WO2018019014A1 - 反馈方法及装置 - Google Patents

反馈方法及装置 Download PDF

Info

Publication number
WO2018019014A1
WO2018019014A1 PCT/CN2017/085290 CN2017085290W WO2018019014A1 WO 2018019014 A1 WO2018019014 A1 WO 2018019014A1 CN 2017085290 W CN2017085290 W CN 2017085290W WO 2018019014 A1 WO2018019014 A1 WO 2018019014A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation
cqi
actual
determining
sampling channel
Prior art date
Application number
PCT/CN2017/085290
Other languages
English (en)
French (fr)
Inventor
李沛
白文岭
吴南润
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018019014A1 publication Critical patent/WO2018019014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a nonlinear detector based feedback method and apparatus in a wireless communication system.
  • the feedback algorithm in the related art is mainly based on a linear receiver.
  • the feedback algorithm based on linear receiver can not reflect the advantages of nonlinear receiver. If the algorithm is not changed in the case of nonlinear receiver, the advantage of nonlinear reception will not be reflected, and the feedback result may be biased.
  • the embodiments of the present disclosure provide a feedback method and apparatus, which solves the problem that if the feedback algorithm is not changed in the case of a nonlinear receiver in the related art, the advantage of nonlinear reception will not be reflected, and the result of the feedback There may be a problem with deviations.
  • a feedback method comprising:
  • MI Mutual Information
  • the actual correlation being any one of high correlation, medium correlation, and low correlation
  • CQI Channel Quality Indicator
  • determining the actual relevance of the sampling channel including:
  • Estimating an estimated correlation of the sampling channel wherein the estimated correlation is any one of high correlation, medium correlation, and low correlation;
  • the method further includes:
  • the step of estimating the estimated correlation of the sampling channel is performed, and the CQI is reselected.
  • determining an actual correlation of the sampling channel according to the CQI primary selection result including:
  • the difference between the two CQI codewords in the CQI primary selection result is greater than or equal to the first threshold, it is determined that the actual correlation of the sampling channel is a high correlation.
  • determining an actual correlation of the sampling channel according to the CQI primary selection result including:
  • the ratio of the eigenvalues of the sampled channel estimation correlation matrix is less than or equal to the second threshold, it is determined that the actual correlation of the sampling channels is low correlation.
  • the determining, according to the CQI primary selection result, the actual correlation of the sampling channel further includes:
  • Determining that the actual correlation of the sampling channel is low correlation if it is determined that the actual correlation of the sampling channel is a ratio of the low correlation to the total number is greater than a third threshold; otherwise, determining the actuality of the sampling channel Relevance is relevant.
  • a feedback device including:
  • a first calculating module configured to calculate a signal and a SINR of the sampling channel
  • a second calculating module configured to calculate MI according to the SINR
  • a correlation determining module configured to determine an actual correlation of the sampling channel, where the actual correlation is any one of high correlation, medium correlation, and low correlation;
  • a CQI threshold table determining module configured to determine, according to a correspondence between a preset correlation and a CQI threshold table, a first CQI threshold table corresponding to an actual correlation of the sampling channel;
  • the CQI feedback value determining module is configured to determine a CQI feedback value of the sampling channel according to the MI and the first CQI feedback threshold table.
  • the correlation determining module includes:
  • An estimating unit configured to estimate an estimated correlation of the sampling channel, wherein the estimated correlation is any one of high correlation, medium correlation, and low correlation;
  • a CQI threshold table determining unit configured to determine a second CQI threshold table corresponding to an estimated correlation of the sampling channel according to a correspondence between a preset correlation and a CQI threshold table;
  • a CQI primary selection determining unit configured to determine a CQI primary selection result according to the MI and the second CQI feedback threshold table
  • An actual correlation determining unit configured to determine an actual correlation of the sampling channel according to the CQI primary selection result.
  • the feedback device further includes:
  • a determining module configured to determine whether the actual correlation is the same as the estimated correlation; if the actual correlation is the same as the estimated correlation, triggering the CQI threshold table determining module according to a preset correlation and Corresponding relationship of the CQI threshold table, determining the actual phase with the sampling channel The first CQI threshold table corresponding to the correlation; if the actual correlation is not the same as the estimated correlation, triggering the estimating unit to estimate the estimated correlation of the sampling channel, and reselecting the CQI.
  • the actual correlation determining module includes:
  • a first acquiring subunit configured to acquire a difference between two CQI codewords in the CQI primary selection result
  • a first determining subunit configured to determine that the actual correlation of the sampling channel is a high correlation if a difference between the two CQI codewords in the CQI primary selection result is greater than or equal to the first threshold.
  • the actual correlation determining module includes:
  • a second acquiring subunit configured to acquire a difference between two CQI codewords in the CQI primary selection result
  • a third acquiring subunit configured to obtain a ratio of the feature values of the sampled channel estimation correlation matrix if the difference between the two CQI codewords in the CQI primary selection result is less than a first threshold
  • a second determining subunit configured to determine that an actual correlation of the sampling channel is a medium correlation if a ratio of characteristic values of the sampled channel estimation correlation matrix is greater than a second threshold
  • the ratio of the eigenvalues of the sampled channel estimation correlation matrix is less than or equal to the second threshold, it is determined that the actual correlation of the sampling channels is low correlation.
  • the actual correlation determining module further includes:
  • a statistical subunit configured to statistically determine that the actual correlation of the sampling channel is medium correlation and determine that the actual correlation of the sampling channel is a low correlation total number
  • a third determining subunit configured to determine that the actual correlation of the sampling channel is low correlation if it is determined that the actual correlation of the sampling channel is a low correlation and the ratio of the total number is greater than a third threshold; otherwise And determining that the actual correlation of the sampling channels is medium correlation.
  • a feedback device including: a processor, a memory, and a transceiver.
  • a processor configured to read a program in the memory, perform the following process: calculate an SINR of the sampling channel; calculate MI according to the SINR; determine an actual correlation of the sampling channel, where the actual correlation is a high correlation, a medium correlation And any one of the low correlations; determining, according to a correspondence between the preset correlation and the CQI threshold table, a first CQI threshold table corresponding to an actual correlation of the sampling channel; according to the MI and the first The CQI feedback threshold table determines a CQI feedback value of the sampling channel.
  • the transceiver is used to receive and transmit data, and the memory is capable of storing data used by the processor in performing operations.
  • the same channel correlation uses different CQI feedback threshold tables to determine the CQI feedback value, which improves the overall feedback performance of the linear receiver, thereby solving the related art. If the feedback algorithm is not changed in the case of a nonlinear receiver, it will not be reflected. The advantages of nonlinear reception, and the results of feedback may be biased.
  • FIG. 1 is a schematic diagram of a calculation process of a Mutual Information Effective SINR Mapping (MIESM) method
  • FIG. 2 is a schematic diagram of a bit interleaved code modulation system
  • FIG. 3 is a flow chart of a feedback method in some embodiments of the present disclosure.
  • FIG. 4 is a flow diagram showing the actual correlation of a sampling channel in some embodiments of the present disclosure.
  • FIG. 5 is a flow chart of a feedback method in some embodiments of the present disclosure.
  • FIG. 6 is a schematic flow chart of determining channel correlation in some embodiments of the present disclosure.
  • Figure 7 is a block diagram of a feedback device in some embodiments of the present disclosure.
  • Figure 8 is a block diagram of a feedback device in some embodiments of the present disclosure.
  • embodiments of the present disclosure may be implemented as a system, apparatus, device, method, or computer program product. Therefore, embodiments of the present disclosure may be embodied It is now in the form of full hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • Orthogonal Frequency Division Multiplexing OFDM
  • CQI Cost Division Multiplexing
  • MMSE linear detector based on the minimum mean square error (minimum) Mean square error
  • the feedback algorithm and nonlinear detector of the receiver are based on the feedback algorithm of the Maximum Likelihood (ML) receiver.
  • LTE Long Term Evolution
  • N R is the receiving antenna
  • N T is the transmitting antenna
  • OFDM symbol is n.
  • Is receiving signals Is the channel matrix (on subcarrier k, OFDM symbol n), Is the transmission signal matrix ( Is a collection of modulation symbols), Is a complex white noise, For variance.
  • the transmitted symbols use the same precoding matrix for the entire useful frequency interval ⁇ 1, 2, ..., K ⁇
  • the dimension of the transmitted signal depends on the number of spatially transmitted effective layers L, W i is a matrix of dimension N T ⁇ L, and i is the precoding matrix
  • the subscript of the codebook that is, the PMI value).
  • CQI feedback principle The measurement of CQI is based on SINR. However, depending on the bandwidth mapped by SINR, different measurement methods may be used, which corresponds to different resource allocation modes. In the first mode, if the CQI feeds back the channel quality of the full bandwidth, for a CQI value, the corresponding modulation mode and code rate are used in the LTE to allocate the corresponding resources to the UE in the full bandwidth.
  • the scheduler for example, an Evolved Node B (eNodeB)
  • eNodeB Evolved Node B
  • the scheduler may be targeted to a certain one or A few RBs use separate modulation methods and code rates, which can maximize channel capacity and allocate resources to users more effectively.
  • the mode of transmission is already defined in the protocol and allows each layer to transmit a separate stream. The two methods of allocating resources described above must be implemented through an effective feedback mechanism.
  • the feedback mechanism adopted in the embodiments of the present disclosure is based on equalization.
  • the average signal SINR after the signal This may include the SINR corresponding to one or more RBs (each layer or layers). In order to map more accurately, it is obvious to satisfy the following formula:
  • BLER ( ⁇ SINR k ⁇ ) is the block error rate of the actual current channel state ⁇ SINR k ⁇
  • BLER AWGN (SINR eff ) is the block error rate of the Single Input Single Output (SISO) white noise channel.
  • Embodiments of the present disclosure are based on directly calculating bit mutual information - Mean Mutual Information Per Bit (MMIB).
  • MMIB ESM directly obtains the per-bit mutual information MMIB through the function, and can directly obtain the BLER by using the mapping relationship of MMIB to Block Error Rate (BLER), or use MMIB to calculate the equivalent SINR, and then find the ideal additive.
  • BLER Block Error Rate
  • AWGN Additive White Gaussian Noise
  • FIG. 1 A simplified diagram of the MIESM method calculation process is shown in Figure 1.
  • SINRs of N coded symbols are received from the system level simulation, which are respectively recorded as SINR 1 , SINR 2 , SINR 3 , ..., SINR N , and the calculated MI (for example, MMIB) can be obtained.
  • SINR and used to find the BLER.
  • the best approximation of the actual detector performance can be obtained by defining the information channel at the codec level, ie defining the input bits (to the orthogonal Mutual information between the Quadrature Amplitude Modulation (QAM mapping) and the Log Likelihood Ratio (LLR) output (calculated at the receiver LLR), as shown in Figure 2, where S represents the modulated signal , y denotes a received signal, superscript N denotes N bits, and superscript N/M denotes N/M symbols.
  • S represents the modulated signal
  • y denotes a received signal
  • superscript N denotes N bits
  • superscript N/M denotes N/M symbols.
  • the concept of a bit channel includes single input multiple output (SIMO) / multiple input multiple output (MIMO) channel and reception. This definition greatly simplifies the abstraction process by removing the experimental adjustment model and introducing an alternative equivalent bit channel mutual information (MI) function.
  • MI equivalent bit channel mutual information
  • the bit interleaving code modulation system is shown in Figure 2.
  • the source information is bit interleaved after being encoded by the encoder, and then modulated to obtain the transmitted signal.
  • the demapping and decoder are both Soft Input Soft Output (SISO). .
  • SISO Soft Input Soft Output
  • the main function of the interleaver is to reduce the inter-bit correlation of the encoded sequence so that the M bits entering the modulator and mapped to a certain constellation point are independent of each other.
  • the task now is to define a function that can obtain mutual information per bit.
  • the following section describes an efficient algorithm for calculating MI by approximating the LLR PDF method with a Gaussian probability density function (PDF).
  • PDF Gaussian probability density function
  • the MI of the coded bits depends on the actual constellation mapping. Each MI of the channel is obtained by averaging the bits MI in the QAM symbols.
  • a binary encoded bit stream Ck is generated prior to QAM mapping.
  • QAM modulation can be expressed as a symbol map ⁇ : A ⁇ X, where A is a set of m arrays, m ⁇ ⁇ 2, 4, 6 ⁇ represent Quadrature Phase Shift Keying (QPSK), 16QAM and 64QAM, X is the constellation.
  • bit interleaver When the coding block is very large in the bit interleaved coded modulation system, the bit interleaver effectively breaks through the memory capacity of the modulator, and the system can be represented as a set of parallel independent bit channels.
  • the entire coding process is shown in Figure 2.
  • each coded bit is randomly mapped to one of the m bit channels (with a probability of 1/m).
  • the mutual information expression of the equivalent channel is as follows:
  • I(b i , LLR(b i )) is the mutual information between the ith input bit and the output LLR in the modulation map.
  • the bit LLR reflects the demodulation process, which is not presented in symbol level mutual information (ie, Received Bit Information Rate (RBIR)). This is the main difference between bit-level mutual information (ie MMIB) and symbol-level mutual information definition.
  • RBIR Received Bit Information Rate
  • MI ie MMIB
  • the MI depends on each modulation symbol (indicator n) and the coded bit indication i (or i bit channels), and the constellation order number m. Correspondingly, for each modulation method and coding bit, it is required To obtain I m (SINR). I m ( ⁇ ) is a mutual information function when the modulation order is m.
  • the calculation of SINR is based on a linear detector.
  • the so-called linear detector is to recover the original signal x from the received signal y completely by linear operation. It is expressed in matrix form, that is, looking for the matrix W H of the N T ⁇ N R dimension, so that the estimated x is obtained. As close as possible to x.
  • MMSE criterion which is the minimum mean square error between the linear combination of the transmitted signal vector x and the received signal vector W H y .
  • the calculation of SINR can be obtained by:
  • H represents the channel estimation matrix
  • represents the noise variance
  • I represents the unit matrix
  • the MI value is obtained by approximating J( ⁇ ) of the mutual information function, and the input is SINR.
  • the modified approximate calculation formula is given, which makes the calculation accuracy of MI higher.
  • the approximation function of 16QAM and 64QAM refers to Table 1:
  • D is a diagonal matrix, which can be expressed as
  • Table 2 Parameter table under 16QAM 2x2SM (Spatial Multiplexing)
  • a feedback method and apparatus for a receiver in a wireless communication system are provided.
  • a signal to interference plus noise ratio SINR of a sampling channel is calculated; according to the SINR Calculating MI; determining an actual correlation of the sampling channel, the actual correlation being any one of high correlation, medium correlation, and low correlation; determining and speaking according to a correspondence between a preset correlation and a CQI threshold table a first CQI threshold table corresponding to an actual correlation of the sampling channel; determining a CQI feedback value of the sampling channel according to the MI and the first CQI feedback threshold table.
  • a feedback method is illustrated, and the specific steps are as follows:
  • Step 301 calculating the SINR of the sampling channel, and then proceeds to step 302;
  • Step 302 calculating MI according to SINR, and then proceeds to step 303;
  • step MI refers to Table 1 above.
  • Step 303 determining the actual correlation of the sampling channel, the actual correlation is any one of high correlation, medium correlation and low correlation, and then proceeds to step 304;
  • the foregoing step 303 may include: Steps 3031 to Step 3034, as follows:
  • Step 3031 estimating an estimated correlation of the sampling channel, wherein the estimated correlation is any one of high correlation, medium correlation, and low correlation, and then proceeds to step 3032;
  • Step 3032 determining a second CQI threshold table corresponding to the estimated correlation of the sampling channel according to the correspondence between the preset correlation and the CQI threshold table, and then proceeds to step 3033;
  • Step 3033 according to the MI and the second CQI feedback threshold table, determine the CQI primary selection result, and then proceeds to step 3034;
  • the feedback process of CQI is to use the calculated MI to check the CQI feedback threshold table to obtain the appropriate CQI index process.
  • the MI information has different thresholds for different modulation methods, so the calculated MI has three groups at the same time, corresponding to the values under QPSK, 16QAM and 64QAM.
  • the process of CQI feedback starts from 64QAM. If the MI satisfies the condition under 64QAM, the search process ends and the index corresponding to 64QAM is output. If the MI of 64QAM does not meet the conditions, continue to compare the 16QAM threshold until the search is successfully exited. If the 16QAM search fails, continue to search for the QPSK threshold. If successful, exit. If it fails, report the index0 prompt. End of the border.
  • Step 3034 Determine an actual correlation of the sampling channel according to the CQI primary selection result.
  • the difference between two CQI codewords in the CQI primary selection result is obtained; if the difference between the two CQI codewords in the CQI primary selection result is greater than or equal to the first threshold, determining the sampling The actual correlation of the channels is highly correlated.
  • the difference between the two CQI codewords in the CQI primary selection result is obtained. If the difference between the two CQI codewords in the CQI primary selection result is less than the first threshold, the sampled channel is obtained. Estimating a ratio of the eigenvalues of the correlation matrix; if the ratio of the eigenvalues of the sampled channel estimation correlation matrix is greater than the second threshold, determining that the actual correlation of the sampling channel is medium correlation; if the channel estimation of the sampling is correlated If the ratio of the eigenvalues of the matrix is less than or equal to the second threshold, then the actual correlation of the sampling channels is determined to be low correlation.
  • the actual correlation of the sampling channel is statistically determined as the total correlation and the actual correlation of the sampling channel is determined to be a low correlation; if the actual correlation of the sampling channel is determined to be low If the ratio of the related quantity to the total number is greater than the third threshold, it is determined that the actual correlation of the sampling channel is low correlation; otherwise, the actual correlation of the sampling channel is determined to be medium correlation.
  • the low-correlation and high-correlation channels are distinguished by the CQI codeword difference, and the low-correlation and medium-correlation channels are distinguished by the channel eigenvalues: first, two codes are calculated by using the CQI primary selection result.
  • the CQI difference of the word if the difference between the two code words is greater than or equal to the threshold T1, it is determined to be high correlation, and for the difference is less than the threshold T1 (for example, the threshold T1 is generally equal to 4), the characteristics of the correlation matrix according to the sampled channel estimation The ratio of the values is judged, and the result of dividing the larger eigenvalue by the smaller eigenvalue (see the singular value corresponding to Equation 10, calculated from the channel) is compared with a predetermined threshold. If it is higher than the predetermined threshold, it is determined that the sampling channel is a medium correlation channel, otherwise it is determined to be a low correlation channel.
  • Step 304 according to the correspondence between the preset correlation and the CQI threshold table, determine the first CQI threshold table corresponding to the actual correlation of the sampling channel, and then proceeds to step 305;
  • Step 305 Determine a CQI feedback value of the sampling channel according to the MI and the first CQI feedback threshold table.
  • the CQI feedback threshold table for low, medium, and high channels is established according to the principle of MIESM.
  • the content of the CQI feedback threshold table is that the index of the transport block corresponds to a MI threshold, and the values of MI are different under different correlations.
  • step 304 it may be determined whether the actual correlation is the same as the estimated correlation (corresponding to determining whether the correlation is changed); if the actual correlation is the same as the estimated correlation (the correlation is not changed), then entering Determining, according to a correspondence between the preset correlation and the CQI threshold table, a first CQI threshold table corresponding to the actual correlation of the sampling channel (ie, proceeding to step 304); if the actual correlation and the estimation If the correlation is not the same (correlation change), then the step of estimating the estimated correlation of the sampling channel is performed, and the CQI is reselected (ie, proceeds to step 3031).
  • the CQI feedback threshold table for low, medium, and high channels is established according to the principle of MIESM.
  • the content of the CQI feedback threshold table is that the index of the transport block corresponds to a MI threshold, and the values of MI are different under different correlations.
  • B3 is greater than T14, take the index output corresponding to T14. Otherwise, continue to compare until it finds the appropriate one.
  • the value is (I0).
  • Another Codeword also gets the CQI (I1) value. This is the result of the CQI primary. Then compare the CQI difference of two Codewords (the absolute value of I0-I1), and assume that the difference (the absolute value of I0-I1) is greater than the threshold TH, then determine that the channel is highly correlated, otherwise use the eigenvalue ratio corresponding to the correlation matrix of the channel. To determine whether there is a low correlation (the calculation of the eigenvalue (singular value) is shown in Equation 10), if not, it is judged as medium correlation, otherwise it is judged as low correlation.
  • the CQI feedback threshold table is replaced with a CQI feedback threshold table of high correlation or medium correlation according to channel correlation.
  • a feedback method based on a nonlinear receiver in a wireless communication system is provided.
  • a nonlinear receiver feedback module in a wireless communication system may adopt different channel correlations according to different channels.
  • the CQI feedback threshold table determines the CQI feedback value and improves the overall feedback performance of the linear receiver, thereby solving the related art. If the algorithm is not changed in the case of the nonlinear receiver, the advantage of nonlinear reception will not be reflected, and the feedback The result may be biased.
  • a feedback method is illustrated, and the specific steps are as follows:
  • Step 501 calculating the SINR of the nonlinear receiver, and then proceeds to step 502;
  • Step 502 calculating MI according to SINR, and then proceeds to step 503;
  • Step 503 assuming a correlation, CQI primary selection according to MI, obtaining a CQI primary selection result, and then proceeds to step 504;
  • Step 504 Determine channel correlation according to the CQI primary selection result.
  • Step 505 determining whether the correlation is changed, and if yes, proceeding to step 506; otherwise, ending the process;
  • CQI needs to assume the correlation of a channel (can be low correlation) when conducting primary selection, according to the primary selection
  • the difference between the two CQI indexes obtained later can determine whether the channel is highly correlated, and if it is high correlation, the correlation is changed. If it is not high correlation, it is determined whether the correlation is low according to the eigenvalues of the channel correlation matrix. If not, it is considered that the correlation is changed, otherwise the correlation is not changed.
  • step 4 there is a detailed flowchart below to illustrate the process of determining the low, medium, and high correlation of the channel.
  • Step 506 Perform CQI reselection according to the MI to obtain a CQI reselection result.
  • Step 601 Calculate a difference between two codewords of the CQI.
  • Step 602 it is determined whether the difference is greater than or equal to T1, and if so, proceeds to step 603; otherwise, proceeds to step 604;
  • Step 603 determining that the sampling channel is a high correlation channel, and then proceeds to step 603;
  • the signals transmitted by the two receiving and transmitting antennas are highly correlated and are not easily distinguished from each other.
  • Step 604 calculating the feature value ratio, and then proceeds to step 605;
  • Step 605 it is determined whether the ratio is less than the low correlation threshold, and if so, proceeds to step 606; otherwise, proceeds to step 607;
  • Step 606 Determine that the sampling channel is a medium related channel.
  • Step 607 Determine that the sampling channel is a low correlation channel.
  • the low correlation channel considers that the data transmitted by each antenna is nearly independent, and it is easier to distinguish the data of the two antennas.
  • a feedback method based on a nonlinear receiver in a wireless communication system is provided.
  • a nonlinear receiver feedback module in a wireless communication system may adopt different channel correlations according to different channels.
  • the CQI feedback threshold table determines the CQI feedback value and improves the overall feedback performance of the linear receiver, thereby solving the related art. If the algorithm is not changed in the case of the nonlinear receiver, the advantage of nonlinear reception will not be reflected, and the feedback The result may be biased.
  • the feedback device 700 comprising:
  • the first calculating module 701 is configured to calculate a signal to interference plus noise ratio SINR of the sampling channel;
  • a second calculating module 702 configured to calculate MI according to the SINR
  • a correlation determining module 703 configured to determine an actual correlation of the sampling channel, where the actual correlation is any one of high correlation, medium correlation, and low correlation;
  • the CQI threshold table determining module 704 is configured to determine, according to a correspondence between the preset correlation and the CQI threshold table, a first CQI threshold table corresponding to an actual correlation of the sampling channel;
  • the CQI feedback value determining module 705 is configured to determine a CQI feedback value of the sampling channel according to the MI and the first CQI feedback threshold table.
  • the correlation determining module includes:
  • An estimating unit configured to estimate an estimated correlation of the sampling channel, wherein the estimated correlation is any one of high correlation, medium correlation, and low correlation;
  • a CQI threshold table determining unit configured to determine a second CQI threshold table corresponding to an estimated correlation of the sampling channel according to a correspondence between a preset correlation and a CQI threshold table;
  • a CQI primary selection determining unit configured to determine a CQI primary selection result according to the MI and the second CQI feedback threshold table
  • An actual correlation determining unit configured to determine an actual correlation of the sampling channel according to the CQI primary selection result.
  • the feedback device further includes:
  • a determining module configured to determine whether the actual correlation is the same as the estimated correlation; if the actual correlation is the same as the estimated correlation, triggering the CQI threshold table determining module according to a preset correlation and Corresponding relationship of the CQI threshold table, determining a first CQI threshold table corresponding to the actual correlation of the sampling channel; if the actual correlation is not the same as the estimated correlation, triggering the estimating unit to estimate the sampling
  • the estimated correlation of the channels is reselected for the CQI.
  • the actual correlation determining module includes:
  • a first acquiring subunit configured to acquire a difference between two CQI codewords in the CQI primary selection result
  • a first determining subunit configured to determine that the actual correlation of the sampling channel is a high correlation if a difference between the two CQI codewords in the CQI primary selection result is greater than or equal to the first threshold.
  • the actual correlation determining module includes:
  • a second acquiring subunit configured to acquire a difference between two CQI codewords in the CQI primary selection result
  • a third acquiring subunit configured to obtain a ratio of the feature values of the sampled channel estimation correlation matrix if the difference between the two CQI codewords in the CQI primary selection result is less than a first threshold
  • a second determining subunit configured to determine that an actual correlation of the sampling channel is a medium correlation if a ratio of characteristic values of the sampled channel estimation correlation matrix is greater than a second threshold
  • the ratio of the eigenvalues of the sampled channel estimation correlation matrix is less than or equal to the second threshold, it is determined that the actual correlation of the sampling channels is low correlation.
  • the actual correlation determining module further includes:
  • a statistical subunit configured to statistically determine that the actual correlation of the sampling channel is medium correlation and determine that the actual correlation of the sampling channel is a low correlation total number
  • a third determining subunit configured to determine that the actual correlation of the sampling channel is low correlation if it is determined that the actual correlation of the sampling channel is a low correlation and the ratio of the total number is greater than a third threshold; otherwise And determining that the actual correlation of the sampling channels is medium correlation.
  • a non-linear receiver-based feedback device in a wireless communication system may adopt different channel correlations according to different channels.
  • the CQI feedback threshold table determines the CQI feedback value and improves the overall feedback performance of the linear receiver, thereby solving the related art. If the algorithm is not changed in the case of the nonlinear receiver, the advantage of nonlinear reception will not be reflected, and the feedback The result may be biased.
  • a feedback device including:
  • the processor 804 is configured to read a program in the memory 805 and perform the following process:
  • Calculating a signal and SINR of the sampling channel calculating MI according to the SINR; determining an actual correlation of the sampling channel, the actual correlation being any one of high correlation, medium correlation, and low correlation; according to preset correlation Determining a correspondence between the SQ and the CQI threshold table, determining a first CQI threshold table corresponding to the actual correlation of the sampling channel; determining a CQI feedback value of the sampling channel according to the MI and the first CQI feedback threshold table .
  • the transceiver 801 is configured to receive and transmit data under the control of the processor 804.
  • bus 800 can include any number The interconnected buses and bridges will be linked together by various circuits including one or more processors represented by processor 804 and memory represented by memory 805.
  • the bus 800 can also link various other circuits such as peripherals, voltage regulators, and power management circuits.
  • Bus interface 803 provides an interface between bus 800 and transceiver 801.
  • Transceiver 801 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by processor 804 is transmitted over wireless medium via antenna 802. Further, antenna 802 also receives data and transmits the data to processor 804.
  • the processor 804 is responsible for managing the bus 800 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 805 can be used to store data used by the processor 804 in performing the operations.
  • the processor 804 can be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a complex programmable logic.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic.
  • CPLD Complex Programmable Logic Device
  • processor 804 the processor 804:
  • Estimating an estimated correlation of the sampling channel wherein the estimated correlation is any one of high correlation, medium correlation, and low correlation;
  • processor 804 the processor 804:
  • the step of estimating the estimated correlation of the sampling channel is performed, and the CQI is reselected.
  • processor 804 the processor 804:
  • the difference between the two CQI codewords in the CQI primary selection result is greater than or equal to the first threshold, it is determined that the actual correlation of the sampling channel is a high correlation.
  • processor 804 the processor 804:
  • the ratio of the eigenvalues of the sampled channel estimation correlation matrix is less than or equal to the second threshold, it is determined that the actual correlation of the sampling channels is low correlation.
  • processor 804 the processor 804:
  • Determining that the actual correlation of the sampling channel is low correlation if it is determined that the actual correlation of the sampling channel is a ratio of the low correlation to the total number is greater than a third threshold; otherwise, determining the actuality of the sampling channel Relevance is relevant.
  • a non-linear receiver-based feedback device in a wireless communication system may adopt different channel correlations according to different channels.
  • the CQI feedback threshold table determines the CQI feedback value and improves the overall feedback performance of the linear receiver, thereby solving the related art. If the algorithm is not changed in the case of the nonlinear receiver, the advantage of nonlinear reception will not be reflected, and the feedback The result may be biased.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B according to A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit described above is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform part of the steps of the method of transmitting and receiving described in various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例提供一种反馈方法及装置。反馈方法包括:计算出采样信道的信号与SINR;根据所述SINR,计算MI;确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。

Description

反馈方法及装置
相关申请的交叉引用
本申请主张在2016年7月25日在中国提交的中国专利申请No.201610591777.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,尤其涉及一种无线通信系统中基于非线性检测器的反馈方法及装置。
背景技术
相关技术中的反馈算法主要是基于线性接收机的。基于线性接收机的反馈算法无法体现非线性接收机的优势,如果在非线性接收机的情况下不改变算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差。
发明内容
鉴于上述技术问题,本公开文本实施例提供一种反馈方法及装置,解决相关技术中如果在非线性接收机的情况下不改变反馈算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差的问题。
第一方面,提供了一种反馈方法,所述反馈方法包括:
计算出采样信道的信号与干扰加噪声比(Signal and Interference to Noise Ratio,SINR);
根据所述SINR,计算互信息(Mutual Information,MI);
确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;
根据预先设置的相关性与信道质量指示(Channel Quality Indicator,CQI)门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;
根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反 馈值。
可选地,确定采样信道的实际相关性,包括:
估计所述采样信道的估计相关性,其中,所述估计相关性为高相关、中相关和低相关中的任意一种;
根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的估计相关性对应的第二CQI门限表;
根据所述MI和所述第二CQI反馈门限表,确定CQI初选结果;
根据所述CQI初选结果,确定所述采样信道的实际相关性。
可选地,所述方法还包括:
判断所述实际相关性与所述估计相关性是否相同;
若所述实际相关性与所述估计相关性相同,则进入根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表的步骤;
若所述实际相关性与所述估计相关性不相同,则进入估计所述采样信道的估计相关性的步骤,对CQI进行重选。
可选地,根据所述CQI初选结果,确定所述采样信道的实际相关性,包括:
获取所述CQI初选结果中两个CQI码字的差值;
若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
可选地,根据所述CQI初选结果,确定所述采样信道的实际相关性,包括:
获取所述CQI初选结果中两个CQI码字的差值;
若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;
若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;
若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
可选地,所述根据所述CQI初选结果,确定所述采样信道的实际相关性,还包括:
统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;
若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
第二方面,还提供了一种反馈装置,包括:
第一计算模块,用于计算出采样信道的信号与SINR;
第二计算模块,用于根据所述SINR,计算MI;
相关性确定模块,用于确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;
CQI门限表确定模块,用于根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;
CQI反馈值确定模块,用于根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。
可选地,所述相关性确定模块包括:
估计单元,用于估计所述采样信道的估计相关性,其中,所述估计相关性为高相关、中相关和低相关中的任意一种;
CQI门限表确定单元,用于根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的估计相关性对应的第二CQI门限表;
CQI初选结果确定单元,用于根据所述MI和所述第二CQI反馈门限表,确定CQI初选结果;
实际相关性确定单元,用于根据所述CQI初选结果,确定所述采样信道的实际相关性。
可选地,所述反馈装置还包括:
判断模块,用于判断所述实际相关性与所述估计相关性是否相同;若所述实际相关性与所述估计相关性相同,则触发所述CQI门限表确定模块根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相 关性对应的第一CQI门限表;若所述实际相关性与所述估计相关性不相同,则触发所述估计单元估计所述采样信道的估计相关性,对CQI进行重选。
可选地,所述实际相关性确定模块包括:
第一获取子单元,用于获取所述CQI初选结果中两个CQI码字的差值;
第一判定子单元,用于若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
可选地,所述实际相关性确定模块包括:
第二获取子单元,用于获取所述CQI初选结果中两个CQI码字的差值;
第三获取子单元,用于若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;
第二判定子单元,用于若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;
若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
可选地,所述实际相关性确定模块还包括:
统计子单元,用于统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;
第三判定子单元,用于若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
第三方面,还提供了一种反馈装置,包括:处理器、存储器和收发机。处理器,用于读取存储器中的程序,执行下列过程:计算出采样信道的SINR;根据所述SINR,计算MI;确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。收发机用于接收和发送数据,存储器能够存储处理器在执行操作时所使用的数据。
上述技术方案中的一个技术方案具有如下优点或有益效果:可以根据不 同的信道相关性采用不同的CQI反馈门限表确定CQI反馈值,提高了线性接收机的整体反馈性能,从而解决相关技术中如果在非线性接收机的情况下不改变反馈算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差的问题。
附图说明
为了更清楚地说明本公开文本实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。以下附图并未刻意按实际尺寸等比例缩放绘制,重点在于示出本申请的主旨。
图1为互信息等效SINR映射(Mutual Information Effective SINR Mapping,MIESM)方法计算过程的示意图;
图2为比特交织编码调制系统的示意图;
图3为本公开文本的一些实施例中的反馈方法的流程图;
图4本公开文本的一些实施例中的确定采样信道的实际相关性的流程示意图;
图5为本公开文本的一些实施例中的反馈方法的流程图;
图6为本公开文本的一些实施例中信道相关性的判定流程示意图;
图7为本公开文本的一些实施例中的反馈装置的框图;
图8为本公开文本的一些实施例中的反馈装置的框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本领域技术人员知道,本公开文本的实施方式可以实现为一种系统、装置、设备、方法或计算机程序产品。因此,本公开文本的实施例可以具体实 现为以下形式:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
为了便于本领域技术人员理解本公开文本的实施方式,下面介绍下正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)通信系统传输模型、CQI反馈原理、线性检测器基于最小均方误差(minimum mean square error,MMSE)接收机的反馈算法和非线性检测器基于最大似然(Maximum Likelihood,ML)接收机的反馈算法。
(1)OFDM通信系统传输模型:长期演进技术(Long Term Evolution,LTE)中通过采用OFDM技术,将频率选择性信道(Frequency Selective Channel)转换成许多窄带频率平坦信道(Narrowband Frequency Flat Channel),输入和输出依赖子载波数目k,假设NR为接收天线,NT为发送天线,OFDM符号为n。
yk,n=Hk,nWixk,n+nk,n,k∈1,…K,n∈1,…N    (1)
Figure PCTCN2017085290-appb-000001
是接收信号,
Figure PCTCN2017085290-appb-000002
是信道矩阵(在子载波k,OFDM符号n上),
Figure PCTCN2017085290-appb-000003
是传输信号矩阵(
Figure PCTCN2017085290-appb-000004
是调制符号集合),
Figure PCTCN2017085290-appb-000005
是复数白噪声,
Figure PCTCN2017085290-appb-000006
为方差。发送的符号在整个有用的频率间隔{1,2,...,K}均采用相同的预编码矩阵
Figure PCTCN2017085290-appb-000007
传输信号的维数依赖于空间传输有效层数L,Wi是一个维度为NT×L的矩阵,i是预编码矩阵
Figure PCTCN2017085290-appb-000008
码本的下标(也就是PMI值)。
(2)CQI反馈原理:CQI的测量是基于SINR进行的,然而根据SINR所映射的带宽不同,可以有不同的测量方式,也就对应着不同的资源分配方式。第一种方式,若是CQI反馈的是全带宽的信道质量,那么对于一个CQI的数值,在全带宽上,LTE中使用相同的调制方式和码率将对应资源分配给UE。第二种方式,若是仅仅是一个或者几个资源块(Resource Block,RB)所决定的CQI反馈信息,那么可以使调度者(例如演进型节点B(Evolved Node B,eNodeB))针对某一个或者某几个RB采用单独的调制方式和码率,这样可以最大限度提高信道容量,更有效地给用户分配资源。传输的模式已经在协议中定义,并允许每层传输独立的码流。以上描述的两种分配资源的方式,必须要通过有效的反馈机制才能实现。
需要说明的是,在本公开文本的实施方式中采用的反馈机制是基于均衡 后的信号平均SINR。这样可以包括一个或者多个RB(每一层或多层)对应的SINR。为了映射更加准确,显然要满足下面的公式:
BLER({SINRk})≈BLERAWGN(SINReff)     (2)
BLER({SINRk})是实际当前信道状态{SINRk}的误块率,BLERAWGN(SINReff)是单输入单输出(Single Input Single Output,SISO)白噪声信道的误块率。
本公开文本的实施方式基于直接计算比特互信息——平均每比特互信息(Mean Mutual Information Per Bit,MMIB)。MMIB ESM是通过函数直接获得每比特互信息MMIB,可直接用MMIB到误块率(Block Error Rate,BLER)的映射关系来获得BLER,也可利用MMIB来计算等效SINR,然后查找理想加性高斯白噪声(Additive White Gaussian Noise,AWGN)曲线,MMIB ESM考虑了不同映射方式。
MIESM方法计算过程的简图如图1所示。假设从系统级仿真接收到N个编码符号的SINR,分别记为SINR1,SINR2,SINR3,……,SINRN,计算可得MI(例如MMIB),通过计算得到的MI可获得等效SINR,并用来查找得到BLER。
若目标是观察基本二进制码的性能,通过在编解码级定义信道信息,可以获得对实际检测器性能最佳的近似是通过在编解码级定义信息信道获得的,即定义输入比特(到正交幅度调制(Quadrature Amplitude Modulation,QAM映射))与对数似然比(Log Likelihood Ratio,LLR)输出(在接收器LLR计算输出)之间的互信息,如图2所示,其中S表示调制信号,y表示接收信号,上标N表示N个比特,上标N/M表示N/M个符号。比特信道的概念包括了单输入多输出(Single Input Multiple Output,SIMO)/多输入多输出(Multiple Input Multiple Output,MIMO)信道与接收。这种定义通过去掉实验上的调整模型并引入替代的等效比特信道的互信息(MI)函数作为代替,大大简化了抽象过程。
比特交织编码调制系统如图2所示,信源信息经过编码器之后进行比特交织,然后进行调制之后得到发射信号,解映射和译码器都采用软输入软输出(Soft Input Soft Output,SISO)。交织器的主要作用是减小编码后序列的比特间相关性,使得进入调制器并映射到某个星座点的M个比特相互独立。
现在任务是定义能获得每比特互信息的函数。下面的部分将介绍通过高斯概率密度函数(probability density function,PDF)近似LLR PDF的方法来计算MI的有效算法。
从编码比特与他们的对数似然比(Log Likelihood Ratio,LLR)值来计算互信息的方法已有文献作以介绍(Shashi Kant and Tobias
Figure PCTCN2017085290-appb-000009
Jensen,“Fast Link Adaptation for IEEE 802.11n”,February 5,2007-August 6,2007),其中介绍了对二进制相移键控(Binary Phase Shift Keying,BPSK)的MIESM,对于BPSK,比特级容量与符号级容量相同。
编码比特的MI取决于实际的星座映射。信道的每个MI是通过对QAM符号中的比特MI求平均获得的。在编码(如Turbo码或低密度奇偶校验(Low Density Parity Check,LDPC)码)后,在QAM映射前产生了二进制编码比特流Ck。QAM调制可表示为一种符号映射μ:A→X,其中A为m数组集合,m∈{2,4,6}分别代表正交相移键控(Quadrature Phase Shift Keying,QPSK),16QAM与64QAM,X为星座。假设在一个码字中,对应于第n个QAM符号观察得到yn,在经过解调器后,通过下述表达式计算组成该符号的第i个比特的LLR(bi,n)(其中为了简化去掉了符号指示n)
Figure PCTCN2017085290-appb-000010
当在比特交织编码调制系统中编码块非常大时,比特交织器有效突破调制器的记忆容量,则系统可以表示为并行独立比特信道的集合。概念上,整个的编码过程如图2所示。
由于调制映射的非对称性,在调制符号的每个比特位置经历不同的“等效”比特信道。在上述模型中,每个编码比特随机映射到其中m个比特信道中的一个(以概率1/m)。等效信道的互信息表达式如下:
Figure PCTCN2017085290-appb-000011
I(bi,LLR(bi))是在调制映射中第i个输入比特与输出LLR之间的互信息。比特LLR反应了解调过程,这在符号级互信息(即接收的比特信息速率(Received Bit Information Rate,RBIR))中没有呈现。这是比特级互信息(即MMIB)与符号级互信息定义的主要区别。通过考虑N个符号(或信道)的 接收观察值,码字间平均互信息可这样计算:
Figure PCTCN2017085290-appb-000012
互信息函数I(bi (n),LLR(bi (n)))是SINR的函数,因此,MI(即MMIB)可写为:
Figure PCTCN2017085290-appb-000013
MI取决于每个调制符号(指示n)与编码比特指示i(或i个比特信道),及星座图阶数m。相应地,对每个调制方式与编码比特,需要
Figure PCTCN2017085290-appb-000014
来获得Im(SINR)。Im(·)是调制阶数为m时的互信息函数。
(3)线性检测器基于MMSE接收机的反馈算法
SINR的计算是基于线性检测器获得的。所谓线性检测器,就是完全通过线性运算从接收信号y中恢复出原始信号x。采用矩阵形式表示,即寻找NT×NR维的矩阵WH,使得到的对x的估计
Figure PCTCN2017085290-appb-000015
尽可能接近x。目前一般都基于MMSE准则,该准则是发送信号矢量x与接收信号矢量线性组合WHy之间的均方误差最小。SINR的计算可以通过下式获得:
Figure PCTCN2017085290-appb-000016
其中,H表示信道估计矩阵,δ表示噪声方差,I表示单位阵。
根据互信息函数的近似计算J(·)来得到MI值,其输入是SINR。对于16QAM和64QAM这两种互信息的计算,给出了修正的近似计算公式,使MI的计算准确度更高了。16QAM和64QAM的近似函数参考表1:
表1:各种调制方式下修正后的互信息数学近似表达式
Figure PCTCN2017085290-appb-000017
(4)非线性检测器基于ML接收机的反馈算法 文献“IEEE 802.16m-08/004r5,IEEE 802.16Broadband Wireless Access Working Group,IEEE 802.16m Evaluation Methodology Document(EMD),2009-01-15”,提出了利用相关矩阵的特征值和特征向量来获的非线性检测器的三个相关SINR点,并利用这三个点来获取MI的算法。下面就是这三个SINR点的获取方式:
利用信道估计计算相关矩阵R:
R=HHH         (8)
对R进行奇异值分解,得到V、D矩阵,通过D矩阵获得第一和第二个参数λmin和λmax
R=VDVH        (9)
其中D是对角矩阵,可以表示为
Figure PCTCN2017085290-appb-000018
λmin最小奇异值,λmax最大奇异值
计算|V|·|V|获得第三个参数pa
pa=min(p,1-p)      (11)
其中:
Figure PCTCN2017085290-appb-000019
对特征值和特征向量获得的参数按照升序对三个参数继续排序(sortasc):
Figure PCTCN2017085290-appb-000020
对于QPSK,相应的MI利用下式计算:
Figure PCTCN2017085290-appb-000021
对应16QAM和64QAM利用下面的公式计算MI:
Figure PCTCN2017085290-appb-000022
其中γ(1),γ(2),γ(3)对应公式(15)排序后的三个值。
参数的取值见表2、表3:
表2:16QAM 2x2SM(Spatial Multiplexing,空间复用)下的参数表
Figure PCTCN2017085290-appb-000023
表3:64QAM 2x2SM下的参数表
Figure PCTCN2017085290-appb-000024
根据本公开文本的实施方式,提出了一种无线通信系统中接收机的反馈方法及装置,在本公开文本的实施方式中,计算出采样信道的信号与干扰加噪声比SINR;根据所述SINR,计算MI;确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。
在一些实施例中,参见图3,图中示出了一种反馈方法,具体步骤如下:
步骤301、计算出采样信道的SINR,然后进入步骤302;
可参考计算线性接收机计算SINR的方案,例如按照上述公式(7)计算非线性接收机的SINR。
步骤302、根据SINR,计算MI,然后进入步骤303;
可选地,步骤MI的计算参考上述表1。
步骤303、确定采样信道的实际相关性,实际相关性为高相关、中相关和低相关中的任意一种,然后进入步骤304;
可选地,参见图4,上述步骤303可包括:步骤3031~步骤3034,具体如下:
步骤3031、估计采样信道的估计相关性,其中,估计相关性为高相关、中相关和低相关中的任意一种,然后进入步骤3032;
步骤3032、根据预先设置的相关性与CQI门限表的对应关系,确定与采样信道的估计相关性对应的第二CQI门限表,然后进入步骤3033;
步骤3033、根据MI和第二CQI反馈门限表,确定CQI初选结果,然后进入步骤3034;
CQI的反馈过程就是利用计算得到的MI查CQI反馈门限表,从而得到合适的CQI index的过程。注意MI的信息对于不同的调制方式有不同的门限值,所以计算出来的MI同时有三组,分别对应于QPSK、16QAM和64QAM下的值。CQI反馈的过程是从64QAM开始往下查找,如果在64QAM下MI就满足条件就结束查找过程,输出64QAM对应的index。如果64QAM的MI都不满足条件,就继续比较16QAM的门限值,直到查找成功退出,如果16QAM查找失败,就继续查找QPSK的门限值,如果成功就退出,如果失败,就上报index0提示查找出界结束。
步骤3034、根据CQI初选结果,确定采样信道的实际相关性。
可选方式一、获取所述CQI初选结果中两个CQI码字的差值;若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
可选方式二、获取所述CQI初选结果中两个CQI码字的差值;若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
在上述可选方式二中,统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
在本实施例中,以CQI码字差值来区分中低相关和高相关信道,以信道特征值来区分低相关和中相关信道:首先利用CQI的初选的结果计算两个码 字的CQI差值,如果两个码字的差值大于或等于门限T1,则判定为高相关,对于差值小于门限T1(例如门限T1一般等于4),按照采样的信道估计相关矩阵的特征值的比值进行判断,按照较大的特征值除以较小的特征值(见公式10对应的奇异值,根据信道计算得出)的结果与预定的门限进行比较。如果高于预定的门限,就判定采样信道为中相关信道,否则判定为低相关信道。然后统计所有采样信道的结果,如果采样判定为低相关信道的个数比例大于R(可选地R=75%),就判定为低相关。否则判定为中相关。统计所有采样结果是为了提高判定的准确度,因为实际信道受噪声影响有误差,样本越多可靠度越高。
步骤304、根据预先设置的相关性与CQI门限表的对应关系,确定与采样信道的实际相关性对应的第一CQI门限表,然后进入步骤305;
步骤305、根据MI和第一CQI反馈门限表,确定采样信道的CQI反馈值。
例如:按照MIESM的原理建立低中高信道的CQI反馈门限表。CQI反馈门限表内容就是传输块的Index对应一个MI的门限值,不同的相关性下,MI的值不同。
可选地,在步骤304之前,可判断实际相关性与估计相关性是否相同(相当于判定相关性是否改变);若实际相关性与所述估计相关性相同(相关性没有改变),则进入根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表的步骤(即进入步骤304);若所述实际相关性与所述估计相关性不相同(相关性改变),则进入估计所述采样信道的估计相关性的步骤,对CQI进行重选(即进入步骤3031)。
下面举例说明本公开文本的实施方式:
例如:按照MIESM的原理建立低中高信道的CQI反馈门限表。CQI反馈门限表内容就是传输块的Index对应一个MI的门限值,不同的相关性下,MI的值不同。
首先假设信道是低相关的信道,假设一个Codeword(码字)计算出SINR=A,然后利用MIESM的公式(见表1)获得对应的MI=(B1对应QPSK,B2对应16QAM,B3对应64QAM)值,查低相关反馈表(假设门限值等于 T0、T2、……、T15,根据标准36.213定义,T0-T5对应QPSK,T6-T8对应16QAM,T9-T15对应64QAM)。先用B3与T15比较,如果B3大于T15,就取T15对应的传输块的索引作为输出,否则就比较T14,如果B3大于T14,就取T14对应的索引输出,否则继续比较一直到找到合适的值(为I0)为止。另一个Codeword也是这么获取CQI(I1)值。这就是CQI初选的结果。然后比较两个Codeword的CQI差异(I0-I1的绝对值),假设差异(I0-I1的绝对值)大于门限TH,就判定信道为高相关,否则就利用信道的相关矩阵对应的特征值比值来判定是否低相关(特征值(奇异值)的计算见公式10),如果不是,就判定为中相关,否则判定为低相关。如果判定的结果不是低相关,就需要对CQI进行重选,重选就按照上述的过程获得。不同的是CQI反馈门限表要根据信道相关性更换为高相关或者中相关对应的CQI反馈门限表。
在本实施例中,提供了一种无线通信系统中基于非线性接收机的反馈方法,采用本公开文本的实施方式,无线通信系统中非线性接收机反馈模块可以根据不同的信道相关性采用不同的CQI反馈门限表确定CQI反馈值,提高了线性接收机的整体反馈性能,从而解决相关技术中如果在非线性接收机的情况下不改变算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差的问题。
在一些实施例中,参见图5,图中示出了一种反馈方法,具体步骤如下:
步骤501、计算非线性接收机的SINR,然后进入步骤502;
可参考计算线性接收机的SINR方案,例如按照上述公式(7)计算非线性接收机的SINR。
步骤502、根据SINR计算MI,然后进入步骤503;
MI的计算参考上述表1。
步骤503、假定一种相关性,根据MI进行CQI初选,得到CQI初选结果,然后进入步骤504;
步骤504、根据CQI初选结果,判定信道相关性;
步骤505、判定相关性是否改变,若是,进入步骤506;否则,结束本流程;
CQI进行初选时需要假设一个信道的相关性(可以是低相关),根据初选 后得到的两个CQI Index的差异可以判定信道的是否高相关,如果是高相关,就改变了相关性。如果不是高相关,就根据信道相关矩阵的特征值进行判定是否低相关,如果不是,就认为改变了相关性,否则就没有改变相关性。对于步骤4下面有详细的流程图说明信道的低中高相关性的判定过程。
步骤506、根据MI进行CQI重选,得到CQI重选结果。
参见图6,图中示出了信道相关性的判定流程,具体步骤如下:
步骤601、计算CQI两个码字的差值;
步骤602、判定差值是否大于或等于T1,若是,进入步骤603;否则,进入步骤604;
步骤603、判定采样信道为高相关信道,然后进入步骤603;
通过高相关信道,两个接收、发送天线发送的信号是高度相关的,不容易相互区分。
步骤604、计算特征值比值,然后进入步骤605;
步骤605、判断比值是否小于低相关门限,若是,进入步骤606;否则,进入步骤607;
步骤606、判定采样信道为中相关信道;
步骤607、判定采样信道为低相关信道。
低相关信道认为各个天线发送的数据是接近独立的,比较容易把两个天线的数据区分出来。
然后统计所有采样信道的结果,如果采样判定为低相关信道的个数比例大于R(可选地,R=75%)就判定为低相关。否则判定为中相关。统计所有采样结果是为了提高判定的准确度,因为实际信道受噪声影响有误差,样本越多可靠度越高。
在本实施例中,提供了一种无线通信系统中基于非线性接收机的反馈方法,采用本公开文本的实施方式,无线通信系统中非线性接收机反馈模块可以根据不同的信道相关性采用不同的CQI反馈门限表确定CQI反馈值,提高了线性接收机的整体反馈性能,从而解决相关技术中如果在非线性接收机的情况下不改变算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差的问题。
在一些实施例中,参见图7,图中示出了一种反馈装置,该反馈装置700包括:
第一计算模块701,用于计算出采样信道的信号与干扰加噪声比SINR;
第二计算模块702,用于根据所述SINR,计算MI;
相关性确定模块703,用于确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;
CQI门限表确定模块704,用于根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;
CQI反馈值确定模块705,用于根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。
可选地,所述相关性确定模块包括:
估计单元,用于估计所述采样信道的估计相关性,其中,所述估计相关性为高相关、中相关和低相关中的任意一种;
CQI门限表确定单元,用于根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的估计相关性对应的第二CQI门限表;
CQI初选结果确定单元,用于根据所述MI和所述第二CQI反馈门限表,确定CQI初选结果;
实际相关性确定单元,用于根据所述CQI初选结果,确定所述采样信道的实际相关性。
可选地,所述反馈装置还包括:
判断模块,用于判断所述实际相关性与所述估计相关性是否相同;若所述实际相关性与所述估计相关性相同,则触发所述CQI门限表确定模块根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;若所述实际相关性与所述估计相关性不相同,则触发所述估计单元估计所述采样信道的估计相关性,对CQI进行重选。
可选地,所述实际相关性确定模块包括:
第一获取子单元,用于获取所述CQI初选结果中两个CQI码字的差值;
第一判定子单元,用于若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
可选地,所述实际相关性确定模块包括:
第二获取子单元,用于获取所述CQI初选结果中两个CQI码字的差值;
第三获取子单元,用于若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;
第二判定子单元,用于若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;
若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
可选地,所述实际相关性确定模块还包括:
统计子单元,用于统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;
第三判定子单元,用于若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
在本实施例中,提供了一种无线通信系统中基于非线性接收机的反馈装置,采用本公开文本的实施方式,无线通信系统中非线性接收机反馈模块可以根据不同的信道相关性采用不同的CQI反馈门限表确定CQI反馈值,提高了线性接收机的整体反馈性能,从而解决相关技术中如果在非线性接收机的情况下不改变算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差的问题。
在一些实施例中,参见图8,图中示出了一种反馈装置,包括:
处理器804,用于读取存储器805中的程序,执行下列过程:
计算出采样信道的信号与SINR;根据所述SINR,计算MI;确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。
收发机801,用于在处理器804的控制下接收和发送数据。
在图8中,总线架构(用总线800来代表),总线800可以包括任意数量 的互联的总线和桥,总线800将包括由处理器804代表的一个或多个处理器和存储器805代表的存储器的各种电路链接在一起。总线800还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起。总线接口803在总线800和收发机801之间提供接口。收发机801可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器804处理的数据通过天线802在无线介质上进行传输,进一步,天线802还接收数据并将数据传送给处理器804。
处理器804负责管理总线800和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器805可以被用于存储处理器804在执行操作时所使用的数据。
可选地,处理器804可以是中央处理单元(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
可选地,处理器804:
估计所述采样信道的估计相关性,其中,所述估计相关性为高相关、中相关和低相关中的任意一种;
根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的估计相关性对应的第二CQI门限表;
根据所述MI和所述第二CQI反馈门限表,确定CQI初选结果;
根据所述CQI初选结果,确定所述采样信道的实际相关性。
可选地,处理器804:
判断所述实际相关性与所述估计相关性是否相同;
若所述实际相关性与所述估计相关性相同,则进入根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表的步骤;
若所述实际相关性与所述估计相关性不相同,则进入估计所述采样信道的估计相关性的步骤,对CQI进行重选。
可选地,处理器804:
获取所述CQI初选结果中两个CQI码字的差值;
若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
可选地,处理器804:
获取所述CQI初选结果中两个CQI码字的差值;
若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;
若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;
若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
可选地,处理器804:
统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;
若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
在本实施例中,提供了一种无线通信系统中基于非线性接收机的反馈装置,采用本公开文本的实施方式,无线通信系统中非线性接收机反馈模块可以根据不同的信道相关性采用不同的CQI反馈门限表确定CQI反馈值,提高了线性接收机的整体反馈性能,从而解决相关技术中如果在非线性接收机的情况下不改变算法,将体现不出来非线性接收的优势,而且反馈的结果可能会有偏差的问题。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开文本的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开文本的各种实施例中,应理解,上述各过程的序号的大小并不 意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开文本实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。
在本申请所提供的一些实施例中,应该理解到,所揭露方法和装置,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性、机械或其他的形式。
另外,在本公开文本各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开文本各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述的是本公开文本的可选实施方式,应当指出对于本技术领域的 普通人员来说,在不脱离本公开文本所述的原理前提下还可以做出若干改进和润饰,这些改进和润饰也在本公开文本的保护范围内。

Claims (13)

  1. 一种反馈方法,包括:
    计算出采样信道的信号与干扰加噪声比(Signal and Interference to Noise Ratio,SINR);
    根据所述SINR,计算互信息(Mutual Information,MI);
    确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;
    根据预先设置的相关性与信道质量指示(Channel Quality Indicator,CQI)门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;
    根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。
  2. 根据权利要求1所述的反馈方法,其中,确定采样信道的实际相关性,包括:
    估计所述采样信道的估计相关性,其中,所述估计相关性为高相关、中相关和低相关中的任意一种;
    根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的估计相关性对应的第二CQI门限表;
    根据所述MI和所述第二CQI反馈门限表,确定CQI初选结果;
    根据所述CQI初选结果,确定所述采样信道的实际相关性。
  3. 根据权利要求2所述的反馈方法,还包括:
    判断所述实际相关性与所述估计相关性是否相同;
    若所述实际相关性与所述估计相关性相同,则进入根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表的步骤;
    若所述实际相关性与所述估计相关性不相同,则进入估计所述采样信道的估计相关性的步骤,对CQI进行重选。
  4. 根据权利要求2所述的反馈方法,其中,根据所述CQI初选结果,确 定所述采样信道的实际相关性,包括:
    获取所述CQI初选结果中两个CQI码字的差值;
    若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
  5. 根据权利要求2所述的反馈方法,其中,根据所述CQI初选结果,确定所述采样信道的实际相关性,包括:
    获取所述CQI初选结果中两个CQI码字的差值;
    若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;
    若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;
    若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
  6. 根据权利要求5所述的反馈方法,其中,所述根据所述CQI初选结果,确定所述采样信道的实际相关性,还包括:
    统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;
    若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
  7. 一种反馈装置,包括:
    第一计算模块,用于计算出采样信道的SINR;
    第二计算模块,用于根据所述SINR,计算MI;
    相关性确定模块,用于确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;
    CQI门限表确定模块,用于根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;
    CQI反馈值确定模块,用于根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值。
  8. 根据权利要求7所述的反馈装置,其中,所述相关性确定模块包括:
    估计单元,用于估计所述采样信道的估计相关性,其中,所述估计相关性为高相关、中相关和低相关中的任意一种;
    CQI门限表确定单元,用于根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的估计相关性对应的第二CQI门限表;
    CQI初选结果确定单元,用于根据所述MI和所述第二CQI反馈门限表,确定CQI初选结果;
    实际相关性确定单元,用于根据所述CQI初选结果,确定所述采样信道的实际相关性。
  9. 根据权利要求8所述的反馈装置,还包括:
    判断模块,用于判断所述实际相关性与所述估计相关性是否相同;若所述实际相关性与所述估计相关性相同,则触发所述CQI门限表确定模块根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;若所述实际相关性与所述估计相关性不相同,则触发所述估计单元估计所述采样信道的估计相关性,对CQI进行重选。
  10. 根据权利要求8所述的反馈装置,其中,所述实际相关性确定模块包括:
    第一获取子单元,用于获取所述CQI初选结果中两个CQI码字的差值;
    第一判定子单元,用于若所述CQI初选结果中两个CQI码字的差值大于或等于第一阈值,则判定所述采样信道的实际相关性为高相关。
  11. 根据权利要求8所述的反馈装置,其中,所述实际相关性确定模块包括:
    第二获取子单元,用于获取所述CQI初选结果中两个CQI码字的差值;
    第三获取子单元,用于若所述CQI初选结果中两个CQI码字的差值小于第一阈值,则获取所述采样的信道估计相关矩阵的特征值的比值;
    第二判定子单元,用于若所述采样的信道估计相关矩阵的特征值的比值大于第二阈值,则判定所述采样信道的实际相关性为中相关;
    若所述采样的信道估计相关矩阵的特征值的比值小于或等于第二阈值,则判定所述采样信道的实际相关性为低相关。
  12. 根据权利要求11所述的反馈装置,其中,所述实际相关性确定模块还包括:
    统计子单元,用于统计判定所述采样信道的实际相关性为中相关和判定所述采样信道的实际相关性为低相关的总数量;
    第三判定子单元,用于若判定所述采样信道的实际相关性为低相关的数量占所述总数量的比例大于第三阈值,则判定所述采样信道的实际相关性为低相关;否则,判定所述采样信道的实际相关性为中相关。
  13. 一种反馈装置,包括:处理器、存储器和收发机,其中:
    处理器,用于读取存储器中的程序,执行下列过程:
    计算出采样信道的SINR;
    根据所述SINR,计算MI;
    确定采样信道的实际相关性,所述实际相关性为高相关、中相关和低相关中的任意一种;
    根据预先设置的相关性与CQI门限表的对应关系,确定与所述采样信道的实际相关性对应的第一CQI门限表;
    根据所述MI和所述第一CQI反馈门限表,确定所述采样信道的CQI反馈值,
    收发机用于接收和发送数据,
    存储器能够存储处理器在执行操作时所使用的数据。
PCT/CN2017/085290 2016-07-25 2017-05-22 反馈方法及装置 WO2018019014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610591777.9A CN107659375B (zh) 2016-07-25 2016-07-25 反馈方法及装置
CN201610591777.9 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018019014A1 true WO2018019014A1 (zh) 2018-02-01

Family

ID=61015607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085290 WO2018019014A1 (zh) 2016-07-25 2017-05-22 反馈方法及装置

Country Status (2)

Country Link
CN (1) CN107659375B (zh)
WO (1) WO2018019014A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113032178A (zh) * 2019-12-09 2021-06-25 慧荣科技股份有限公司 存储器控制器及快闪存储器的存取方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889311B (zh) * 2019-03-25 2020-06-12 西安电子科技大学 基于组合编码的间隙信道通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265546A (zh) * 2008-12-23 2011-11-30 爱立信电话股份有限公司 基于接收数据的无线通信信道的信道质量确定
CN104519002A (zh) * 2013-09-30 2015-04-15 英特尔Ip公司 用于确定有效交互信息的方法和设备
CN104660365A (zh) * 2013-11-18 2015-05-27 展讯通信(上海)有限公司 信道状态测量方法、装置及用户终端
CN104753635A (zh) * 2013-12-31 2015-07-01 展讯通信(上海)有限公司 通信系统中信道质量指示的反馈方法与装置、通信终端
US9209870B1 (en) * 2014-12-11 2015-12-08 Telefonaktiebolaget L M Ericsson (Publ) Adaptive wireless MIMO communications system using list-based MIMO detector
CN105409134A (zh) * 2014-04-08 2016-03-16 华为技术有限公司 无线通信网络中的方法与网络节点

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5282425B2 (ja) * 2008-03-19 2013-09-04 富士通モバイルコミュニケーションズ株式会社 無線通信端末
CN104753636B (zh) * 2013-12-31 2018-03-23 展讯通信(上海)有限公司 通信系统中信道质量指示的反馈方法与装置、通信终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265546A (zh) * 2008-12-23 2011-11-30 爱立信电话股份有限公司 基于接收数据的无线通信信道的信道质量确定
CN104519002A (zh) * 2013-09-30 2015-04-15 英特尔Ip公司 用于确定有效交互信息的方法和设备
CN104660365A (zh) * 2013-11-18 2015-05-27 展讯通信(上海)有限公司 信道状态测量方法、装置及用户终端
CN104753635A (zh) * 2013-12-31 2015-07-01 展讯通信(上海)有限公司 通信系统中信道质量指示的反馈方法与装置、通信终端
CN105409134A (zh) * 2014-04-08 2016-03-16 华为技术有限公司 无线通信网络中的方法与网络节点
US9209870B1 (en) * 2014-12-11 2015-12-08 Telefonaktiebolaget L M Ericsson (Publ) Adaptive wireless MIMO communications system using list-based MIMO detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113032178A (zh) * 2019-12-09 2021-06-25 慧荣科技股份有限公司 存储器控制器及快闪存储器的存取方法
CN113032178B (zh) * 2019-12-09 2024-03-29 慧荣科技股份有限公司 存储器控制器及快闪存储器的存取方法

Also Published As

Publication number Publication date
CN107659375A (zh) 2018-02-02
CN107659375B (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN109804566B (zh) 使用极化码编码数据的方法和装置
US9467164B2 (en) Apparatus and method for supporting polar code designs
US7983223B2 (en) Apparatus and method for reporting channel quality indicator in wireless communication system
CN108141314B (zh) 用于确定纠错码系统的特征的方法和装置
CN102119562A (zh) 用于检测无线电链路中的失效和恢复的方法
CN111133704A (zh) 用于基于代码块组的第五代(5g)或其它下一代系统的自适应两级下行链路控制信道结构
US10003435B2 (en) Method, system and device for error detection in OFDM wireless communication networks without full forward error correction decoding
US9490938B1 (en) Systems and methods for performing iterative interference cancellation
CN102549959A (zh) 增大混合自动重复请求(harq)协议的吞吐量的方法和系统
CN111480324B (zh) 用于检测相互干扰的信息流的装置和方法
WO2019001065A1 (zh) 数据发送方法、装置及存储介质
US9094029B2 (en) Systems and methods for ordering codewords based on posterior information in successive interference cancellation (SIC) receivers
KR101051512B1 (ko) 컨피던스 표시자를 구비하는 블록 코드워드 디코더
US20160277963A1 (en) Method and device for eliminating interference, and storage medium
US9954657B2 (en) Method and apparatus for estimating channel information
WO2018019014A1 (zh) 反馈方法及装置
US11431543B2 (en) Facilitating a two-stage downlink control channel in a wireless communication system
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
ES2664170T3 (es) Procedimiento, sistema y dispositivo de detección de errores en redes de comunicación inalámbrica de OFDM
WO2017157066A1 (zh) 信道质量指示确定方法及装置、通信设备、存储介质
CN107205273B (zh) 一种dci盲探测数据的处理方法及装置
US20230130782A1 (en) Communication device for performing detection operation and demodulation operation on codeword and operating method thereof
US11387870B2 (en) MIMO detector selection
WO2017149774A1 (ja) 通信システム、中継装置、受信装置、中継方法、受信方法、中継プログラム、および受信プログラム
ES2755499T3 (es) Procedimiento, sistema y medio de almacenamiento para la corrección de información de indicación

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833319

Country of ref document: EP

Kind code of ref document: A1