device 80 and the user/external environment, and mainly includes input and output devices of the wearable device 80.
  • the peripheral system 830 can include a touch screen controller 831, a camera controller 832, an audio controller 833, and a sensor management module 834.
  • the touch screen controller 831 can be a touch screen 835;
  • the camera controller 832 can be a camera 836;
  • the audio controller 833 can be an audio circuit 837;
  • the sensor management module 834 can be a sensor 838, wherein the sensor 836 can include a photosensor 8361, a capacitive sensor 8632, a myoelectric signal sensor 8363, a pressure sensor 8364, and the like.
  • peripheral system 830 may also include other peripherals.
  • the baseband chip 810 can be integrated to include one or more processors 811, a clock module 812, and a power management module 813.
  • the clock module 812 integrated in the baseband chip 810 is primarily used to generate the clocks required for data transfer and timing control for the processor 811.
  • the power management module 813 integrated in the baseband chip 810 is primarily used to provide a stable, high accuracy voltage to the processor 811, the radio frequency module 840, and the peripheral system 830.
  • the radio frequency module 840 is configured to receive and transmit radio frequency signals, primarily integrating the receiver and transmitter of the wearable device 80.
  • the radio frequency module 840 communicates with the communication network and other communication devices via radio frequency signals.
  • the radio frequency module 840 can include, but is not limited to: an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chip, a SIM card, and Storage media, etc.
  • the radio frequency module 840 can be implemented on a separate chip.
  • Memory 820 is coupled to processor 811 for storing various software programs or sets of instructions.
  • memory 820 can include high speed random access memory and can include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 820 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 820 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 820 can also store a user interface program, which can realistically display the content of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 820 can also store wearable device detection instructions.
  • the processor 811 can be used to call the wearable device detection instruction stored in the memory 820 and perform the following operations:
  • the wearing state of the wearable device 80 If the wearing state of the wearable device 80 is worn, the signal value generated based on the current contact state of the wearable device 80 and the wearer is acquired by the photoelectric sensor 8361; wherein the wearing state includes worn and unworn.
  • the first prompt message is sent by the peripheral system 830; wherein the signal threshold includes the first based on the wearable device 80 and the wearer.
  • the signal threshold generated by the contact state; the first prompt message is used to prompt the adjustment to wear the wearable device 80.
  • the processor 811 after acquiring the signal value generated based on the current contact state of the wearable device 80 and the wearer, the processor 811 is further configured to: determine the current contact according to the signal value and the signal threshold value. When the state meets the measurement conditions, the physiological parameters are measured.
  • the processor 811 is further configured to: pass through the peripheral system before acquiring the signal value generated based on the current contact state of the wearable device 80 and the wearer. 830 receives an instruction to measure a physiological parameter.
  • the processor 811 further obtains a signal value generated based on the current contact state of the wearable device and the wearer by the photoelectric sensor 8361. For detecting the wearing state of the wearable device 80 by the sensor 838.
  • the processor 811 before detecting the wearing state of the wearable device 80, is further configured to: acquire a signal threshold by using the sensor 838; wherein the signal threshold includes a maximum threshold and a minimum Threshold.
  • the signal value comprises a PPG signal value.
  • the processor 811 is configured to: if the wearing state of the wearable device 80 is worn, obtaining the signal value generated based on the current contact state of the wearable device 80 and the wearer includes:
  • the second prompt message is sent by the peripheral system 830; wherein the second prompt message is used to prompt input of the specified action.
  • the signal value generated based on the current contact state of the wearable device 80 and the wearer within the preset time period after the second prompt message is issued is acquired by the photosensor 8361.
  • the processor 811 acquiring the signal threshold value includes:
  • the signal value generated based on the first contact state of the wearable device 80 and the wearer is acquired by the photosensor 8361 for N times within a preset time period after the second prompt message is issued; wherein the N is a positive integer.
  • the maximum threshold value is determined according to the N maximum values, and the minimum threshold value is determined according to the N minimum values.
  • the processor 811 determines that the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold, the first prompt message is sent:
  • the magnitudes of the first variance, the second variance, and the variance threshold are compared, respectively.
  • the first prompt message is sent by the peripheral system 830.
  • the signal value comprises a capacitance value.
  • the processor 811 acquiring the signal threshold value includes:
  • the N signal values generated based on the first contact state of the wearable device 80 and the wearer are acquired N times by the capacitance sensor 8362; wherein the above N is a positive integer.
  • the maximum threshold value is determined according to a maximum value among the N signal values, and the minimum threshold value is determined according to a minimum value among the N signal values.
  • the processor 811 determines the maximum threshold value according to the N maximum values, and determining the minimum threshold value according to the N minimum values includes:
  • the maximum value of the N maximum values is determined as the maximum threshold value, and the minimum value among the N minimum values is determined as the minimum threshold value.
  • the processor 811 determines the maximum threshold value according to the N maximum values, and determining the minimum threshold value according to the N minimum values includes:
  • the average value of the N maximum values is determined as the maximum threshold value, and the average value of the N minimum values is determined as the minimum threshold value.
  • the processor 80 determines that the current contact state does not satisfy the measurement condition according to the signal value and the signal threshold, the first prompt message is sent by:
  • the signal value is greater than the maximum threshold value or less than the minimum threshold value, it is determined that the current contact state does not satisfy the measurement condition, and the first prompt message is sent by the peripheral system 830.
  • the processor 811 detecting the wearing state of the wearable device 80 includes: detecting a level value of the myoelectric signal by the myoelectric signal sensor 8363; and detecting if the myoelectric signal is high level The wearable state of the wearable device 80 is worn; if the electromyogram signal is low, it is detected that the wearable state of the wearable device 80 is not worn.
  • the wearable device 80 includes a watchband; the processor 811 detecting the wearing state of the wearable device 80 includes:
  • the buckle state of the wearable device strap is detected; wherein the buckle state of the strap includes the buckled and unfastened.
  • the processor 811 detects that the buckle status of the wearable device strap includes:
  • the processor 811 Before detecting the buckle state of the wearable device strap by the pressure sensor 8364, the processor 811 is further configured to: set a pressure sensor in the target area of the wearable device strap.
  • Embodiments of the present application may obtain a signal value generated based on a current contact state of the wearable device and the wearer after detecting that the wearable state of the wearable device is worn; if the current contact is determined according to the signal value and the signal threshold value If the status does not meet the measurement condition, the first prompt message is sent to prompt the wearer to adjust the wearable device to intelligently detect the wearing of the wearable device, thereby ensuring the accuracy of the heart rate measurement.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种可穿戴设备(70)的检测方法及可穿戴设备(70),该方法包括:若可穿戴设备(70)的佩戴状态为已佩戴,获取基于可穿戴设备(70)与佩戴者的当前接触状态产生的信号值(S101,S204);其中,佩戴状态包括已佩戴和未佩戴;若根据信号值及信号门限值判断出当前接触状态不满足测量条件,发出第一提示消息(S102,S205);其中,信号门限值包括基于可穿戴设备(70)与佩戴者的第一接触状态产生的信号门限值;第一提示消息用于提示调整佩戴可穿戴设备(70)。本方法能够提高可穿戴设备(70)测量生理参数的准确性。 <b/> <b/>

Description

可穿戴设备的检测方法及可穿戴设备
本申请要求于2017年6月29日提交中国专利局、申请号为201710514246.4、发明名称为“一种可穿戴设备的佩戴松紧检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种可穿戴设备的检测方法及可穿戴设备。
背景技术
智能手表和手环之类的可穿戴设备主要优势在于监测用户健康,比如,利用手环监测运动步数、心率、睡眠指数等,这些智能穿戴设备集成了很多的传感器,用来获取佩戴者的体征数据,记录健康状况。由于脉搏或者心率是生命体征的重要参数之一,所以心率测量已成为智能穿戴设备必备的一个功能。
目前,可穿戴设备的心率测量主要通过光电容积脉搏波描记法(photoelectric plethysmography,PPG)。PPG是借光电手段在活体组织中检测血液容积变化的一种无创检测方法,是利用光测量脉搏的一种技术。即利用光电传感器检测经过人体血液和组织吸收后的反射光强度的不同,描记出血液流量在心动周期内的变化,从得到的脉搏波形中计算出心率。如图1所示的光电传感器的结构,光电传感器可以包括发射器、接收器等。其中,发射器可以是发光二极管、红外发射二极管等,接收器可以包括光电晶体管等。当发射器发出的光照透过皮肤组织然后再反射到接收器时光照存在一定程度的衰减。通过光照的变化即可容积脉搏血流的变化。
然而,对智能手表和手环之类的可穿戴设备来说,不规范的佩戴方式会影响心率信号的测量,比如不完全贴合导致的漏光、手臂的摆动以及智能手表或手环在皮肤上的轻微移动等,都会影响测量的心率信号。智能手表或手环佩戴得过紧、手臂抬高和握拳等也会影响血液循环,同样可能影响到心率信号。
发明内容
本申请实施例提供了一种可穿戴设备的检测方法及可穿戴设备,能够检测可穿戴设备的佩戴松紧,进而保证心率测量的准确性,解决了现有技术中由于可穿戴设备的佩戴松紧不合适导致的心率测量不准确的问题。
第一方面,本申请实施例提供了一种可穿戴设备的检测方法,包括:
若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值;其中,所述佩戴状态包括已佩戴和未佩戴;
若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息;其中,所述信号门限值包括基于所述可穿戴设备与佩戴者的第一接触状态产生的信号门限值;所述第一提示消息用于提示调整佩戴所述可穿戴设备。
本申请实施例中,可以自动检测可穿戴设备的佩戴松紧是否合适,当可穿戴设备佩戴 的松紧不合适时,提示佩戴者及时调整佩戴可穿戴设备,以提高后续测量的准确性。
在一种可能的实现方式中,所述获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之后,所述方法还包括:若根据所述信号值及信号门限值判断出所述当前接触状态满足测量条件,则开始测量生理参数。
本申请实施例中,当可穿戴设备佩戴的松紧合适后,开始测量生理参数,保证测量的准确性。
在一种可能的实现方式中,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,所述方法还包括:接收测量生理参数的指令。
本申请实施例提供了一种测量生理参数的触发指令,在接收用户输入的指令之后再执行后续步骤,提高生理参数测量的有效性,节约能耗。
结合第一方面,在第一方面的第一种实现方式中,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,所述方法还包括:检测所述可穿戴设备的佩戴状态。
本申请实施例中,首先对可穿戴设备的佩戴状态进行检测,当检测到可穿戴设备的佩戴状态为已佩戴后,获取信号值。提供了一种获取信号值的触发方式,保证获取的信号值是在可穿戴设备已佩戴的情况下产生的,保证信号值的有效性。
结合第一方面第一种实现方式,在第一方面的第二种实现方式中,所述检测所述可穿戴设备的佩戴状态之前,所述方法还包括:获取信号门限值;其中,所述信号门限值包括最大门限值及最小门限值。
本申请实施例中提供了信号门限值,通过比较当前获取的信号值与信号门限值来判断可穿戴设备当前的佩戴松紧是否合适。
结合第一方面第二种实现方式,在第一方面的第三种实现方式中,所述信号值包括PPG信号值。
本申请实施例提供了一种具体的参数,通过PPG信号值来判断可穿戴设备当前的佩戴松紧是否合适。
结合第一方面第三种实现方式,在第一方面的第四种实现方式中,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值包括:
若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息;其中,所述第二提示消息用于提示输入指定动作;
获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的当前接触状态产生的信号值。
本申请实施例中,通过在检测到可穿戴设备的佩戴状态为已佩戴时,提示用户在一定的时长内输入指定动作来获取在该时长内产生的信号值。通过输入指定动作产生的信号值可以在一定程度上反映出可穿戴设备的佩戴松紧。
结合第一方面第四种实现方式,在第一方面的第五种实现方式中,所述获取信号门限值包括:
获取N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值;其中,所述N为正整数;
分别获取每次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值;
根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值。
本申请实施例提供了信号门限值的获取方式,通过预先收集多次在佩戴松紧合适的情况下输入指定动作产生的信号值,进而确定信号门限值。信号门限值表示佩戴松紧合适时产生的信号值的临界值。收集的次数越多,最终得到的信号门限值越准确。
在一种可能的实现方式中,所述根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值包括:
将所述N个最大值中的最大值确定为所述最大门限值,将所述N个最小值中的最小值确定为所述最小门限值。
本申请实施例提供了一种最大门限值及最小门限值的确定方法,通过最大门限值及最小门限值为基于当前接触状态产生的信号值提供比较基准,进而确定可穿戴设备佩戴的松紧是否合适。
在一种可能的实现方式中,所述根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值包括:
将所述N个最大值的平均值确定为所述最大门限值,将所述N个最小值的平均值确定为所述最小门限值。
本申请实施例提供了另一种最大门限值及最小门限值的确定方法,通过最大门限值及最小门限值为基于当前接触状态产生的信号值提供比较基准,进而确定可穿戴设备佩戴的松紧是否合适。
结合第一方面第五种实现方式,在第一方面的第六种实现方式中,所述若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
获取所述信号值中的最大值及最小值;
计算所述信号值中的最大值与所述最大门限值的第一方差,计算所述信号值中的最小值与所述最小门限值的第二方差;
分别比较所述第一方差、所述第二方差与方差阈值的大小;
若所述第一方差与所述第二方差中至少有一项不小于所述方差阈值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
本申请实施例提供了一种基于当前接触状态产生的信号值与信号门限值比较的具体方式,通过方差的大小表示当前信号值与信号门限值的波动程度,当波动超过一定程度时表示当前的信号值的准确度是不够的。说明当前可穿戴设备佩戴的松紧不合适,不满足测量条件。
结合第一方面第二种实现方式,在第一方面的第七种实现方式中,所述信号值包括电容值。
本申请实施例提供了另一种具体的参数,通过电容值来判断可穿戴设备当前的佩戴松紧是否合适。
结合第一方面第七种实现方式,在第一方面的第八种实现方式中,所述获取信号门限值包括:
获取N次基于所述可穿戴设备与佩戴者的第一接触状态产生的N个信号值;其中,所述N为正整数;
获取所述N个信号值中的最大值及最小值;
根据所述N个信号值中的最大值确定所述最大门限值,根据所述N个信号值中的最小值确定所述最小门限值。
本申请实施例提供了信号门限值的获取方式,通过预先收集多次在佩戴松紧合适的情况下输入指定动作产生的信号值,进而确定信号门限值。信号门限值表示佩戴松紧合适时产生的信号值的临界值。收集的次数越多,最终得到的信号门限值越准确。
结合第一方面第八种实现方式,在第一方面的第九种实现方式中,所述若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
比较所述信号值与所述最大门限值及所述最小门限值的大小;
若所述信号值大于所述最大门限值或小于所述最小门限值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
本申请实施例提供了一种基于当前接触状态产生的信号值与信号门限值比较的具体方式,若当前的信号值超过信号门限值表征的范围表示当前的信号值的准确度是不够的。说明当前可穿戴设备佩戴的松紧不合适,不满足测量条件。
结合第一方面第一种实现方式,在第一方面的第十种实现方式中,所述检测所述可穿戴设备的佩戴状态包括:
检测肌电信号的电平值;
若所述肌电信号为高电平,则检测出所述可穿戴设备的佩戴状态为已佩戴;
若所述肌电信号为低电平,则检测出所述可穿戴设备的佩戴状态为未佩戴。
本申请实施例提供了一种可穿戴设备佩戴方式的检测方法,通过肌电信号的电平值判断可穿戴设备的佩戴方式,保证可穿戴设备佩戴方式检测的准确性。
在一种可能的实现方式中,所述可穿戴设备包括表带;
所述检测所述可穿戴设备的佩戴状态包括:
检测所述可穿戴设备表带的搭扣状态;其中,所述表带的搭扣状态包括已扣上和未扣上;
若检测到所述可穿戴设备表带的搭扣状态为已扣上,则检测出所述可穿戴设备的佩戴状态为已佩戴;
若检测到所述可穿戴设备表带的搭扣状态为未扣上,则检测出所述可穿戴设备的配戴状态为未佩戴。
本申请实施例提供了另一种可穿戴设备佩戴方式的检测方法,通过可穿戴设备表带的搭扣方式判断可穿戴设备的佩戴方式,保证可穿戴设备佩戴方式检测的准确性。
在一种可能的实现方式中,所述检测所述可穿戴设备表带的搭扣状态包括:
检测所述可穿戴设备表带的目标区域的压力值;
若所述目标区域的压力值为非零,则检测出所述可穿戴设备表带的搭扣状态为已扣上;
若所述目标区域的压力值为零,则检测出所述可穿戴设备表带的搭扣状态为未扣上;
所述检测所述可穿戴设备表带的搭扣状态之前,所述方法还包括:
在所述可穿戴设备表带的目标区域设置压力传感器。
本申请实施例提供了一种可穿戴设备表带搭扣状态的检测方式,通过检测表带目标区域的电压值判断表带的搭扣状态,保证可穿戴设备表带搭扣状态检测的准确性。
第二方面,本申请实施例提供了一种可穿戴设备,包括:
第一获取模块,用于若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值;其中,所述佩戴状态包括已佩戴和未佩戴;
第一提示模块,用于若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息;其中,所述信号门限值包括基于所述可穿戴设备与佩戴者的第一接触状态产生的信号门限值;所述第一提示消息用于提示调整佩戴所述可穿戴设备。
在一种可能的实现方式中,所述可穿戴设备还包括:测量模块,用于若根据所述信号值及信号门限值判断出所述当前接触状态满足测量条件,则开始测量生理参数。
在一种可能的实现方式中,所述可穿戴设备还包括:接收模块,用于在所述第一获取模块获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,接收测量生理参数的指令。
结合第二方面,在第二方面的第一种实现方式中,所述可穿戴设备还包括:
检测模块,用于在所述第一获取模块获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,检测所述可穿戴设备的佩戴状态。
结合第二方面第一种实现方式,在第二方面的第二种实现方式中,所述可穿戴设备还包括:
第二获取模块,用于在所述检测模块检测所述可穿戴设备的佩戴状态之前,获取信号门限值;其中,所述信号门限值包括最大门限值及最小门限值。
结合第二方面第二种实现方式,在第二方面的第三种实现方式中,所述信号值包括PPG信号值。
结合第二方面第三种实现方式,在第二方面的第四种实现方式中,所述第一获取模块包括:
提示单元,用于若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息;其中,所述第二提示消息用于提示所述佩戴者输入指定动作;
第一获取单元,用于获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的当前接触状态产生的信号值。
结合第二方面第四种实现方式,在第二方面的第五种实现方式中,所述第二获取模块包括:
第二获取单元,用于获取N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值;其中,所述N为正整数;
第三获取单元,用于分别获取每次在发出所述第二提示消息后的预设时长内,基于所 述可穿戴设备与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值;
第一确定单元,用于根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值。
在一种可能的实现方式中,所述第一确定单元用于将所述N个最大值中的最大值确定为所述最大门限值,将所述N个最小值中的最小值确定为所述最小门限值。
在一种可能的实现方式中,所述第一确定单元用于将所述N个最大值的平均值确定为所述最大门限值,将所述N个最小值的平均值确定为所述最小门限值。
结合第二方面第五种实现方式,在第二方面的第六种实现方式中,所述第一提示模块包括:
第五获取单元,用于获取所述信号值中的最大值及最小值;
计算单元,用于计算所述信号值中的最大值与所述最大门限值的第一方差,并计算所述信号值中的最小值与所述最小门限值的第二方差;
第一比较单元,用于分别比较所述第一方差、所述第二方差与方差阈值的大小;
第一提示单元,用于若所述第一方差与所述第二方差中至少有一项不小于所述方差阈值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
结合第二方面第二种实现方式,在第二方面的第七种实现方式中,所述信号值包括电容值。
结合第二方面第七种实现方式,在第二方面的第八种实现方式中,所述第二获取模块包括:
第六获取单元,用于获取N次基于所述可穿戴设备与佩戴者的预置接触状态产生的N个信号值;其中,所述N为正整数;
第七获取单元,用于获取所述第六获取单元获取的N个信号值中的最大值及最小值;
第八获取单元,用于根据所述第七获取单元获取的N个信号值中的最大值获取所述最大门限值,根据所述第七获取单元获取的N个信号值中的最小值获取所述最小门限值。
结合第二方面第八种实现方式,在第二方面的第九种实现方式中,所述第一提示模块包括:
第二比较单元,用于比较所述信号值与所述最大门限值及所述最小门限值的大小;
第二提示单元,用于若所述信号值大于所述最大门限值或小于所述最小门限值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
结合第二方面第一种实现方式,在第二方面的第十种实现方式中,所述检测模块用于检测肌电信号的电平值;
若所述肌电信号为高电平,则检测出所述可穿戴设备的佩戴状态为已佩戴;
若所述肌电信号为低电平,则检测出所述可穿戴设备的佩戴状态为未佩戴。
在一种可能的实现方式中,所述可穿戴设备包括表带;
所述检测模块用于检测所述可穿戴设备表带的搭扣状态;其中,所述表带的搭扣状态包括已扣上和未扣上;
若检测到所述可穿戴设备表带的搭扣状态为已扣上,则检测出所述可穿戴设备的佩戴状态为已佩戴;
若检测到所述可穿戴设备表带的搭扣状态为未扣上,则检测出所述可穿戴设备的配戴状态为未佩戴。
在一种可能的实现方式中,所述检测模块用于检测所述可穿戴设备表带的目标区域的压力值;
若所述目标区域的压力值为非零,则检测出所述可穿戴设备表带的搭扣状态为已扣上;
若所述目标区域的压力值为零,则检测出所述可穿戴设备表带的搭扣状态为未扣上;
所述可穿戴设备还包括设置模块,用于在所述检测模块检测所述可穿戴设备表带的搭扣状态之前,在所述可穿戴设备表带的目标区域设置压力传感器。
第三方面,本申请实施例提供了一种可穿戴设备,包括:
存储器,用于存储可穿戴设备检测指令;
处理器,用于调用所述存储器中存储的可穿戴设备检测指令并执行以下步骤:
若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值;其中,所述佩戴状态包括已佩戴和未佩戴;
若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息;其中,所述信号门限值包括基于所述可穿戴设备与佩戴者的第一接触状态产生的信号门限值;所述第一提示消息用于提示调整佩戴所述可穿戴设备。
在一种可能的实现方式中,所述获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之后,所述处理器还用于:若根据所述信号值及信号门限值判断出所述当前接触状态满足测量条件,则开始测量生理参数。
在一种可能的实现方式中,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,所述处理器还用于:接收测量生理参数的指令。
结合第三方面,在第三方面的第一种实现方式中,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,所述方法还包括:检测所述可穿戴设备的佩戴状态。
结合第三方面第一种实现方式,在第三方面的第二种实现方式中,所述检测所述可穿戴设备的佩戴状态之前,所述处理器还用于:获取信号门限值;其中,所述信号门限值包括最大门限值及最小门限值。
结合第三方面第二种实现方式,在第三方面的第三种实现方式中,所述信号值包括PPG信号值。
结合第三方面第三种实现方式,在第三方面的第四种实现方式中,所述处理器用于若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值包括:
若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息;其中,所述第二提示消息用于提示输入指定动作;
获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的 当前接触状态产生的信号值。
结合第三方面第四种实现方式,在第三方面的第五种实现方式中,所述处理器获取信号门限值包括:
获取N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值;其中,所述N为正整数;
分别获取每次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值;
根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值。
在一种可能的实现方式中,所述处理器根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值包括:
将所述N个最大值中的最大值确定为所述最大门限值,将所述N个最小值中的最小值确定为所述最小门限值。
在一种可能的实现方式中,所述处理器根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值包括:
将所述N个最大值的平均值确定为所述最大门限值,将所述N个最小值的平均值确定为所述最小门限值。
结合第三方面第五种实现方式,在第三方面的第六种实现方式中,所述处理器若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
获取所述信号值中的最大值及最小值;
计算所述信号值中的最大值与所述最大门限值的第一方差,计算所述信号值中的最小值与所述最小门限值的第二方差;
分别比较所述第一方差、所述第二方差与方差阈值的大小;
若所述第一方差与所述第二方差中至少有一项不小于所述方差阈值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
结合第三方面第二种实现方式,在第三方面的第七种实现方式中,所述信号值包括电容值。
结合第三方面第七种实现方式,在第三方面的第八种实现方式中,所述处理器获取信号门限值包括:
获取N次基于所述可穿戴设备与佩戴者的第一接触状态产生的N个信号值;其中,所述N为正整数;
获取所述N个信号值中的最大值及最小值;
根据所述N个信号值中的最大值确定所述最大门限值,根据所述N个信号值中的最小值确定所述最小门限值。
结合第三方面第八种实现方式,在第三方面的第九种实现方式中,所述处理器若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包 括:
比较所述信号值与所述最大门限值及所述最小门限值的大小;
若所述信号值大于所述最大门限值或小于所述最小门限值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
结合第三方面第一种实现方式,在第三方面的第十种实现方式中,处理器检测所述可穿戴设备的佩戴状态包括:
检测肌电信号的电平值;
若所述肌电信号为高电平,则检测出所述可穿戴设备的佩戴状态为已佩戴;
若所述肌电信号为低电平,则检测出所述可穿戴设备的佩戴状态为未佩戴。
在一种可能的实现方式中,所述可穿戴设备包括表带;
所述处理器检测所述可穿戴设备的佩戴状态包括:
检测所述可穿戴设备表带的搭扣状态;其中,所述表带的搭扣状态包括已扣上和未扣上;
若检测到所述可穿戴设备表带的搭扣状态为已扣上,则检测出所述可穿戴设备的佩戴状态为已佩戴;
若检测到所述可穿戴设备表带的搭扣状态为未扣上,则检测出所述可穿戴设备的配戴状态为未佩戴。
在一种可能的实现方式中,所述处理器检测所述可穿戴设备表带的搭扣状态包括:
检测所述可穿戴设备表带的目标区域的压力值;
若所述目标区域的压力值为非零,则检测出所述可穿戴设备表带的搭扣状态为已扣上;
若所述目标区域的压力值为零,则检测出所述可穿戴设备表带的搭扣状态为未扣上;
所述检测所述可穿戴设备表带的搭扣状态之前,所述处理器还用于:
在所述可穿戴设备表带的目标区域设置压力传感器。
第四方面,本申请实施例提供了一种计算机可读的存储介质,用于存储一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述计算机程序在计算机上运行时,所述指令用于执行上述第一方面或第一方面的任一种实现方式提供的可穿戴设备的检测方法。
第五方面,本申请实施例提供了一种计算机程序,所述计算机程序包括指令,当所述计算机程序在计算机上执行时,所述指令用于执行上述第一方面或第一方面的任一种实现方式提供的可穿戴设备的检测方法。
实施本申请实施例,可以在检测到可穿戴设备的佩戴状态为已佩戴的情况下,获取基于该可穿戴设备与佩戴者的当前接触状态产生的信号值,当根据该信号值与信号门限值判断出当前接触状态不满足测量条件时,发出第一提示消息,提示佩戴者调整佩戴可穿戴设备,智能检测可穿戴设备的佩戴松紧,进而保证心率测量的准确性,解决了现有技术中由于可穿戴设备的佩戴松紧不合适导致的心率测量不准确的问题。
附图说明
图1为现有技术中光电传感器的结构示意图;
图2为现有技术中智能手表佩戴要求的示意图;
图3为手表佩戴太松时测量的PPG信号图;
图4为手表佩戴正确时测得的PPG信号图;
图5为手表佩戴松紧与心率准确率关系示意图;
图6为本申请实施例提供的可穿戴设备的检测方法流程示意图;
图7为本申请实施例提供的一种第一提示消息示意图;
图8为本申请另一实施例提供的可穿戴设备的检测方法流程示意图;
图9为各传感器设置位置示意图;
图10为本申请实施例提供的获取信号门限值的方法流程示意图;
图11为本申请实施例提供的一种第二提示消息示意图;
图12为本申请实施例提供的一种场景示意图;
图13为可穿戴设备佩戴松紧程度与电容值的对应关系示意图;
图14为本申请另一实施例提供的获取信号门限值的方法流程示意图;
图15为本申请实施例提供的发出第一提示消息的方法流程示意图;
图16为本申请实施例提供的另一种发出第一提示消息的方法流程示意图;
图17为本申请实施例提供的可穿戴设备的结构示意图;
图18为本申请实施例提供的第一获取模块的结构示意图;
图19为本申请实施例提供的第二获取模块的结构示意图;
图20为本申请实施例提供的第一提示模块的结构示意图;
图21为本申请实施例提供的另一种第二获取模块的结构示意图;
图22为本申请实施例提供的另一种第一提示模块的结构示意图;
图23为本申请另一实施例提供的可穿戴设备的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
本申请中涉及的可穿戴设备可以是智能手表、智能手环、智能眼镜、智能安全帽、智能手套、智能跑鞋等等。上述可穿戴设备可以检测佩戴者的生理参数,且佩戴是松紧程度会影响可穿戴设备测量参数的准确性。在本申请实施例中,以可穿戴设备为智能手表为例,采用智能手表测量佩戴者的心率进行说明。
图2示例性示出了现有技术中智能手表佩戴要求的示意图。如图2中的左图所示,当手表佩戴的太松时,由于手表与手腕之间有缝隙会使手表在手腕上滑动,导致传感器无法读取心率或者无法准确读取心率,如图3示出的手表佩戴太松时测得的PPG信号,可以看出PPG信号发生了突变,此时用户应该试着将手表的表带收紧一点。图2中的右图示例性示出了手表正确的佩戴方式,手表应该舒适的贴服于手腕上,确保测量的PPG信号值的稳定性,如图4示出的手表佩戴正确时测得的PPG信号值稳定,没有发生突变。
此外,当手表佩戴过紧时,同样会影响手表测量心率的准确性。如图5示出的手表佩戴松紧与心率准确率关系示意图。从图中可以看出,随着佩戴松紧由过松、松到紧,所测量的心率准确率越来越高,当佩戴松紧为紧(图2中右图所示的正确佩戴方式)时,心率 准确率最高,但若佩戴手表过紧时,心率准确率反而降到最低。图中准确率具体为测量值与标准值相差小于5bpm(Beat Per Minute)的概率。
因此,本申请提出了一种可穿戴设备的检测方法,可以检测可穿戴设备的佩戴松紧,保证心率测量的准确性。
接下来请参见图6。图6为本申请实施例提供的一种可穿戴设备的检测方法流程示意图,如图6所示,一种可穿戴设备的检测方法至少可以包括以下几个步骤:
S101:若可穿戴设备的佩戴状态为已佩戴,获取基于上述可穿戴设备与佩戴者的当前接触状态产生的信号值。
具体地,可穿戴设备的佩戴状态包括已佩戴和未佩戴。
具体地,基于上述可穿戴设备与佩戴者的当前接触状态产生的信号值即为基于可穿戴设备的佩戴松紧程度产生的信号值。其中,信号值可以是PPG信号值或者电容值等,还可以是其他能够反映可穿戴设备的佩戴松紧程度的信号值。
在一种可能的实现方式中,在判断出可穿戴设备的佩戴状态为已佩戴,获取基于上述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,该方法还包括接收佩戴者输入的测量生理参数的指令。
其中,测量生理参数的指令可以是佩戴者语音输入的指令,或者是佩戴者基于可穿戴设备的操作界面中相应的控件输入测量生理参数的指令,或者是佩戴者按下可穿戴设备的实体按键,或者是佩戴者输入特定的手势作为测量生理参数的指令,或者是佩戴者通过与可穿戴设备连接的手机等终端向可穿戴设备发出测量生理参数的指令,等等。可以理解的是,输入测量生理参数的指令可以有多种实现方式,在此不做限制。
S102:若根据上述信号值及信号门限值判断出上述当前接触状态不满足测量条件,发出第一提示消息。
具体地,信号门限值包括基于可穿戴设备与佩戴者的第一接触状态产生的信号门限值。其中,第一接触状态即为可穿戴设备的佩戴松紧合适,亦即图5中的佩戴松紧为紧时的状态。
具体地,测量条件由上述信号值决定,不同的信号值对应的测量条件不同。具体的信号值与测量条件的对应关系可详见后续实施例中的描述。
具体地,第一提示消息用于提示佩戴者调整佩戴上述可穿戴设备。其中,第一提示消息可以是可穿戴设备通过操作界面显示对话框或者动画提示;第一提示消息还可以是可穿戴设备语音提示;第一提示消息还可以是通过操作界面显示与振动结合的方式提示;第一提示消息还可以是语音与振动结合的方式提示。如图7示例性示出了通过操作界面显示与振动结合的方式提示的第一提示消息。可以知道的是,第一提示消息的提示方式还可以有其他的实现方式,不限于前述的实现方式,在此不做限制。
此外,若根据上述信号值及信号门限值判断出上述当前接触状态满足测量条件时,开始测量生理参数。
实施本申请实施例可以在检测到可穿戴设备的佩戴状态为已佩戴后,获取基于可穿戴设备与佩戴者的当前接触状态产生的信号值;若根据该信号值与信号门限值判断当前接触状态不满足测量条件,则发出第一提示消息,提示佩戴者调整佩戴可穿戴设备,智能检测 可穿戴设备的佩戴松紧,进而保证心率测量的准确性。
接下来请参见图8。图8为本申请另一实施例提供的可穿戴设备的检测方法流程示意图,如图8所示,可穿戴设备的检测方法至少可以包括以下几个步骤:
S201:获取信号门限值。
具体地,信号门限值包括基于可穿戴设备与佩戴者的第一接触状态产生的信号门限值,信号门限值包括最大门限值及最小门限值。其中,第一接触状态即为可穿戴设备的佩戴松紧合适,亦即图5中的佩戴松紧为紧时的状态。可以知道的是,信号门限值由基于上述可穿戴设备与佩戴者的第一接触状态产生的信号值决定。其中,上述信号值可以是PPG信号值或者电容值等,还可以是其他能够反映可穿戴设备的佩戴松紧程度的信号值。
可选地,上述信号值可以为PPG信号值。可以采用光电传感器测量PPG信号,获得PPG信号值。具体地,光电传感器可设置于智能手表的表盘内侧,如图9中的10区域所示。
此时,获取信号门限值的方法如图10所示,至少可以包括以下几个步骤:
S301:获取N次在发出第二提示消息后的预设时长内,基于上述可穿戴设备与佩戴者的第一接触状态产生的信号值。
其中,上述N为正整数。N例如可以是5、10、13、15、20等等。N值越大,最终获得的信号门限值越准确。
具体地,第二提示消息用于在检测到上述可穿戴设备的佩戴状态为已佩戴后,提示佩戴者输入指定动作。其中,第二提示消息的提示方式与第一消息的提示方式类似。具体地,第二提示消息可以是可穿戴设备通过操作界面显示对话框或者动画提示;第二提示消息还可以是可穿戴设备语音提示;第二提示消息还可以是通过操作界面显示与振动结合的方式提示;第二提示消息还可以是语音与振动结合的方式提示。如图11示例性示出了通过操作界面显示的第二提示消息。可以知道的是,第二提示消息的提示方式还可以有其他的实现方式,不限于前述的实现方式,在此不做限制。
具体地,指定动作可以是手臂绕“8”字,或者摇晃手臂(上下摇晃手臂、左右摇晃手臂)、举起手臂、手背按某一角度挥扫、曲线挥扫、翻转手腕、顺时针旋转手臂、逆时针旋转手臂等。如图12所示的场景示意图,佩戴者在接收到上述第二提示消息之后,按照提示输入指定动作。
具体地,预设时长可以是5s、10s、20s、30s等。在预设时长内基于上述可穿戴设备与佩戴者的第一接触状态,佩戴者根据第二提示消息输入指定动作,产生的信号值为连续信号。
此外,上述可穿戴设备可以根据重力传感器或者陀螺仪采集到的数据判断佩戴者是否按照第二提示消息输入了指定的动作。
例如,假设指定动作为手臂绕“8”字,可以预先采集佩戴者佩戴上述可穿戴设备时,手臂绕“8”字的过程中重力传感器或者陀螺仪采集到的数据作为参考。在发出第二提示消息后,根据此时重力传感器或者陀螺仪采集到的数据与上述预先采集的数据进行比对,若偏差在误差范围内,则可判定佩戴者按照第二提示消息输入了指定动作,若偏差不在误差范围内,则可判定佩戴者未按照第二提示消息输入指定动作。
S302:分别获取每次在发出上述第二提示消息后的预设时长内,基于上述可穿戴设备 与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N个最大值及N个最小值。
具体地,在发出上述第二提示消息后的预设时长内,基于上述可穿戴设备与佩戴者的第一接触状态产生的信号为连续信号。分别获取每次产生的连续信号中的最大值及最小值,即可得到N次在发出上述第二提示消息后的预设时长内,基于上述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值。
S303:根据上述N个最大值确定上述最大门限值,根据上述N个最小值确定上述最小门限值。
在一种可能的实现方式中,最大门限值可以是上述N个最大值的平均值,最小门限值可以是上述N个最小值的平均值。
在另外一种可能的实现方式中,最大门限值可以是上述N各最大值中的最大值,最小门限值可以是上述N个最小值中的最小值。
可选地,上述信号值可以为电容值。可以采用电容传感器测量电容,获得电容值。可穿戴设备佩戴的松紧程度不同,电容传感器采集的电容值也不相同,如图13所示。从图13可以看出,电容传感器采集到的电容值越大,表明手表的感应器越贴近皮肤;电容传感器采集到的电容值越小,表明手表的感应器离皮肤越远,即手表佩戴松。具体地,电容传感器可以设置在如图9所示的包括表盘内侧10、表带内侧20的多个地方。
此时,获取信号门限值的方法还可以如图14所示,至少可以包括以下几个步骤:
S401:获取N次基于上述可穿戴设备与佩戴者的第一接触状态产生的N个信号值。
其中,上述N为正整数。N例如可以是5、10、13、15、20等等。N值越大,最终获得的信号门限值越准确。
具体地,基于上述可穿戴设备与佩戴者的第一接触状态产生的电容值为单个数值。
S402:获取上述N个信号值中的最大值及最小值。
具体地,N次获取的信号值即为N个电容值。从上述N个电容值中获取最大值及最小值。
S403:根据上述N个信号值中的最大值确定上述最大门限值,根据上述N个信号值中的最小值确定上述最小门限值。
具体地,上述N个电容值中的最大值即为上述最大门限值,上述N个信号值中的最小值即为最小门限值。
S202:接收测量生理参数的指令。
具体地,测量生理参数的指令可以是佩戴者语音输入的指令,或者是佩戴者基于可穿戴设备的操作界面中相应的控件输入测量生理参数的指令,或者是佩戴者输入特定的手势作为测量生理参数的指令等等。可以知道的是,输入测量生理参数的指令可以有多种实现方式,在此不做限制。
S203:检测上述可穿戴设备的佩戴状态。
可选地,检测上述可穿戴设备的佩戴状态的检测方式可以是通过检测肌电信号的电平值来判断。若上述肌电信号为高电平,则检测出上述可穿戴设备的佩戴状态为已佩戴;若上述肌电信号为低电平,则检测出上述可穿戴设备的佩戴状态为未佩戴。其中,可以通过 肌电信号传感器来采集肌电信号,肌电信号传感器可以分布类似于电容传感器的设置位置,可分布在如图9所示的包括表盘内侧10、表带内侧20的多个地方。
可选地,检测上述可穿戴设备的佩戴状态的检测方式可以是通过检测表带的搭扣状态。其中,上述表带的搭扣状态包括已扣上和未扣上。若检测到上述可穿戴设备表带的搭扣状态为已扣上,则检测出上述可穿戴设备的佩戴状态为已佩戴;若检测到上述可穿戴设备表带的搭扣状态为未扣上,则检测出上述可穿戴设备的配戴状态为未佩戴。
其中,可以通过在可穿戴设备表带的目标区域设置是压力传感器采集的压力值来判断表带的搭扣状态。若上述目标区域的压力值为非零,则检测出上述可穿戴设备表带的搭扣状态为已扣上;若上述目标区域的压力值为零,则检测出上述可穿戴设备表带的搭扣状态为未扣上。故而在检测上述可穿戴设备表带的搭扣状态之前,该方法还包括在上述可穿戴设备表带的目标区域设置压力传感器。具体地,压力传感器可以设置在如图9所示的30区域中。
可选地,检测上述可穿戴设备的佩戴状态的检测方式可以是通过结合上述两种方式来判断。即结合肌电信号的电平值与表带的搭扣状态来判断。若检测到上述肌电信号为高电平且表带的搭扣状态为已扣上,则检测出上述可穿戴设备的佩戴状态为已佩戴;否则,则检测出上述可穿戴设备的佩戴状态为未佩戴。
具体地,可以是可穿戴设备根据上述检测方式检测的结果判断其自身的佩戴状态,还可以是可穿戴设备将根据上述检测方式检测的结果通过网络上传至服务器或者其他设备,使上述服务器或者其他设备根据该检测结果判断上述可穿戴设备的佩戴状态。
S204:若可穿戴设备的佩戴状态为已佩戴,获取基于上述可穿戴设备与佩戴者的当前接触状态产生的信号值。
可选地,若上述信号值为PPG信号值,上述若可穿戴设备的佩戴状态为已佩戴,获取基于上述可穿戴设备与佩戴者的当前接触状态产生的信号值包括:
S2071:若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息。
具体地,第二提示消息用于在检测到上述可穿戴设备的佩戴状态为已佩戴后,提示佩戴者输入指定动作。其中,第二提示消息的提示方式与第一消息的提示方式类似。具体地,第二提示消息可以是可穿戴设备通过操作界面显示对话框或者动画提示;第二提示消息还可以是可穿戴设备语音提示;第二提示消息还可以是通过操作界面显示与振动结合的方式提示;第二提示消息还可以是语音与振动结合的方式提示。可以知道的是,第二提示消息的提示方式还可以有其他的实现方式,不限于前述的实现方式,在此不做限制。
具体地,指定动作可以是手臂绕“8”字,或者摇晃手臂(上下摇晃手臂、左右摇晃手臂)、举起手臂、手背按某一角度挥扫、曲线挥扫、翻转手腕、顺时针旋转手臂、逆时针旋转手臂等。
S2072:获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的当前接触状态产生的信号值。
具体地,预设时长可以是5s、10s、20s、30s等。在预设时长内基于上述可穿戴设备与佩戴者的当前接触状态,佩戴者根据第二提示消息输入指定动作,产生的信号值为连续信号。
此外,上述可穿戴设备可以根据重力传感器或者陀螺仪采集到的数据判断佩戴者是否按照第二提示消息输入了指定的动作。
例如,假设指定动作为手臂绕“8”字,可以预先采集佩戴者佩戴上述可穿戴设备时,手臂绕“8”字的过程中重力传感器或者陀螺仪采集到的数据作为参考。在发出第二提示消息后,根据此时重力传感器或者陀螺仪采集到的数据与上述预先采集的数据进行比对,若偏差在误差范围内,则可判定佩戴者按照第二提示消息输入了指定动作,若偏差不在误差范围内,则可判定佩戴者未按照第二提示消息输入指定动作。可以知道的是,输入指定动作时重力传感器或者陀螺仪采集到的数据与上述可穿戴设备与佩戴者的当前接触状态无关。
可选地,若上述信号值为电容值,基于上述可穿戴设备与佩戴者的当前接触状态产生的信号值为单个的电容值。
S205:若根据上述信号值及信号门限值判断出上述当前接触状态不满足测量条件,发出第一提示消息。
可选地,若上述信号值为PPG信号值,上述发出第一提示消息具体包括以下几个步骤,如图15所示:
S501:获取上述信号值中的最大值及最小值。
具体地,上述PPG信号值为连续信号,获取该连续信号中的最大值及最小值。
S502:计算上述信号值中的最大值与上述最大门限值的第一方差,计算上述信号值中的最小值与上述最小门限值的第二方差。
S503:分别比较上述第一方差、上述第二方差与方差阈值的大小。
具体地,方差表示数据的离散程度,可采用基于上述可穿戴设备与佩戴者的当前接触状态产生的PPG信号值与预先获得的信号门限值的方差来判断基于上述可穿戴设备与佩戴者的当前接触状态产生的PPG信号值的稳定性。
具体地,方差越小,表示当前测得的PPG信号值越稳定。方差阈值例如可以是0.02、0.05、0.1等。
S504:若上述第一方差与上述第二方差中至少有一项不小于上述方差阈值,则判断出上述当前接触状态不满足测量条件,发出第一提示消息。
具体地,若上述第一方差与上述第二方差中至少有一项不小上述方差阈值,即最大值或/和最小值发生了突变,则说明基于上述可穿戴设备与佩戴者的当前接触状态产生的PPG信号值不稳定,表明上述可穿戴设备的佩戴松紧不合适,发出第一提示消息提示佩戴者重新调整佩戴上述可穿戴设备。
可选地,若上述信号值为电容值,上述发出第一提示消息具体包括以下几个步骤,如图16所示:
S601:比较上述信号值与上述最大门限值及上述最小门限值的大小。
具体地,上述信号值为单个的电容值,可直接比较该电容值与预先获得的信号门限值的最大门限值与最小门限值比较。
S602:若上述信号值大于上述最大门限值或小于上述最小门限值,则判断出上述当前接触状态不满足测量条件,发出第一提示消息。
具体地,若上述电容值大于上述最大门限值或小于上述最小门限值,表明该电容值超 出了可穿戴设备佩戴松紧合适时产生的电容值的正常范围,表明此时可穿戴设备的佩戴松紧不合适,发出第一提示消息提示佩戴者重新调整佩戴上述可穿戴设备。
S206:若根据上述信号值及信号门限值判断出上述当前接触状态满足测量条件,开始测量生理参数。
另外,本申请实施例还提供一种检测可穿戴设备佩戴情况的方法,包括以下步骤:
S901:可穿戴设备检测PPG信号。
具体的,可以通过可穿戴设备自带的光电传感器检测PPG信号。可选的,可穿戴设备可以检测一段时间内的PPG信号,例如1小时、5分钟等。可选的,在此步骤之前,还可以包括:检测用户是否佩戴可穿戴设备,如果佩戴,则执行S901.具体的,检测用户是否佩戴可穿戴设备的过程可以参考S203.
S902:可穿戴设备判断PPG信号是否发生突变。
具体的,可穿戴设备可以通过检测一段时间内的PPG信号,分析其是否发生突变。当PPG信号在某一时刻突然增大或变小时,说明PPG信号发生了突变。判断PPG信号是否发生突变可以参考图10和图15。
S903:当PPG信号发生突变时,确定可穿戴设备没有正确佩戴。
当PPG信号稳定时,说明可穿戴设备佩戴良好;当PPG信号在某一时刻突然增大或变小时,说明可穿戴设备佩戴情况不良,例如佩戴太松。可选的,如果确定可穿戴设备没有正确佩戴,可以提示用户正确佩戴。
实施本申请实施例可以通过设置PPG信号值或者电容值的信号门限值,检测可穿戴设备的佩戴状态,若为已佩戴,获取基于可穿戴设备与佩戴者的当前接触状态产生的信号值;通过PPG信号值或者电容值来判断当前接触状态是否满足测量条件;若根据PPG信号值或者电容值与信号门限值判断当前接触状态不满足测量条件,则发出第一提示消息,提示佩戴者调整佩戴可穿戴设备,智能检测可穿戴设备的佩戴松紧,进而保证心率测量的准确性。
上述详细阐述了本申请实施例的方法,下面为了便于更好地实施本申请实施例的上述方案,相应地,下面还提供用于配合实施上述方案的相关装置。
如图17示出的本申请实施例提供的可穿戴设备的结构示意图,可穿戴设备70至少可以包括:第一获取模块710、第一提示模块720,其中,
第一获取模块710,用于若可穿戴设备70的佩戴状态为已佩戴,获取基于可穿戴设备70与佩戴者的当前接触状态产生的信号值;其中,上述佩戴状态包括已佩戴和未佩戴。
第一提示模块720,用于若根据上述信号值及信号门限值判断出上述当前接触状态不满足测量条件,发出第一提示消息;其中,上述信号门限值包括基于可穿戴设备70与佩戴者的第一接触状态产生的信号门限值;上述第一提示消息用于提示调整佩戴可穿戴设备70。
在一种可能的实现方式中,可穿戴设备70还包括:测量模块730,用于若根据上述信号值及信号门限值判断出上述当前接触状态满足测量条件,则开始测量生理参数。
在一种可能的实现方式中,可穿戴设备70还包括:接收模块740,用于在第一获取模块710获取基于可穿戴设备70与佩戴者的当前接触状态产生的信号值之前,接收测量生理参数的指令。
在一个可选的实施例中,可穿戴设备70还包括:检测模块750,用于在第一获取模块 710获取基于可穿戴设备70与佩戴者的当前接触状态产生的信号值之前,检测可穿戴设备70的佩戴状态。
在一个可选的实施例中,可穿戴设备70还包括:第二获取模块760,用于在检测模块750检测可穿戴设备70的佩戴状态之前,获取信号门限值;其中,上述信号门限值包括最大门限值及最小门限值。
在一个可选的实施例中,上述信号值包括PPG信号值。
在一个可选的实施例中,如图18所示,第一获取模块710至少可以包括:提示单元7110、第一获取单元7120,其中,
提示单元7110,用于若可穿戴设备70的佩戴状态为已佩戴,发出第二提示消息;其中,上述第二提示消息用于提示上述佩戴者输入指定动作。
第一获取单元7120,用于获取在发出上述第二提示消息后的预设时长内,基于可穿戴设备70与上述佩戴者的当前接触状态产生的信号值。
在一个可选的实施例中,如图19所示,第二获取模块760至少可以包括:第二获取单元7610、第三获取单元7620、第一确定单元7630,其中,
第二获取单元7610,用于获取N次在发出上述第二提示消息后的预设时长内,基于可穿戴设备70与佩戴者的第一接触状态产生的信号值;其中,上述N为正整数。
第三获取单元7620,用于分别获取每次在发出上述第二提示消息后的预设时长内,基于可穿戴设备70与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出上述第二提示消息后的预设时长内,基于可穿戴设备70与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值。
第一确定单元7630,用于根据上述N个最大值确定上述最大门限值,根据上述N个最小值确定上述最小门限值。
在一种可能的实现方式中,第一确定单元7630用于将上述N个最大值中的最大值确定为上述最大门限值,将上述N个最小值中的最小值确定为上述最小门限值。
在另外一种可能的实现方式中,第一确定单元7630用于将上述N个最大值的平均值确定为上述最大门限值,将上述N个最小值的平均值确定为上述最小门限值。
在一个可选的实施例中,如图20所示,第一提示模块720至少可以包括:第五获取单元7210、计算单元7220、第一比较单元7230、第一提示单元7240,其中,
第五获取单元7210,用于获取上述信号值中的最大值及最小值。
计算单元7220,用于计算上述信号值中的最大值与上述最大门限值的第一方差,并计算上述信号值中的最小值与上述最小门限值的第二方差。
第一比较单元7230,用于分别比较上述第一方差、上述第二方差与方差阈值的大小。
第一提示单元7240,用于若上述第一方差与上述第二方差中至少有一项不小于上述方差阈值,则判断出上述当前接触状态不满足测量条件,发出第一提示消息。
在一个可选的实施例中,上述信号值包括电容值。
在一个可选的实施例中,如图21所示,第二获取模块760至少可以包括:第六获取单元7640、第七获取单元7650、第八获取单元7660,其中,
第六获取单元7640,用于获取N次基于可穿戴设备70与佩戴者的预置接触状态产生 的N个信号值;其中,上述N为正整数。
第七获取单元7650,用于获取第六获取单元7640获取的N个信号值中的最大值及最小值。
第八获取单元7660,用于根据第七获取单元7650获取的N个信号值中的最大值获取上述最大门限值,根据第七获取单元7650获取的N个信号值中的最小值获取上述最小门限值。
在一种可能的实现方式中,第八获取单元7660,用于将第七获取单元7650获取的N个信号值中的最大值作为上述最大门限值,将第七获取单元7650获取的N个信号值中的最小值作为上述最小门限值。
在一个可选的实施例中,如图22所示,第一提示模块720至少可以包括:第二比较单元7250、第二提示单元7260,其中,
第二比较单元7250,用于比较上述信号值与上述最大门限值及上述最小门限值的大小。
第二提示单元7260,用于若上述信号值大于上述最大门限值或小于上述最小门限值,则判断出上述当前接触状态不满足测量条件,发出第一提示消息。
在一个可选的实施例中,检测模块750用于检测肌电信号的电平值;若上述肌电信号为高电平,则检测出可穿戴设备70的佩戴状态为已佩戴;若上述肌电信号为低电平,则检测出可穿戴设备70的佩戴状态为未佩戴。
在一种可选的实施例中,可穿戴设备70包括表带。检测模块750用于检测可穿戴设备表带的搭扣状态;其中,表带的搭扣状态包括已扣上和未扣上。若检测到可穿戴设备表带的搭扣状态为已扣上,则检测出可穿戴设备70的佩戴状态为已佩戴;若检测到可穿戴设备表带的搭扣状态为未扣上,则检测出可穿戴设备70的配戴状态为未佩戴。
在一种可能的实现方式中,检测模块750用于检测可穿戴设备表带的目标区域的压力值。若上述目标区域的压力值为非零,则检测出可穿戴设备表带的搭扣状态为已扣上;若上述目标区域的压力值为零,则检测出可穿戴设备表带的搭扣状态为未扣上。可穿戴设备70还包括设置模块,用于在检测模块750检测可穿戴设备表带的搭扣状态之前,在可穿戴设备表带的目标区域设置压力传感器。
在一种可选的实施例中,检测模块750用于检测肌电信号的电平值与表带的搭扣状态。若检测到上述肌电信号为高电平且表带的搭扣状态为已扣上,则检测出可穿戴设备70的佩戴状态为已佩戴;否则,则检测出可穿戴设备70的佩戴状态为未佩戴。
可理解的是,本申请实施例的可穿戴设备70的各功能模块的功能可根据上述方法实施例中的方法具体实现,此处不再赘述。
图23示出了本申请实施例提供的另一种可穿戴设备的结构示意图,可穿戴设备80至少可以包括:基带芯片810、存储器820(一个或多个计算机可读存储介质)、外围系统830、射频模块840。这些部件可以在一个或多个通信总线850上通信。
外围系统830主要用于实现可穿戴设备80和用户/外部环境之间的交互功能,主要包括可穿戴设备80的输入输出装置。具体地,外围系统830可包括:触摸屏控制器831、摄像头控制器832、音频控制器833以及传感器管理模块834。其中,触摸屏控制器831可以是触摸屏835;摄像头控制器832可以是摄像头836;音频控制器833可以是音频电路837; 传感器管理模块834可以是传感器838,其中,传感器836可以包括光电传感器8361、电容传感器8362、肌电信号传感器8363、压力传感器8364等。
在另一些实施例中,外围系统830还可以包含其他外设。
基带芯片810可集成包括:一个或多个处理器811、时钟模块812以及电源管理模块813。集成于基带芯片810中的时钟模块812主要用于为处理器811产生数据传输和时序控制所需要的时钟。集成于基带芯片810中的电源管理模块813主要用于为处理器811、射频模块840以及外围系统830提供稳定的、高精确度的电压。
射频模块840用于接收和发送射频信号,主要集成了可穿戴设备80的接收器和发射器。射频模块840通过射频信号与通信网络和其他通信设备通信。在具体的实现方式中,射频模块840可包括但不限于:天线系统、RF收发器、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、CODEC芯片、SIM卡和存储介质等。在一些实施例中,可在单独的芯片上实现射频模块840。
存储器820和处理器811耦合,用于存储各种软件程序或多组指令。具体地,存储器820可包括高速随机存取的存储器,并且可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器820可以存储操作系统(下述简称系统),例如ANDROID、IOS、WINDOWS,或者LINUX等嵌入式操作系统。存储器820还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器820还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。存储器820还可以存储可穿戴设备检测指令。
处理器811可以用于调用存储器820中存储的可穿戴设备检测指令,并执行以下操作:
若可穿戴设备80的佩戴状态为已佩戴,通过光电传感器8361获取基于可穿戴设备80与佩戴者的当前接触状态产生的信号值;其中,上述佩戴状态包括已佩戴和未佩戴。
若根据上述信号值及信号门限值判断出上述当前接触状态不满足测量条件,通过外围系统830发出第一提示消息;其中,上述信号门限值包括基于可穿戴设备80与佩戴者的第一接触状态产生的信号门限值;上述第一提示消息用于提示调整佩戴可穿戴设备80。
在一种可能的实现方式中,获取基于可穿戴设备80与佩戴者的当前接触状态产生的信号值之后,处理器811还用于:若根据上述信号值及信号门限值判断出上述当前接触状态满足测量条件,则开始测量生理参数。
在一种可能的实现方式中,若可穿戴设备80的佩戴状态为已佩戴,获取基于可穿戴设备80与佩戴者的当前接触状态产生的信号值之前,处理器811还用于:通过外围系统830接收测量生理参数的指令。
在一种可选的实施例中,若可穿戴设备80的佩戴状态为已佩戴,通过光电传感器8361获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,处理器811还用于:通过传感器838检测可穿戴设备80的佩戴状态。
在一种可选的实施例中,检测可穿戴设备80的佩戴状态之前,处理器811还用于:通过传感器838获取信号门限值;其中,上述信号门限值包括最大门限值及最小门限值。
在一种可选的实施例中,上述信号值包括PPG信号值。
在一种可选的实施例中,处理器811用于若可穿戴设备80的佩戴状态为已佩戴,获取基于可穿戴设备80与佩戴者的当前接触状态产生的信号值包括:
若可穿戴设备80的佩戴状态为已佩戴,通过外围系统830发出第二提示消息;其中,上述第二提示消息用于提示输入指定动作。
通过光电传感器8361获取在发出上述第二提示消息后的预设时长内,基于可穿戴设备80与佩戴者的当前接触状态产生的信号值。
在一种可选的实施例中,处理器811获取信号门限值包括:
通过光电传感器8361获取N次在发出上述第二提示消息后的预设时长内,基于可穿戴设备80与佩戴者的第一接触状态产生的信号值;其中,上述N为正整数。
分别获取每次在发出上述第二提示消息后的预设时长内,基于可穿戴设备80与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出上述第二提示消息后的预设时长内,基于可穿戴设备80与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值。
根据上述N个最大值确定上述最大门限值,根据上述N个最小值确定上述最小门限值。
在一种可选的实施例中,处理器811若根据上述信号值及信号门限值判断出上述当前接触状态不满足测量条件,发出第一提示消息包括:
获取上述信号值中的最大值及最小值。
计算上述信号值中的最大值与上述最大门限值的第一方差,计算上述信号值中的最小值与上述最小门限值的第二方差。
分别比较上述第一方差、上述第二方差与方差阈值的大小。
若上述第一方差与上述第二方差中至少有一项不小于上述方差阈值,则判断出上述当前接触状态不满足测量条件,通过外围系统830发出第一提示消息。
在一种可选的实施例中,上述信号值包括电容值。
在一种可选的实施例中,处理器811获取信号门限值包括:
通过电容传感器8362获取N次基于可穿戴设备80与佩戴者的第一接触状态产生的N个信号值;其中,上述N为正整数。
获取上述N个信号值中的最大值及最小值。
根据上述N个信号值中的最大值确定上述最大门限值,根据上述N个信号值中的最小值确定上述最小门限值。
在一种可能的实现方式中,处理器811根据上述N个最大值确定上述最大门限值,根据上述N个最小值确定上述最小门限值包括:
将上述N个最大值中的最大值确定为上述最大门限值,将上述N个最小值中的最小值确定为上述最小门限值。
在一种可能的实现方式中,处理器811根据上述N个最大值确定上述最大门限值,根据上述N个最小值确定上述最小门限值包括:
将上述N个最大值的平均值确定为上述最大门限值,将上述N个最小值的平均值确定为上述最小门限值。
在一种可选的实施例中,处理器80若根据上述信号值及信号门限值判断出上述当前接触状态不满足测量条件,发出第一提示消息包括:
比较上述信号值与上述最大门限值及上述最小门限值的大小。
若上述信号值大于上述最大门限值或小于上述最小门限值,则判断出上述当前接触状态不满足测量条件,通过外围系统830发出第一提示消息。
在一种可选的实施例中,处理器811检测可穿戴设备80的佩戴状态包括:通过肌电信号传感器8363检测肌电信号的电平值;若上述肌电信号为高电平,则检测出可穿戴设备80的佩戴状态为已佩戴;若上述肌电信号为低电平,则检测出可穿戴设备80的佩戴状态为未佩戴。
在一种可能的实现方式中,可穿戴设备80包括表带;处理器811检测可穿戴设备80的佩戴状态包括:
检测可穿戴设备表带的搭扣状态;其中,上述表带的搭扣状态包括已扣上和未扣上。
若检测到上述可穿戴设备表带的搭扣状态为已扣上,则检测出可穿戴设备811的佩戴状态为已佩戴。
若检测到上述可穿戴设备表带的搭扣状态为未扣上,则检测出可穿戴设备811的配戴状态为未佩戴。
在一种可能的实现方式中,处理器811检测可穿戴设备表带的搭扣状态包括:
通过压力传感器8364检测可穿戴设备表带的目标区域的压力值;若上述目标区域的压力值为非零,则检测出可穿戴设备表带的搭扣状态为已扣上;若上述目标区域的压力值为零,则检测出可穿戴设备表带的搭扣状态为未扣上。
通过压力传感器8364检测上述可穿戴设备表带的搭扣状态之前,处理器811还用于:在上述可穿戴设备表带的目标区域设置压力传感器。
实施本申请实施例可以在检测到可穿戴设备的佩戴状态为已佩戴后,获取基于可穿戴设备与佩戴者的当前接触状态产生的信号值;若根据该信号值与信号门限值判断当前接触状态不满足测量条件,则发出第一提示消息,提示佩戴者调整佩戴可穿戴设备,智能检测可穿戴设备的佩戴松紧,进而保证心率测量的准确性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
尽管在此结合各实施例对本申请进行了描述,然而不能以此来限定本申请之权利范围,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。在权利要求中,“包括”一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个控制器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求所记载了某些措辞,但这并不表示这些措辞不能组合起来产生良好的效果。

Claims (35)

  1. 一种可穿戴设备的检测方法,其特征在于,包括:
    若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值;其中,所述佩戴状态包括已佩戴和未佩戴;
    若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息;其中,所述信号门限值包括基于所述可穿戴设备与佩戴者的第一接触状态产生的信号门限值;所述第一提示消息用于提示调整佩戴所述可穿戴设备。
  2. 如权利要求1所述的方法,其特征在于,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,所述方法还包括:检测所述可穿戴设备的佩戴状态。
  3. 如权利要求2所述的方法,其特征在于,所述检测所述可穿戴设备的佩戴状态之前,所述方法还包括:获取信号门限值;其中,所述信号门限值包括最大门限值及最小门限值。
  4. 如权利要求3所述的方法,其特征在于,所述信号值包括PPG信号值。
  5. 如权利要求4所述的方法,其特征在于,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值包括:
    若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息;其中,所述第二提示消息用于提示输入指定动作;
    获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的当前接触状态产生的信号值。
  6. 如权利要求5所述的方法,其特征在于,所述获取信号门限值包括:
    获取N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值;其中,所述N为正整数;
    分别获取每次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值;
    根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值。
  7. 如权利要求6所述的方法,其特征在于,所述若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
    获取所述信号值中的最大值及最小值;
    计算所述信号值中的最大值与所述最大门限值的第一方差,计算所述信号值中的最小 值与所述最小门限值的第二方差;
    分别比较所述第一方差、所述第二方差与方差阈值的大小;
    若所述第一方差与所述第二方差中至少有一项不小于所述方差阈值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
  8. 如权利要求3所述的方法,其特征在于,所述信号值包括电容值。
  9. 如权利要求8所述的方法,其特征在于,所述获取信号门限值包括:
    获取N次基于所述可穿戴设备与佩戴者的第一接触状态产生的N个信号值;其中,所述N为正整数;
    获取所述N个信号值中的最大值及最小值;
    根据所述N个信号值中的最大值确定所述最大门限值,根据所述N个信号值中的最小值确定所述最小门限值。
  10. 如权利要求9所述的方法,其特征在于,所述若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
    比较所述信号值与所述最大门限值及所述最小门限值的大小;
    若所述信号值大于所述最大门限值或小于所述最小门限值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
  11. 如权利要求2所述的方法,其特征在于,所述检测所述可穿戴设备的佩戴状态包括:
    检测肌电信号的电平值;
    若所述肌电信号为高电平,则检测出所述可穿戴设备的佩戴状态为已佩戴;
    若所述肌电信号为低电平,则检测出所述可穿戴设备的佩戴状态为未佩戴。
  12. 一种可穿戴设备,其特征在于,包括:
    第一获取模块,用于若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值;其中,所述佩戴状态包括已佩戴和未佩戴;
    第一提示模块,用于若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息;其中,所述信号门限值包括基于所述可穿戴设备与佩戴者的第一接触状态产生的信号门限值;所述第一提示消息用于提示调整佩戴所述可穿戴设备。
  13. 如权利要求12所述的可穿戴设备,其特征在于,所述可穿戴设备还包括:
    检测模块,用于在所述第一获取模块用于获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,检测所述可穿戴设备的佩戴状态。
  14. 如权利要求13所述的可穿戴设备,其特征在于,所述可穿戴设备还包括:
    第二获取模块,用于在所述检测模块检测所述可穿戴设备的佩戴状态之前,获取信号门限值;其中,所述信号门限值包括最大门限值及最小门限值。
  15. 如权利要求14所述的可穿戴设备,其特征在于,所述信号值包括PPG信号值。
  16. 如权利要求15所述的可穿戴设备,其特征在于,所述第一获取模块包括:
    提示单元,用于若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息;其中,所述第二提示消息用于提示所述佩戴者输入指定动作;
    第一获取单元,用于获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的当前接触状态产生的信号值。
  17. 如权利要求16所述的可穿戴设备,其特征在于,所述第二获取模块包括:
    第二获取单元,用于获取N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值;其中,所述N为正整数;
    第三获取单元,用于分别获取每次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值;
    第一确定单元,用于根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值。
  18. 如权利要求17所述的可穿戴设备,其特征在于,所述第一提示模块包括:
    第五获取单元,用于获取所述信号值中的最大值及最小值;
    计算单元,用于计算所述信号值中的最大值与所述最大门限值的第一方差,并计算所述信号值中的最小值与所述最小门限值的第二方差;
    第一比较单元,用于分别比较所述第一方差、所述第二方差与方差阈值的大小;
    第一提示单元,用于若所述第一方差与所述第二方差中至少有一项不小于所述方差阈值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
  19. 如权利要求14所述的可穿戴设备,其特征在于,所述信号值包括电容值。
  20. 如权利要求19所述的可穿戴设备,其特征在于,所述第二获取模块包括:
    第六获取单元,用于获取N次基于所述可穿戴设备与佩戴者的预置接触状态产生的N个信号值;其中,所述N为正整数;
    第七获取单元,用于获取所述第六获取单元获取的N个信号值中的最大值及最小值;
    第八获取单元,用于根据所述第七获取单元获取的N个信号值中的最大值获取所述最大门限值,根据所述第七获取单元获取的N个信号值中的最小值获取所述最小门限值。
  21. 如权利要求20所述的可穿戴设备,其特征在于,所述第一提示模块包括:
    第二比较单元,用于比较所述信号值与所述最大门限值及所述最小门限值的大小;
    第二提示单元,用于若所述信号值大于所述最大门限值或小于所述最小门限值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
  22. 如权利要求13所述的可穿戴设备,其特征在于,所述检测模块用于检测肌电信号的电平值;
    若所述肌电信号为高电平,则检测出所述可穿戴设备的佩戴状态为已佩戴;
    若所述肌电信号为低电平,则检测出所述可穿戴设备的佩戴状态为未佩戴。
  23. 一种可穿戴设备,其特征在于,包括:
    存储器,用于存储可穿戴设备检测指令;
    处理器,用于调用所述存储器中存储的可穿戴设备检测指令并执行以下步骤:
    若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值;其中,所述佩戴状态包括已佩戴和未佩戴;
    若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息;其中,所述信号门限值包括基于所述可穿戴设备与佩戴者的第一接触状态产生的信号门限值;所述第一提示消息用于提示调整佩戴所述可穿戴设备。
  24. 如权利要求23所述的可穿戴设备,其特征在于,所述若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值之前,所述处理器还用于:检测所述可穿戴设备的佩戴状态。
  25. 如权利要求24所述的可穿戴设备,其特征在于,所述检测所述可穿戴设备的佩戴状态之前,所述处理器还用于:获取信号门限值;其中,所述信号门限值包括最大门限值及最小门限值。
  26. 如权利要求25所述的可穿戴设备,其特征在于,所述信号值包括PPG信号值。
  27. 如权利要求26所述的可穿戴设备,其特征在于,所述处理器用于若可穿戴设备的佩戴状态为已佩戴,获取基于所述可穿戴设备与佩戴者的当前接触状态产生的信号值包括:
    若可穿戴设备的佩戴状态为已佩戴,发出第二提示消息;其中,所述第二提示消息用于提示输入指定动作;
    获取在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与所述佩戴者的当前接触状态产生的信号值。
  28. 如权利要求27所述的可穿戴设备,其特征在于,所述处理器获取信号门限值包括:
    获取N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的 第一接触状态产生的信号值;其中,所述N为正整数;
    分别获取每次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的最大值及最小值,确定N次在发出所述第二提示消息后的预设时长内,基于所述可穿戴设备与佩戴者的第一接触状态产生的信号值中的N个最大值及N个最小值;
    根据所述N个最大值确定所述最大门限值,根据所述N个最小值确定所述最小门限值。
  29. 如权利要求28所述的可穿戴设备,其特征在于,所述处理器若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
    获取所述信号值中的最大值及最小值;
    计算所述信号值中的最大值与所述最大门限值的第一方差,计算所述信号值中的最小值与所述最小门限值的第二方差;
    分别比较所述第一方差、所述第二方差与方差阈值的大小;
    若所述第一方差与所述第二方差中至少有一项不小于所述方差阈值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
  30. 如权利要求25所述的可穿戴设备,其特征在于,所述信号值包括电容值。
  31. 如权利要求30所述的可穿戴设备,其特征在于,所述处理器获取信号门限值包括:
    获取N次基于所述可穿戴设备与佩戴者的第一接触状态产生的N个信号值;其中,所述N为正整数;
    获取所述N个信号值中的最大值及最小值;
    根据所述N个信号值中的最大值确定所述最大门限值,根据所述N个信号值中的最小值确定所述最小门限值。
  32. 如权利要求31所述的可穿戴设备,其特征在于,所述处理器若根据所述信号值及信号门限值判断出所述当前接触状态不满足测量条件,发出第一提示消息包括:
    比较所述信号值与所述最大门限值及所述最小门限值的大小;
    若所述信号值大于所述最大门限值或小于所述最小门限值,则判断出所述当前接触状态不满足测量条件,发出第一提示消息。
  33. 如权利要求24所述的可穿戴设备,其特征在于,所述处理器检测所述可穿戴设备的佩戴状态包括:
    检测肌电信号的电平值;
    若所述肌电信号为高电平,则检测出所述可穿戴设备的佩戴状态为已佩戴;
    若所述肌电信号为低电平,则检测出所述可穿戴设备的佩戴状态为未佩戴。
  34. 一种计算机可读的存储介质,用于存储一个或多个计算机程序,所述一个或多个 计算机程序包括指令,当所述计算机程序在计算机上运行时,所述指令用于执行权利要求1-11任一项所述的可穿戴设备的检测方法。
  35. 一种计算机程序,所述计算机程序包括指令,当所述计算机程序在计算机上执行时,所述指令用于执行权利要求1-11任一项所述的可穿戴设备的检测方法。
PCT/CN2017/108129 2017-06-29 2017-10-27 可穿戴设备的检测方法及可穿戴设备 WO2019000742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780009704.7A CN108697329B (zh) 2017-06-29 2017-10-27 可穿戴设备的检测方法及可穿戴设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710514246.4 2017-06-29
CN201710514246 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019000742A1 true WO2019000742A1 (zh) 2019-01-03

Family

ID=64740946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108129 WO2019000742A1 (zh) 2017-06-29 2017-10-27 可穿戴设备的检测方法及可穿戴设备

Country Status (1)

Country Link
WO (1) WO2019000742A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114756093A (zh) * 2022-04-15 2022-07-15 芯海科技(深圳)股份有限公司 穿戴设备及其控制方法和存储介质
WO2024039605A1 (en) * 2022-08-17 2024-02-22 Snap Inc. Detecting wear status of wearable device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104571514A (zh) * 2014-12-29 2015-04-29 联想(北京)有限公司 信息处理方法及可穿戴式电子设备
CN105758452A (zh) * 2016-02-04 2016-07-13 歌尔声学股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置
US20160255944A1 (en) * 2015-03-08 2016-09-08 Apple Inc. Dynamic Fit Adjustment for Wearable Electronic Devices
CN106291121A (zh) * 2016-07-29 2017-01-04 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN106445065A (zh) * 2015-08-11 2017-02-22 三星电子株式会社 用于根据状态进行控制的方法及其电子装置
CN106441413A (zh) * 2016-09-19 2017-02-22 广东小天才科技有限公司 穿戴设备佩戴松紧性检测方法和装置
US20170086743A1 (en) * 2015-09-28 2017-03-30 Apple Inc. Sensing Contact Force Related to User Wearing an Electronic Device
CN106645978A (zh) * 2016-10-28 2017-05-10 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN106644215A (zh) * 2016-10-18 2017-05-10 广东小天才科技有限公司 一种穿戴设备佩戴松紧性的确定方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104571514A (zh) * 2014-12-29 2015-04-29 联想(北京)有限公司 信息处理方法及可穿戴式电子设备
US20160255944A1 (en) * 2015-03-08 2016-09-08 Apple Inc. Dynamic Fit Adjustment for Wearable Electronic Devices
CN106445065A (zh) * 2015-08-11 2017-02-22 三星电子株式会社 用于根据状态进行控制的方法及其电子装置
US20170086743A1 (en) * 2015-09-28 2017-03-30 Apple Inc. Sensing Contact Force Related to User Wearing an Electronic Device
CN105758452A (zh) * 2016-02-04 2016-07-13 歌尔声学股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置
CN106291121A (zh) * 2016-07-29 2017-01-04 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN106441413A (zh) * 2016-09-19 2017-02-22 广东小天才科技有限公司 穿戴设备佩戴松紧性检测方法和装置
CN106644215A (zh) * 2016-10-18 2017-05-10 广东小天才科技有限公司 一种穿戴设备佩戴松紧性的确定方法及装置
CN106645978A (zh) * 2016-10-28 2017-05-10 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114756093A (zh) * 2022-04-15 2022-07-15 芯海科技(深圳)股份有限公司 穿戴设备及其控制方法和存储介质
WO2024039605A1 (en) * 2022-08-17 2024-02-22 Snap Inc. Detecting wear status of wearable device

Similar Documents

Publication Publication Date Title
CN108697329B (zh) 可穿戴设备的检测方法及可穿戴设备
US11116425B2 (en) Pacing activity data of a user
US20220007955A1 (en) Method for measuring biological signal and wearable electronic device for the same
US8519835B2 (en) Systems and methods for sensory feedback
US11129550B2 (en) Threshold range based on activity level
US8768648B2 (en) Selection of display power mode based on sensor data
US20160256058A1 (en) Statistical heart rate monitoring for estimating calorie expenditure
US20180116607A1 (en) Wearable monitoring device
EP3851029A1 (en) Heart rate detection method and electronic device
TWI610657B (zh) 藉由心跳相關訊號評估個人心臟健康之穿戴式裝置及其訊號處理方法
WO2019169636A1 (zh) 一种测量人体生理参数的方法和终端设备
CN103126658A (zh) 医疗监控手表及医疗监控系统
US20160331303A1 (en) Methods and systems for snore detection and correction
US20220022814A1 (en) Method and Electronic Device for Detecting Heart Rate
CN109718112A (zh) 用药提醒方法、装置及计算机可读存储介质
WO2019000742A1 (zh) 可穿戴设备的检测方法及可穿戴设备
KR20060045089A (ko) 혈류 변화 측정 센서, 심박수 산출 방법 및 그 휴대용 장치
US20150161342A1 (en) Information processing system, electronic apparatus, method and storage medium
CN116919371A (zh) 一种检测心律的方法和电子设备
JP2015112205A (ja) 情報提供システム、電子機器、方法及びプログラム
US20200237295A1 (en) Method for calculating recovery index based on rem sleep stage and electronic device thereof
CN109833037B (zh) 一种监测血压状态的设备和计算机可读存储介质
WO2022089101A1 (zh) 基于便携式电子设备的pwv检测方法和装置
CN114388122A (zh) 参数融合处理方法、装置、可穿戴设备及存储介质
WO2016036486A1 (en) Pacing activity data of a user

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916045

Country of ref document: EP

Kind code of ref document: A1