WO2017157066A1 - 信道质量指示确定方法及装置、通信设备、存储介质 - Google Patents

信道质量指示确定方法及装置、通信设备、存储介质 Download PDF

Info

Publication number
WO2017157066A1
WO2017157066A1 PCT/CN2016/110492 CN2016110492W WO2017157066A1 WO 2017157066 A1 WO2017157066 A1 WO 2017157066A1 CN 2016110492 W CN2016110492 W CN 2016110492W WO 2017157066 A1 WO2017157066 A1 WO 2017157066A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
cqi
matrix
codeword
determining
Prior art date
Application number
PCT/CN2016/110492
Other languages
English (en)
French (fr)
Inventor
易立强
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2017157066A1 publication Critical patent/WO2017157066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present invention relates to a mobile communication technology, and in particular, to a channel quality indicator (CQI, Channel Quality Indicator) determining method and apparatus, a communication device, and a storage medium.
  • CQI Channel Quality Indicator
  • MIMO Multiple Input-Output
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced-Long Term Evolution
  • Space division multiplexing is an important form of MIMO technology. The basic idea is to decompose the multi-antenna channel into multiple independent parallel sub-channels, and transmit different data streams on these sub-channels to increase the transmission rate.
  • the actual channel of the transmitted signal is randomly varying, with frequency selectivity and time varying characteristics.
  • AMC adaptive modulation and coding
  • a receiver of such a system implementing AMC estimates a channel quality indicator (CQI) based on a channel condition of a signal, interference, etc., and then feeds the estimated CQI to a transmitter in the system, so that The transmitter may alternatively select a suitable modulation coding scheme to obtain a desired block error rate (BLER) at the receiver.
  • CQI channel quality indicator
  • BLER block error rate
  • CQI CQI
  • EESM Expoential Effective SNR Metric
  • MIESM Mutual Information Effective SNR Metric
  • MMSE Minimum Mean Square Error detection
  • SNR post-processing signal-to-noise ratio
  • an embodiment of the present invention provides a channel quality indication determining method and apparatus, a communication device, and a storage medium.
  • the average MI value of the codeword is calculated from the MI value of the layer, and the CQI value of the codeword is determined based on the average MI value of the codeword.
  • determining the CQI value of the codeword based on the average MI value of the codeword includes:
  • determining the CQI value of the codeword based on the average MI value of the codeword includes:
  • the determining the mutual information MI value of each layer includes:
  • the matrix is partitioned to obtain the main diagonal element; the index of the performance-related main diagonal element combination is found in the preset correspondence table and The value of the non-primary diagonal element of the matrix;
  • the index of the main diagonal element combination of the matrix is preset to find the corresponding MI value group in the corresponding table, and Non-primary diagonal elements as interpolation elements, multi-dimensional interpolation of MI value groups to determine performance-related The corresponding diagonal value of the matrix's main diagonal elements;
  • the main diagonal element of the matrix is used as an interpolation element, and the MI value of each layer of the upper triangular matrix is determined according to the MI value corresponding to the obtained performance-related main diagonal element combination.
  • the calculating the average MI value of the codeword according to the MI value of the layer includes:
  • MI j (k) denote the MI value of the codeword j obtained by the received channel matrix, and the average MI value MI j of the codeword is determined according to the following formula:
  • K is the number of subcarriers in the bandwidth.
  • the preset correspondence table includes A mapping table between the matrix and the layer MI.
  • the modulo processing of the elements of the upper triangular matrix includes:
  • the non-primary diagonal elements of the upper triangular matrix are subjected to modulo processing.
  • a channel quality indication CQI determining apparatus includes: a first determining unit, a normalization processing unit, a decomposition unit, a blocking processing unit, and a second determining unit, wherein:
  • a first determining unit configured to determine an equivalent channel matrix according to the received channel matrix and the precoding matrix
  • a normalization processing unit configured to perform a noise mean square normalization process on the equivalent channel matrix according to a noise mean square error of the received channel
  • Decomposing unit configured to perform orthogonal triangulation on the normalized equivalent channel matrix to determine the decomposed upper triangular matrix
  • a block processing unit configured to perform block processing on the upper triangular matrix according to the main diagonal element and the non-primary diagonal element to determine a mutual information MI value of each layer;
  • the second determining unit is configured to calculate an average MI value of the codeword according to the MI value of the layer, and determine a CQI value of the codeword based on an average MI value of the codeword.
  • the second determining unit is further configured to compare the average MI value of the codeword with the preset MI value threshold corresponding to the CQI in each modulation mode, respectively, and the MI value gate that satisfies the condition The limit corresponds to the largest CQI value among the CQI values as the CQI value of the codeword.
  • the second determining unit is further configured to obtain an equivalent SNR of the average MI value of the codeword according to a mapping relationship between the MI value and the signal to noise ratio SNR; according to the equivalent SNR and Selecting a modulation mode, searching for a correspondence between a preset CQI and an SNR threshold, and finding a maximum CQI value corresponding to the SNR threshold that satisfies the condition, and using the largest CQI value as the codeword CQI value.
  • the blocking processing unit is further configured to perform modulo processing on an element of the upper triangular matrix to obtain matrix
  • the matrix is partitioned to obtain the main diagonal element; the index of the performance-related main diagonal element combination is found in the preset correspondence table and The value of the non-primary diagonal element of the matrix;
  • the index of the main diagonal element combination of the matrix is preset to find the corresponding MI value group in the corresponding table, and Non-primary diagonal elements as interpolation elements, multi-dimensional interpolation of MI value groups to determine performance-related The corresponding diagonal value of the matrix's main diagonal elements;
  • the main diagonal element of the matrix is used as an interpolation element, and the MI value of each layer of the upper triangular matrix is determined according to the MI value corresponding to the obtained performance-related main diagonal element combination.
  • the second determining unit is further configured to restore the layer sequence of the received channel matrix according to the layer sequence of the orthogonal triangulation, and obtain the MI value of the corresponding codeword according to the layer-to-codeword de-mapping;
  • MI j (k) denote the MI value of the codeword j obtained by the received channel matrix, and the average MI value MI j of the codeword is determined according to the following formula:
  • K is the number of subcarriers in the bandwidth.
  • a communication device comprising the CQI determining device.
  • a storage medium having stored therein a computer program configured to perform the channel quality indication CQI determination method.
  • an equivalent channel matrix is determined according to the received channel matrix and the precoding matrix; and the equalization channel matrix is subjected to noise mean square normalization processing according to the noise mean square error of the received channel; Performing orthogonal trigonometric decomposition on the normalized equivalent channel matrix to determine the decomposed upper triangular matrix; and performing block processing on the upper triangular matrix according to the main diagonal element and the non-primary diagonal element to determine each layer
  • the mutual information MI value; the average MI value of the codeword is calculated according to the MI value of the layer, and the CQI value of the codeword is determined based on the average MI value of the codeword.
  • the technical solution of the embodiment of the present invention adopts a pre-simulation to construct a combination of the upper triangular matrix element modulo matrix and the layer MI value mapping table, which can directly be equivalent to the nonlinear detection performance, and achieve the purpose of accurately calculating the CQI, thereby improving the system. Spectrum utilization.
  • the block processing method is used to look up the table calculation layer MI, which is suitable for different types of nonlinear detection, and also reduces the table lookup and processing complexity.
  • FIG. 1 is a schematic diagram of a CQI determination principle in a MIMO system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for determining a CQI according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of determining a layer MI value based on a blocking method according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of determining a CQI by comparing MI thresholds according to an embodiment of the present invention
  • FIG. 5 is another schematic flowchart of determining CQI by comparing SNR value thresholds according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a CQI determining apparatus according to an embodiment of the present invention.
  • the received signal y is determined by:
  • each element in s contains ⁇ bits, s i ⁇ ⁇ , ⁇ is a set of constellation points;
  • H is the M R ⁇ M T -dimensional channel matrix;
  • Is a complex Gaussian white noise vector with a variance of ⁇ 2 .
  • a spatially transmitted wireless signal is processed by OFDM reception, and a log-Likelihood Ratio (LLR) is outputted by a detector, and then completed by a decoder.
  • the channel state information (CSI) is calculated by estimating the channel matrix H and the noise variance ⁇ 2 .
  • the receiving end feeds back channel state information (CSI) parameters according to channel conditions, which are a limited set of RI (Rank Indication), Precoding Matrix Indicator (PMI), and Channel Quality Indicator (CQI).
  • the CQI generally defines the modulation scheme, code rate, and efficiency of each CQI index.
  • the receiving end needs to report the highest CQI according to the current channel conditions.
  • the highest CQI corresponds to the estimated modulation and coding strategy (MCS) of the received downlink transmission block whose BLER does not exceed a defined percentage (eg, 10%).
  • MCS modulation and coding strategy
  • the determination of the CQI depends on the current transmission mode and the best RI and PMI selection for the current channel.
  • the CQI level of feedback directly reflects the reception performance under current conditions, which is closely related to the detector selected by the receiver.
  • linear detection is used.
  • MMSE the equivalent SINR of post-processing can be calculated explicitly using channel estimation parameters, but the performance is not as good as nonlinear detection.
  • Non-linear detection such as spherical detection (SD, Sphere Decoder), is widely used in performance to obtain performance close to ML (Maximum Likelihood) detection.
  • SD Sphere Decoder
  • ML Maximum Likelihood
  • FIG. 2 is a flowchart of a method for determining a CQI according to an embodiment of the present invention. As shown in FIG. 2, a method for determining a CQI according to an embodiment of the present invention includes the following steps:
  • Step 201 Obtain an equivalent channel matrix from an optimal precoding matrix.
  • the equivalent channel matrix H e (k) is:
  • k is the subcarrier label on the corresponding symbol.
  • the MIMO spatial division multiplexing at the transmitting end adopts a form of Cyclic Delay Diversity (CDD), and W(k) is selected according to a fixed rule.
  • CDD Cyclic Delay Diversity
  • Step 202 performing noise mean square normalization processing on the equivalent channel matrix.
  • the noise mean square error can be calculated by the pre-module.
  • the noise mean square error can be directly obtained.
  • step 203 the R matrix is obtained according to the same orthogonal trigonometric decomposition (QR) method in the space division multiplexing nonlinear detection, and the specific manner is as follows:
  • Q(k) is an orthogonal matrix and R(k) is an upper triangular matrix.
  • the SD method is usually adopted, which triangulates the channel matrix by QR decomposition, and is suitable for the tree search algorithm.
  • the QR decomposition method is different, and the QR decomposition method is also different.
  • the QR decomposition method adjusts the classic QR decomposition and adjusts the detection layer order.
  • FSD Fixed-complexity Sphere Detection
  • the QR decomposition method implemented here corresponds to the QR decomposition method used in the current space division multiplexing nonlinear detection, thus achieving the consistency between the method used in the CQI determination and the actual reception nonlinear detection. Due to the QR decomposition used to adjust the classic QR decomposition, the regularity of the triangular matrix (R matrix) is broken, and it is difficult to directly look up and process the table through the R matrix mapping MI.
  • Step 204 Perform block processing by the R matrix according to the main diagonal element and the non-master diagonal element, and obtain a mutual information (MI) value of the layer.
  • MI mutual information
  • This step is performed separately according to the combination of codeword modulation modes that may be adopted by the transmitting end, and the modulation mode may be any one of QPSK, 16QAM, 64QAM, and 256QAM, but is not limited thereto.
  • the modulation mode may be any one of QPSK, 16QAM, 64QAM, and 256QAM, but is not limited thereto.
  • it is generally possible to select the same modulation method for the codewords for example, two codeword modulation methods are combined with 64QAM-64QAM, but different modulation methods may also be adopted between the codewords.
  • FIG. 3 is a schematic flowchart of determining a layer MI value based on a blocking method according to an embodiment of the present invention. As shown in FIG. 3, the blocking processing method in the embodiment of the present invention specifically includes the following steps:
  • Step 301 obtaining an R matrix under the same QR decomposition method in spatial separation multiplexing nonlinear detection
  • Step 302 Perform modulo value processing on the obtained R matrix elements.
  • the specific method is as follows:
  • R ij (k) represents the i-th row and the j-th column element of the R(k) matrix, respectively.
  • QR is decomposed to ensure the uniqueness of the decomposition, and the main diagonal element is a positive real number, so the modulo operation can be performed only on non-primary diagonal elements.
  • the effect of elements on the non-diagonal line of the R matrix on nonlinear detection performance is approximately measured by its modulus.
  • the modulo operation can greatly reduce the dimensions of the R matrix, simplify the mapping table size and lookup methods, and the complexity of the MI operation.
  • Step 303 by The main diagonal elements obtained by matrix partitioning, the combination look-up table determines the index of the performance-related main diagonal element combination and the value of the non-main diagonal element.
  • the performance-related main diagonal element combination index mentioned here may be one or more.
  • the R element modulo matrix and the layer MI mapping table are divided into two parts, one is the index of the main diagonal element combination and the non-primary diagonal element value table, taking 4 receiving antenna 3 layer MIMO as an example, such as 1; another part of the MI value table corresponding to the index of the combination of the main diagonal elements and the non-primary diagonal element combination, taking 4 receiving antenna 3 layer MIMO as an example, as shown in Table 2.
  • the table is used in Table 1, with the main diagonal elements combined.
  • the index of the main diagonal element combination related to its performance may be i and j, and the values of the non-primary diagonal elements may be determined by i and j.
  • the value of the matrix element varies with the combination of modulation modes. Generally, the higher the modulation order, the larger the value range.
  • Step 304 The non-primary diagonal element is used as the interpolating element to perform the multi-dimensional interpolation to determine the MI corresponding to the performance-related main diagonal element combination according to the MI value group corresponding to the index table of the main diagonal element combination.
  • the MI value group described herein is a set of MI values corresponding to the index of the combination of the main diagonal elements and the vector of the non-primary diagonal elements.
  • the MI value in the set can be expressed by the following formula:
  • MI f(i,x,y,z)
  • x, y, and z respectively represent the corresponding
  • the non-primary diagonal elements of the matrix take values
  • f( ⁇ ) is a vector-to-MI value mapping function composed of x, y, and z under the main diagonal index i.
  • the main diagonal element index and the MI group table are combined by setting the conditional R matrix element value and the code word modulation method in advance, and are determined by using a large number of simulation statistics of the real link. In this way, high precision can be achieved to reflect true nonlinear reception performance.
  • the multi-dimensional interpolation used can be linear interpolation or other types of interpolation methods.
  • Step 305 The main diagonal element is used as an interpolation element to determine the MI value of each layer of the R matrix according to the MI value corresponding to the performance-related main diagonal element combination obtained.
  • Step 205 calculating an average MI value of the codeword.
  • the detection layer sequence is restored to the original reception channel matrix H layer order, and then the layer-to-codeword de-mapping determines the MI value of the corresponding codeword. If MI j (k) represents the MI value of the codeword j obtained corresponding to H(k), for the OFDM system, it is also necessary to average the MI value of the subcarrier calculated in the CQI feedback corresponding bandwidth.
  • K is the number of subcarriers calculated within the bandwidth.
  • Step 206 determining an optimal CQI by threshold comparison.
  • is a set of codeword modulation modes, and ⁇ is a modulation mode selected in the set;
  • the MI value of the codeword j obtained by the modulation method is ⁇
  • T ⁇ is the threshold value corresponding to the different CQI levels in the modulation mode ⁇ .
  • the threshold value can be obtained by link performance simulation by setting a modulation mode code rate corresponding to the CQI level and a desired BLER parameter.
  • the method includes: calculating an equivalent channel matrix, and obtaining the obtained channel matrix and an optimal precoding matrix; First, the equivalent channel matrix is normalized by the obtained noise mean square error; the R matrix is obtained in the QR decomposition, and the normalized matrix obtained by the pre-module is subjected to nonlinear detection to obtain the R matrix by QR decomposition of the same method.
  • the block processing method calculates the MI value, and the R matrix performs the block processing of the main diagonal element and the non-master diagonal element, and combines the R element modulo matrix and the layer MI value mapping table and the multidimensional interpolation to calculate the MI value by looking up the modulation mode.
  • De-mapping calculates the codeword average MI, where the demapping includes QR decomposition corresponding layer adjustment order demapping and layer-to-codeword De-mapping, the MI value of the same codeword is accumulated and averaged to obtain the MI value of the corresponding layer; the optimal CQI is determined, and the MI value of the codeword and the CQI corresponding MI value threshold value in different modulation modes set in advance are selected, and the condition is met.
  • the medium maximum CQI value is used as the final reported value of the codeword.
  • FIG. 5 is another schematic flowchart of determining CQI by comparing SNR value thresholds according to an embodiment of the present invention.
  • FIG. 5 is different from FIG. 4 in comparing and determining metrics used by CQI.
  • the equivalent SNR is obtained from the MI value and the SNR mapping relationship. From the equivalent SNR of the corresponding codeword, only one of the modulation modes, such as the highest order modulation mode, may be selected.
  • the codeword optimal CQI value is determined by a preset SNR value threshold corresponding to the CQI.
  • FIG. 6 is a schematic structural diagram of a CQI determining apparatus according to an embodiment of the present invention.
  • the CQI determining apparatus includes: a first determining unit 60, a normalization processing unit 61, a splitting unit 62, and a point.
  • the block processing unit 63 and the second determining unit 64 wherein:
  • the first determining unit 60 is configured to determine an equivalent channel matrix according to the received channel matrix and the precoding matrix
  • the normalization processing unit 61 is configured to perform a noise mean square normalization process on the equivalent channel matrix according to a noise mean square error of the received channel;
  • the decomposing unit 62 is configured to perform orthogonal triangulation on the normalized equivalent channel matrix to determine the decomposed upper triangular matrix;
  • the block processing unit 63 is configured to perform block processing on the upper triangular matrix according to the main diagonal element and the non-primary diagonal element to determine the mutual information MI value of each layer;
  • the second determining unit 64 is configured to calculate an average MI value of the codeword according to the MI value of the layer, and determine a CQI value of the codeword based on the average MI value of the codeword.
  • the second determining unit 64 is further configured to compare the average MI value of the codeword with the MI value threshold corresponding to the preset CQI in each modulation mode, respectively, and satisfy the condition of the MI value.
  • the threshold value corresponds to the largest CQI value among the CQI values as the CQI value of the codeword.
  • the second determining unit 64 is further configured to obtain an equivalent SNR of the average MI value of the codeword according to a mapping relationship between the MI value and the signal to noise ratio SNR; according to the equivalent SNR And selecting the modulation mode, searching for a correspondence between the preset CQI and the SNR threshold, and finding a maximum CQI value corresponding to the SNR threshold that satisfies the condition, and using the largest CQI value as the code The CQI value of the word.
  • the blocking processing unit 63 is further configured to perform modulo processing on elements of the upper triangular matrix to obtain matrix;
  • the matrix is partitioned to obtain the main diagonal element; the index of the performance-related main diagonal element combination is found in the preset correspondence table and The value of the non-primary diagonal element of the matrix;
  • the index of the main diagonal element combination of the matrix is preset to find the corresponding MI value group in the corresponding table, and Non-primary diagonal elements as interpolation elements, multi-dimensional interpolation of MI value groups to determine performance-related The corresponding diagonal value of the matrix's main diagonal elements;
  • the main diagonal element of the matrix is used as an interpolation element, and the MI value of each layer of the upper triangular matrix is determined according to the MI value corresponding to the obtained performance-related main diagonal element combination.
  • the second determining unit 64 is further configured to restore the layer sequence of the received channel matrix according to the layer sequence of the orthogonal triangulation, and obtain the MI of the corresponding codeword according to the layer-to-codeword de-mapping. value;
  • MI j (k) denote the MI value of the codeword j obtained by the received channel matrix, and the average MI value MI j of the codeword is determined according to the following formula:
  • K is the number of subcarriers in the bandwidth.
  • the preset correspondence table includes A mapping table between the matrix and the layer MI.
  • the blocking processing unit 63 performs modulo processing on the elements of the upper triangular matrix, including:
  • the non-primary diagonal elements of the upper triangular matrix are subjected to modulo processing.
  • the embodiment of the invention further describes a communication device, wherein the communication device comprises the CQI determination device of the foregoing embodiments.
  • Embodiments of the present invention also provide a computer readable storage medium arranged to store program code for performing the steps in the embodiments of the channel quality indication CQI determination method in the foregoing.
  • the communication device includes a base station, a relay node, a micro base station, and the like, and may also include a mobile terminal, such as a mobile phone.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or It is implemented in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM read only memory
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • the invention adopts the pre-simulation and the combination of the upper triangular matrix element modulo matrix and the layer MI value mapping table, which can be directly equivalent to the nonlinear detection performance, and achieves the purpose of accurately calculating the CQI, thereby improving the system spectrum utilization rate.
  • the block processing method is used to look up the table calculation layer MI, which is suitable for different types of nonlinear detection, and also reduces the table lookup and processing complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信道质量指示CQI确定方法及装置、通信设备、存储介质,所述方法包括:根据所接收的信道矩阵及预编码矩阵确定等效信道矩阵;根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。

Description

信道质量指示确定方法及装置、通信设备、存储介质 技术领域
本发明涉及移动通信技术,尤其是涉及一种信道质量指示(CQI,Channel Quality Indicator)确定方法及装置、通信设备、存储介质。
背景技术
多输入输出(MIMO,Multiple-Input Multiple-Output)技术是当前无线通信提高频谱效率的主要方法。目前,802.11n/ac、长期演进(LTE,Long Term Evolution)/高级长期演进(LTE-A,Long Term Evolution–Advanced)系统等新一代高吞吐量无线通信协议均已采用该技术。空分复用则是MIMO技术的一种重要形式,其基本思想是将多天线信道分解为多个独立的并行的子信道,通过这些子信道上发送不同的数据流提高传输速率。然而,实际信号传输的无线信道是随机变化的,具有频率选择性和时变特性。通信系统中通常会采用自适应调制和编码(AMC,Adaptive Modulation and Coding)技术,其根据信道的即时质量,动态调整无线链路传输的调制方式与编码速率,以提高传输速率和系统的吞吐量。具体地,实施AMC的这种系统的接收机基于信号的信道条件、干扰等因素等来估计信道质量指示(CQI,Channel Quality Indicator),然后将所估计的CQI反馈至系统中的发射机,以便发射机可以或选择合适的调制编码方案,从而使接收机处获得期望块差错率(BLER,Block Error Rate)。如此,对于MCS准确而适当选择及对于取得所期望的BLER以提高系统频谱利用率,CQI的准确度非常重要。
目前常用于确定CQI的方法如指数等效SNR映射(EESM,Exponential Effective SNR Metric)和互信息等效SNR映射(MIESM,Mutual Information Effective SNR Metric)等,这些确定CQI的方法虽然能够用于线性检测, 如最小均方误差(MMSE,Minimum Mean Square Error)检测,其通过得到后处理信噪比(SNR,Signal Noise Ratio)计算等效SNR,从而确定CQI。但若上述确定CQI的方法用于非线性检测,由于难以准确得到非线性检测的后处理SNR,则确定CQI时精度较差,不能完全获得非线性检测带来的潜在性能增益。
发明内容
为解决上述技术问题,本发明实施例提供了一种信道质量指示确定方法及装置、通信设备、存储介质。
本发明实施例提供的一种信道质量指示CQI确定方法,所述方法包括:
根据所接收的信道矩阵及预编码矩阵确定等效信道矩阵;
根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;
对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;
对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;
根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。
本发明实施例中,所述基于所述码字的平均MI值确定所述码字的CQI值,包括:
将码字的平均MI值与预设的各调制方式下CQI对应的MI值门限值分别进行比较,在满足条件的MI值门限值对应CQI值中最大的CQI值作为所述码字的CQI值。
本发明实施例中,所述基于所述码字的平均MI值确定所述码字的CQI值,包括:
根据MI值与信噪比SNR之间的映射关系获得所述码字的平均MI值的等效SNR;
根据所述等效SNR及所选择的调制方式,查找预设的CQI与SNR门限值之间的对应关系,并查找出满足条件的SNR门限值对应的最大的CQI值,将该最大的CQI值作为所述码字的CQI值。
本发明实施例中,所述确定出各层的互信息MI值,包括:
对所述上三角矩阵的元素进行求模处理,得到
Figure PCTCN2016110492-appb-000001
矩阵;
Figure PCTCN2016110492-appb-000002
矩阵进行分块,而获得主对角线元素;在预设对应表中查找性能相关的主对角线元素组合的索引及
Figure PCTCN2016110492-appb-000003
矩阵的非主对角元素取值;
依据
Figure PCTCN2016110492-appb-000004
矩阵的主对角线元素组合的索引预设对应表中查找对应的MI值组,将
Figure PCTCN2016110492-appb-000005
的非主对角元素作为插值元素,对MI值组进行多维插值确定性能相关的
Figure PCTCN2016110492-appb-000006
矩阵的主对角线元素组合对应的MI值;
Figure PCTCN2016110492-appb-000007
矩阵的主对角元素作为插值元素,依据得到的性能相关的主对角线元素组合对应的MI值确定所述上三角矩阵的每层的MI值。
本发明实施例中,所述根据层的MI值计算码字的平均MI值,包括:
依据正交三角分解的层顺序恢复到所接收的信道矩阵的层顺序,根据层到码字的解映射获得对应码字的MI值;
设MIj(k)表示所接收的信道矩阵得到的码字j的MI值,则码字的平均MI值MIj依据下式确定:
Figure PCTCN2016110492-appb-000008
其中,K为带宽内子载波个数。
本发明实施例中,所述预设对应表包括
Figure PCTCN2016110492-appb-000009
矩阵与层MI之间的映射表。
本发明实施例中,所述对所述上三角矩阵的元素进行求模处理,包括:
对所述上三角矩阵的非主对角元素进行求模处理。
一种信道质量指示CQI确定装置,包括:第一确定单元、归一化处理单元、分解单元、分块处理单元和第二确定单元,其中:
第一确定单元,配置为根据所接收的信道矩阵及预编码矩阵确定等效信道矩阵;
归一化处理单元,配置为根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;
分解单元,配置为对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;
分块处理单元,配置为对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;
第二确定单元,配置为根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。
本发明实施例中,所述第二确定单元,还配置为将码字的平均MI值与预设的各调制方式下CQI对应的MI值门限值分别进行比较,在满足条件的MI值门限值对应CQI值中最大的CQI值作为所述码字的CQI值。
本发明实施例中,所述第二确定单元,还配置为根据MI值与信噪比SNR之间的映射关系获得所述码字的平均MI值的等效SNR;根据所述等效SNR及所选择的调制方式,查找预设的CQI与SNR门限值之间的对应关系,并查找出满足条件的SNR门限值对应的最大的CQI值,将该最大的CQI值作为所述码字的CQI值。
本发明实施例中,所述分块处理单元,还配置为对所述上三角矩阵的元素进行求模处理,得到
Figure PCTCN2016110492-appb-000010
矩阵;
Figure PCTCN2016110492-appb-000011
矩阵进行分块,而获得主对角线元素;在预设对应表中查找性能相关的主对角线元素组合的索引及
Figure PCTCN2016110492-appb-000012
矩阵的非主对角元素取值;
依据
Figure PCTCN2016110492-appb-000013
矩阵的主对角线元素组合的索引预设对应表中查找对应的MI值 组,将
Figure PCTCN2016110492-appb-000014
的非主对角元素作为插值元素,对MI值组进行多维插值确定性能相关的
Figure PCTCN2016110492-appb-000015
矩阵的主对角线元素组合对应的MI值;
Figure PCTCN2016110492-appb-000016
矩阵的主对角元素作为插值元素,依据得到的性能相关的主对角线元素组合对应的MI值确定所述上三角矩阵的每层的MI值。
本发明实施例中,第二确定单元,还配置为依据正交三角分解的层顺序恢复到所接收的信道矩阵的层顺序,根据层到码字的解映射获得对应码字的MI值;
设MIj(k)表示所接收的信道矩阵得到的码字j的MI值,则码字的平均MI值MIj依据下式确定:
Figure PCTCN2016110492-appb-000017
其中,K为带宽内子载波个数。
一种通信设备,所述通信设备包括所述的CQI确定装置。
一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行所述的信道质量指示CQI确定方法。
本发明实施例的技术方案中,根据所接收的信道矩阵及预编码矩阵确定等效信道矩阵;根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。本发明实施例的技术方案采用预先仿真构建调制方式组合的上三角矩阵元素求模矩阵与层MI值映射表,能直接等效为非线性检测性能,达到精确计算CQI的目的,从而提高了系统频谱利用率。采用分块处理方法查表计算层MI,适用于不同的类型的非线性检测,同时也降低了查表和处理复杂度。
附图说明
图1为本发明实施例的MIMO系统中CQI确定原理的示意图;
图2为本发明实施例的CQI确定方法的流程图;
图3为本发明实施例的基于分块方法确定层MI值的流程示意图;
图4为本发明实施例的通过比较MI值门限确定CQI的流程示意图;
图5为本发明实施例的通过比较SNR值门限确定CQI的另一流程示意图;
图6为本发明实施例的CQI确定装置的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
对于由MT个发射天线和MR个接收天线组成的空分复用MIMO系统,接收到的信号y由下式确定:
y=Hs+N
其中,
Figure PCTCN2016110492-appb-000018
为发送信号向量,s中每个元素包含Ω比特,si∈θ,θ为星座点集;
Figure PCTCN2016110492-appb-000019
为接收信号向量;H为MR×MT维信道矩阵;
Figure PCTCN2016110492-appb-000020
是复高斯白噪声向量,方差为σ2
如图1所示,在OFDM-MIMO接收系统中,空间传输的无线信号通过OFDM接收处理,通过检测器的检测输出对数似然比(LLR,Log-Likelihood Ratio),然后由译码器完成译码工作。而信道状态信息(CSI,Channel State Information)则通过估计得到的信道矩阵H和噪声方差σ2运算得到。接收端根据信道条件反馈信道状态信息(CSI)的参数,其为秩指示(RI,Rank Indication)、预编码矩阵指示(PMI,Precoding Matrix Indicator)以及信道 质量指示(CQI)的有限集合。CQI一般定义了每个CQI索引的调制方式、码速率和效率。接收端需依据当前信道条件上报最高的CQI。最高的CQI对应于所估计的接收下行链路传输块的BLER没有超过所定义的百分比(比如10%)的调制与编码策略(MCS,Modulation and Coding Scheme)。
在反馈CSI计算中,CQI的确定取决于当前发送模式及针对当前信道的最佳RI和PMI选择。反馈的CQI等级直接反映了当前条件下接收性能,其与接收机所选的检测器密切相关。对于空分复用则选用线性检测,比如MMSE,后处理的等效SINR能够使用信道估计参数明确计算,但性能却不如非线性检测优越。非线性检测,比如球形检测(SD,Sphere Decoder),在性能上能够获得接近最大似然估计(ML,Maximum Likelihood)检测的性能,从而得到广泛应用。但由于检测的非线性关系,难以直接得到其等效性能,加之为了降低检测搜索复杂度,运算中还进行了一些近似和简化处理,这样使CQI的计算则变得更加具有挑战。
图2为本发明实施例的CQI确定方法的流程图,如图2所示,本发明实施例的CQI确定方法包括以下步骤:
步骤201,由最优预编码矩阵获得等效信道矩阵。
具体地,若以H表示接收得到的信道矩阵,W为表示得到的最优预编码矩阵,则等效信道矩阵He(k)为:
He(k)=H(k)·W(k)
其中,k为对应符号上子载波标号。特别地,发射端MIMO空分复用采用大延时CDD(Cyclic Delay Diversity)形式,W(k)则按照固定的规则选择。
步骤202,对等效信道矩阵进行噪声均方差归一化处理。
若以σ表示估计得到的噪声均方差,则归一化处理为:
Figure PCTCN2016110492-appb-000021
其中,
Figure PCTCN2016110492-appb-000022
是归一化后的等效信道矩阵,噪声均方差可由前置模块计算,本发明实施例使用时直接获取该噪声均方差即可。
步骤203,按照空分复用非线性检测中相同的正交三角分解(QR)方法求得R矩阵,具体方式如下:
Figure PCTCN2016110492-appb-000023
其中,Q(k)为正交矩阵,R(k)为上三角矩阵。
在非线性检测中,通常采用SD方法,其会将信道矩阵进行QR分解进行三角化,从而适用于树搜索算法。采用的SD方法不同,QR分解方法也会有些不同。为了达到较好性能,QR分解方法会对经典的QR分解进行调整,调整检测层顺序,例如FSD(Fixed-complexity Sphere Detection)则采用排序QR方法。这里实施的QR分解方法,对应于目前空分复用非线性检测中使用的QR分解方法,这样也就达到了CQI确定中使用的方法和实际接收非线性检测的一致性。由于采用的QR分解对经典的QR分解进行了调整,三角矩阵(R矩阵)的规律性被打破,直接通过R矩阵映射MI查表和处理则遇到了困难。
步骤204,由R矩阵按照主对角元素和非主对角元素进行分块处理,求取层的互信息(MI,Mutual information)值。
本步骤依据发送端可能采用的码字调制方式组合分别进行,调制方式可以是QPSK,16QAM,64QAM和256QAM中的任一种,但不限于此。为了简化处理,通常可以选择码字采用相同的调制方法,比如两个码字调制方式组合64QAM-64QAM,但也可以采用码字间采用不同的调制方式。
图3为本发明实施例的基于分块方法确定层MI值的流程示意图,如图3所示,本发明实施例的分块处理方法具体包括以下步骤:
步骤301,求取空分复用非线性检测中相同QR分解方法下R矩阵
步骤302,对得到的R矩阵元素进行求模值处理。具体方式如下:
Figure PCTCN2016110492-appb-000024
其中,Rij(k)分别表示R(k)矩阵的第i行第j列元素。一般说来,QR分解为保证分解的唯一性,主对角元素为正实数,所以求模运算可仅在非主对角线元素上进行。R矩阵非对角线上元素对非线性检测性能的影响近似通过其模值来衡量。求模运算能够极大的降低R矩阵的维度,简化映射表大小和查找方法,以及求取MI运算的复杂度。
步骤303,由
Figure PCTCN2016110492-appb-000025
矩阵分块得到的主对角线元素,其组合查表确定性能相关的主对角线元素组合的索引及非主对角元素取值。这里所说的性能相关的主对角线元素组合索引可以是一个,也可能是多个。
调制方式下R元素求模矩阵与层MI映射表分为两部分,一部分为主对角线元素组合的索引及非主对角元素取值表,以4接收天线3层MIMO为例,如表1所示;另一部分为主对角线元素组合的索引与非主对角元素组合对应的MI值表,以4接收天线3层MIMO为例,如表2所示。
Figure PCTCN2016110492-appb-000026
表1
Figure PCTCN2016110492-appb-000027
Figure PCTCN2016110492-appb-000028
表2
这里查表运用的是表1,以主对角元素组合
Figure PCTCN2016110492-appb-000029
为例,与其性能相关的主对角线元素组合的索引可能是i和j,由i和j可确定非主对角元素取值。
Figure PCTCN2016110492-appb-000030
矩阵元素取值随调制方式组合不同而有所不同,一般地,调制阶数越高,取值范围越大。
步骤304,
Figure PCTCN2016110492-appb-000031
非主对角元素作为插值元素依据主对角线元素组合的索引查表对应的MI值组进行多维插值确定性能相关的主对角线元素组合对应的MI。
这里所述的MI值组为在主对角线元素组合的索引确定,对非主对角元素取值抽取组成的向量对应的MI值集合,集合中MI值可采用如下式子表示:
MI=f(i,x,y,z)
Figure PCTCN2016110492-appb-000032
其中,
Figure PCTCN2016110492-appb-000033
为抽取函数,x,y,z分别表示对应
Figure PCTCN2016110492-appb-000034
矩阵非主对角元素取值抽取值,f(·)为在主对角线索引i下,由x,y,z组成向量到MI值映射函数。主对角线元素索引与MI组表格通过事先设置符合条件R矩阵元素取值和码字调制方式组合,使用真实链路大量仿真统计确定得到。这样,也就能达到高精度反映真实的非线性接收性能。采用的多维插值可以是线性插值,也可以是其他类型的插值方法。
步骤305,
Figure PCTCN2016110492-appb-000035
主对角元素作为插值元素依据得到的性能相关的主对角线元素组合对应的MI值确定R矩阵每层MI值。
以下继续描述图2的处理流程。
步骤205,计算码字的平均MI值。
依据QR分解的调整检测层顺序恢复到原始接收信道矩阵H层顺序,然后层到码字的解映射求得对应码字的MI值。若MIj(k)表示对应H(k)得到的码字j的MI值,对于OFDM系统,还需要将CQI反馈对应带宽内计算的子载波的MI值进行平均处理。
Figure PCTCN2016110492-appb-000036
其中K为带宽内计算子载波个数。
步骤206,通过门限比较确定最优的CQI。
将码字的MI与预先设置的不同调制方式下CQI对应MI值门限值比较,选择满足条件中最大CQI值作为该码字最终上报值。
Figure PCTCN2016110492-appb-000037
其中,Θ为码字调制方式集合,α为集合中选择的调制方式;
Figure PCTCN2016110492-appb-000038
是调制方式为α下求得的码字j的MI值,Tα为调制方式α下不同CQI等级对应的门限值。门限值可通过预先设置CQI等级对应的调制方式码率及期望BLER等参数通过链路性能仿真得到。
图4为本发明实施例的通过比较MI值门限确定CQI的流程示意图,如图4所示,其包括:等效信道矩阵计算,由获取的信道矩阵和最优预编码矩阵运算得到;信道归一化,利用获取的噪声均方差对等效信道矩阵进行归一化处理;QR分解中R矩阵求取,对前置模块得到的归一化矩阵实施非线性检测相同方法的QR分解获得R矩阵;分块处理方法计算MI值,R矩阵进行主对角线元素和非主对角元素分块处理,通过查找调制方式组合下R元素求模矩阵与层MI值映射表和多维插值计算MI值;解映射计算码字平均MI,这里解映射包含QR分解对应层调整顺序解映射和层与码字间 的解映射,将相同码字的MI值累加平均得到对应层的MI值;确定最优的CQI,将码字的MI与预先设置的不同调制方式下CQI对应MI值门限值,选择满足条件中最大CQI值作为该码字最终上报值。前述步骤均可参照图2所示的流程理解。
图5为本发明实施例的通过比较SNR值门限确定CQI的另一流程示意图,图5相比图4在进行比较确定CQI采用的度量上有所区别。图5中在得到码字的MI值后,由MI值和SNR映射关系得到等效SNR,由对应码字的等效SNR,可选择只处理其中一种调制方式,如最高阶调制方式,再通过预先设置的CQI对应的等效SNR值门限值确定该码字最优CQI值。
图6为本发明实施例的CQI确定装置的结构组成示意图,如图6所示,本发明实施例的CQI确定装置包括:第一确定单元60、归一化处理单元61、分解单元62、分块处理单元63和第二确定单元64,其中:
第一确定单元60,配置为根据所接收的信道矩阵及预编码矩阵确定等效信道矩阵;
归一化处理单元61,配置为根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;
分解单元62,配置为对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;
分块处理单元63,配置为对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;
第二确定单元64,配置为根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。
作为一种实现方式,所述第二确定单元64,还配置为将码字的平均MI值与预设的各调制方式下CQI对应的MI值门限值分别进行比较,在满足条件的MI值门限值对应CQI值中最大的CQI值作为所述码字的CQI值。
作为一种实现方式,所述第二确定单元64,还配置为根据MI值与信噪比SNR之间的映射关系获得所述码字的平均MI值的等效SNR;根据所述等效SNR及所选择的调制方式,查找预设的CQI与SNR门限值之间的对应关系,并查找出满足条件的SNR门限值对应的最大的CQI值,将该最大的CQI值作为所述码字的CQI值。
作为一种实现方式,所述分块处理单元63,还配置为对所述上三角矩阵的元素进行求模处理,得到
Figure PCTCN2016110492-appb-000039
矩阵;
Figure PCTCN2016110492-appb-000040
矩阵进行分块,而获得主对角线元素;在预设对应表中查找性能相关的主对角线元素组合的索引及
Figure PCTCN2016110492-appb-000041
矩阵的非主对角元素取值;
依据
Figure PCTCN2016110492-appb-000042
矩阵的主对角线元素组合的索引预设对应表中查找对应的MI值组,将
Figure PCTCN2016110492-appb-000043
的非主对角元素作为插值元素,对MI值组进行多维插值确定性能相关的
Figure PCTCN2016110492-appb-000044
矩阵的主对角线元素组合对应的MI值;
Figure PCTCN2016110492-appb-000045
矩阵的主对角元素作为插值元素,依据得到的性能相关的主对角线元素组合对应的MI值确定所述上三角矩阵的每层的MI值。
作为一种实现方式,所述第二确定单元64,还配置为依据正交三角分解的层顺序恢复到所接收的信道矩阵的层顺序,根据层到码字的解映射获得对应码字的MI值;
设MIj(k)表示所接收的信道矩阵得到的码字j的MI值,则码字的平均MI值MIj依据下式确定:
Figure PCTCN2016110492-appb-000046
其中,K为带宽内子载波个数。
本发明实施例中,所述预设对应表包括矩阵与层MI之间的映射表。
本发明实施例中,所述分块处理单元63,对所述上三角矩阵的元素进行求模处理,包括:
对所述上三角矩阵的非主对角元素进行求模处理。
本领域技术人员应当理解,图6所示的CQI确定装置中的各处理单元的实现功能可参照前述CQI确定方法的实施例的相关描述而理解。图6所示的CQI确定装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例还记载了一种通信设备,其中,所述通信设备包括前述各实施例的CQI确定装置。
本发明的实施例还提供了一种计算机可读的存储介质,该存储介质被设置为存储用于执行前文中的信道质量指示CQI确定方法的各实施例中的步骤的程序代码。
本发明实施例中,通信设备包括基站、中继节点、微基站等,也可以包括移动终端如手机等。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可 以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明采用预先仿真构建调制方式组合的上三角矩阵元素求模矩阵与层MI值映射表,能直接等效为非线性检测性能,达到精确计算CQI的目的,从而提高了系统频谱利用率。采用分块处理方法查表计算层MI,适用于不同的类型的非线性检测,同时也降低了查表和处理复杂度。

Claims (14)

  1. 一种信道质量指示CQI确定方法,所述方法包括:
    根据所接收的信道矩阵及预编码矩阵确定等效信道矩阵;
    根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;
    对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;
    对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;
    根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。
  2. 根据权利要求1所述的CQI确定方法,其中,所述基于所述码字的平均MI值确定所述码字的CQI值,包括:
    将码字的平均MI值与预设的各调制方式下CQI对应的MI值门限值分别进行比较,在满足条件的MI值门限值对应CQI值中最大的CQI值作为所述码字的CQI值。
  3. 根据权利要求1所述的CQI确定方法,其中,所述基于所述码字的平均MI值确定所述码字的CQI值,包括:
    根据MI值与信噪比SNR之间的映射关系获得所述码字的平均MI值的等效SNR;
    根据所述等效SNR及所选择的调制方式,查找预设的CQI与SNR门限值之间的对应关系,并查找出满足条件的SNR门限值对应的最大的CQI值,将该最大的CQI值作为所述码字的CQI值。
  4. 根据权利要求1至3任一项所述的CQI确定方法,其中,所述确定出各层的互信息MI值,包括:
    对所述上三角矩阵的元素进行求模处理,得到
    Figure PCTCN2016110492-appb-100001
    矩阵;
    Figure PCTCN2016110492-appb-100002
    矩阵进行分块,而获得主对角线元素;在预设对应表中查找性能相关的主对角线元素组合的索引及
    Figure PCTCN2016110492-appb-100003
    矩阵的非主对角元素取值;
    依据
    Figure PCTCN2016110492-appb-100004
    矩阵的主对角线元素组合的索引预设对应表中查找对应的MI值组,将
    Figure PCTCN2016110492-appb-100005
    的非主对角元素作为插值元素,对MI值组进行多维插值确定性能相关的
    Figure PCTCN2016110492-appb-100006
    矩阵的主对角线元素组合对应的MI值;
    Figure PCTCN2016110492-appb-100007
    矩阵的主对角元素作为插值元素,依据得到的性能相关的主对角线元素组合对应的MI值确定所述上三角矩阵的每层的MI值。
  5. 根据权利要求1至3任一项所述的CQI确定方法,其中,所述根据层的MI值计算码字的平均MI值,包括:
    依据正交三角分解的层顺序恢复到所接收的信道矩阵的层顺序,根据层到码字的解映射获得对应码字的MI值;
    设MIj(k)表示所接收的信道矩阵得到的码字j的MI值,则码字的平均MI值MIj依据下式确定:
    Figure PCTCN2016110492-appb-100008
    其中,K为带宽内子载波个数。
  6. 根据权利要求4所述的CQI确定方法,其中,所述预设对应表包括
    Figure PCTCN2016110492-appb-100009
    矩阵与层MI之间的映射表。
  7. 根据权利要求4所述的CQI确定方法,其中,所述对所述上三角矩阵的元素进行求模处理,包括:
    对所述上三角矩阵的非主对角元素进行求模处理。
  8. 一种信道质量指示CQI确定装置,所述装置包括:第一确定单元、归一化处理单元、分解单元、分块处理单元和第二确定单元,其中:
    第一确定单元,配置为根据所接收的信道矩阵及预编码矩阵确定等效 信道矩阵;
    归一化处理单元,配置为根据所接收的信道的噪声均方差对所述等效信道矩阵进行噪声均方差归一化处理;
    分解单元,配置为对归一化后的等效信道矩阵进行正交三角分解,确定分解后的上三角矩阵;
    分块处理单元,配置为对所述上三角矩阵按照主对角元素及非主对角元素进行分块处理,确定出各层的互信息MI值;
    第二确定单元,配置为根据层的MI值计算码字的平均MI值,基于所述码字的平均MI值确定所述码字的CQI值。
  9. 根据权利要求8所述的CQI确定装置,其中,所述第二确定单元,还配置为将码字的平均MI值与预设的各调制方式下CQI对应的MI值门限值分别进行比较,在满足条件的MI值门限值对应CQI值中最大的CQI值作为所述码字的CQI值。
  10. 根据权利要求8所述的CQI确定装置,其中,所述第二确定单元,还配置为根据MI值与信噪比SNR之间的映射关系获得所述码字的平均MI值的等效SNR;根据所述等效SNR及所选择的调制方式,查找预设的CQI与SNR门限值之间的对应关系,并查找出满足条件的SNR门限值对应的最大的CQI值,将该最大的CQI值作为所述码字的CQI值。
  11. 根据权利要求8至10任一项所述的CQI确定装置,其中,所述分块处理单元,还配置为对所述上三角矩阵的元素进行求模处理,得到
    Figure PCTCN2016110492-appb-100010
    矩阵;
    Figure PCTCN2016110492-appb-100011
    矩阵进行分块,而获得主对角线元素;在预设对应表中查找性能相关的主对角线元素组合的索引及
    Figure PCTCN2016110492-appb-100012
    矩阵的非主对角元素取值;
    依据
    Figure PCTCN2016110492-appb-100013
    矩阵的主对角线元素组合的索引预设对应表中查找对应的MI值组,将
    Figure PCTCN2016110492-appb-100014
    的非主对角元素作为插值元素,对MI值组进行多维插值确定性能相关的
    Figure PCTCN2016110492-appb-100015
    矩阵的主对角线元素组合对应的MI值;
    Figure PCTCN2016110492-appb-100016
    矩阵的主对角元素作为插值元素,依据得到的性能相关的主对角线元素组合对应的MI值确定所述上三角矩阵的每层的MI值。
  12. 根据权利要求8至10任一项所述的CQI确定装置,其中,第二确定单元,还配置为依据正交三角分解的层顺序恢复到所接收的信道矩阵的层顺序,根据层到码字的解映射获得对应码字的MI值;
    设MIj(k)表示所接收的信道矩阵得到的码字j的MI值,则码字的平均MI值MIj依据下式确定:
    Figure PCTCN2016110492-appb-100017
    其中,K为带宽内子载波个数。
  13. 一种通信设备,其中,所述通信设备包括权利要求8至12任一项所述的CQI确定装置。
  14. 一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序配置为执行权利要求1至7任一项所述的信道质量指示CQI确定方法。
PCT/CN2016/110492 2016-03-17 2016-12-16 信道质量指示确定方法及装置、通信设备、存储介质 WO2017157066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610154808.4 2016-03-17
CN201610154808.4A CN107222248B (zh) 2016-03-17 2016-03-17 信道质量指示确定方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2017157066A1 true WO2017157066A1 (zh) 2017-09-21

Family

ID=59850738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110492 WO2017157066A1 (zh) 2016-03-17 2016-12-16 信道质量指示确定方法及装置、通信设备、存储介质

Country Status (2)

Country Link
CN (1) CN107222248B (zh)
WO (1) WO2017157066A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111475429B (zh) * 2019-01-24 2023-08-29 爱思开海力士有限公司 存储器访问方法
CN110648518B (zh) * 2019-09-23 2021-04-20 湖南长城信息金融设备有限责任公司 用于无人机和遥控器的数据传输方法及其相应的装置
CN115276908B (zh) * 2022-07-25 2023-09-22 哲库科技(北京)有限公司 一种无线通信方法及设备、存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274235A1 (en) * 2006-11-15 2009-11-05 Wook Bong Lee Data transmission method using dirty paper coding in mimo system
CN102265546A (zh) * 2008-12-23 2011-11-30 爱立信电话股份有限公司 基于接收数据的无线通信信道的信道质量确定
CN103209049A (zh) * 2013-02-27 2013-07-17 东南大学 迭代接收情况下的链路自适应传输方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274235A1 (en) * 2006-11-15 2009-11-05 Wook Bong Lee Data transmission method using dirty paper coding in mimo system
CN102265546A (zh) * 2008-12-23 2011-11-30 爱立信电话股份有限公司 基于接收数据的无线通信信道的信道质量确定
CN103209049A (zh) * 2013-02-27 2013-07-17 东南大学 迭代接收情况下的链路自适应传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE, CAN ET AL.: "Novel SNR and CQI Mapping Method in TD-LTE System", VIDEO ENGINEERING, vol. 37, no. 17, 31 December 2013 (2013-12-31), pages 209 - 212 *

Also Published As

Publication number Publication date
CN107222248A (zh) 2017-09-29
CN107222248B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN102882575B (zh) 用于确定信道状态信息的方法和装置
US8611453B2 (en) CQI table for wireless MIMO network
US8743988B2 (en) Transmission mode adaptation in a wireless network
US8787480B2 (en) Method of determining channel state information
US10341080B2 (en) Method and apparatus for determining quantity of channel quality indicators (CQI)
EP3213423B1 (en) Codebook restriction
WO2015158105A1 (zh) 自适应信道质量指示选择的方法及装置和计算机存储介质
US10477431B2 (en) Method and apparatus for determining signal-to-noise ratio in wireless communication
US11968005B2 (en) Provision of precoder selection policy for a multi-antenna transmitter
WO2016034051A1 (zh) 一种干扰抑制方法和装置
WO2017157066A1 (zh) 信道质量指示确定方法及装置、通信设备、存储介质
US9843377B2 (en) Method and apparatus for measuring link quality in wireless communication system
CN105933042A (zh) 一种lte系统中基于分簇的自适应有限反馈新方法
EP3224965B1 (en) Method and device for efficient precoder search
JP6180333B2 (ja) 無線周波数受信機において信号を復号化する方法
US10931341B2 (en) Channel state information extraction method and MIMO receiver using QR decomposition and MMIB metric
CN107222249B (zh) 一种信道状态信息获取方法及装置
KR20160027721A (ko) 다중입력 다중출력 시스템에서 채널 품질 측정 방법 및 장치
Godala et al. A deep learning based approach for 5G NR CSI estimation
ES2755499T3 (es) Procedimiento, sistema y medio de almacenamiento para la corrección de información de indicación
Lee et al. Link performance abstraction for interference-aware communications (IAC)
Lim et al. Performance of linear precoding and user selection in IEEE 802.11 ac downlink MU-MIMO system
WO2022252760A1 (zh) 多用户多输入多输出检测方法和装置、电子设备、介质
Zhang et al. Supervised learning method for link adaptation algorithm in coded MIMO-OFDM systems
KR101342626B1 (ko) 다중 입력 다중 출력 시스템에서 반복적 트리 검색에기반한 저 복잡도 신호 검출 장치 및 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894225

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894225

Country of ref document: EP

Kind code of ref document: A1