WO2018018474A1 - 无线收发装置和基站 - Google Patents

无线收发装置和基站 Download PDF

Info

Publication number
WO2018018474A1
WO2018018474A1 PCT/CN2016/091956 CN2016091956W WO2018018474A1 WO 2018018474 A1 WO2018018474 A1 WO 2018018474A1 CN 2016091956 W CN2016091956 W CN 2016091956W WO 2018018474 A1 WO2018018474 A1 WO 2018018474A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation patch
antenna unit
metal carrier
dielectric substrate
feed
Prior art date
Application number
PCT/CN2016/091956
Other languages
English (en)
French (fr)
Inventor
刘传
邓长顺
龙科
赵书晨
冯镳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019504759A priority Critical patent/JP2019527522A/ja
Priority to CA3031998A priority patent/CA3031998C/en
Priority to EP16910055.9A priority patent/EP3480886B1/en
Priority to KR1020197005564A priority patent/KR102120281B1/ko
Priority to PCT/CN2016/091956 priority patent/WO2018018474A1/zh
Priority to CN201680021514.2A priority patent/CN107925151B/zh
Publication of WO2018018474A1 publication Critical patent/WO2018018474A1/zh
Priority to US16/257,916 priority patent/US11245197B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • H01Q1/46Electric supply lines or communication lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave

Definitions

  • the present invention relates to the field of communications, and in particular, to a radio transceiver and a base station.
  • a wireless transceiver device is a common signal transceiver device, and mainly includes an antenna unit, a dielectric substrate, a shield cover, and a metal carrier.
  • the antenna unit disposed on the wireless transceiver device is usually an omnidirectional antenna unit, and the omnidirectional antenna unit exhibits 360° uniform radiation on the horizontal pattern, that is, the normal direction. Sexuality, which appears as a beam with a certain width on the vertical pattern.
  • a conventional omnidirectional antenna unit is generally a three-dimensional structure composed of a radiation sheet, a short-circuit probe, and a feed probe, and the omnidirectional antenna unit is disposed on a metal carrier or a shield cover.
  • the conventional omnidirectional antenna units are independent accessories and need to be separately processed and assembled on the metal carrier or the shielding cover, so that when the omnidirectional antenna unit is disposed on the shielding cover, the overall thickness of the wireless transceiver device is : a stacked thickness of the metal carrier, the shielding cover and the omnidirectional antenna unit; when the omnidirectional antenna unit is disposed on the metal carrier, the overall thickness of the wireless transceiver device is: a stacked thickness of the metal carrier and the omnidirectional antenna unit, and thus, the conventional The overall thickness of the wireless transceiver device is relatively thick, and the overall volume is large, and correspondingly, the occupied space is large.
  • the embodiment of the invention provides a radio transceiver and a base station.
  • the technical solution is as follows:
  • a wireless transceiver including:
  • the antenna unit comprising a feed structure and a radiation patch
  • a groove is disposed on the metal carrier, and the antenna unit is disposed in the groove.
  • the radiation patch is fed through the feed structure, the radiation patch being grounded.
  • the wireless transceiver device provided by the embodiment of the invention reduces the overall thickness of the wireless transceiver device by reducing the overall thickness of the wireless transceiver device by disposing the antenna unit in the recess of the metal carrier, thereby reducing wireless reception.
  • the space occupied by the device is not limited to the space occupied by the device.
  • the recess is located at an edge of the metal carrier.
  • the antenna unit located in the recess has stronger electromagnetic radiation performance.
  • the radiation patch can generate electromagnetic oscillation (also called resonance) with the bottom surface of the groove.
  • the groove can be located at the corner of the metal carrier or on the side of the metal carrier. There may be an opening in the side wall of the groove. The antenna element of the groove of the side wall opening has better radiation characteristics.
  • the metal carrier is provided with at least one groove, and one antenna unit is disposed in each groove. That is, the groove and the antenna unit can be arranged in one-to-one correspondence.
  • the feed structure and the radiation patch are fed through the slot coupling, which can effectively expand the bandwidth of the antenna unit.
  • the antenna unit may further include: a parasitic structure located on a surface parallel to a bottom surface of the groove, the parasitic structure being grounded. By increasing the parasitic structure, the bandwidth of the antenna unit can be further expanded.
  • a gap exists between the parasitic structure and the radiation patch, and the parasitic structure is coupled to the radiation patch through the gap.
  • the parasitic structure and the radiation patch are fed through the gap coupling, and the bandwidth of the antenna unit can be effectively ensured under the premise of occupying a small volume.
  • the antenna unit may further include:
  • first grounding leg one end of the first grounding leg is connected to the parasitic structure, the other end is connected to the metal carrier, the first grounding leg is perpendicular to a bottom surface of the groove, and the parasitic structure passes through the metal
  • the carrier is grounded.
  • the first grounding pin can achieve an effective grounding of the parasitic structure.
  • the parasitic structure may also be a non-centrosymmetric structure.
  • the shape of the parasitic structure may be various.
  • the parasitic structure is a fan-shaped structure
  • the radiation patch is a semi-annular structure
  • a center of the radiation patch and a center of the parasitic structure are located on the radiation sticker. The same side of the piece.
  • both centers are close to the corners where the antenna unit is disposed, which can reduce the overall size of the antenna unit.
  • the radiation patch in the antenna unit without the parasitic structure may also be a semi-annular structure or other non-central symmetric structure. This embodiment of the present invention does not limit this.
  • the radiation patch and the feeding structure are both non-centro symmetrical structures.
  • the radiation patch and the feed structure are both non-centrosymmetric structures, so that the antenna unit is not disposed at the center of the metal carrier At the same time, the high roundness of the antenna unit is still ensured, and the universal applicability of the antenna unit is improved.
  • the antenna unit can be further disposed at the center position of the metal carrier, and the high roundness of the antenna unit is still ensured.
  • the feed structure can take many forms:
  • the feeding structure is an E-shaped structure
  • the E-shaped structure is configured by a first vertical strip structure and three first ends disposed on the first vertical strip structure a horizontal strip structure, the opening of the E-shaped structure faces away from the radiation patch, the length of the first horizontal strip structure located in the middle of the E-shaped structure is greater than the length of the other two first horizontal strip structures, and The other end of the first horizontal strip structure located in the middle of the E-shaped structure is connected to a feed of the metal carrier, the first vertical strip structure and the radiation patch forming the gap; the feed is also That is, the power supply head can be a signal transmission port of the metal carrier, and is usually connected to the input and output ports of the transceiver.
  • the feeding structure is a T-shaped structure, and the T-shaped structure is extended from a central portion of the second vertical strip structure by a second longitudinal strip structure and one end And a second horizontal strip structure, the other end of the second horizontal strip structure is connected to a feed of the metal carrier, and the second vertical strip structure forms the gap with the radiation patch.
  • the feeding structure is an integral structure composed of an arc structure and a strip structure, one end of the strip structure is connected to a feed of the metal carrier, and the other end is connected to the arc
  • the shaped structure is connected, and a side of the radiation patch adjacent to the feeding structure is provided with an arcuate opening, the arcuate structure is located in the arcuate opening, and the slit is formed with the arcuate opening.
  • the antenna unit further includes a dielectric substrate disposed in the recess, and the radiating patch and the feeding structure are disposed on the dielectric substrate.
  • the dielectric substrate can effectively carry the radiation patch and the feeding structure to ensure a gap between the radiation patch and the bottom surface of the groove, thereby achieving electromagnetic oscillation between the two.
  • the antenna unit further includes:
  • grounding wire one end of the grounding wire is connected to the radiation patch, and the other end is connected to a metal ground wire disposed on the dielectric substrate, so that the radiation patch is grounded through the metal ground wire.
  • the ground wire can achieve effective grounding of the radiating patch.
  • grounding wire can be set in a variety of ways:
  • one side of the radiation patch is provided with the grounding wire, and the other side of the radiation patch is provided with the feeding structure.
  • the grounding wires are two in total, and the two grounding wires are symmetrically disposed on two sides of the radiation patch, respectively connected to the metal ground of the dielectric substrate, and the feeding
  • the electrical structure is an axisymmetric structure, and the axis of symmetry of the feed structure is coaxial with the axis of symmetry of the two ground lines.
  • the radiation patch when the antenna unit includes the dielectric substrate, the radiation patch may be located on a lower surface of the dielectric substrate; the wireless transceiver further includes:
  • a second grounding leg disposed on at least one side of the radiation patch, the second grounding leg having one end connected to the radiation patch and the other end being coupled to the metal carrier, the second grounding leg perpendicular to the medium a plate surface of the substrate, and a plate surface of the dielectric substrate is parallel to a bottom surface of the groove, and the radiation patch is grounded through the metal carrier.
  • the wireless transceiver may further include:
  • a second grounding leg disposed on at least one side of the radiation patch, the second grounding leg having one end connected to the radiation patch and the other end being connected to the metal carrier, the second grounding leg being perpendicular to the concave The bottom surface of the slot, the radiation patch being grounded through the metal carrier.
  • the metal carrier is further provided with a dielectric substrate, and the dielectric substrate of the antenna unit and the dielectric substrate on the metal carrier are integrated.
  • the antenna unit does not need to be separately processed and installed, which reduces the complexity of the manufacturing process of the wireless transceiver and reduces the assembly cost.
  • the wireless transceiver further includes:
  • a shielding cover is disposed above the dielectric substrate on the metal carrier.
  • the shielding cover can effectively shield the external electromagnetic interference of electrical components inside the metal carrier.
  • the bottom of the metal carrier is provided with heat dissipating teeth to ensure effective heat dissipation of the metal carrier.
  • the feeding structure may include: a first electron feeding structure perpendicular to a bottom surface of the groove, and a second electron feeding structure parallel to a bottom surface of the groove, the first feeding electronic structure and the The feed connection of the metal carrier.
  • the value indicates that the shape of the second electron-donating structure may be the same as the shape of the E-shaped structure or the T-shaped structure described above, except that the second feeding electronic structure may be connected to the feed through the first feeding electronic structure. .
  • a base station comprising the wireless transceiver of any of the above.
  • the wireless transceiver device provided by the embodiment of the invention reduces the overall thickness of the wireless transceiver device by reducing the overall thickness of the wireless transceiver device by disposing the antenna unit in the recess of the metal carrier, thereby reducing wireless reception.
  • the space occupied by the device is not limited to the space occupied by the device.
  • FIG. 1 is a schematic structural diagram of a commonly used omnidirectional antenna unit provided in the related art
  • FIG. 2 is a schematic structural diagram of a conventional radio transceiver device provided in the related art
  • 3-1 is a schematic structural diagram of a wireless transceiver device according to an exemplary embodiment of the present invention.
  • 3-2 is a partial structural diagram of a wireless transceiver device according to an exemplary embodiment of the present invention.
  • 4-1 is a partial structural diagram of another wireless transceiver device according to an exemplary embodiment of the present invention.
  • 4-2 is a partial structural diagram of still another wireless transceiver according to an exemplary embodiment of the present invention.
  • FIG. 5 is a partial schematic structural diagram of a wireless transceiver device according to another exemplary embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another wireless transceiver device according to another exemplary embodiment of the present invention.
  • FIG. 7 is a partial schematic structural diagram of still another wireless transceiver according to another exemplary embodiment of the present invention.
  • FIG. 8 is a schematic diagram of current distribution of a commonly used omnidirectional antenna unit provided in the related art
  • FIG. 9 is a schematic diagram of current distribution of an omnidirectional antenna unit of the wireless transceiver provided in FIG. 2;
  • Figure 10 is a simulation diagram of a directional diagram of an omnidirectional antenna unit of the radio transceiver shown in Figure 9;
  • FIG. 11 is a partial schematic structural diagram of still another wireless transceiver according to another exemplary embodiment of the present invention.
  • FIG. 12 is a partial schematic structural diagram of a wireless transceiver device according to another exemplary embodiment of the present invention.
  • FIG. 13 is a partial structural diagram of another wireless transceiver device according to still another exemplary embodiment of the present invention. schematic diagram;
  • Figure 14 is a left side elevational view of the radio transceiver shown in Figure 4-2;
  • Figure 15 is a plan view of the radio transceiver shown in Figure 4-2;
  • Figure 16 is a simulation diagram of a pattern of antenna elements in the radio transceiver of Figure 4-2;
  • Figure 17 is a left side elevational view of the radio transceiver shown in Figure 13;
  • Figure 18 is a plan view of the radio transceiver shown in Figure 13;
  • 19 is a simulation diagram of a pattern of an antenna unit in the radio transceiver of FIG. 13;
  • Figure 20 is a simulation diagram of a pattern of antenna elements in the radio transceiver of Figure 11;
  • Figure 21 is a left side elevational view of the radio transceiver shown in Figure 12;
  • Figure 22 is a plan view of the radio transceiver shown in Figure 12;
  • FIG. 23 is a simulation diagram of a pattern of an antenna unit in the radio transceiver of FIG. 12;
  • Figure 24 is a plan view of the radio transceiver shown in Figure 7;
  • Figure 25 is a simulation diagram of a pattern of antenna elements in the radio transceiver of Figure 7;
  • Figure 26 is a plan view of the radio transceiver shown in Figure 6;
  • Figure 27 is a simulation diagram of a pattern of antenna elements in the radio transceiver of Figure 6;
  • Figure 28 is a left side elevational view of the radio transceiver shown in Figure 3-2;
  • Figure 29 is a plan view of the radio transceiver shown in Figure 3-2.
  • FIG. 1 is a conventional omnidirectional antenna unit 10 provided in the related art.
  • the omnidirectional antenna unit may be referred to as a broadband monopole antenna unit.
  • the omnidirectional antenna unit 10 includes:
  • the radiation sheet 11 is connected to the radiation sheet 11 at one end, the short-circuit probe 12 grounded at the other end, and the feed probe 13.
  • the feed probe 13 is grounded at one end, and the other end forms a gap H with the radiation sheet 11, and the radiation sheet 11 And the feed probe 13 is fed through the slit H, wherein the feed point is point A.
  • the wireless transceiver device including the omnidirectional antenna unit can be as shown in FIG. 2
  • FIG. 2 is a schematic structural diagram of a conventional wireless transceiver device 20 .
  • the method includes: at least one omnidirectional antenna unit 10, a dielectric substrate 201, a shielding cover 202, and a metal carrier 203, wherein the metal carrier 203 is a housing, the dielectric substrate 201 is disposed in the metal carrier 203, and the shielding cover 202 is buckled on the metal Above the carrier, the omnidirectional antenna unit 10 is formed in the shield On the cover 202 or the metal carrier 203, FIG. 2 is described with the omnidirectional antenna unit 10 formed on the shield cover 202.
  • the omnidirectional antenna unit 10 is a separately processed three-dimensional structure, which is disposed on the shielding cover 202 or the metal carrier 203 after the processing is completed, and the whole of the wireless transceiver device when the omnidirectional antenna unit is disposed on the shielding cover.
  • the thickness is: a stacked thickness of the metal carrier, the shielding cover and the omnidirectional antenna unit; when the omnidirectional antenna unit is disposed on the metal carrier, the overall thickness of the wireless transceiver device is: a stacked thickness of the metal carrier and the omnidirectional antenna unit, therefore,
  • the conventional wireless transceiver has a thick overall thickness and a large overall volume.
  • 3-1 is a schematic structural diagram of a wireless transceiver device 30 according to an exemplary embodiment of the present invention.
  • the wireless transceiver device 30 may include a metal carrier 301 and at least one antenna unit 302.
  • the metal carrier 301 is provided with a recess 3011.
  • the recess 3011 can be disposed at the edge of the metal carrier 301. Alternatively, the recess 3011 can be located at the corner of the metal carrier 301 or on the side of the metal carrier 301.
  • the antenna unit 302 is disposed in the recess 3011.
  • the antenna unit disposed in the recess means that all or part of the antenna unit is disposed in the recess. Generally, the antenna unit is on the bottom surface of the recess.
  • the orthographic projection is located in the groove).
  • the dotted frame U is an enlarged view of an antenna unit 302 disposed at the edge of the metal carrier 301.
  • the antenna unit 302 includes a feed structure 3021 and a radiation patch 3022. . Radiation patch 3022 is fed through feed structure 3021, which is grounded.
  • the metal carrier in the embodiment of the present invention may have various structures, and the metal carrier can serve as a reference ground for the antenna unit, which can be a metal casing of a wireless transceiver device, a circuit board (such as a dielectric substrate), and a heat sink. and many more.
  • the radiation patch 3022 can generate electromagnetic oscillation (also called resonance) with the bottom surface of the groove.
  • electromagnetic oscillation also called resonance
  • the radiation patch and the bottom surface of the groove form a capacitance and an inductance, and the electromagnetic oscillation is excited by the capacitor and the inductance.
  • the metal carrier is provided with at least one groove 3011, and one antenna unit 302 is disposed in each groove 3011. That is, the groove and the antenna unit can be arranged in one-to-one correspondence, and the number of the two is equal.
  • the groove and the antenna unit can be arranged in one-to-one correspondence, and the number of the two is equal.
  • four recesses 3011 are provided in Figure 3-1.
  • one antenna unit 302 is disposed in each recess, that is, the number of antenna units 302 is four.
  • the structure of the antenna unit disposed in the at least two recesses may be the same or different, which is not limited in the embodiment of the present invention.
  • the wireless transceiver device provided by the embodiment of the invention reduces the overall thickness of the wireless transceiver device by reducing the overall thickness of the wireless transceiver device by disposing the antenna unit in the recess of the metal carrier, thereby reducing the occupied space of the wireless transceiver device.
  • the antenna unit 302 may further include a dielectric substrate 3023.
  • FIG. 3-2 may be regarded as a structural schematic diagram of adding an antenna substrate to the antenna unit shown by the broken line frame U in FIG.
  • the dielectric substrate may be an epoxy resin plate of the type FR-4, having a dielectric constant of 4.2; or other materials.
  • the dielectric substrate 3023 is disposed in the recess 3011 for carrying the radiation patch 3022 and the feed structure 3021, that is, the radiation patch 3022 is disposed on the dielectric substrate 3023.
  • the radiation patch 3022 can be electromagnetically oscillated with the bottom surface of the recess 3011.
  • the radiation patch 3022 is attached to the surface W of the dielectric substrate 3023 (ie, either of the two surfaces having the largest surface area of the dielectric substrate 3023).
  • the surface of the radiation patch is parallel to the setting surface Q of the antenna unit 302, and a capacitance can be formed between the two parallel surfaces.
  • the feed structure 3021 may be disposed in whole or in part on the dielectric substrate 3023.
  • the metal carrier 301 may further be provided with a dielectric substrate (also referred to as a radio frequency single board) 303.
  • the dielectric substrate 3023 of the antenna unit 302 and the dielectric substrate 303 on the metal carrier 301 may have an integral structure.
  • the wireless transceiver device not only feeds the radiation patch through the feeding structure of the antenna unit, but also realizes the characteristics of the antenna unit, and also sets the radiation patch and the feeding structure on the dielectric substrate.
  • the antenna unit need not be separately processed and installed, which reduces the complexity of the manufacturing process of the wireless transceiver and reduces the assembly cost.
  • the radiation patch and the feeding structure of the antenna unit approximate a planar structure, the volume of the antenna unit as a whole is reduced relative to the three-dimensional structure in the related art, thereby reducing the space occupied by the wireless transceiver.
  • the feed structure and the radiation patch can be fed in a variety of ways, such as direct feed or coupled feed.
  • direct feed or coupled feed.
  • the two directly feed the power, and the antenna unit adopting such a feeding mode can realize a narrow standing wave bandwidth, and the implementation manner is simple.
  • the coupled feed can extend the bandwidth of the antenna unit.
  • a conventional omnidirectional antenna unit for example, the omnidirectional antenna unit 10 shown in FIG. 1 may be in a narrow band range when a multi-antenna unit layout is performed on a radio transceiver or a metal carrier is asymmetrical due to its structure.
  • the better circularity of the pattern is maintained, and the circularity of the pattern in the wideband range is poor.
  • the direction diagram is an abbreviation of the antenna unit pattern, which refers to a graph of the relative field strength (normalized modulus value) of the radiation field changing with direction at a certain distance from the antenna unit, and is generally adopted by the antenna unit in the maximum radiation direction.
  • the two mutually perpendicular plane patterns are represented.
  • the antenna unit pattern is an important graph to measure the performance of the antenna unit.
  • the parameters of the antenna unit can be observed from the antenna unit pattern.
  • the antenna pattern roundness is also called the non-circularity of the direction, which is the difference between the maximum value and the minimum value of the level (unit: dB) of each direction of the antenna unit in the horizontal plane pattern.
  • the antenna unit 302 may further include:
  • the parasitic structure 3024 is located on a plane parallel to the bottom surface of the groove.
  • the parasitic structure 3024 may be supported by some support structures, disposed on a surface parallel to the bottom surface of the groove; or directly disposed on the dielectric substrate.
  • the parasitic structure 3024 is grounded, and a gap n exists between the radiation patch 3022 and the parasitic structure 3024, so that the coupling feeding of the radiation patch and the parasitic structure 3024 can be realized.
  • the parasitic structure When the radiation patch and the parasitic structure are coupled and fed, the parasitic structure can form an electromagnetic oscillation with the bottom surface of the groove, and the antenna unit increases the parasitic structure on the basis of the radiation patch, and both can form an electromagnetic oscillation with the bottom surface of the groove.
  • the area of the overall resonance of the antenna unit is positively correlated with its bandwidth. Therefore, the coupling of the radiating patch and the parasitic structure can further expand the bandwidth of the antenna unit while ensuring a small volume of the antenna unit.
  • the antenna unit 302 may further include:
  • the first grounding leg 3025 has one end connected to the parasitic structure 3024 and the other end connected to the metal carrier 301.
  • the first grounding leg 3025 is perpendicular to the bottom surface Q of the recess, and the parasitic structure 3024 is grounded through the metal carrier 301.
  • the parasitic structure can be arranged in parallel with the bottom surface of the groove to form a capacitance with the bottom surface of the groove, and then the first grounding leg is arranged to form an inductance between the parasitic structure and the bottom surface of the groove, thereby exciting electromagnetic oscillation, and the first grounding foot is not only
  • the parasitic structure can be electrically connected to the metal carrier through a short path, and the dielectric substrate can be supported to prevent deformation of the dielectric substrate, and the manufacturing process thereof is relatively simple.
  • the feeding manner of the radiating patch and the parasitic structure can be various, for example, direct feeding or coupling feeding, and the feeding mode can be used to expand the bandwidth of the antenna unit.
  • the radiation patch 3022 is in direct contact with the parasitic structure 3024, and the two are directly connected to the power supply.
  • the radiation patch 3022 of such a feeding mode may be used, and the side may not be required.
  • the grounding wire is grounded directly through the first grounding leg 3025 connected to the parasitic structure, and the first grounding leg can also form a strong inductance between the radiation patch and the bottom surface of the groove to ensure the bottom surface of the radiation patch and the groove. Generate electricity Magnetic shock.
  • the orthographic projection of the parasitic structure 3024 on the surface of the radiation patch 3022 has a gap n with the radiation patch 3022, or There may be an overlap between the orthographic projection of the parasitic structure 3024 on the face of the radiation patch 3022 and the radiation patch 3022, but the two are not coplanar and do not conform to each other, thereby creating a gap n.
  • the parasitic structure 3024 is coupled to the radiating patch 3022 via a gap n.
  • the antenna unit 302 can obtain a wider standing wave bandwidth by means of coupling feeding. It should be noted that since the parasitic structure 3024 and the radiation patch 3022 are coupled and fed, the two are not in contact, so the radiation patch The 3022 cannot be grounded through the parasitic structure 3024 and needs to be grounded through a ground or grounding pin.
  • the area when the direct feed is used is larger than the area when the feed is fed.
  • the parasitic structure and the radiation patch usually adopt a coupling feed. Electrically fed.
  • the shape of the parasitic structure 3024 and the radiation patch 3022 can be matched to ensure effective feeding between the two.
  • the parasitic structure 3024 and the radiating patch 3022 can be matched to ensure proper clearance between the two.
  • the parasitic structure 3024 is a fan-shaped structure
  • the radiation patch 3022 is a semi-annular structure
  • the center of the radiation patch 3022 and the center of the parasitic structure 3024 are located on the same side of the radiation patch 3022.
  • both centers are close to the corners where the antenna unit is disposed, which can reduce the overall size of the antenna unit.
  • the radiation patch in the antenna unit without the parasitic structure may also be a semi-annular structure or other non-central symmetric structure.
  • This embodiment of the present invention does not limit this.
  • the parasitic structure 3024 has a triangular structure
  • the radiation patch 3022 has a polygonal structure
  • the radiating patches 3022 and the parasitic structures 3024 are parallel to each other.
  • the shape of the parasitic structure 3024 and the radiation patch 3022 can be matched to ensure that the two are effectively connected. For example, as shown in FIG.
  • the parasitic structure 3024 is a fan-shaped structure
  • the radiation patch 3022 is a semi-annular structure
  • the center of the radiation patch 3022 and the center of the parasitic structure 3024 are located on the same side of the radiation patch 3022.
  • the outer edge of the sector structure overlaps the inner edge of the semi-annular structure.
  • the parasitic structure 3024 and the radiation patch 3022 may be located on the same side of the dielectric substrate, and the parasitic structure 3024 partially overlaps the radiation patch 3022, and the two are electrically connected by the contact of the overlapping portion, for example, the parasitic structure 3024
  • the radiation patch 3022 is located on the lower surface of the dielectric substrate, and the upper surface of the parasitic structure 3024 partially overlaps the lower surface of the radiation patch 3022.
  • the shapes of the feed structure 3021 and the radiation patch 3022 can be matched to ensure effective feeding between the two.
  • the following three possible implementation manners are described as an example in the embodiment of the present invention:
  • the feeding structure 3021 is an E-shaped structure, and the E-shaped structure is disposed at the first interval by the first vertical strip structure and three ends.
  • the first horizontal strip structure on the longitudinal strip structure, the opening of the E-shaped structure faces away from the radiation patch, and the length of the first horizontal strip structure located in the middle of the E-shaped structure is greater than the length of the other two first horizontal strip structures
  • the other end of the first horizontal strip structure located in the middle of the E-shaped structure is connected to the feed of the metal carrier, and the first vertical strip structure forms a gap with the radiation patch 3022.
  • the feed structure 3021 feed structure is a T-shaped structure
  • the T-shaped structure is composed of a second vertical strip structure and one end is from the middle of the second vertical strip structure
  • the second transverse strip structure extends outwardly
  • the other end of the second horizontal strip structure is connected to the feed of the metal carrier
  • the second longitudinal strip structure forms a gap with the radiation patch 3022.
  • the feeding structure 3021 may also be an integral structure composed of an arc structure 30211 and a strip structure 30212.
  • One end of the strip structure 3012 is connected with a feed of the metal carrier, and another One end is connected to the curved structure 30211, and the side of the radiation patch 3022 adjacent to the feeding structure 3021 is provided with an arcuate opening, and the curved structure 30211 is matched with the curved opening, and the curved structure 30211 is located in the curved opening and the arc
  • the shaped opening forms a gap for coupling the feed.
  • the symmetry of the antenna unit body there are three symmetry related to the roundness of the structure of the wireless transceiver: the symmetry of the antenna unit body, the symmetry of the mounting position, and the symmetry of the metal carrier. If the three symmetries are simultaneously satisfied, i.e., a centrally symmetric omnidirectional antenna unit is symmetrically placed on a centrally symmetric metal carrier, the roundness of the radio is generally better. But if one of these three symmetries is destroyed, the roundness generally deteriorates.
  • a conventional radio transceiver if an omnidirectional antenna unit is installed, usually the omnidirectional antenna
  • the line unit is disposed at a central position of the metal carrier (corresponding to the ground reference, that is, as indicated in FIG. 8), for example, the omnidirectional antenna unit is symmetrically disposed on the shielding cover of the wireless transceiver, And designing the radiation piece or radiator of the antenna unit as a central symmetric (also called rotationally symmetric) structure, in addition to the symmetrical structure of the antenna unit placed on the metal carrier (as shown in Figure 8) Centrally, the structural symmetry ensures that the antenna elements have similar radiation characteristics in a section parallel to the shielding cover, thereby achieving high roundness performance.
  • the corresponding current distribution diagram is shown in Figure 8.
  • the wireless transceiver In order to achieve multi-band coverage and multi-channel signal transmission, the wireless transceiver generally needs to have at least two omnidirectional antenna units installed. In this case, under the condition of multiple antenna units, each antenna unit cannot be guaranteed for the metal carrier. Symmetry, which inevitably causes a non-central symmetric distribution of the ground current, resulting in a deterioration in the circularity of the pattern.
  • the metal carrier is a central symmetrical structure, such as a square structure or a circular structure, and the shield cover that is fastened thereon is also a center symmetrical structure.
  • the metal carrier may be a centrally symmetrical prismatic structure, and for aesthetic purposes, the edges may have rounded or chamfered corners.
  • FIG. 9 is a schematic diagram showing the current distribution of an antenna unit in the scenario where the omnidirectional antenna unit is disposed at the four corners of the shielding cover shown in FIG. 2, and the metal carrier serves as a reference ground for the antenna unit (as shown in FIG. 9).
  • the ground current of each antenna element is therefore non-central symmetrically distributed with respect to each antenna element.
  • the simulation diagram of the antenna unit's pattern can be as shown in FIG. 10, and different bandwidths in FIG.
  • the corresponding circularity of the pattern is as shown in Table 1.
  • the cross section of the three-dimensional pattern at the angle of the horizontal direction Theta is taken.
  • the value of the Theta is usually from 0° to 180°.
  • the frequency value shown in Table 1 is The frequency value corresponding to the frequency point of the antenna unit during normal operation.
  • Theta cross-section roundness indicates the difference between the maximum value and the minimum value of the level (in dB) of the pattern when the angle is Theta.
  • the non-central symmetrical distribution of the current thereby forming a deeper pattern depression in the diagonal direction of the metal carrier, resulting in a sharp deterioration of the circularity of the pattern, in a wide range of 1.7-2.7 GHz (Gigahertz)
  • the worst value is 10.9dB (decibel).
  • the volatility of the pattern far exceeds the range of fluctuations that the communication operator can accept.
  • the large horizontal cross-sectional pattern fluctuations will form a communication dead zone within certain angles, reducing the coverage and reducing the communication capability.
  • the wireless transceiver in order to achieve multi-band coverage and multi-channel signal transmission, the wireless transceiver generally needs to be installed with at least two omnidirectional antenna units, as shown in any of FIG. 3-1 to FIG.
  • the radiation patch 3022 and the feed structure 3021 in each antenna unit on the wireless transceiver device in the embodiment of the present invention may be a non-central symmetric structure.
  • the metal carrier serves as a reference ground for the antenna unit, which is also non-centrosymmetric with respect to each antenna unit, then
  • the distribution of ground current generated by each antenna element, the non-centrosymmetric radiation patch and the non-central symmetric reference ground may form a relative central symmetry, compared to the omnidirectional antenna unit in a conventional radio transceiver
  • the circularity of the pattern of each antenna unit of the wireless transceiver provided by the embodiment is better in the wideband range.
  • the parasitic structure can also be non-centrosymmetric, further ensuring the circularity of the pattern of the antenna unit.
  • the relative positions of the radiation patch, the feed structure, and the parasitic structure on the dielectric substrate may be set according to specific conditions, and the three may have two sides on the dielectric substrate, one on the other side of the dielectric substrate, or three.
  • the radiation patch 3022 and the feeding structure 3021 are located on one side of the dielectric substrate, and the parasitic structure 3024 is located on the other side of the dielectric substrate;
  • the radiation patch 3022 and the parasitic structure 3024 are located on one side of the dielectric substrate 3023, and the feed structure 3021 is located on the other surface of the dielectric substrate 3023. If the radiation patch and the parasitic structure are located on the lower surface of the dielectric substrate, the feed structure is located on the upper surface of the dielectric substrate.
  • the relative positions of the radiating patch 3022 and the feeding structure 3021 on the dielectric substrate may be set according to specific conditions, and the two may be respectively located on both sides of the dielectric substrate 3023, or both.
  • the radiation patch 3022 and the feeding structure 3021 are located on the same side of the dielectric substrate 3023; as shown in FIG.
  • the radiation patch and the feed structure are respectively located on both sides of the dielectric substrate.
  • the radiation patch 3022 is located on the lower surface of the dielectric substrate 3023.
  • the antenna unit 302 may further include: a second grounding leg 3026 disposed on at least one side of the radiation patch 3022.
  • the second grounding leg 3026 may be made of metal. One end of the second grounding leg 3026 is connected to the radiating patch 3022, the other end is connected to the metal carrier 301, the second grounding leg 3026 is perpendicular to the plate surface of the dielectric substrate 3023, and the radiating patch 3022 is grounded through the metal carrier 301.
  • FIG. 12 is exemplified by two second grounding legs 3026 disposed in the antenna unit 302.
  • the two second grounding pins 3026 are symmetrically disposed on both sides of the radiating patch 3022.
  • the radiation patch can be disposed parallel to the bottom surface of the groove, forming a capacitance with the bottom surface of the groove, and then forming an inductance between the radiation patch and the bottom surface of the groove by providing the second grounding leg, thereby exciting The electromagnetic grounding is performed, and the second grounding pin can not only electrically connect the radiation patch to the metal carrier through a short path, but also support the dielectric substrate to prevent deformation of the dielectric substrate, and the manufacturing process thereof is relatively simple.
  • the two second grounding legs 3026 are symmetrically disposed on both sides of the radiating patch 3022 to effectively reduce the size of the antenna unit and expand the bandwidth.
  • the wireless transceiver device 30 may further include: a shielding cover 304 that is fastened over the dielectric substrate 303 of the metal carrier 301 for use.
  • a shielding cover 304 that is fastened over the dielectric substrate 303 of the metal carrier 301 for use.
  • the shape of the shielding cover can be adjusted according to the position of the groove on the metal carrier. For example, when the groove is located at the four corners of the metal carrier, the four corners of the shielding cover are also provided with the groove.
  • the groove is such that the shielding cover and the groove of the metal carrier communicate with each other to achieve effective engagement of the shielding cover and the metal carrier.
  • the wireless transceiver device 30 can also include a shielding cover as shown in FIG. 13 , and the dielectric substrate is directly buckled on the metal carrier (in practical applications, the dielectric substrate can also be disposed inside the metal carrier, FIG. 13 is only schematic. Description).
  • a small shielding cover may be disposed outside the component to avoid mutual interference between the component and the external environment.
  • the wireless transceiver device 30 since the wireless transceiver device 30 is not provided with a shield cover, the overall thickness of the wireless transceiver device can be reduced, and the volume of the wireless transceiver device can be correspondingly reduced.
  • the radiation patch 3022 can be grounded by other means besides the grounding leg.
  • the antenna unit 302 may further include:
  • the grounding wire 3027 is made of metal. One end of the grounding wire 3027 is connected to the radiation patch 3022, and the other end is connected to the metal ground wire (not shown) of the dielectric substrate 3023, so that the radiation patch 3022 passes through the metal.
  • the ground wire (not shown) is grounded.
  • the antenna unit with the grounding wire can form a tiny inductance between the radiation patch and the bottom surface of the groove to realize the electricity between the radiation patch and the bottom surface of the groove. Magnetic shock.
  • the bottom surface of the groove may be added under the radiation patch.
  • the grounding pin can increase the parasitic structure when the radiating patch is grounded through the grounding wire, and a grounding leg perpendicular to the bottom surface of the groove is added below the parasitic structure, so that the generated inductance is strong.
  • the inductance may be enhanced by other methods, which is not limited in this embodiment of the present invention.
  • the number of the grounding wires 3027 in the antenna unit 302 can be set according to actual conditions. For example, as shown in FIG. 6, one side of the radiating patch 3022 is provided with a grounding wire 3027, and the other side of the radiating patch is provided with a feed. Electrical structure 3021.
  • the feeding structure 3021 is The axisymmetric structure, the axis of symmetry of the feed structure 3021 is coaxial with the axis of symmetry of the two ground lines 3027, which makes it easier to control the roundness of the pattern.
  • the sidewall of the groove may have an opening, that is, the sidewall of the groove is not closed, as shown in FIG. 3 . 1 to 7 and the like, the grooves are provided at the corners of the metal carrier, and the two adjacent side walls are open. When the grooves are provided on one side of the metal carrier, one side wall thereof may be opened. This ensures efficient feeding and energy radiation of the antenna unit. Moreover, the semi-open groove processing is simple to manufacture and easy to assemble.
  • the bottom of the metal carrier may also be provided with heat dissipating teeth for heat dissipation of the metal carrier.
  • the omnidirectional antenna unit in the wireless transceiver device shown in any of FIG. 3-1 to FIG. 7 and FIG. 11 to FIG. 13 has a voltage standing wave ratio (English: Voltage Standing Wave Ratio; VSWR) which can be less than 2.5.
  • the standing wave bandwidth can be greater than 45%.
  • FIG. 14 and FIG. 15 The left and top views of the radio transceiver 30 shown in FIG. 4-2 are respectively FIG. 14 and FIG. 15, and FIG. 14 and FIG. 15 indicate various structural parameters on the radio transceiver 30, as shown in FIG.
  • the dielectric substrate 303 and the recess 3011 have the same shape and may be the same size or different. Generally, the size of the dielectric substrate 303 is smaller than the size of the recess 3011. As shown in FIG. 15, the top view of the recess 3011 is an isometric cut at an angle.
  • the center of the parasitic structure 3024 of the sector shape (which can also be regarded as a quarter circle) is from the two sides of the groove 3011 R0, the radius of the sector is r1, the central angle corresponding to the sector is 90°;
  • the radius of the semi-annular (also regarded as a quarter ring) radiation patch 3022 is r2, the outer diameter is r3, the central angle 90°, the center of the radiation patch coincides with the center of the fan-shaped parasitic structure;
  • the radiation patch 3022 has an E-shaped structure, and the first vertical strip structure has a semi-annular structure, and the inner diameter of the semi-annular structure is r4,
  • the first horizontal strip structure having a diameter of r5 and a central angle of a, located at the outer edge of the E-shaped structure, has a length of la and a width of wa, and the first horizontal strip structure having a diameter of r5 and a central angle of a, located at the outer edge of the E-shaped structure, has
  • grounding wires 3027 There are two grounding wires 3027, and two grounding wires 3027 are symmetrically disposed on both sides of the radiation patch 3022, and are respectively connected to the metal ground wires of the dielectric substrate 3023.
  • Each grounding wire 3027 has a strip-like structure with a length of ws and a width of Ls.
  • the dimensions of the structural parameters of the antenna unit in the radio transceiver 30 shown in FIG. 4-2 are as shown in Table 2.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r0 is (0.05104 ⁇ 1, 0.07656 ⁇ 1) indicating that r0 is in the range of 0.05104 ⁇ 1 to 0.07656 ⁇ 1.
  • the antenna unit of this configuration in the radio transceiver device 30 shown in FIG. 4-2 has a worst circularity of 3.3 dB in the wide band of 1.7-2.7 GHz. The fluctuation of the pattern is small, which can achieve a larger coverage and improve communication capabilities.
  • FIG. 13 and FIG. 18, FIG. 17 and FIG. 18 respectively indicate various structural parameters on the radio transceiver 30, as shown in FIG.
  • the thickness h0 of the device 30, that is, the thickness of the metal carrier 301 and the dielectric substrate 3023 (or the dielectric substrate 303) stacked in this order from bottom to top is h0, the depth of the groove 3011 is h1; the lower surface of the dielectric substrate 3023 is concave.
  • the distance from the bottom surface of the slot 3011 is h; the height of the first grounding leg 3025 is h2. As shown in FIG.
  • a top view of the groove 3011 (the shape of the dielectric substrate and the groove is the same) is a square cut at an angle of an isosceles right triangle, the side length of the square is c0, and the waist length of the right angle isosceles triangle is
  • the center of the parasitic structure 3024 of the fan shape (which can also be regarded as a quarter circle) is the distance r0 from the both sides of the groove 3011, the radius of the sector is r1, the central angle is 90°, and the radiation patch
  • the center of the circle coincides with the center of the fan-shaped parasitic structure;
  • the radiating patch 3022 is an E-shaped structure, and the first vertical strip is formed
  • the semi-annular structure has an inner diameter of r4, an outer diameter of r5, a central angle of a, a first horizontal strip structure located at the outer edge of the E-shaped structure, a length la, a width wa, and an E-shape.
  • the first horizontal strip structure in the middle of the structure is lf long and wf wide.
  • Each grounding wire 3027 has a strip-like structure with a length of ws and a width of Ls.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r0 is (0.0328 ⁇ 1, 0.0492 ⁇ 1) indicating that r0 is in the range of 0.0328 ⁇ 1 to 0.0492 ⁇ 1.
  • the circularity of the pattern corresponding to different frequency points is shown in Table 5.
  • the antenna unit has a roundness of 5.4 dB in the wide band of 1.7-2.7 GHz.
  • the fluctuation of the pattern is small, which can achieve a larger coverage and improve communication capabilities.
  • the left side view and the top view of the wireless transceiver device 30 shown in FIG. 11 are the same as the left side view and the top view substrate of the wireless transceiver device 30 of FIG. 13, respectively, but the top view of the wireless transceiver device 30 of FIG. 11 cannot directly see the radiation patch. 3022.
  • the radio transceiver 30 shown in FIG. 11 can be referred to FIG. 17 and FIG. 18 in a left side view and a top view. As shown in FIG. 17, the thickness h0 of the radio transceiver 30, that is, the metal carrier 301 and the bottom layer are sequentially superimposed.
  • the thickness of the dielectric substrate 3023 (or the dielectric substrate 303) is h0, the depth of the recess 3011 is h1; the distance between the lower surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is h; the height of the first grounding leg 3025 is h2. As shown in FIG.
  • a top view of the groove 3011 (the shape of the dielectric substrate and the groove is the same) is a square cut at an angle of an isosceles right triangle, the side length of the square is c0, and the waist length of the right angle isosceles triangle is C0-c1;
  • the center of the parasitic structure 3024 of the sector (which can also be regarded as a quarter circle) is the distance r0 from the two sides of the groove 3011, the radius of the sector is r1, the central angle is 90°;
  • the radiation patch 3022 which can also be regarded as a quarter ring, has an inner diameter r2, an outer diameter r3, and a central angle of 90°.
  • the center of the radiation patch coincides with the center of the fan-shaped parasitic structure;
  • the radiation patch 3022 is E-shaped structure,
  • the first longitudinal strip-shaped structure is a semi-annular structure having an inner diameter of r4, an outer diameter of r5, a central angle of a, and a first horizontal strip-shaped structure at the outer edge of the E-shaped structure, long Is la, width wa, and the first horizontal strip structure located in the middle of the E-shaped structure is lf long and wf wide.
  • There are two grounding wires 3027, and two grounding wires 3027 are symmetrically disposed on both sides of the radiation patch 3022, and are respectively connected to the metal ground wires of the dielectric substrate 3023.
  • Each grounding wire 3027 has a strip-like structure with a length of ws and a width of Ls.
  • each structural parameter of the antenna unit in the radio transceiver 30 shown in FIG. 11 is as shown in Table 6.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r0 is (0.05104 ⁇ 1, 0.07656 ⁇ 1) indicating that r0 is in the range of 0.05104 ⁇ 1 to 0.07656 ⁇ 1.
  • the circularity of the pattern corresponding to different frequency points is shown in Table 7.
  • the antenna unit has a worst circularity of 3.6 dB in the wide band of 1.7-2.7 GHz.
  • the fluctuation of the pattern is small, which can achieve a larger coverage and improve communication capabilities.
  • FIG. 21 and FIG. 22 designate various structural parameters of the antenna unit in the radio transceiver unit 30.
  • the thickness h0 of the wireless transceiver device 30, that is, the thickness of the metal carrier 301 and the dielectric substrate 3023 (or the dielectric substrate 303) stacked in this order from bottom to top is h0, and the depth of the groove 3011 is h1.
  • h3 is the thickness of the shielding cover; the distance between the lower surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is equal to the height of the second grounding leg 3026, both are h, the second grounding leg 3026 and the center of the radiation patch 3022 The projection distance between each is ps, and the width of each second grounding leg 3026 is ws. As shown in FIG.
  • a top view of the groove 3011 (the shape of the dielectric substrate and the groove is the same) is a square cut at an angle of an isosceles right triangle, the side length of the square is c0, and the waist length of the right angle isosceles triangle is C0-c1; a semi-annular (also considered a quarter-ring) radiating patch 3022 having an inner diameter r1, an outer diameter r2, a central angle of 90°, and a semi-annular shape (which may also be regarded as a quarter ring)
  • the center of the radiation patch 3022 has a distance r0 from both sides of the groove 3011;
  • the radiation patch 3022 has an E-shape, and the first vertical strip structure has a semi-annular structure, and the inner diameter of the semi-annular structure is r4,
  • the first horizontal strip structure having a diameter of r5 and a central angle of a, located at the outer edge of the E-shaped structure, has a length of la and
  • each structural parameter of the antenna unit in the radio transceiver 30 shown in FIG. 12 is as shown in Table 8.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r0 is (0.03736 ⁇ 1, 0.05604 ⁇ 1) indicating that r0 is in the range of 0.03736 ⁇ 1 to 0.05604 ⁇ 1.
  • the circularity of the pattern corresponding to different frequency points is shown in Table 9.
  • the antenna unit has a roundness of 5.8 dB in the wide band of 1.7-2.7 GHz.
  • the fluctuation of the pattern is small, which can achieve a larger coverage and improve communication capabilities.
  • the radio transceiver 30 shown in FIG. 7 has the same left view as that of FIG. 17, and its top view can refer to FIG. 24.
  • the thickness of the carrier 301 and the dielectric substrate 3023 (or the dielectric substrate 303) is h0, the depth of the recess 3011 is h1; the distance between the lower surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is h; the height of the first grounding leg 3025 For h2.
  • FIG. 17 the thickness of the radio transceiver 30, that is, the metal stacked in order from bottom to top.
  • the thickness of the carrier 301 and the dielectric substrate 3023 (or the dielectric substrate 303) is h0, the depth of the recess 3011 is h1; the distance between the lower surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is h; the height of the first grounding
  • a top view of the groove 3011 (the shape of the dielectric substrate and the groove is the same) is a square cut at an angle of an isosceles right triangle, the side of the square being c0,
  • the waist angle of the right angle isosceles triangle is c0-c1;
  • the center of the parasitic structure 3024 of the sector shape (which can also be regarded as a quarter circle) is the distance r0 from the both sides of the groove 3011, and the radius of the sector is r1.
  • the central angle is 90°;
  • the semi-annular (also considered as a quarter-ring) radiation patch 3022 has an inner diameter r2, an outer diameter r3, a central angle of 90°, and the radiation patch 3022 is adjacent to the feed structure 3021.
  • the feeding structure 3021 is an integral structure composed of the curved structure 30211 and the strip structure 30212.
  • the strip structure has a length wf and a width lf.
  • the arc structure 3012 has a radius r4 and is concentric with the arcuate opening.
  • There are two grounding wires 3027, and two grounding wires 3027 are symmetrically disposed on both sides of the radiation patch 3022, and are respectively connected to the metal ground wires of the dielectric substrate 3023.
  • Each grounding wire 3027 has a strip-like structure with a length of ws and a width of Ls.
  • each structural parameter of the antenna unit in the radio transceiver 30 shown in FIG. 7 is as shown in Table 10.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r0 is (0.0456 ⁇ 1, 0.0648 ⁇ 1) indicating that r0 is in the range of 0.0456 ⁇ 1 to 0.0648 ⁇ 1.
  • the circularity of the pattern corresponding to different frequency points is shown in Table 11.
  • the antenna unit has a worst roundness of 4.6 dB in the wide band of 1.7-2.7 GHz.
  • the fluctuation of the pattern is small, which can achieve a larger coverage and improve communication capabilities.
  • the radio transceiver 30 shown in FIG. 6 has the same left side view as FIG. 17, and its top view can refer to FIG. 26.
  • the thickness of the carrier 301 and the dielectric substrate 3023 (or the dielectric substrate 303) is h0, the depth of the recess 3011 is h1; the distance between the lower surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is h; the height of the first grounding leg 3025 For h2.
  • FIG. 17 the thickness of the radio transceiver 30, that is, the metal stacked in order from bottom to top.
  • the thickness of the carrier 301 and the dielectric substrate 3023 (or the dielectric substrate 303) is h0, the depth of the recess 3011 is h1; the distance between the lower surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is h; the height of the first grounding leg
  • a top view of the groove 3011 (the shape of the dielectric substrate and the groove is the same) is a square cut at an angle of an isosceles right triangle, the side length of the square is c0, and the waist length of the right angle isosceles triangle is C0-c1;
  • the apex of the parasitic structure 3024 of the isosceles right triangle is the distance r0 from both sides of the groove 3011, and the waist length is a1;
  • the top view of the radiation patch 3022 is a square with two equal angles cut off an isosceles right triangle The two corners are respectively adjacent to a corner of the parasitic structure 3024 and an end near the corner of the recess.
  • the side of the radiating patch 3022 adjacent to the parasitic structure 3024 is parallel to the bottom of the parasitic structure 3024, and the radiating patch 3022 is The remaining sides are parallel to the corresponding sides of the top view of the groove 3011, the side length of one side of an isosceles right triangle is truncated to a3, and the side length of the other side of an isosceles right triangle is cut a4; the feed structure 3021 In the T-shaped structure, the second longitudinal strip structure has a length w2, the long side is parallel to the side of the radiation patch width a4, and the distance is w1, and the second horizontal strip structure of the feeding structure 3021 is lf long and wide. For wf.
  • a total of one grounding wire 3027 is located on the different side of the radiating patch 3022 from the feeding structure 3021, and is connected to the metal ground of the dielectric substrate 3023.
  • the grounding wire 3027 has a strip structure with a length of ws and a width of ls.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r0 is (0.0644 ⁇ 1, 0.0966 ⁇ 1) indicating that r0 is in the range of 0.0644 ⁇ 1 to 0.0966 ⁇ 1.
  • the circularity of the pattern corresponding to different frequency points is shown in Table 13.
  • the antenna unit has a worst circularity of 4.4 dB in the wide band of 1.7-2.7 GHz.
  • the fluctuation of the pattern is small, which can achieve a larger coverage and improve communication capabilities.
  • the antenna unit 30 located in the recess 3011 may also be as shown in FIG. 3-1 or FIG. 3-2.
  • the feed structure 3021 is composed of a two-part electronic feeding structure, and a part is vertical.
  • the bottom surface of the recess 3011 is used to connect the first feed electronic structure 3021a of the feed on the metal carrier, and the other portion is the second feed electronic structure 3021b parallel to the bottom surface of the recess 3011.
  • the first The two-feed electronic structure 3021b is printed on the upper surface of the dielectric substrate 3023 as an example for description.
  • the radiation patch 3022 is also printed on the upper surface of the dielectric substrate 3023, and the signal of the feed (also referred to as energy) is fed by the feed structure 3021 and coupled to the radiation patch 3022 by slot coupling.
  • a second grounding leg 3026 is disposed on both sides of the radiating patch 3022.
  • the second grounding leg 3026 connects the radiating patch 3022 and the metal carrier 301.
  • the overall structure of the antenna unit is relatively independent from the metal carrier. Adjusting the size of each part enables the antenna unit to obtain a standing wave bandwidth of >45% (VSWR ⁇ 2.5). At the same time, the antenna unit's pattern can achieve better roundness performance within the bandwidth range.
  • FIG. 28 and FIG. 29, respectively, and FIG. 28 and FIG. 29 indicate various structural parameters of the antenna unit in the radio transceiver unit 30.
  • the distance between the upper surface of the dielectric substrate 3023 and the bottom surface of the recess 3011 is h
  • the projection distance between the second grounding leg 3026 and the center of the radiation patch 3022 is ps
  • the second grounding leg 3026 is The width is ws
  • the distance from the second grounding leg 3026 to the second electron-donating structure 3021a is pf.
  • the top view of the groove 3011 (the shape of the dielectric substrate and the groove is the same) is an angle of one isosceles right angle a triangular square having a side length of c0, the right-angled isosceles triangle having a waist length of c0-c1; and a semi-annular (also considered a quarter-ring) radiation patch 3022 having an inner diameter of r1 and an outer diameter
  • the center angle of the radiation patch 3022 with a central angle of 90° and a semi-annular shape (which can also be regarded as a quarter ring) is the distance r0 from both sides of the groove 3011; the radiation patch 3022 has an E-shaped structure.
  • the first longitudinal strip structure of the radiation patch 3022 is a semi-annular structure having an inner diameter r4, an outer diameter r5, a central angle a, and a first horizontal strip structure at the outer edge of the E-shaped structure. Is la, width wa, the first horizontal strip structure located in the middle of the E-shaped structure is lf, wide wf.
  • each structural parameter of the antenna unit in the radio transceiver 30 shown in FIG. 3-2 can be as shown in the table. 14 is shown.
  • ⁇ 1 is the wavelength corresponding to the lowest operating frequency of the antenna unit in the radio transceiver 30, and r1 is (0.073 ⁇ 1, 0.109 ⁇ 1) indicating that r1 is in the range of 0.073 ⁇ 1 to 0.109 ⁇ 1.
  • the structure of the wireless transceiver device 30 is a schematic description.
  • the components in the wireless transceiver device 30 in FIGS. 3-1 to 7 and FIGS. 11 to 13 may be configured.
  • the specific shape of the second electron-donating structure 3021b can be referred to the above-mentioned FIG. 4-1 to FIG. 7 and the like, and may be a T-shaped structure or an E-shaped structure.
  • the size of the wireless transceiver device provided in the embodiment of the present invention is only a schematic description, which is mainly for ensuring that the antenna unit obtains a standing wave bandwidth of >45% (VSWR ⁇ 2.5).
  • the wireless transceiver device The size of the device can be adjusted according to the specific application scenario, which is not limited by the embodiment of the present invention.
  • the wireless transceiver device provided by the embodiment of the invention has a simple structure and is convenient for assembly.
  • the radiation patch, the feed structure, the grounding wire, and the like may be integrally formed on the dielectric substrate, and then mounted on the groove of the metal carrier.
  • the shielding cover may be fastened to the metal carrier after the dielectric substrate is mounted, or may be in the medium.
  • the substrate is fastened to the metal carrier before being mounted, and the grounding pin can be disposed after the dielectric substrate is mounted. Since the radiation patch, the feeding structure and the grounding wire can be integrally formed on the dielectric substrate, the three-dimensional structure is not formed separately, so the structure Simple and easy to assemble.
  • the wireless transceiver device includes a shielding cover
  • the shielding cover can be fastened to the metal carrier after the dielectric substrate is installed, and the grounding pin can be disposed after the radiation board is installed. Since the radiation patch, the feeding structure, the grounding wire, and the like can be integrally formed on the dielectric substrate, not a separately formed three-dimensional structure, the structure is simple and easy to assemble.
  • the antenna unit may include a dielectric substrate, and may not include a dielectric substrate, where the dielectric substrate is used to carry the radiation patch and the feeding structure, and the shape and the groove thereof.
  • the shape of the dielectric substrate is the same as the shape of the groove, and the area is smaller than the area of the groove.
  • the radiation patch can be electromagnetically oscillated with the bottom surface of the groove through the dielectric substrate.
  • the antenna unit does not include the dielectric substrate, the radiation patch can be generated by other means to the bottom surface of the groove. For example, as shown in FIG.
  • the wireless transceiver device further includes: a second grounding leg 3026 disposed on at least one side of the radiation patch, the second grounding leg 3026 having one end and the radiation patch 3022 The other end is connected to the metal carrier 301.
  • the second grounding leg 3026 is perpendicular to the bottom surface of the recess 301.
  • the radiating patch 3022 is grounded through the metal carrier 301.
  • the radiating patch 3022 can be supported by the second grounding leg 3026, and the second feedthrough structure 3021b is supported by the first feedthrough structure 3021a to ensure electromagnetic turbulence of the radiating patch 3022 and the bottom surface of the recess.
  • the radiation patch and/or the feed structure may also be supported by the plastic structure such that the radiation patch 3022 and the arrangement surface of the antenna unit are electromagnetically oscillated.
  • the configuration of the radio transceiver in other embodiments may also be modified with reference to FIG. 3-1, which is not limited by the embodiment of the present invention.
  • the antenna unit includes the dielectric substrate
  • the parasitic structure can be electromagnetically oscillated with the bottom surface of the groove through the dielectric substrate.
  • the parasitic structure can be made into the bottom surface of the groove by other means. Electromagnetic oscillations are generated, such as setting a grounding foot that supports the parasitic structure or supporting a parasitic structure with a plastic structure. This embodiment of the present invention does not describe this.
  • the wireless transceiver device provided by the embodiment of the invention reduces the overall thickness of the wireless transceiver device by reducing the overall thickness of the wireless transceiver device by disposing the antenna unit in the recess of the metal carrier, thereby reducing the occupied space of the wireless transceiver device.
  • the broadband omnidirectional antenna unit of the wireless transceiver device provided by the embodiment of the invention can also set the radiation patch and the feeding structure on the dielectric substrate, without separately processing and installing the antenna unit, thereby reducing the manufacturing process of the wireless transceiver device.
  • the complexity reduces assembly costs.
  • the radiation patch and the feeding structure of the antenna unit approximate a planar structure, the volume of the antenna unit as a whole is reduced relative to the three-dimensional structure in the related art, thereby reducing the space occupied by the wireless transceiver.
  • the embodiment of the present invention provides a base station, which may include at least one wireless transceiver module provided by an embodiment of the present invention.
  • each wireless transceiver module may It is any of the above embodiments of the present invention provided by the present invention.
  • the base station is typically a base station located indoors.
  • the base station of the wireless transceiver device 30 in the embodiment of the present invention has the characteristics of working frequency bandwidth and good omnidirectional performance, and the base station can be installed in a stadium or a shopping place for realizing omnidirectional coverage of the wireless signal in the indoor area.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)
  • Transceivers (AREA)

Abstract

本发明公开了一种无线收发装置和基站,属于通信领域。所述无线收发装置包括:金属载体和天线单元,所述天线单元包括馈电结构和辐射贴片;所述金属载体上设置有凹槽,所述天线单元设置在所述凹槽内;所述辐射贴片通过所述馈电结构馈电,所述辐射贴片接地。本发明解决了无线收发装置的占用空间较大的问题,实现了减少无线收发装置的占用空间的技术效果。本发明实施例用于无线收发装置的信息收发。

Description

无线收发装置和基站 技术领域
本发明涉及通信领域,特别涉及一种无线收发装置和基站。
背景技术
在移动通信系统中,无线收发装置是一种常见的信号收发装置,主要包括:天线单元、介质基板、屏蔽盖和金属载体等结构。为实现无线收发装置信号的大范围覆盖,无线收发装置上配置的天线单元通常为全向天线单元,全向天线单元在水平方向图上表现为360°均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束。
传统的全向天线单元通常是由辐射片、短路探针、馈电探针组成的立体结构,全向天线单元设置在金属载体或屏蔽盖上。
但是,传统的全向天线单元均为独立的配件,需要单独加工并组装于金属载体或屏蔽盖上,这样一来,在全向天线单元设置在屏蔽盖上时,无线收发装置的整体厚度为:金属载体、屏蔽盖和全向天线单元的叠加厚度;在全向天线单元设置在金属载体上时,无线收发装置的整体厚度为:金属载体和全向天线单元的叠加厚度,因此,传统的无线收发装置的整体厚度较厚,整体体积较大,相应的,占用空间较大。
发明内容
为了解决无线收发装置的占用空间较大的问题,本发明实施例提供了一种无线收发装置和基站。所述技术方案如下:
一方面,提供了一种无线收发装置,包括:
金属载体和至少一个天线单元,所述天线单元包括馈电结构和辐射贴片;
所述金属载体上设置有凹槽,所述天线单元设置在所述凹槽内。
所述辐射贴片通过所述馈电结构馈电,所述辐射贴片接地。
本发明实施例提供的无线收发装置,通过将天线单元设置在金属载体的凹槽中,使得无线收发装置的整体厚度减小,整体体积减小,从而减少了无线收 发装置的占用空间。
可选的,该凹槽位于所述金属载体的边缘处。位于该凹槽内的天线单元的电磁辐射性能更强。
实际应用中,所述辐射贴片能够与所述凹槽的底面产生电磁震荡(也称谐振),可选的,该凹槽可以位于金属载体的角上,或者位于金属载体的边上。该凹槽的侧壁可以存在开口。侧壁开口的凹槽的天线单元的辐射特性更优。
可选的,所述金属载体上设置有至少一个凹槽,每个凹槽内设置一个所述天线单元。也即是,凹槽与天线单元可以一一对应设置。
进一步的,所述馈电结构与所述辐射贴片之间存在缝隙,所述馈电结构与所述辐射贴片通过所述缝隙耦合馈电。
本发明实施例提供的无线收发装置,馈电结构与述辐射贴片通过缝隙耦合馈电,可以有效拓展天线单元的带宽。
进一步的,所述天线单元还可以包括:寄生结构,所述寄生结构位于与所述凹槽的底面平行的面上,所述寄生结构接地。通过增加寄生结构,可以进一步拓展天线单元的带宽。
可选的,所述寄生结构与所述辐射贴片之间存在间隙,所述寄生结构与所述辐射贴片通过所述间隙耦合馈电。寄生结构与辐射贴片通过间隙耦合馈电,可以在占用较小的体积的前提下,有效保证拓展天线单元的带宽。
可选的,该天线单元还可以包括:
第一接地脚,所述第一接地脚一端与所述寄生结构连接,另一端与所述金属载体连接,所述第一接地脚垂直所述凹槽的底面,所述寄生结构通过所述金属载体接地。该第一接地脚可以实现寄生结构的有效接地。
进一步的,所述寄生结构也可以为非中心对称结构。寄生结构的形状可以有多种,可选的,所述寄生结构为扇形结构,所述辐射贴片为半环形结构,所述辐射贴片的圆心与所述寄生结构的圆心位于所述辐射贴片的同一侧。可选的,两个圆心均靠近天线单元设置处的边角,这样可以减少天线单元整体的尺寸。
需要指出的是,未设置寄生结构的天线单元中的辐射贴片也可以为半环形结构,或者其他非中心对称结构。本发明实施例对此不作限定。
可选的,所述辐射贴片和馈电结构均为非中心对称结构。辐射贴片和馈电结构均为非中心对称结构可以使得该天线单元未设置在金属载体的中心位置 时,依然保证天线单元的高圆度的特性,提高天线单元的普遍适用性。
需要指出的是,辐射贴片、馈电结构均和寄生结构同时为非中心对称结构时,可以进一步的使得该天线单元未设置在金属载体的中心位置时,依然保证天线单元的高圆度的特性,提高天线单元的普遍适用性。
可选的,馈电结构可以有多种形式:
第一种可能的实现方式中,所述馈电结构为E字形结构,所述E字形结构由第一纵条形结构及3个一端间隔设置在所述第一纵条形结构上的第一横条形结构组成,所述E字形结构的开口背离所述辐射贴片,位于所述E字形结构中间的第一横条形结构的长度大于其他2个第一横条形结构的长度,且位于所述E字形结构中间的第一横条形结构的另一端与所述金属载体的馈源连接,所述第一纵条形结构与所述辐射贴片形成所述缝隙;该馈源也即馈电源头,可以为金属载体的信号传输端口,通常与收发信机的输入输出端口连接。
第二种可能的实现方式中,所述馈电结构为T字形结构,所述T字形结构由第二纵条形结构及1个一端从所述1个第二纵条形结构中部向外延伸的第二横条形结构组成,所述第二横条形结构的另一端与所述金属载体的馈源连接,所述第二纵条形结构与所述辐射贴片形成所述缝隙。
第三种可能的实现方式中,所述馈电结构为弧形结构与条状结构组成的一体结构,所述条状结构的一端与所述金属载体的馈源连接,另一端与所述弧形结构连接,所述辐射贴片靠近所述馈电结构的一侧设置有弧形开口,所述弧形结构位于所述弧形开口内,且与所述弧形开口形成所述缝隙。
可选的,所述天线单元还包括介质基板,所述介质基板设置在所述凹槽内,所述辐射贴片和所述馈电结构均设置在所述介质基板上。介质基板可以有效承载辐射贴片和馈电结构,保证辐射贴片与凹槽的底面产生间隙,从而实现两者之间的电磁震荡。
在所述天线单元包括寄生结构的基础上,可选的,所述天线单元还包括:
接地线,所述接地线一端与所述辐射贴片连接,另一端与所述介质基板上设置的金属地线连接,使所述辐射贴片通过所述金属地线接地。该接地线可以实现辐射贴片的有效接地。
可选的,接地线的设置可以有多种可能实现的方式:
第一种可能的实现方式中,所述辐射贴片的一侧设置有所述接地线,所述辐射贴片的另一侧设置有所述馈电结构。
第二种可能的实现方式中,所述接地线共2个,2个所述接地线对称设置在所述辐射贴片的两侧,分别与所述介质基板的金属地线连接,所述馈电结构为轴对称结构,所述馈电结构的对称轴与2个所述接地线的对称轴共轴。
在一种可能的实现方式中,当天线单元包括介质基板时,所述辐射贴片可以位于所述介质基板的下表面;所述无线收发装置还包括:
设置在所述辐射贴片至少一侧的第二接地脚,所述第二接地脚一端与所述辐射贴片连接,另一端与所述金属载体连接,所述第二接地脚垂直所述介质基板的板面,且所述介质基板的板面与所述凹槽的底面平行,所述辐射贴片通过所述金属载体接地。
在另一种可能的实现方式中,当天线单元不包括介质基板时,所述无线收发装置还可以包括:
设置在所述辐射贴片至少一侧的第二接地脚,所述第二接地脚一端与所述辐射贴片连接,另一端与所述金属载体连接,所述第二接地脚垂直所述凹槽的底面,所述辐射贴片通过所述金属载体接地。
可选的,所述金属载体上还设置有介质基板,所述天线单元的介质基板与所述金属载体上的介质基板为一体结构。当该介质基板与金属载体的介质基板为一体结构时,无需单独加工并安装天线单元,降低了无线收发装置的制造过程的复杂度,减少了装配成本。
可选的,所述无线收发装置还包括:
屏蔽盖,所述屏蔽盖扣置在所述金属载体上的介质基板上方。该屏蔽盖能够有效屏蔽外界对金属载体内部的电器元件的电磁干扰。
可选的,所述金属载体底部设置有散热齿,可以保证金属载体的有效散热。
可选的,所述馈电结构可以包括:垂直于所述凹槽的底面的第一馈电子结构,和平行于凹槽的底面的第二馈电子结构,所述第一馈电子结构与所述金属载体的馈源连接。
值的说明的是,第二馈电子结构的形状可以与上述的E字形结构或T字形结构的形状相同,不同的是,所述第二馈电子结构可以通过第一馈电子结构与馈源连接。
另一方面,提供一种基站,包括以上任一所述的无线收发装置。
本发明实施例提供的无线收发装置,通过将天线单元设置在金属载体的凹槽中,使得无线收发装置的整体厚度减小,整体体积减小,从而减少了无线收 发装置的占用空间。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中提供的一种常用的全向天线单元的结构示意图;
图2是相关技术中提供的一种常用的无线收发装置的结构示意图;
图3-1是本发明一示意性实施例提供的一种无线收发装置的结构示意图;
图3-2是本发明一示意性实施例提供的一种无线收发装置的部分结构示意图;
图4-1是本发明一示意性实施例提供的另一种无线收发装置的部分结构示意图;
图4-2是本发明一示意性实施例提供的又一种无线收发装置的部分结构示意图;
图5是本发明另一示意性实施例提供的一种无线收发装置的部分结构示意图;
图6是本发明另一示意性实施例提供的另一种无线收发装置的部分结构示意图;
图7是本发明另一示意性实施例提供的又一种无线收发装置的部分结构示意图;
图8是相关技术中提供的一种常用的全向天线单元的电流分布示意图;
图9是图2提供的无线收发装置的全向天线单元的电流分布示意图;
图10是图9所示的无线收发装置的全向天线单元的方向图的仿真图;
图11是本发明另一示意性实施例提供的再一种无线收发装置的部分结构示意图;
图12是本发明又一示意性实施例提供的一种无线收发装置的部分结构示意图;
图13是本发明又一示意性实施例提供的另一种无线收发装置的部分结构 示意图;
图14是图4-2所示的无线收发装置的左视图;
图15是图4-2所示的无线收发装置的俯视图;
图16是图4-2中的无线收发装置中的天线单元的方向图的仿真图;
图17是图13所示的无线收发装置的左视图;
图18是图13所示的无线收发装置的俯视图;
图19是图13中的无线收发装置中的天线单元的方向图的仿真图;
图20是图11中的无线收发装置中的天线单元的方向图的仿真图;
图21是图12所示的无线收发装置的左视图;
图22是图12所示的无线收发装置的俯视图;
图23是图12中的无线收发装置中的天线单元的方向图的仿真图;
图24是图7所示的无线收发装置的俯视图;
图25是图7中的无线收发装置中的天线单元的方向图的仿真图;
图26是图6所示的无线收发装置的俯视图;
图27是图6中的无线收发装置中的天线单元的方向图的仿真图;
图28是图3-2所示的无线收发装置的左视图;
图29是图3-2所示的无线收发装置的俯视图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是相关技术中提供的一种常用的全向天线单元10,该全向天线单元可以称为宽带单极子天线单元,如图1所示,该全向天线单元10包括:
辐射片11,一端与该辐射片11连接,另一端接地的短路探针12,以及馈电探针13,该馈电探针13一端接地,另一端与辐射片11形成缝隙H,辐射片11和馈电探针13通过该缝隙H进行馈电,其中馈电点为A点。
由于现有的全向天线单元为立体结构,则包含有全向天线单元的无线收发装置可以如图2所示,图2为一种传统的无线收发装置20的结构示意图,该无线收发装置20包括:至少一个全向天线单元10、介质基板201、屏蔽盖202和金属载体203,其中,金属载体203为壳体,介质基板201设置在该金属载体203内,屏蔽盖202扣置在该金属载体上方,全向天线单元10形成于屏蔽 盖202或金属载体203上,图2是以全向天线单元10形成于屏蔽盖202上进行说明。在传统无线收发装置中,全向天线单元10是单独加工的立体结构,加工完成之后设置在屏蔽盖202或金属载体203上,在全向天线单元设置在屏蔽盖上时,无线收发装置的整体厚度为:金属载体、屏蔽盖和全向天线单元的叠加厚度;在全向天线单元设置在金属载体上时,无线收发装置的整体厚度为:金属载体和全向天线单元的叠加厚度,因此,传统的无线收发装置的整体厚度较厚,整体体积较大。
图3-1是本发明一示意性实施例提供的一种无线收发装置30的结构示意图,如图3-1所示,该无线收发装置30可以包括:金属载体301和至少一个天线单元302。
金属载体301上设置有凹槽3011,该凹槽3011可以设置在金属载体301的边缘处,可选的,该凹槽3011可以位于金属载体301的角上,或者位于金属载体301的边上,该天线单元302设置在凹槽3011内(本发明实施例中,天线单元设置在凹槽内指的是天线单元的全部或部分设置在凹槽内,通常的,该天线单元在凹槽底面的正投影位于凹槽内)。如图3-1中的虚线框U所示,该虚线框U内为一个设置在金属载体301边缘处的天线单元302的放大图,该天线单元302包括:馈电结构3021和辐射贴片3022。辐射贴片3022通过馈电结构3021馈电,辐射贴片3022接地。需要指出的是,本发明实施例中的金属载体可以有多种结构,该金属载体能够作为天线单元的参考地,其可以为无线收发装置的金属外壳,电路板(如介质基板),散热器等等。
实际应用中,辐射贴片3022能够与凹槽的底面产生电磁震荡(也称谐振),通常,辐射贴片与凹槽的底面形成电容与电感,由电容和电感激发出电磁震荡。
可选的,所述金属载体上设置有至少一个凹槽3011,每个凹槽3011内设置一个天线单元302。也即是,凹槽与天线单元可以一一对应设置,两者的个数相等。如图3-1所示,图3-1中设置了4个凹槽3011,相应的,每个凹槽内设置有一个天线单元302,也即天线单元302的个数为4个,当金属载体上有至少两个凹槽时,该至少两个凹槽中设置的天线单元的结构可以相同,也可以不同,本发明实施例对此不作限定。
本发明实施例提供的无线收发装置,通过将天线单元设置在金属载体的凹槽中,使得无线收发装置的整体厚度减小,整体体积减小,从而减少了无线收发装置的占用空间。
进一步的,如图3-2所示,天线单元302还可以包括介质基板3023,图3-2可以视为图3-1中虚线框U所示的天线单元增加介质基板的结构示意图。可选的,该介质基板可以为型号为FR-4的环氧树脂板,其介电常数为4.2;也可以是其他材质。
介质基板3023设置在凹槽3011内,用于承载辐射贴片3022和馈电结构3021,也即是,辐射贴片3022设置在介质基板3023上。该辐射贴片3022能够与凹槽3011的底面产生电磁震荡,实际应用中,辐射贴片3022贴合在介质基板3023的板面W(即介质基板3023的两个表面积最大的面中的任一面)上,辐射贴片的表面与天线单元302的设置面Q平行,两个平行的面之间可以形成电容。馈电结构3021可以全部或部分设置在介质基板3023上。
可选的,金属载体301上还可以设置有介质基板(也称射频单板)303,天线单元302的介质基板3023与金属载体301上的介质基板303可以为一体结构。
由上可知,本发明实施例提供的无线收发装置,不仅通过天线单元的馈电结构对辐射贴片进行馈电实现了天线单元的特性,还将辐射贴片和馈电结构设置在介质基板上,当该介质基板与金属载体的介质基板为一体结构时,无需单独加工并安装天线单元,降低了无线收发装置的制造过程的复杂度,减少了装配成本。进一步的,由于天线单元的辐射贴片和馈电结构近似于平面结构,进而相对于相关技术中的立体结构,天线单元整体的体积减少,从而减少了无线收发装置的占用空间。
实际应用中,馈电结构与辐射贴片的馈电方式可以有多种,例如直连馈电或者耦合馈电。在馈电结构与辐射贴片直接接触时,两者直连馈电,采用这样的馈电方式的天线单元能够实现较窄的驻波带宽,实现方式简单。而耦合馈电能够扩展天线单元的带宽。
传统的全向天线单元,例如,图1所示的全向天线单元10,由于其结构的原因,在无线收发装置上进行多天线单元布局时,或者金属载体不对称时,只能在窄带范围内保持较好的方向图圆度,而在宽带范围内的方向图圆度较差。其中,方向图为天线单元方向图的简称,是指在离天线单元一定距离处,辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线单元最大辐射方向上的两个相互垂直的平面方向图来表示。天线单元方向图是衡量天线单元性能的重要图形,可以从天线单元方向图中观察到天线单元的各项参数。 方向图圆度(antenna pattern roundness)也称方向图不圆度,是指在水平面方向图中,天线单元各方向电平(单位:dB)的最大值与最小值之差。
为了使天线单元302获得较宽的驻波带宽。在本发明实施例中,如图4-1所示,馈电结构3021与辐射贴片3022之间可以存在缝隙m,示例的,馈电结构3021在辐射贴片3022所在面的正投影与辐射贴片3022之间可以存在缝隙m,或者,馈电结构3021在辐射贴片3022所在面的正投影与辐射贴片3022之间可以存在重叠区域,但是两者不共面不贴合,从而产生缝隙m,馈电结构3021与辐射贴片3022通过缝隙m耦合馈电。进一步的,如图4-2所示,天线单元302还可以包括:
寄生结构3024,该寄生结构3024位于与凹槽的底面平行的面上,例如,该寄生结构3024可以由一些支撑结构支撑,设置在与凹槽的底面平行的面上;或者直接设置在介质基板3023的板面上,该介质基板和凹槽的底面平行,该寄生结构3024接地,辐射贴片3022与寄生结构3024之间存在缝隙n,可实现辐射贴片与寄生结构3024的耦合馈电。在辐射贴片与寄生结构进行耦合馈电时,寄生结构可以与凹槽底面形成电磁震荡,天线单元在辐射贴片的基础上,增加了寄生结构,两者均能与凹槽底面形成电磁震荡,而天线单元的整体谐振的面积与其带宽正相关,因此,通过辐射贴片与寄生结构的耦合馈电能够在保证天线单元较小体积的基础上,进一步拓展天线单元的带宽。
可选的,如图4-2或图5所示,天线单元302还可以包括:
第一接地脚3025,第一接地脚3025一端与寄生结构3024连接,另一端与金属载体301连接,第一接地脚3025垂直凹槽的底面Q,寄生结构3024通过金属载体301接地。寄生结构可以通过与凹槽底面平行设置,与凹槽底面形成电容,再通过设置该第一接地脚使寄生结构与凹槽底面间形成电感,进而激发出电磁震荡,并且,第一接地脚不仅可以使寄生结构通过较短的路径与金属载体电连接,还可以支撑介质基板,防止介质基板变形,其制造工艺也比较简单。
在本发明实施例中,辐射贴片与寄生结构的馈电方式可以有多种,例如直连馈电或者耦合馈电,采用两种馈电方式,都能拓展天线单元的带宽。如图5所示,图5中在辐射贴片3022与寄生结构3024直接接触,两者直连馈电,可选的,采用这样的馈电方式的辐射贴片3022,可以不需要侧边的接地线,直接通过与寄生结构相连的第一接地脚3025实现接地,并且,该第一接地脚还可以在辐射贴片与凹槽底面间形成较强的电感,保证辐射贴片与凹槽底面产生电 磁震荡。
如图4-2所示,寄生结构3024与辐射贴片3022之间可以存在间隙n,示例的,寄生结构3024在辐射贴片3022所在面的正投影与辐射贴片3022存在间隙n,或者,寄生结构3024在辐射贴片3022所在面的正投影与辐射贴片3022之间可以存在重叠区域,但是两者不共面不贴合,从而产生间隙n。寄生结构3024与辐射贴片3022通过间隙n耦合馈电。通过耦合馈电的方式可以使天线单元302获得较宽的驻波带宽,需要说明的是,由于寄生结构3024与辐射贴片3022进行耦合馈电时,两者是不接触的,因此辐射贴片3022无法通过寄生结构3024实现接地,需要通过接地线或接地脚接地。
值得说明的是,由于寄生结构自身性能的原因,其在采用直连馈电时的面积大于耦合馈电时的面积,为了减小天线单元的整体体积,寄生结构和辐射贴片通常采用耦合馈电的方式进行馈电。
进一步的,寄生结构3024和辐射贴片3022的形状可以匹配设置,保证两者之间的有效馈电。例如,当天线单元302采用寄生结构3024和辐射贴片3022耦合馈电的方式进行馈电时,寄生结构3024和辐射贴片3022可以匹配设置,保证两者之间存在适当的间隙。示例的,如图4-2所示,寄生结构3024为扇形结构,辐射贴片3022为半环形结构,辐射贴片3022的圆心与寄生结构3024的圆心位于辐射贴片3022的同一侧。可选的,两个圆心均靠近天线单元设置处的边角,这样可以减少天线单元整体的尺寸。需要指出的是,未设置寄生结构的天线单元中的辐射贴片也可以为半环形结构,或者其他非中心对称结构。本发明实施例对此不作限定。如图6所示,寄生结构3024为三角形结构,辐射贴片3022为多边形结构,辐射贴片3022和寄生结构3024的互相靠近的两边平行。又例如,当天线单元302采用寄生结构3024和辐射贴片3022直连馈电的方式进行馈电时,寄生结构3024和辐射贴片3022的形状可以匹配设置,保证两者有效连接。示例的,如图5所示,寄生结构3024为扇形结构,辐射贴片3022为半环形结构,辐射贴片3022的圆心与寄生结构3024的圆心位于辐射贴片3022的同一侧。其中扇形结构的外边缘与半环形结构的内边缘搭接。图5中,寄生结构3024与辐射贴片3022可以位于介质基板的同一面,且寄生结构3024与辐射贴片3022存在部分重叠,通过该重叠部分的接触,两者电连接,例如,寄生结构3024与辐射贴片3022位于介质基板的下表面,且寄生结构3024的上表面与辐射贴片3022的下表面存在部分重叠。
值得说明的是,寄生结构3024和辐射贴片3022的形状还可以存在其他匹配的情况,本发明实施例只是示意性说明,凡在本发明提供的匹配情况的基础上,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内,因此,本发明实施例对此不做赘述。
进一步的,馈电结构3021和辐射贴片3022的形状可以匹配设置,保证两者之间的有效馈电。本发明实施例以以下3种可能的实现方式为例进行说明:
第一种可能的实现方式:如上述图4-1至图5任一所示,馈电结构3021为E字形结构,E字形结构由第一纵条形结构及3个一端间隔设置在第一纵条形结构上的第一横条形结构组成,E字形结构的开口背离辐射贴片,位于E字形结构中间的第一横条形结构的长度大于其他2个第一横条形结构的长度,且位于E字形结构中间的第一横条形结构的另一端与金属载体的馈源连接,第一纵条形结构与辐射贴片3022形成缝隙。
第二种可能的实现方式:如图6所示,馈电结构3021馈电结构为T字形结构,T字形结构由第二纵条形结构及1个一端从所述第二纵条形结构中部向外延伸的第二横条形结构组成,第二横条形结构的另一端与金属载体的馈源连接,第二纵条形结构与辐射贴片3022形成缝隙。
第三种可能的实现方式:如图7所示,馈电结构3021还可以为弧形结构30211与条状结构30212组成的一体结构,条状结构30212的一端与金属载体的馈源连接,另一端与弧形结构30211连接,辐射贴片3022靠近馈电结构3021的一侧设置有弧形开口,弧形结构30211与该弧形开口匹配,弧形结构30211位于弧形开口内,且与弧形开口形成用于耦合馈电的缝隙。
值得说明的是,馈电结构3021和辐射贴片3022的形状还可以存在其他匹配的情况,本发明实施例只是示意性说明,凡在本发明提供的匹配情况的基础上,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内,因此,本发明实施例对此不做赘述。
一般来说,无线收发装置的结构上与圆度相关的对称性有三个:天线单元本体的对称性、安装位置的对称性和金属载体的对称性。如果这三个对称性同时满足,即,一个中心对称的全向天线单元中心对称地放置在一个中心对称的金属载体上,无线收发装置的圆度一般是较好的。但如果这三个对称性中的某一个被破坏,那圆度一般会恶化。
传统的无线收发装置,如果安装有一个全向天线单元,通常是将该全向天 线单元设置在金属载体(该金属载体相当于参考地,也即如图8中所标示的地)的中心位置,例如将该全向天线单元中心对称地设置在无线收发装置的屏蔽盖上,并将天线单元的辐射片或辐射体设计为中心对称(也称旋转对称)结构,除此之外,还需要将对称结构的天线单元安放于金属载体(如图8中所标示的地)的中央,通过结构上的对称性来保证天线单元在平行于屏蔽盖的截面上具有相近的辐射特性,从而实现高圆度性能。相应的电流分布示意图如图8所示,天线单元的地电流中心对称分布。而为了实现多频段的覆盖和多通道的信号传输,无线收发装置通常需要安装有至少两个全向天线单元,此时,在多天线单元条件下,由于无法保证每个天线单元对于金属载体的对称性,由此不可避免的会造成地电流的非中心对称分布,导致方向图圆度的恶化。实际应用中,由于加工的便利性,金属载体为中心对称结构,例如正方形结构或圆形结构,其上扣置的屏蔽盖也是中心对称结构。可选的,金属载体可以为中心对称的棱柱形结构,为了美观,其边缘可以具有倒圆角或者倒斜角。
图9是图2所示的在屏蔽盖的四角设置全向天线单元的场景中,一天线单元的电流分布示意图,金属载体作为天线单元的参考地(如图9中所标示的地),其相对于每一个天线单元不是中心对称的,每一个天线单元的地电流也因此呈现非中心对称分布,相应的,该天线单元的方向图的仿真图可以如图10所示,图10中不同宽带所对应的方向图圆度如表1所示,取三维方向图在水平面方向某一角度Theta的截面,该Theta的取值范围通常为0°至180°,表1中记载的频率值为该天线单元在正常工作时的频点所对应的频率值。Theta截面圆度表示角度为Theta时,方向图的电平(单位:dB)最大值与最小值之差。此外,基于覆盖范围的考虑,通常关注Theta=80°的截面,该Theta=80°表示极坐标系中与垂直方向的夹角为80°。由图10所示的仿真图和表1可知,传统的宽带单极子天线单元在金属载体的四角布局的情况下,由于天线单元的相对于金属载体非中心对称分布,造成金属载体上的地电流的非中心对称分布,由此在金属载体的对角方向上形成了较深的方向图凹陷,导致了方向图圆度的急剧恶化,在1.7-2.7GHz(吉赫)的宽带范围内圆度最差为10.9dB(分贝)。该方向图的波动程度远超通信运营商所能接受的波动范围,巨大的水平截面方向图波动会在某些角度范围内形成通信盲区,减小覆盖范围,降低通信能力。
表1
Figure PCTCN2016091956-appb-000001
在本发明实施例中,为了实现多频段的覆盖和多通道的信号传输,无线收发装置通常需要安装有至少两个全向天线单元,如图3-1至图7中任一图所示,本发明实施例中无线收发装置上的每个天线单元中的辐射贴片3022和馈电结构3021可以为非中心对称结构。由于本发明实施例中每个天线单元的辐射贴片3022和馈电结构3021可以是非中心对称的,金属载体作为天线单元的参考地,其相对于每个天线单元也是非中心对称的,那么对于每个天线单元,非中心对称的辐射贴片和非中心对称的参考地所产生的地电流的分布可以形成相对的中心对称,相较于传统的无线收发装置中的全向天线单元,本发明实施例提供的无线收发装置的各个天线单元的方向图圆度在宽带范围内均较好。并且,寄生结构也可以为非中心对称的,进一步保障天线单元的方向图圆度。
实际应用中,辐射贴片、馈电结构以及寄生结构在介质基板上的相对位置可以根据具体情况进行设置,三者可以有两个位于介质基板的一面,一个位于介质基板的另一面,或者三者位于介质基板的同一面,如图4-2或图6或图7所示,辐射贴片3022和馈电结构3021位于介质基板的一面,寄生结构3024位于介质基板的另一面;如图5或图11所示,辐射贴片3022和寄生结构3024位于介质基板3023的一面,馈电结构3021位于介质基板3023的另一面。如辐射贴片和寄生结构位于介质基板的下表面,馈电结构位于介质基板的上表面。
当然,当无线收发装置上未设置寄生结构时,辐射贴片3022和馈电结构3021在介质基板上的相对位置可以根据具体情况进行设置,两者可以分别位于介质基板3023的两面,或者两者位于介质基板3023的同一面,如图3-2所示,辐射贴片3022和馈电结构3021位于介质基板3023的同一面;如图12所示, 辐射贴片和馈电结构分别位于介质基板的两面。
图12中,辐射贴片3022位于介质基板3023的下表面;天线单元302还可以包括:设置在辐射贴片3022至少一侧的第二接地脚3026,该第二接地脚3026可以由金属制成,第二接地脚3026一端与辐射贴片3022连接,另一端与金属载体301连接,第二接地脚3026垂直介质基板3023的板面,辐射贴片3022通过金属载体301接地。示例的,图12以天线单元302设置2个第二接地脚3026为例,该2个第二接地脚3026对称设置在辐射贴片3022两侧。通过设置该第二接地脚3026,辐射贴片可以通过与凹槽底面平行设置,与凹槽底面形成电容,再通过设置该第二接地脚使辐射贴片与凹槽底面间形成电感,进而激发出电磁震荡,并且,该第二接地脚不仅可以使辐射贴片通过较短的路径与金属载体电连接,还可以支撑介质基板,防止介质基板变形,其制造工艺也比较简单。并且2个第二接地脚3026对称设置在辐射贴片3022两侧能够有效的减小天线单元尺寸、拓展带宽。
如图4-1至图7任一所示或者如图11、图12所示,无线收发装置30还可以包括:屏蔽盖304,屏蔽盖304扣置在金属载体301的介质基板303上方,用于屏蔽射频电路与外界环境和天线单元之间的相互干扰。需要说明的是,该屏蔽盖的形状可以根据金属载体上的凹槽的位置适应性调整,例如,该凹槽位于金属载体的四角时,则屏蔽盖的四角也设置有与该凹槽匹配的凹槽,使得屏蔽盖和金属载体的凹槽连通,实现屏蔽盖与金属载体的有效扣合。
实际应用中,无线收发装置30还可以如图13所示,不包括屏蔽盖,介质基板直接扣置在金属载体(实际应用中,介质基板也可以设置在金属载体的内部,图13只是示意性说明)上。可选的,对于金属载体内部需要设置屏蔽结构的元器件,可以在该元器件外部扣置一个小的屏蔽罩,来避免该元器件与外界环境的相互干扰。如图13所示,由于该无线收发装置30不设置屏蔽盖,可以减少无线收发装置的整体厚度,相应的减少了无线收发装置的体积。
需要说明的是,辐射贴片3022除了接地脚,还可以采用其他方式接地。可选的,如图4-1或4-2等图所示,天线单元302还可以包括:
接地线3027,该接地线3027由金属制成,接地线3027一端与辐射贴片3022连接,另一端与介质基板3023的金属地线(图中未示出)连接,使辐射贴片3022通过金属地线(图中未画出)接地。设置接地线的天线单元,可以在辐射贴片与凹槽底面间形成微小的电感,以实现辐射贴片与凹槽底面间的电 磁震荡。在本发明实施例中,为了保证辐射贴片与凹槽底面间产生较强的电感,一方面,在辐射贴片通过接地线接地时,可以在辐射贴片的下方增加垂直于凹槽底面的接地脚,另一方面,在辐射贴片通过接地线接地时,可以增加寄生结构,在该寄生结构的下方增加垂直于凹槽底面的接地脚,这样产生的电感强度较强。实际应用中,还可以通过其他方式来增强电感,本发明实施例对此不做限定。
天线单元302中的接地线3027的个数可以根据实际情况来设定,例如,如图6所示,辐射贴片3022的一侧设置有接地线3027,辐射贴片的另一侧设置有馈电结构3021。
又例如,如图4-1所示,接地线3027共2个,2个接地线3027对称设置在辐射贴片3022的两侧,分别与介质基板3023的金属地线连接,馈电结构3021为轴对称结构,馈电结构3021的对称轴与2个接地线3027的对称轴共轴,这样可以较为容易地控制方向图的圆度。
进一步的,如图3-1至图7,图11至图13等任一图所示,凹槽的侧壁可以存在开口,也即是,该凹槽的侧壁非封闭,由于图3-1至图7等图中,凹槽是设置在金属载体的角落的,其两个相邻的侧壁开口,当凹槽设置在金属载体的一边时,其一个侧壁可以开口。这样可以保证天线单元的有效馈电和能量辐射。并且,半开放槽加工制造简单、易于组装。
可选的,金属载体底部还可以设置有散热齿,该散热齿用于金属载体的散热。
本发明图3-1至图7、图11至图13任一所示的无线收发装置中的全向天线单元,其电压驻波比(英文:Voltage Standing Wave Ratio;简称:VSWR)可以小于2.5,驻波带宽可以大于45%。
如图4-2所示的无线收发装置30,其左视图和俯视图分别为图14和图15,图14和图15标示了该无线收发装置30上的各个结构参数,如图14所示,无线收发装置30的厚度h0,也即由下到上依次叠加的金属载体301、介质基板3023(或介质基板303)和屏蔽盖304的厚度和为h0;凹槽3011的深度为h1-h3,其中,h3为屏蔽盖的厚度,介质基板3023的下表面与凹槽3011的底面的距离为h;第一接地脚3025的高度为h2。介质基板303和凹槽3011的形状相同,尺寸可以相同,也可以不同,通常介质基板303的尺寸小于凹槽3011的尺寸,如图15所示,凹槽3011的俯视图是一角截去一个等腰直角三角形的正方形, 该正方形的边长为c0,该直角等腰三角形的腰长为c0-c1;扇形(也可以视为四分之一圆形)的寄生结构3024的圆心距凹槽3011的两边的距离均为r0,该扇形的半径为r1,该扇形所对应的圆心角为90°;半环形(也可以视为四分之一环形)的辐射贴片3022的内径为r2,外径为r3,圆心角为90°,该辐射贴片的圆心与扇形的寄生结构的圆心重合;辐射贴片3022为E字形结构,其第一纵条形结构为半环形结构,该半环形结构的内径为r4,外径为r5,圆心角为a,位于E字形结构外缘的第一横条形结构,长为la,宽为wa,位于E字形结构的中间的第一横条形结构长为lf,宽为wf。接地线3027共2个,2个接地线3027对称设置在辐射贴片3022的两侧,分别与介质基板3023的金属地线连接,每个接地线3027为条状结构,长为ws,宽为ls。
示例性的,图4-2所示的无线收发装置30中天线单元的各结构参数的尺寸如表2所示。其中,λ1为该无线收发装置30中的天线单元最低工作频率对应的波长,r0为(0.05104λ1,0.07656λ1)表示r0在0.05104λ1至0.07656λ1的范围内。
表2
Figure PCTCN2016091956-appb-000002
Figure PCTCN2016091956-appb-000003
图4-2中的无线收发装置30中天线单元的各结构参数的尺寸如表2所示时,按照表2的结构参数设计的天线单元经过仿真得到的该天线单元的方向图的仿真图可以如图16所示,在Theta=80°时,图16中不同频点所对应的方向图圆度如表3所示。由图16所示的仿真图和表3可知,图4-2所示的无线收发装置30中该结构形式的天线单元在1.7-2.7GHz的宽带范围内圆度最差为3.3dB。该方向图的波动较小,可以实现较大的覆盖范围,提升通信能力。
表3
Figure PCTCN2016091956-appb-000004
如图13所示的无线收发装置30,其左视图和俯视图分别为图17和图18,图17和图18标示了该无线收发装置30上的各个结构参数,如图17所示,无线收发装置30的厚度h0,也即由下到上依次叠加的金属载体301和介质基板3023(或介质基板303)的厚度和为h0,凹槽3011的深度为h1;介质基板3023的下表面与凹槽3011的底面的距离为h;第一接地脚3025的高度为h2。如图18所示,凹槽3011(介质基板和凹槽的形状相同)的俯视图是一角截去一个等腰直角三角形的正方形,该正方形的边长为c0,该直角等腰三角形的腰长为c0-c1;扇形(也可以视为四分之一圆形)的寄生结构3024的圆心距凹槽3011的两边的距离均为r0,扇形的半径为r1,圆心角为90°,辐射贴片的圆心与扇形的寄生结构的圆心重合;辐射贴片3022为E字形结构,其第一纵条形结 构为半环形结构,该半环形结构的内径为r4,外径为r5,圆心角为a,位于E字形结构外缘的第一横条形结构,长为la,宽为wa,位于E字形结构的中间的第一横条形结构长为lf,宽为wf。接地线3027共2个,2个接地线3027对称设置在辐射贴片3022的两侧,分别与介质基板3023的金属地线连接,每个接地线3027为条状结构,长为ws,宽为ls。
图13所示的无线收发装置30中天线单元的各结构参数的尺寸如表4所示。其中,λ1为该无线收发装置30中的天线单元最低工作频率对应的波长,r0为(0.0328λ1,0.0492λ1)表示r0在0.0328λ1至0.0492λ1的范围内。
表4
Figure PCTCN2016091956-appb-000005
图13中的无线收发装置30中天线单元的各结构参数的尺寸如表4所示时,该天线单元的方向图的仿真图可以如图19所示,在Theta=80°时,图19中不同频点所对应的方向图圆度如表5所示。由图19所示的仿真图和表5可知, 图13所示的无线收发装置30中天线单元在1.7-2.7GHz的宽带范围内圆度最差为5.4dB。该方向图的波动较小,可以实现较大的覆盖范围,提升通信能力。
表5
Figure PCTCN2016091956-appb-000006
如图11所示的无线收发装置30,其左视图和俯视图分别和图13的无线收发装置30的左视图和俯视图基板相同,只是图11的无线收发装置30的俯视图无法直接看到辐射贴片3022。图11所示的无线收发装置30,其左视图和俯视图可以参考图17和图18,如图17所示,无线收发装置30的厚度h0,也即由下到上依次叠加的金属载体301和介质基板3023(或介质基板303)的厚度和为h0,凹槽3011的深度为h1;介质基板3023的下表面与凹槽3011的底面的距离为h;第一接地脚3025的高度为h2。如图18所示,凹槽3011(介质基板和凹槽的形状相同)的俯视图是一角截去一个等腰直角三角形的正方形,该正方形的边长为c0,该直角等腰三角形的腰长为c0-c1;扇形(也可以视为四分之一圆形)的寄生结构3024的圆心距凹槽3011的两边的距离均为r0,扇形的半径为r1,圆心角为90°;半环形(也可以视为四分之一环形)的辐射贴片3022的内径为r2,外径为r3,圆心角为90°,辐射贴片的圆心与扇形的寄生结构的圆心重合;辐射贴片3022为E字形结构,其第一纵条形结构为半环形结构,该半环形结构的内径为r4,外径为r5,圆心角为a,位于E字形结构外缘的第一横条形结构,长为la,宽为wa,位于E字形结构的中间的第一横条形结构长为lf,宽为wf。接地线3027共2个,2个接地线3027对称设置在辐射贴片3022的两侧,分别与介质基板3023的金属地线连接,每个接地线3027为条状结构,长为ws,宽为ls。
图11所示的无线收发装置30中天线单元的各结构参数的尺寸如表6所示。 其中,λ1为该无线收发装置30中的天线单元最低工作频率对应的波长,r0为(0.05104λ1,0.07656λ1)表示r0在0.05104λ1至0.07656λ1的范围内。
表6
Figure PCTCN2016091956-appb-000007
图11中的无线收发装置30中天线单元的各结构参数的尺寸如表6所示时,该天线单元的方向图的仿真图可以如图20所示,在Theta=80°时,图20中不同频点所对应的方向图圆度如表7所示。由图20所示的仿真图和表7可知,图11所示的无线收发装置30中该天线单元在1.7-2.7GHz的宽带范围内圆度最差为3.6dB。该方向图的波动较小,可以实现较大的覆盖范围,提升通信能力。
表7
频率 Theta=80°截面圆度
(GHz) (dB)
1.7 3.4
1.9 3.6
2.1 2.5
2.3 2.6
2.5 2.9
2.7 3.6
如图12所示的无线收发装置30,其左视图和俯视图分别为图21和图22,图21和图22标示了该无线收发装置30中天线单元的各个结构参数。如图21所示,无线收发装置30的厚度h0,也即由下到上依次叠加的金属载体301和介质基板3023(或介质基板303)的厚度和为h0,凹槽3011的深度为h1-h3,其中,h3为屏蔽盖的厚度;介质基板3023的下表面与凹槽3011的底面的距离等于第二接地脚3026的高度,均为h,第二接地脚3026与辐射贴片3022中心之间的投影距离为ps,每个第二接地脚3026的宽度为ws。如图22所示,凹槽3011(介质基板和凹槽的形状相同)的俯视图是一角截去一个等腰直角三角形的正方形,该正方形的边长为c0,该直角等腰三角形的腰长为c0-c1;半环形(也可以视为四分之一环形)的辐射贴片3022的内径为r1,外径为r2,圆心角为90°,半环形(也可以视为四分之一环形)的辐射贴片3022的圆心距凹槽3011的两边的距离均为r0;辐射贴片3022为E字形,其第一纵条形结构为半环形结构,该半环形结构的内径为r4,外径为r5,圆心角为a,位于E字形结构外缘的第一横条形结构,长为la,宽为wa,位于E字形结构的中间的第一横条形结构长为lf,宽为wf。
图12所示的无线收发装置30中天线单元的各结构参数的尺寸如表8所示。其中,λ1为该无线收发装置30中天线单元的最低工作频率对应的波长,r0为(0.03736λ1,0.05604λ1)表示r0在0.03736λ1至0.05604λ1的范围内。
表8
Figure PCTCN2016091956-appb-000008
Figure PCTCN2016091956-appb-000009
图12中的无线收发装置30中天线单元的各结构参数的尺寸如表8所示时,该天线单元的方向图的仿真图可以如图23所示,在Theta=80°时,图23中不同频点所对应的方向图圆度如表9所示。由图23所示的仿真图和表9可知,图13所示的无线收发装置30中天线单元在1.7-2.7GHz的宽带范围内圆度最差为5.8dB。该方向图的波动较小,可以实现较大的覆盖范围,提升通信能力。
表9
Figure PCTCN2016091956-appb-000010
如图7所示的无线收发装置30,其左视图和图17相同,其俯视图可以参考图24,如图17所示,无线收发装置30的厚度h0,也即由下到上依次叠加的金属载体301和介质基板3023(或介质基板303)的厚度和为h0,凹槽3011的深度为h1;介质基板3023的下表面与凹槽3011的底面的距离为h;第一接地脚3025的高度为h2。如图24所示,凹槽3011(介质基板和凹槽的形状相同)的俯视图是一角截去一个等腰直角三角形的正方形,该正方形的边长为c0, 该直角等腰三角形的腰长为c0-c1;扇形(也可以视为四分之一圆形)的寄生结构3024的圆心距凹槽3011的两边的距离均为r0,扇形的半径为r1,圆心角为90°;半环形(也可以视为四分之一环形)的辐射贴片3022的内径为r2,外径为r3,圆心角为90°,辐射贴片3022靠近馈电结构3021的一侧设置有弧形开口,该弧形开口的半径为r5,辐射贴片的圆心与扇形的寄生结构的圆心重合;馈电结构3021为弧形结构30211与条状结构30212组成的一体结构,条状结构的长为wf,宽为lf,该弧形结构30212的半径为r4,且与弧形开口共圆心。接地线3027共2个,2个接地线3027对称设置在辐射贴片3022的两侧,分别与介质基板3023的金属地线连接,每个接地线3027为条状结构,长为ws,宽为ls。
图7所示的无线收发装置30中天线单元各结构参数的尺寸如表10所示。其中,λ1为该无线收发装置30中该天线单元的最低工作频率对应的波长,r0为(0.0456λ1,0.0648λ1)表示r0在0.0456λ1至0.0648λ1的范围内。
表10
Figure PCTCN2016091956-appb-000011
图7中的无线收发装置30中天线单元的各结构参数的尺寸如表10所示时,该天线单元的方向图的仿真图可以如图25所示,在Theta=80°时,图25中不同频点所对应的方向图圆度如表11所示。由图25所示的仿真图和表11可知,图7所示的无线收发装置30中天线单元在1.7-2.7GHz的宽带范围内圆度最差为4.6dB。该方向图的波动较小,可以实现较大的覆盖范围,提升通信能力。
表11
Figure PCTCN2016091956-appb-000012
如图6所示的无线收发装置30,其左视图和图17相同,其俯视图可以参考图26,如图17所示,无线收发装置30的厚度h0,也即由下到上依次叠加的金属载体301和介质基板3023(或介质基板303)的厚度和为h0,凹槽3011的深度为h1;介质基板3023的下表面与凹槽3011的底面的距离为h;第一接地脚3025的高度为h2。如图26所示,凹槽3011(介质基板和凹槽的形状相同)的俯视图是一角截去一个等腰直角三角形的正方形,该正方形的边长为c0,该直角等腰三角形的腰长为c0-c1;等腰直角三角形的寄生结构3024的顶点距凹槽3011的两边的距离均为r0,腰长为a1;辐射贴片3022的俯视图是两角分别截去一个等腰直角三角形的正方形,该两角分别是靠近寄生结构3024的一角和靠近凹槽缺角的一端的一角,该辐射贴片3022与寄生结构3024靠近的一边与该寄生结构3024的底平行,该辐射贴片3022的其余边与凹槽3011的俯视图的对应边平行,被截去一个等腰直角三角形的一边的边长为a3,被截去一个等腰直角三角形的另一边的边长为a4;馈电结构3021为T字形结构,其第二纵条形结构长为w2,长边与辐射贴片宽为a4的边平行,且距离为w1,馈电结构3021的第二横条形结构长为lf,宽为wf。接地线3027共1个,与馈电结构3021位于辐射贴片3022的不同侧,与介质基板3023的金属地线连接,该 接地线3027为条状结构,长为ws,宽为ls。
图6所示的无线收发装置30中天线单元的各结构参数的尺寸如表12所示。其中,λ1为该无线收发装置30中天线单元的最低工作频率对应的波长,r0为(0.0644λ1,0.0966λ1)表示r0在0.0644λ1至0.0966λ1的范围内。
表12
Figure PCTCN2016091956-appb-000013
图6中的无线收发装置30中天线单元的各结构参数的尺寸如表12所示时,该天线单元的方向图的仿真图可以如图27所示,在Theta=80°时,图27中不同频点所对应的方向图圆度如表13所示。由图27所示的仿真图和表13可知,图6所示的无线收发装置30中天线单元在1.7-2.7GHz的宽带范围内圆度最差为4.4dB。该方向图的波动较小,可以实现较大的覆盖范围,提升通信能力。
表13
Figure PCTCN2016091956-appb-000014
Figure PCTCN2016091956-appb-000015
可选的,位于凹槽3011中的天线单元30还可以如图3-1或图3-2所示,在图3-2中,馈电结构3021由两部分馈电子结构组成,一部分是垂直于凹槽3011的底面用来连接金属载体上的馈源的第一馈电子结构3021a,另一部分是平行于凹槽3011的底面的第二馈电子结构3021b,图3-2中,以该第二馈电子结构3021b印刷在介质基板3023的上表面为例进行说明。辐射贴片3022也印刷在介质基板3023的上表面,馈源的信号(也可视为能量)由馈电结构3021馈入,并通过缝隙耦合的方式耦合到辐射贴片3022。并且,在辐射贴片3022的两侧设置有第二接地脚3026,第二接地脚3026将辐射贴片3022和金属载体301相连,天线单元的整体结构与金属载体相对独立。对各部分尺寸进行调整,可使天线单元获得>45%的驻波带宽(VSWR<2.5),同时,在该带宽范围内,天线单元的方向图可实现较好的圆度性能。
如图3-2所示的无线收发装置30,其左视图和俯视图分别为图28和图29,图28和图29标示了该无线收发装置30中天线单元的各个结构参数。如图28所示,介质基板3023的上表面与凹槽3011的底面的距离为h,第二接地脚3026与辐射贴片3022中心之间的投影距离为ps,每个第二接地脚3026的宽度为ws,第二接地脚3026到第二馈电子结构3021a的距离为pf,如图29所示,凹槽3011(介质基板和凹槽的形状相同)的俯视图是一角截去一个等腰直角三角形的正方形,该正方形的边长为c0,该直角等腰三角形的腰长为c0-c1;半环形(也可以视为四分之一环形)的辐射贴片3022的内径为r1,外径为r2,圆心角为90°,半环形(也可以视为四分之一环形)的辐射贴片3022的圆心距凹槽3011的两边的距离均为r0;辐射贴片3022为E字形结构,辐射贴片3022的第一纵条形结构为半环形结构,该半环形结构的内径为r4,外径为r5,圆心角为a,位于E字形结构外缘的第一横条形结构,长为la,宽为wa,位于E字形结构的中间的第一横条形结构长为lf,宽为wf。
图3-2所示的无线收发装置30中天线单元的各结构参数的尺寸可以如表 14所示。其中,λ1为该无线收发装置30中天线单元的最低工作频率对应的波长,r1为(0.073λ1,0.109λ1)表示r1在0.073λ1至0.109λ1的范围内。
表14
Figure PCTCN2016091956-appb-000016
需要说明的是,本发明实施例中上述无线收发装置30的结构均为示意性说明,实际应用中,图3-1至图7,图11至13中的无线收发装置30中的各组件可以互相参考、结合或替换,例如,图3-1和图3-2中,第二馈电子结构3021b的具体形状可以参考上述图4-1至图7等,可以是T字形结构、E字形结构或者弧形结构与条状结构组成的一体结构,不同的是,所述第二馈电子结构3021b可以通过第一馈电子结构3021a与馈源连接,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内,本发明对此不再赘述。
需要说明的是,本发明实施例中提供的无线收发装置中的尺寸只是示意性说明,主要是为了保证天线单元获得>45%的驻波带宽(VSWR<2.5),实际应用中,无线收发装置的尺寸可以根据具体的应用场景进行调节,本发明实施例对此不做限定。
本发明实施例提供的无线收发装置,其结构简单,便于装配。可以将辐射贴片、馈电结构和接地线等可以一体形成于介质基板上,然后安装于金属载体的凹槽处,屏蔽盖可以在介质基板安装后扣合在金属载体上,也可以在介质基板安装前就扣合在金属载体上,接地脚可以在介质基板安装后设置,由于辐射贴片、馈电结构和接地线等可以一体形成于介质基板上,不是单独形成的立体结构,因此结构简单,便于装配。若该无线收发装置包括屏蔽盖,该屏蔽盖可以在介质基板安装后扣合在金属载体上,接地脚可以在辐射单板安装后设置, 由于辐射贴片、馈电结构和接地线等可以一体形成于介质基板上,不是单独形成的立体结构,因此结构简单,便于装配。
需要说明的是,本发明上述实施例提供的无线收发装置中,天线单元可以包括介质基板,也可以不包括介质基板,该介质基板用于承载辐射贴片和馈电结构,其形状和凹槽相同也可以不同,上图中均以介质基板的形状与凹槽的形状相同,且面积小于凹槽的面积举例。在天线单元包括介质基板时,辐射贴片可以通过介质基板使其与凹槽的底面产生电磁震荡,在天线单元不包括介质基板时,辐射贴片可以通过其他方式使其与凹槽的底面产生电磁震荡,例如,如图3-1所示,该无线收发装置还可以包括:设置在该辐射贴片至少一侧的第二接地脚3026,该第二接地脚3026一端与该辐射贴片3022连接,另一端与该金属载体301连接,该第二接地脚3026垂直该凹槽301的底面,该辐射贴片3022通过该金属载体301接地。辐射贴片3022可以由第二接地脚3026支撑,第二馈电子结构3021b由第一馈电子结构3021a支撑,以保证辐射贴片3022与凹槽的底面产生电磁震荡。可选的,辐射贴片和/或馈电结构也可以通过塑料结构支撑,使得辐射贴片3022与天线单元的设置面产生电磁震荡。其他实施例中的无线收发装置的结构也可以参考图3-1适应性修改,本发明实施例对此不作限定。同理,在天线单元包括介质基板时,寄生结构可以通过介质基板使其与凹槽的底面产生电磁震荡,在天线单元不包括介质基板时,寄生结构可以通过其他方式使其与凹槽的底面产生电磁震荡,例如设置支撑该寄生结构的接地脚或者采用塑料结构支撑寄生结构。本发明实施例对此不作赘述。
本发明实施例提供的无线收发装置,通过将天线单元设置在金属载体的凹槽中,使得无线收发装置的整体厚度减小,整体体积减小,从而减少了无线收发装置的占用空间。并且,本发明实施例提供的无线收发装置的宽带全向天线单元,还可以将辐射贴片和馈电结构设置在介质基板上,无需单独加工并安装天线单元,降低了无线收发装置的制造过程的复杂度,减少了装配成本。进一步的,由于天线单元的辐射贴片和馈电结构近似于平面结构,进而相对于相关技术中的立体结构,天线单元整体的体积减少,从而减少了无线收发装置的占用空间。
本发明实施例提供一种基站,可以包括至少一个本发明实施例提供的无线收发模块,在该基站包括至少两个无线收发模块的时候,每个无线收发模块可 以是本发明提供的上述实施例中的任一种无线收发装置。该基站通常是位于室内的基站。采用本发明实施例中无线收发装置30的基站,具有工作频带宽,全向性能好的特点,该基站可以安装在体育场馆或购物场所中,用于实现室内区域无线信号的全向覆盖。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种无线收发装置,其特征在于,包括:
    金属载体和至少一个天线单元,所述天线单元包括馈电结构和辐射贴片;
    所述金属载体上设置有凹槽,所述天线单元设置在所述凹槽内;
    所述辐射贴片通过所述馈电结构馈电,所述辐射贴片接地。
  2. 根据权利要求1所述的无线收发装置,其特征在于,所述凹槽位于所述金属载体的边缘处。
  3. 根据权利要求1或2所述的无线收发装置,其特征在于,
    所述馈电结构与所述辐射贴片之间存在缝隙,所述馈电结构与所述辐射贴片通过所述缝隙耦合馈电。
  4. 根据权利要求1至3任一所述的无线收发装置,其特征在于,所述天线单元还包括:
    寄生结构,所述寄生结构位于与所述凹槽的底面平行的面上,所述寄生结构接地。
  5. 根据权利要求4所述的无线收发装置,其特征在于,
    所述寄生结构与所述辐射贴片之间存在间隙,所述寄生结构与所述辐射贴片通过所述间隙耦合馈电。
  6. 根据权利要求4或5所述的无线收发装置,其特征在于,所述天线单元还包括:
    第一接地脚,所述第一接地脚一端与所述寄生结构连接,另一端与所述金属载体连接,所述第一接地脚垂直所述凹槽的底面,所述寄生结构通过所述金属载体接地。
  7. 根据权利要求4至6任一所述的无线收发装置,其特征在于,
    所述寄生结构为非中心对称结构。
  8. 根据权利要求7所述的无线收发装置,其特征在于,
    所述寄生结构为扇形结构,所述辐射贴片为半环形结构,所述辐射贴片的圆心与所述寄生结构的圆心位于所述辐射贴片的同一侧。
  9. 根据权利要求1至8任一所述的无线收发装置,其特征在于,
    所述辐射贴片和馈电结构均为非中心对称结构。
  10. 根据权利要求9所述的无线收发装置,其特征在于,所述馈电结构为E字形结构,所述E字形结构由第一纵条形结构及3个一端间隔设置在所述第一纵条形结构上的第一横条形结构组成,所述E字形结构的开口背离所述辐射贴片,位于所述E字形结构中间的第一横条形结构的长度大于其他2个第一横条形结构的长度,且位于所述E字形结构中间的第一横条形结构的另一端与所述金属载体的馈源连接,所述第一纵条形结构与所述辐射贴片形成所述缝隙。
  11. 根据权利要求9所述的无线收发装置,其特征在于,所述馈电结构为T字形结构,所述T字形结构由第二纵条形结构及1个一端从所述1个第二纵条形结构中部向外延伸的第二横条形结构组成,所述第二横条形结构的另一端与所述金属载体的馈源连接,所述第二纵条形结构与所述辐射贴片形成所述缝隙。
  12. 根据权利要求9所述的无线收发装置,其特征在于,所述馈电结构为弧形结构与条状结构组成的一体结构,所述条状结构的一端与所述金属载体的馈源连接,另一端与所述弧形结构连接,所述辐射贴片靠近所述馈电结构的一侧设置有弧形开口,所述弧形结构位于所述弧形开口内,且与所述弧形开口形成所述缝隙。
  13. 根据权利要求1至12任一所述的无线收发装置,其特征在于,所述天线单元还包括介质基板,所述介质基板设置在所述凹槽内,所述辐射贴片和所述馈电结构设置在所述介质基板上。
  14. 根据权利要求13所述的无线收发装置,其特征在于,所述天线单元还包括:
    接地线,所述接地线一端与所述辐射贴片连接,另一端与所述介质基板上设置的金属地线连接,使所述辐射贴片通过所述金属地线接地。
  15. 根据权利要求14所述的无线收发装置,其特征在于,
    所述辐射贴片的一侧设置有所述接地线,所述辐射贴片的另一侧设置有所述馈电结构。
  16. 根据权利要求14所述的无线收发装置,其特征在于,
    所述接地线共2个,2个所述接地线对称设置在所述辐射贴片的两侧,分别与所述介质基板的金属地线连接,所述馈电结构为轴对称结构,所述馈电结构的对称轴与2个所述接地线的对称轴共轴。
  17. 根据权利要求13至16任一所述的无线收发装置,其特征在于,
    所述辐射贴片位于所述介质基板的下表面;
    所述无线收发装置还包括:
    设置在所述辐射贴片至少一侧的第二接地脚,所述第二接地脚一端与所述辐射贴片连接,另一端与所述金属载体连接,所述第二接地脚垂直所述介质基板的板面,且所述介质基板的板面与所述凹槽的底面平行,所述辐射贴片通过所述金属载体接地。
  18. 根据权利要求13至17任一所述的无线收发装置,其特征在于,所述金属载体上还设置有介质基板,
    所述天线单元的介质基板与所述金属载体上的介质基板为一体结构。
  19. 根据权利要求13至18任一所述的无线收发装置,其特征在于,所述无线收发装置还包括:
    屏蔽盖,所述屏蔽盖扣置在所述金属载体上的介质基板上方。
  20. 根据权利要求1至3任一所述的无线收发装置,其特征在于,
    所述无线收发装置还包括:
    设置在所述辐射贴片至少一侧的第二接地脚,所述第二接地脚一端与所述辐射贴片连接,另一端与所述金属载体连接,所述第二接地脚垂直所述凹槽的底面,所述辐射贴片通过所述金属载体接地。
  21. 根据权利要求1至20任一所述的无线收发装置,其特征在于,
    所述凹槽的侧壁存在开口。
  22. 根据权利要求1至21任一所述的无线收发装置,其特征在于,
    所述金属载体底部设置有散热齿。
  23. 根据权利要求3或4所述的无线收发装置,其特征在于,
    所述馈电结构包括:
    垂直于所述凹槽的底面的第一馈电子结构,和平行于凹槽的底面的第二馈电子结构,所述第一馈电子结构与所述金属载体的馈源连接。
  24. 一种基站,其特征在于,包括权利要求1至23任一所述的无线收发装置。
PCT/CN2016/091956 2016-07-27 2016-07-27 无线收发装置和基站 WO2018018474A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019504759A JP2019527522A (ja) 2016-07-27 2016-07-27 無線トランシーバ装置及び基地局
CA3031998A CA3031998C (en) 2016-07-27 2016-07-27 Wireless transceiver apparatus and base station
EP16910055.9A EP3480886B1 (en) 2016-07-27 2016-07-27 Wireless receiving/transmitting device and base station
KR1020197005564A KR102120281B1 (ko) 2016-07-27 2016-07-27 무선 수신/송신 디바이스 및 기지국
PCT/CN2016/091956 WO2018018474A1 (zh) 2016-07-27 2016-07-27 无线收发装置和基站
CN201680021514.2A CN107925151B (zh) 2016-07-27 2016-07-27 无线收发装置和基站
US16/257,916 US11245197B2 (en) 2016-07-27 2019-01-25 Wireless transceiver apparatus and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091956 WO2018018474A1 (zh) 2016-07-27 2016-07-27 无线收发装置和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/257,916 Continuation US11245197B2 (en) 2016-07-27 2019-01-25 Wireless transceiver apparatus and base station

Publications (1)

Publication Number Publication Date
WO2018018474A1 true WO2018018474A1 (zh) 2018-02-01

Family

ID=61015648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091956 WO2018018474A1 (zh) 2016-07-27 2016-07-27 无线收发装置和基站

Country Status (7)

Country Link
US (1) US11245197B2 (zh)
EP (1) EP3480886B1 (zh)
JP (1) JP2019527522A (zh)
KR (1) KR102120281B1 (zh)
CN (1) CN107925151B (zh)
CA (1) CA3031998C (zh)
WO (1) WO2018018474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948857A (zh) * 2020-07-15 2022-01-18 华为技术有限公司 一种电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1621594S (zh) * 2018-02-02 2019-01-07
JP7038305B2 (ja) * 2018-03-19 2022-03-18 パナソニックIpマネジメント株式会社 電子機器
WO2021153821A1 (ko) * 2020-01-30 2021-08-05 엘지전자 주식회사 5g 안테나를 구비하는 전자 기기
CN114552192B (zh) * 2022-02-24 2023-09-26 京东方科技集团股份有限公司 一种天线结构及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165968A (zh) * 2006-10-20 2008-04-23 光宝科技股份有限公司 适用于一即插即用传输装置的全向性超宽带天线
US20110221648A1 (en) * 2009-01-02 2011-09-15 Laird Technologies, Inc. Multiband high gain omnidirectional antennas
US20160079654A1 (en) * 2014-09-15 2016-03-17 Blackberry Limited Mobile Device Having An Interior Multiband Antenna And a Partially Metal Back
EP3046182A1 (en) * 2015-01-14 2016-07-20 Skywave Mobile Communications Inc. Dual role antenna assembly

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870940B2 (ja) * 1990-03-01 1999-03-17 株式会社豊田中央研究所 車載アンテナ
JP3639753B2 (ja) 1999-09-17 2005-04-20 株式会社村田製作所 表面実装型アンテナおよびそれを用いた通信装置
US6426723B1 (en) * 2001-01-19 2002-07-30 Nortel Networks Limited Antenna arrangement for multiple input multiple output communications systems
DE10204079A1 (de) * 2002-02-01 2003-08-21 Imst Gmbh Mehrbandantenne mit parasitären Strahlern
JP2004072731A (ja) 2002-06-11 2004-03-04 Matsushita Electric Ind Co Ltd モノポールアンテナ装置、通信システム及び移動体通信システム
US6917341B2 (en) * 2002-06-11 2005-07-12 Matsushita Electric Industrial Co., Ltd. Top-loading monopole antenna apparatus with short-circuit conductor connected between top-loading electrode and grounding conductor
US7242352B2 (en) * 2005-04-07 2007-07-10 X-Ether, Inc, Multi-band or wide-band antenna
CN101165966B (zh) * 2006-10-18 2011-07-27 鸿富锦精密工业(深圳)有限公司 耦合式馈入天线
KR100799875B1 (ko) * 2006-11-22 2008-01-30 삼성전기주식회사 칩 안테나 및 이를 포함하는 이동통신 단말기
JP4807413B2 (ja) 2006-12-15 2011-11-02 株式会社村田製作所 アンテナおよびそのアンテナを備えた通信装置
JP2009033294A (ja) 2007-07-25 2009-02-12 Mitsubishi Electric Corp アンテナ装置
JP5223691B2 (ja) 2009-01-21 2013-06-26 株式会社デンソー ナビゲーションシステム
CN103178338B (zh) * 2011-12-22 2015-12-02 宏碁股份有限公司 多频天线
KR101868869B1 (ko) 2012-08-07 2018-06-19 주식회사 케이엠더블유 이동통신 시스템의 소형 기지국
JP5652453B2 (ja) * 2012-09-28 2015-01-14 株式会社村田製作所 複合モジュールおよびこれを備えた電子機器
CN103531895B (zh) * 2013-09-29 2017-01-11 华侨大学 一种新颖分支线集成馈电巴伦的宽带印刷偶极子天线
CN104953291A (zh) * 2015-03-03 2015-09-30 苏州市吴通天线有限公司 双频双极化的一维lte天线
CN205122771U (zh) * 2015-11-30 2016-03-30 成都信息工程大学 一种新型微带天线
EP3217472B1 (de) * 2016-03-07 2018-07-11 Sick Ag Antenne für eine rfid-lesevorrichtung und verfahren zum senden und/oder empfangen von rfid-signalen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165968A (zh) * 2006-10-20 2008-04-23 光宝科技股份有限公司 适用于一即插即用传输装置的全向性超宽带天线
US20110221648A1 (en) * 2009-01-02 2011-09-15 Laird Technologies, Inc. Multiband high gain omnidirectional antennas
US20160079654A1 (en) * 2014-09-15 2016-03-17 Blackberry Limited Mobile Device Having An Interior Multiband Antenna And a Partially Metal Back
EP3046182A1 (en) * 2015-01-14 2016-07-20 Skywave Mobile Communications Inc. Dual role antenna assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948857A (zh) * 2020-07-15 2022-01-18 华为技术有限公司 一种电子设备
CN113948857B (zh) * 2020-07-15 2023-01-13 华为技术有限公司 一种电子设备

Also Published As

Publication number Publication date
CN107925151B (zh) 2020-06-02
EP3480886A4 (en) 2019-06-26
EP3480886A1 (en) 2019-05-08
JP2019527522A (ja) 2019-09-26
EP3480886B1 (en) 2023-06-21
US20190157768A1 (en) 2019-05-23
CA3031998A1 (en) 2018-02-01
KR20190030756A (ko) 2019-03-22
US11245197B2 (en) 2022-02-08
KR102120281B1 (ko) 2020-06-08
CN107925151A (zh) 2018-04-17
CA3031998C (en) 2021-06-01

Similar Documents

Publication Publication Date Title
US11431087B2 (en) Wideband, low profile, small area, circular polarized UHF antenna
US11183766B2 (en) Antenna module and electronic device
WO2018018473A1 (zh) 无线收发装置、天线单元和基站
JP5143911B2 (ja) セルラー基地局アンテナ用二偏波放射エレメント
US11355832B2 (en) Communications device
WO2018018474A1 (zh) 无线收发装置和基站
TWI624997B (zh) 行動裝置
US20200127388A1 (en) Antenna structure and electronic device
JP6402310B2 (ja) 広帯域小型平面アンテナ
TWM463913U (zh) 天線結構
KR20180123804A (ko) 초광대역 평면 안테나
US20230076815A1 (en) Antenna apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3031998

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019504759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016910055

Country of ref document: EP

Effective date: 20190131

ENP Entry into the national phase

Ref document number: 20197005564

Country of ref document: KR

Kind code of ref document: A