WO2018018407A1 - 利用光敏聚合物材料制作具纹理的图案的制作方法 - Google Patents

利用光敏聚合物材料制作具纹理的图案的制作方法 Download PDF

Info

Publication number
WO2018018407A1
WO2018018407A1 PCT/CN2016/091694 CN2016091694W WO2018018407A1 WO 2018018407 A1 WO2018018407 A1 WO 2018018407A1 CN 2016091694 W CN2016091694 W CN 2016091694W WO 2018018407 A1 WO2018018407 A1 WO 2018018407A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
mold
texture
polyurethane
material according
Prior art date
Application number
PCT/CN2016/091694
Other languages
English (en)
French (fr)
Inventor
马柯佛杰可福
马尔斯巴·可恰哇
沙德亚可福
Original Assignee
欧利速精密工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧利速精密工业股份有限公司 filed Critical 欧利速精密工业股份有限公司
Priority to PCT/CN2016/091694 priority Critical patent/WO2018018407A1/zh
Publication of WO2018018407A1 publication Critical patent/WO2018018407A1/zh
Priority to US16/158,278 priority patent/US20190039267A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • B29C33/3892Preparation of the model, e.g. by assembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • B29C35/0894Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds provided with masks or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/126Uppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/128Moulds or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2883/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof
    • B29L2031/505Uppers

Definitions

  • a method for fabricating a pattern and more particularly to a method for fabricating a textured pattern using a photopolymer material.
  • the base material of the upper part of the shoe is made of materials such as leather, mesh, cloth or other materials with reinforcement or special mechanical properties or color or decoration.
  • the upper part of the shoe has a thickness of 0.2 mm to 4 mm, and the production of this part is as well.
  • the installation technology began with leather cutting and splicing procedures a hundred years ago.
  • the glue-adhesive technology that has been produced over the past 25 years has been introduced into the shoe market. There are two kinds of bonding techniques: (1) glue solution and (2) by shoes.
  • New methods based on two-component polyurethanes have begun to be used in the production of shoes over the past decade. This method allows the portion of the direct shoe to be on the material. This method uses metal molds and milling to make samples from milling, or to cast negative shapes. The mold was filled with pre-mixed two-component polyurethane and the excess polyurethane was removed with a spatula. Once the polyurethane composition is mixed, the polymerization begins and the viscosity of the mixture rises from a few tens of centipoise to the final hard polymer, at which point the upper substrate, which has a viscosity of about 20,000 centipoise, is attached under pressure.
  • the limitations of this printing method are: up to 70% waste of polyurethane material, high mold cost, texture resolution through grinding equipment (up to 500 lpi), monochrome printing, release problems and excessive manual work.
  • 3D objects can be produced by inkjet printing (Objet), FDM printing (Stratasys), stereo (3D system) and UV offset printing (Massivit 3D) 3D printers.
  • Photopolymer printing technology is used in the printing industry for printing sheet production (flexo, embossing and liquid polymer technology). As a comparative 3D printing technique, this technique is relatively inexpensive. In addition, the technology has the advantage of high resolution with a resolution of 8000 lines per inch.
  • the fabrication, imaging and development processes of photopolymer printing plates are described in various patents (for example, US Pat. No. 7,419,766 B2, Kimelblat).
  • US 5,594,989 describes how to use jewellery to produce photographic printing plate molds.
  • the method includes the use of an actinic discussion and a two-dimensional negative image and photopolymer plate production mode, as well as the pattern shape produced by ultraviolet irradiation and the following uncured photopolymer wash, and a dewaxing casting process for demolding operation. .
  • US 4,668,607 (Wojcik) describes the fabrication of a multi-photosensitive polymeric pattern template which is produced by a negative mold.
  • the method includes a front-end and produced multi-stage structured back photopolymerization plate exposure procedure.
  • the photopolymer mold is filled with a bronze cast wax with a sand mixture.
  • US 2014/0147634 A1 (Dale) describes a flexographic 3D mold making using a mold which itself acts as a hardening liquid.
  • the invention relates to a low-cost, multi-color automatic shoe on the outer surface of the fine texture Production method.
  • materials used in the footwear industry artificial leather, perforated substrates, finely textured substrates, etc., which can be replaced by a polyurethane casting process that is directly attached to the shoe.
  • the texture detail size can range from a few microns to a few millimeters.
  • the program consists of the following steps:
  • the high-resolution mold is made in two stages, including: pattern making and mold production.
  • the patterning process is based on the plate-making technique of the photopolymer printing plate or the direct engraving method, in order to form an appropriate image resolution, and the process is highly dependent on the quality of the process.
  • photopolymer printing plates are widely used in the printing industry, among which the famous manufacturers such as DuPont, Flint, MacDermid, Toyobo, Toray, Sumitomo Riko, Kodak, etc., the thickness of the photopolymer printing plate is generally 0.3 ⁇ 12mm and can be adjusted with the thickness of the pattern.
  • FIG. 1 a manufacturing procedure of a photopolymer printing plate is shown, which comprises: after irradiating through a negative film by ultraviolet light, rinsing a portion of the photopolymer which is not irradiated with ultraviolet light, and then drying at 60° C., the plate making process is completed. .
  • a negative film structure is shown, a film separated by an opaque section (1) and a transparent section (2). Negative film production is achieved by laser ablation (Esco, FlexoLaser), analog film (Fuji), Digiflex and Kodak with up to 10,000 DPI resolution.
  • PP is cured due to UV exposure, and the opaque section still retains uncured PP.
  • the PP sheet is then subjected to a rinsing process whereby the uncured polymer is removed. It is a thermal photopolymer printable plate that is washable and solvent washable.
  • the shape of the pattern formed is to rinse off the uncured photopolymer The part left behind. Therefore, the pattern shape is determined by the exposure and negative setting of the negative film. The shape and texture of the pattern is determined solely by the negative film.
  • High resolution textures can only be formed on the surface of the pattern.
  • the three-dimensional structure of the pattern is made by exposing the photopolymer to the 2D mask.
  • the depth of the texture detail is related to its linear size. Referring to FIG. 7, it can be proved by the different thickness (dline) formed by the black line (13) and the transparent section matte (14, FIG. 7).
  • dline the different thickness
  • the transparent section matte 14, FIG. 7
  • the depth produced by the embossment from the line varies from 2x dline to 0.1x dline, depending on the exposure to ultraviolet radiation.
  • High UV exposure results in a relatively low relief depth (15).
  • Low UV exposure results in a relatively high relief depth (16).
  • the depth of the relief depends on the size of the detail on the matte and the overall exposure ( Figure 7).
  • Each photopolymer printing plate has a different sensitivity to the illuminating light.
  • the depth of the relief depends on the photosensitivity, exposure and negative structure of the photopolymerization printing plate.
  • the depth of the texture is proportional to the detail structure size of the matte texture.
  • Direct engraving techniques can be used to create the surface texture of a pattern.
  • the 3D pattern engraved by the laser ablation plate produced by the programming language has a resolution of up to 4200 dpi.
  • Direct engraving materials and engraving machines are produced by Stork, SPG, Kodak, Hell and other related companies.
  • the depth of the texture detail is related to its linear size. Referring to FIG. 7, it can be proved by the different thickness (dline) formed by the black line (13) and the transparent section matte (14, FIG. 7).
  • the depth produced by the embossment from the line varies from 2xdline to 0.1xdline, depending on the exposure to ultraviolet radiation. High UV exposure results in a relatively low relief depth (15). Low UV exposure results in a relatively high relief depth (16).
  • the depth of the relief depends on the size of the detail on the matte and the overall exposure ( Figure 7).
  • Each photopolymer printing plate has a different sensitivity to the illuminating light.
  • the depth of the relief depends on the photosensitivity, exposure and negative structure of the photopolymerization printing plate.
  • the depth of the texture is proportional to the detail structure size of the matte texture.
  • Direct engraving techniques can be used to create the surface texture of a pattern.
  • the 3D pattern engraved by the laser ablation plate produced by the programming language has a resolution of up to 4200 dpi.
  • Direct engraving materials and engraving machines are produced by Stork, SPG, Kodak, Hell and other related companies.
  • a protective coating layer is formed on the template to be etched to perform a subsequent etching operation, and the etched material is selected from the group that is permeable to UV.
  • the photopolymer which is irradiated by polymerization firstly coating a uniform unexposed polymer layer on the surface of the printing plate, there are currently two photopolymer exposure techniques, one of which is to expose the area of the predetermined exposure by the negative template. (As shown in Figure 2), the second is by high-resolution UV laser exposure (Lusher) exposure.
  • patterns were prepared from photopolymer plates by negative or direct engraving techniques for the following mold preparations (shown as 17 in Figure 8).
  • the high version of the mold material used eliminates the release spray. This is especially important for high-quality texture reproduction, when releasing the spray layer can block texture details and reduce quality.
  • Silicon castable polymers are produced by companies such as DOW, Wacker, KDL, and Polytek.
  • the castable siloxanes have different mixing viscosities, casting times, and mechanical properties.
  • the composition may comprise a high performance mineral filler.
  • Mold production utilizes a conventional casting process in which a silicon compound (18) is applied to a pattern that is tilted and then evacuated (as shown in Figure 8). When the demold time is reached, the mold (19) is separated from the pattern (17, Figure 8).
  • the second mold is produced using a molten polymer. These polymers are polypropylene, polyethylene, polybutylene terephthalate and the like. The melt is poured into the pattern, evacuated and cooled. The cooled plastic suede is separated from the pattern.
  • the production mold is filled with a polyurethane composition
  • a polyurethane composition comprising a polyisocyanate, a polyol, an organic pigment, a pigment dispersant, a polymerization catalyst body, a UV absorber, an anti-yellowing additive, and a surfactant.
  • polyurethane chemistry is based on a public liquid two-component polyurethane technology. Polyurethane parts suppliers are Bayer, BASF, Polytek, etc. in Germany. Polyurethane surfactants are responsible for the wetting of the mold surface.
  • polyurethane chemistry in this process is based on a public liquid two-component polyurethane technology. Polyurethane parts suppliers are Bayer, BASF, Polytek, etc. in Germany. Polyurethane surfactants are responsible for the wetting of the mold surface.
  • a low surface tension polymer material of a mold such as a polymer such as silicon and polyolefin (for example, polypropylene, polyethylene), requires a polyurethane composition requiring extremely low surface tension, wherein the surface tension of the polyurethane composition should be small. At 30 dynes/cm, preferably less than 25 dynes/cm.
  • reducing the surface tension of the polyurethane composition is achieved by the use of a surfactant comprising the following species: BYK348, BYK349, BUK307, Capstone FC-51, Capstone FC-50, Dabco DC193, Dabco 5598, Dabco LK-221, and so on.
  • Polyurethane compositions of several colors must use an isolation mechanism to prevent diffusion between the compositions and material migration.
  • the prevention mechanism is achieved by the creation of a boundary wall which is the black line on the matte.
  • the black line portion (20, Fig. 9) on the mask 9 is exposed to a predetermined light source, and a slot (22) is formed on the flexo plate (21), as shown in Fig. 9, the mold.
  • the formation of the boundary wall, the thickness of the black line, the sensitivity of the printing plate and the exposure will affect the thickness and height of the boundary wall.
  • the rise of the boundary wall is such that the mold is composed of color block regions (24, 25) having different colors, and each of them is filled with a restricted area (26, as shown in Fig. 10). Show), and the height of the boundary wall is 0-100% of the printing plate thickness and 100% separation of the color of the PU.
  • Casting the polyurethane in the mold can be accomplished by the following steps, wherein layers of different materials can be used in each step.
  • the material in each step is infused, followed by curing, before continuing with the application of the lower layer.
  • Multi-step reversal results in a multi-layer structure of different forms of polyurethane and other materials, which are different grades of polyurethane, foamed polyurethane, epoxy polymer, polymer melt, polymer solution, polymer dispersion Body, article, film and fiber, wherein when the layer material contains a liquid solvent, it must be dried before applying the lower layer.
  • the multilayer structure created by this process has a specific layer thickness and is suitable for the production of composite materials such as artificial leather or reinforced polymer structures and other related applications. Referring to Fig. 11, there is shown an example of the structure of an artificial leather comprising three layers: a base (27), a foamed polyurethane (28) and a skin texture layer (29).
  • the mold is mounted on a workbench that moves the stepper motor in the X-Y direction according to the filling procedure.
  • the moving mold is filled with a polyurethane injection gun liquid polyurethane composition.
  • the polyurethane composition can be preheated prior to injection. Mold filling by polyurethane injection guns, each specific polyurethane The number of compositions and colors is complete. After the filling process and the polyurethane combination mold are transferred to the heating, the substrate is joined and ready to be removed from the upper mold.
  • the polyurethane component attached to the surface with a textured fine material can be painted with improved contrast.
  • This drawing procedure is a 2-50 micron ink layer on the surface coating.
  • the drawing is made by conventional printing techniques such as anilox printing, pad printing, roller printing, and the like.
  • the color difference between the ink and the polyurethane provides a high-contrast image from a few meters of visible light, and is not affected by the texture of the shadowing polyurethane itself.
  • Figures 1-1 to 1-3 are photopolymer plate development sequences.
  • Figure 2 is a transparent and non-transparent area negative mask structure.
  • Fig. 3 is a flow chart showing the patterning of the masking.
  • Figure 4 is a schematic illustration of the photopolymer curing process carried out according to the transparent regions of the mask.
  • Fig. 5 is a schematic view showing the texture pattern of the photopolymerized sheet after curing.
  • Figure 6 is a schematic illustration of a pattern made from a partially cured photopolymerizable sheet ( Figure 5) by a washing process.
  • Figure 7 is a schematic illustration of the reduction in relief relief depth of a photopolymer printing plate as a function of the thickness and exposure of the black line.
  • Fig. 8 is a schematic view showing the mold release process of the pattern in which the mold material is injected into the upper portion and the finished product.
  • Figure 9 is a schematic view of the boundary wall created by the black line of the mask.
  • Figure 10 is the effect of the height of the two boundary walls, and the difference between the height of each boundary wall and the difference between the inner polyurethane material contact and the outer wall nominal plate depth, and the separation of the polyurethane material, the height of the boundary wall will be equal to the plate relief Schematic diagram.
  • Figure 11 is a schematic illustration of a multilayer structure made by the sequence of casting different polyurethane layers.
  • Figure 12 shows a comparison of the texture of the polyurethane surface with the texture of the anilox roll.
  • Fig. 13 is a view showing an example of a pattern image.
  • Figure 13 shows a 150-resolution (34) 10% simple circular screen image with 4 texture types (35), hollowed out letters (36), and 6 entities with 0.2 mm white lines around each letter. Letter (37) and grayscale image (38).
  • the negative object was imaged on a 1.7 mm DuPont Cyrel DSP67 flexographic printing plate made by an ESCO CDI Spark 4835 laser laser.
  • the main exposure of the disc is by the DuPont Seri 1000 exposure unit, 20 minutes.
  • the backsheet exposure was not applied.
  • the flexographic plate developed (photosensitive resin 1000P, solvent wash processor), was used as a pattern for the production of silicon molds.
  • the white line is believed to produce a wall with a width of 0.2 mm and a height of 0.3 mm.
  • Wall-limited letters are filled with colored Dura ELAST80 liquid two-component polyurethanes that have been added with chemical colors from the past: yellow, orange, red, black, brown and pink.
  • the coloring procedure was accomplished by the addition of a 5% pigment polyol type paste composition.
  • the entire mold is then filled with a cyan pigment to color the same composition. Fill in all the processes again due to the completion of the PU injection molding machine (Sep SD1).
  • the mold was mounted on an X-Y stepping axial table - SXYxC (Yamaha Motors Co., Ltd.), and the displacement direction and displacement amount were controlled during the filling process according to the program.
  • the parameter setting injection rate was 3 g/sec. It was heated in a 70 ° C oven for 5 minutes through a filling mold. The composition ratio is attached to a pressure of 1 KG/cm 2 (polyester mesh HF SD2120P, GME). After 30 minutes, the reticulated polyurethane composition was taken out of the mold. Polyurethane penetration provides a good adhesion to the mesh. All textures are textures of the same pattern.
  • the polyurethane portion has a nominal thickness of 1.5 mm.
  • a negative 10% screen produces a pin texture of 150 pins per inch and a depth of 50 microns. The front ends of the pins are 20 microns each. The use of 2mm detail texture results in a 1mm deep relief.
  • the object of implementation described herein has a difference from the specific embodiment 1 in that the black line around each forward letter is 1 mm instead of 0.2 mm.
  • the negative article was imaged on a 1.7 mm DuPont Cyrel DSP67 flexographic printing plate made by an ESCO CDI Spark 4835 laser laser.
  • the print moderator was exposed to DuPont's Seri 1000 exposure unit and completed in 20 minutes without the need for a backplane exposure.
  • the flexographic printing plate was used as a pattern produced by a silicon mold.
  • the boundary wall 23 having a width of 1 mm and a height of 0.8 mm is formed around the white line of each of the forward characters.
  • Silicon castable two-component adhesive Polytek TinSil 70-60, mixed and poured onto a flexographic printing plate. After curing by silicone rubber, the mold was separated from the flexographic plate for about 20 hours.
  • the color Dura ELAST 80 liquid two-component polyurethane and other various color forming compounds such as yellow, orange, red, black, brown, and pink are filled by the fonts bound by the boundary wall 23.
  • the coloring procedure is accomplished by the addition of a polyol paste based on the pigment's 5% composition, with or without the polyurethane composition being dispensed from the walls.
  • the entire mold is then filled with a cyan pigment to color the same composition. All filling The process is done by a polyurethane injection molding machine (Saip SD1).
  • the mold was mounted on an X-Y stepping axial table (SXYxC, Hyundai Motors) and moved during the filling process according to the procedure. Wherein the parameters: an injection rate of 3 g/sec, the filled mold was heated in an oven at 70 ° C for 5 minutes, and then the composition was attached to an article under a pressure of 1 kg/cm 2 (polyester mesh HF SD2120P, GME).
  • the reticulated polyurethane composition was taken out of the mold. Polyurethane penetration provides a good adhesion to the mesh. All textures are textures of the same pattern.
  • the polyurethane portion has a nominal thickness of 1.5 mm.
  • a negative 10% screen produces a pin texture of 150 pins per inch, 50 microns deep, and the front end of the pin is 20 microns.
  • the 2mm detail texture results in a 1mm deep relief.
  • the negative (white) 14pt letter produces a polyurethane negative letter with a depth of 0.5mm.
  • the implementation object described herein is different from Embodiment 2 in that there is a difference: it is a screen generated by resolution 45 DPI. Negative document imaging on the ESCO CDI Spark 4835 laser (ablation technology direction) of the flexible plate Mead digital MAF3.96 mm. The main exposure of the disc was completed by DuPont's Cyrel 1000 exposure unit, and the exposure of the back panel took 1 minute.
  • the flexographic printing plate (photosensitive resin 1000P, solvent washing processor), it was used as a pattern produced by the silicon mold. Around the white line is believed to produce walls from 1 mm wide to 0.8 mm high. Silicon castable two-component adhesive, Polytek TinSil 70-60, mixed and poured onto a flexographic printing plate.
  • the entire mold is then filled with a cyan pigment to color the same composition. All filling processes are done by a polyurethane injection molding machine (Sep SD1).
  • the mold was mounted on an X-Y workbench (SXYxC, Hyundai Motors) and moved during the filling process according to the procedure. Jet The rate is 3 g/sec. After filling the mold, it was heated in an oven at 70 ° C for 5 minutes. The composition was then attached to an article at 1 kg/cm 2 (polyester mesh HF SD2120P, GME).
  • the reticulated polyurethane composition was taken out of the mold. Polyurethane penetration provides a good adhesion to the mesh. All textures are textures of the same pattern.
  • the polyurethane part has a nominal thickness of 3 mm.
  • a negative 10% screen produces a pin texture of 45 pins per inch with a depth of 100 microns. The front ends of the pins are 20 microns each. Produced with 2mm detail texture with 2mm deep relief. The negative (white) 14pt letters produced on the negative letter on the PU, with a depth of 0.8mm.
  • Example 2 Using the web as described in Example 2, the negative was imaged on a Kodak NX Fujifilm negative.
  • the metal letterpress (Dongli WS73HII) is exposed by a vacuum film.
  • the plate exposure was completed with a DuPont Photosensitive Resin 1000 exposure unit for 2 minutes.
  • the flexible printing plate after the development process (AQF Dantex plus water washing process), was used as a pattern for the production of a silicon mold, and a boundary wall 23 having a width of 1 mm and a height of 0.6 mm was generated around the white line of the positive typeface.
  • Silicon castable two-component adhesive (Polytek TinSil 70-60), which was mixed and poured onto a flexographic printing plate.
  • the mold was separated from the flexographic plate over about 20 hours. Wall-limited letters are filled with color Dura ELAST80 liquid two-component polyurethanes from the past more chemical: yellow, orange, red, black, brown and pink. Coloration was accomplished by the addition of a 5% composition of the pigment based polyol paste. The entire mold is then filled with a cyan pigment to color the same composition.
  • Polyurethane infiltration provides a good adhesion to the mesh, causing all textures to be the same pattern of texture.
  • the polyurethane part has a nominal thickness of 0.6 mm diameter and is made with a 2 mm detail texture resulting in a 0.6 mm deep abutment.
  • the negative (white) 14 pt letter was generated from a polyurethane negative letter of 0.4 mm depth, and the colored positive type was separated from each other by a 1 mm pitch cyan polyurethane composition.
  • Example 2 Using a mesh as described in Example 2, the negative was imaged onto a 1.7 mm DuPont Cyrel DSP67 flexographic printing plate made from an ESCO CDI Spark 4835 laser laser. The print exposure was completed in 20 minutes by the DuPont Seri 1000 exposure unit and was not applied to the back sheet exposure technology.
  • the flexographic plate developed (photosensitive resin 1000P, solvent wash processor), was used as a pattern for the production of silicon molds. Around the white line is believed to produce walls from 1 mm wide to 0.8 mm high.
  • the plate and polyethylene were then cooled to room temperature and separated from the relief in a polyethylene mold.
  • Wall-limited letters are filled with color Dura ELAST80 liquid two-component polyurethanes from the past more chemical: yellow, orange, red, black, brown and pink. Coloration was accomplished by the addition of a 5% composition of the pigment based polyol paste. There is no point where the polyurethane composition spreads out from the limits of the wall.
  • the entire mold is then filled with a cyan pigment to color the same composition. All filling processes are done by a polyurethane injection molding machine (Saip SD1).
  • the mold was mounted on an X-Y workbench (SXYxC, Hyundai Motors) and moved during the filling process according to the procedure.
  • the injection rate was 3 g/sec. It was heated in a 70 ° C oven for 5 minutes through a filling mold.
  • the composition was then attached to a 1 kg/cm 2 pressure article (polyester mesh HF SD2120P, GME).
  • the polyurethane composition cured in the form of a web after 30 minutes was taken out from the mold. Polyurethane penetration provides a good adhesion to the mesh. All textures are textures of the same pattern.
  • the polyurethane portion has a nominal thickness of 0.6 mm diameter.
  • a negative 10% screen produces a pin texture of 150 pins per inch, 50 microns deep, and the front end of the pin is 20 microns.
  • the 2mm detail texture results in a 0.6 mm deep abutment.
  • Type (white) 14pt letters produce polyurethane negative letters with a depth of 0.4mm.
  • the negative film was imaged on a Kodak NX Fujifilm negative using the web as described in Example 2.
  • the metal type letterpress Toray WS73HII is exposed with a vacuum film.
  • the plate exposure was completed with DuPont Photosensitive Resin 1000 exposure unit, 2 minutes.
  • the flexographic plate, after the development process (AQF Dantex and the water wash process), is used as a pattern for the production of silicon molds.
  • the white line is believed to produce a wall with a width of 1 mm and a height of 0.6 mm.
  • Silicon castable two-component adhesive Polytek TinSil 70-60, mixed and poured into a flexographic plate. After the silicone rubber was cured, the mold was separated from the flexographic plate for about 20 hours. Wall-limited letters are filled with color Dura ELAST80 liquid two-component polyurethanes from the past more chemical: yellow, orange, red, black, brown and pink. Coloration was accomplished by the addition of a 5% composition of the pigment based polyol paste.
  • the entire mold is then filled with a cyan pigment to color the same composition. All filling processes are done by a polyurethane injection molding machine (Saip SD1).
  • the mold was mounted on an X-Y workbench (SXYxC, Hyundai Motor Co.) and moved during the filling process according to the procedure, with parameter setting: injection rate of 3 g/sec. After filling the mold, it was heated in an oven at 70 ° C for 5 minutes.
  • the composition was then attached to an article at a pressure of 1 KG/sq.cm (SD2120P of HF for polyester mesh, GME). After 30 minutes, the reticulated polyurethane composition was taken out of the mold. Polyurethane penetration provides a good adhesion to the mesh. All textures are textures of the same pattern.
  • the polyurethane portion has a nominal thickness of 0.6 mm diameter. The 2mm detail texture results in a 0.6 mm deep abutment.
  • the PU on the negative type font produced in the negative (white) 14pt letter uses a depth of 0.5 mm, and the colored positive font is separated by a 1 mm pitch cyan polyurethane composition.
  • the machine is engaged with a 150LPI anilox roll (32) filled with a black solvent based ink.
  • the grayscale image (31, Fig. 13) has a black cyan with high contrast.
  • a 10% screen gets a dark cyan shade due to the tip of the black needle.
  • the solid area is covered by 100% black ink with a pure black ink color.
  • the polyurethane component prepared in the same manner as in Example 6 was transferred from the PAD plate to the polyurethane surface by the PS (INKCUPS) of the pad printer ICN-2200 with a uniform black ink RUKO T200-M12 and the soft silicon pad printing in the grayscale image area.
  • the grayscale image (31, Fig. 13) has a black cyan with high contrast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

一种利用光敏聚合物材料制作具纹理(35)的图案(17)的制作方法,尤指利用雷射雕刻以及化学蚀刻等制版技术所制成的方法,其中包含:高分辨率的模板以及图像模具(19)制作;复型色彩的聚氨酯结构生产;多层结构生产;自动充模;以及质感对比涂布。

Description

利用光敏聚合物材料制作具纹理的图案的制作方法 技术领域
一种图案的制作方法,尤指一种利用光敏聚合物材料制作具纹理的图案的制作方法。
背景技术
鞋的上部件的基体材料是由如皮革、网布、布类或其他具加固性或特殊机械特性或颜色或装饰等材料,一般鞋的上部件厚度在0.2mm~4mm,此部分的生产以及安装技术起始于百年前得皮革裁剪以及拼接程序,在过去25年间所产生的胶水黏贴技术被引入鞋子市场,其中有两种黏着技术:(1)胶水溶液以及(2)藉由将鞋的上部件表面的高温活化的一热熔层;然上述两者技术都须使用预切割片,再进行压花工艺,所谓压花工艺是使用热或高频感应加热用的网纹模具,据以产出一个图案,其中,缝合以及加热机加热以及之后的压花过程需要大量的时间与人力和能源的消耗,且无法于同一生产线生产。
在过去的十年中基于双组分聚氨酯的新方法已开始在鞋的生产中使用。该方法使得直接鞋的部分在上材料。此方法使用五金模具与铣从碾磨制成样品,或铸造负的形状。模具填充有预先混合的双组分聚氨酯,再将过量的聚氨酯用刮刀除去。一旦该聚氨酯组合物混合,聚合开始并混合的黏度从几十厘泊上升到最终硬聚合物时,此刻当粘度达到大约20000厘泊的上板基板,在压力下附。在聚合的中间阶段的以及渗透到一个底物的能力高粘附的聚氨酯性能,消除了对胶的必要性。用刮刀除去聚氨酯过量不允许同时使用一个以上的颜色的过程。因此,多色印刷要求对于每种颜色不同的模具。
在聚氨酯部分生产附加的问题是从模具的释放。反应性聚氨酯组合具有极高的粘结能力。当使用铝模具中,硅剥离剂应在模具的表面上喷涂以防止聚氨酯的粘合性。生产百万制鞋生产的需要百万喷涂程序。
这种印刷方法的局限是:高达70%的聚氨酯材料浪费,高模成本,纹理分辨率通过研磨设备(高达500lpi)的限制,单色印刷,释放问题和过度的手动工作。
负模的现有方法是基于将所述对象插入到硅或聚氨酯浇注组合物。当铸造材料的固化完成时,对象被移除,腔体被用作模具。这种方法被广泛地用于在混凝土、蜡烛等行业。模具的形状和表面的质地是相同的对象的属性。这种方法能够再现非常精细的纹理。在浇注液体聚合物组合物的抽真空,通常用于空气漏接除去。
3D物体可以通过喷墨印刷(Objet公司),FDM印刷(Stratasys公司),立体(3D系统)和UV胶印刷机(Massivit3D)3D打印机生产。
感光聚合物印刷版技术在印刷行业用于印刷板制作(柔印,凸印和液体聚合物技术)。作为比较的3D印刷技术,这种技术是相对便宜的。另外该技术的优点是高分辨率,其分辨率可达到每英寸8000线。感光聚合物印刷版的制作、成像和显影过程在各个专利中有描述(例如,US7419766B2,Kimelblat)。
US5594989(Greve)介绍如何使用首饰生产感光聚合印刷板模具的制作方法。该方法包括使用光化论述与二维负图像与光聚合物板生产模式,以及紫外线照射和下述未固化的光敏聚合物洗涤后产生的图案形状,并应用脱蜡法铸造工艺进行脱模作业。
US4668607(Wojcik)描述了多感光聚合图案模板制作,是藉由阴模生产。该方法包括对前和产生的多级结构背面光聚合板曝光程序。光聚合物模具填充有沙子混合物的青铜铸造的蜡。
US2014/0147634A1(Dale)描述利用自己作为硬化液体的模具所进行的柔版3D模具制作。
US2014/0020191A1(琼斯)描述了服装和鞋类三维打印过程。印刷部件与基板的粘附是由印刷材料渗透提供。未指定的印刷方法。
发明内容
本发明涉及一种低成本,多色自动鞋上的外表面质地细腻上生 产的方法。有在鞋工业中使用的材料的一系列的:人造皮革,穿孔基底,细纹理的基板等,这些材料可以通过直接附着在鞋上的聚氨酯铸造过程来代替。纹理细节大小可以是从几微米到几毫米的范围内。
该程序包含以下步骤:
1.高分辨率的模板以及图像模具制作
2.复型色彩的聚氨酯结构生产
3.多层结构生产
4.自动充模
5.质感对比涂布
一、高分辨率的模板以及图像模具制作:
高分辨率模具的制作方法分为两个阶段,其中包含:打版和模具生产。图案制作过程是基于感光聚合物印刷版的制版技术或直接雕刻的方法,据以形成适当的图像分辨率,如是制程极需取决于技术质量。
其中,感光聚合物印刷版被广泛应用于印刷工业,其中著名的制造商如:DuPont,Flint,MacDermid,Toyobo,Toray,Sumitomo Riko,Kodak,等公司,感光聚合物印刷版的厚度一般是0.3~12mm,且可随图案厚度进行调整。
请参照图1,显示感光聚合物印刷版的制造程序,包含:经紫外光通过负片照射后,在冲洗未经紫外光照射的感光聚合物部位,再经60℃烘干步骤,即完成制版程序。
再请参照图2,显示一负片结构,一由不透明区间(1)与透明区间(2)相间隔的薄膜。负片的生产是藉由雷射烧蚀(Esco,FlexoLaser),模拟薄膜(富士)、Digiflex和柯达高达10000DPI分辨率的技术。在透明区间由于经过紫外线暴照导致PP固化,而不透明的区间仍保留未固化的PP。然后将PP板进行到冲洗过程,据以除去未固化的聚合物。其为可经水洗以及可经溶剂洗涤的热感光聚合物印刷版。
洗涤过程中,清水洗涤、溶剂洗涤以及光聚合熔化步骤是分别各自进行。所形成的图案形状即是在冲洗掉未固化的感光聚合物之 后所留下的部分。因此该图案形状是通过曝光和负片的设定揭露参数决定。图案的形状和质地是单由负片决定。
高分辨率纹理只能在图案的表面形成。图案的三维结构是通过2D遮模将感光聚合物曝光所制成。纹理细部的深度与其线性大小具有相关性。请参照图7,可以通过黑线(13)与透明区间遮片(14,图7)所形成的不同的厚度(dline)来证明。于图7中,由浮雕由线产生的深度从2x dline到0.1x dline各不相同,取决于紫外线照射曝光度。高UV曝光导致相对低的浮雕深度(15)。低UV曝光的导致相对高的浮雕深度(16)。
因此,浮雕深度取决于遮片上的细节构造大小和整体曝光度(如图7)。每个感光聚合物印刷版具有对于所照射的光线个别不同的敏感度。最终致使,浮雕深度取决于感光聚合印刷版的光敏度、曝光度和负片结构。纹理的深度成正比于遮片纹理的细节结构大小。
直接雕刻技术可用于制作图案的表面纹理。此种方法中,根据程序语言所产制的雷射烧蚀板所刻出的3D图案,具有高达4200dpi的分辨率。直接雕刻材料及雕刻机是由Stork,SPG,Kodak,Hell和其他相关公司所生产。
纹理细部的深度与其线性大小具有相关性。请参照图7,可以通过黑线(13)与透明区间遮片(14,图7)所形成的不同的厚度(dline)来证明。于图7中,由浮雕由线产生的深度从2xdline到0.1xdline各不相同,取决于紫外线照射曝光度。高UV曝光导致相对低的浮雕深度(15)。低UV曝光的导致相对高的浮雕深度(16)。
因此,浮雕深度取决于遮片上的细节构造大小和整体曝光度(如图7)。每个感光聚合物印刷版具有对于所照射的光线个别不同的敏感度。最终致使,浮雕深度取决于感光聚合印刷版的光敏度、曝光度和负片结构。纹理的深度成正比于遮片纹理的细节结构大小。
直接雕刻技术可用于制作图案的表面纹理。此种方法中,根据程序语言所产制的雷射烧蚀板所刻出的3D图案,具有高达4200dpi的分辨率。直接雕刻材料及雕刻机是由Stork,SPG,Kodak,Hell和其他相关公司所生产。
相异的化学蚀刻步骤对于图案的制作是非常有用,于本方法中,是于欲蚀刻模板上建立一部分区域的保护涂层据以进行后续的蚀刻作业,蚀刻的材料是选自可透过UV辐射进行聚合作用的光敏聚合物,首先于印刷版表面涂覆一均匀的未曝光的聚合物层,目前存在两种光敏聚合物的曝光技术,其一是藉由负片模板造成预定曝光的区域曝光(如图2所示),其二是藉由高辨析度的UV雷射光(Lusher)曝照。
在选择性的光照接触的程序后,通过负片遮模或直接雕刻技术曝光从光聚合物板制备图案用于下列模具制备(如图8中17所示)。高版本的模具材料使用消除了释放喷雾。这是高质量的质感再现尤为重要,当释放喷层会堵塞纹理细节和降低质量。
任何等级的浇注硅橡胶可以用作具有高释放性能的模具材料。硅浇注料聚合物是由DOW,Wacker,KDL,Polytek等公司所生产。该浇注料硅氧烷具有不同的混合粘度,铸造时间以及机械性能。该组合物可包含高级属性矿物填料。模具生产是利用传统的铸造过程中,将硅化合物(18)于被倾之图案上并接着抽空(如图8所示)。当达到脱模时间,将所述模具(19)从所述图案(17,图8)隔开。第二模具生产方式是使用熔融的聚合物。这些聚合物是聚丙烯,聚乙烯,聚对苯二甲酸丁酯等。熔体倒在图案,抽真空并冷却。冷却处理后的塑料蜕皮从图案分离。
其中该生产模具是填充有聚氨酯组合物,该聚氨酯组合物包含多异氰酸酯、多元醇、有机颜料、颜料分散剂、聚合催化剂体、UV吸收剂、抗黄变添加剂和表面活性剂。且在该方法中使用聚氨酯化学是基于公共液体双组分聚氨酯技术。聚氨酯零部件供货商是德国Bayer、BASF、Polytek等。聚氨酯表面活性剂是负责模具表面润湿。
在该方法中使用聚氨酯化学是基于公共液体双组分聚氨酯技术。聚氨酯零部件供货商是德国Bayer、BASF、Polytek等。聚氨酯表面活性剂是负责模具表面润湿。模具的低表面张力的聚合物材料,一如硅和聚烯烃等聚合物(例如:聚丙烯、聚乙烯),需要要求极低表面张力的聚氨酯组合物,其中该聚氨酯组合物的表面张力应该小 于30达因/公分,优选的是小于25达因/厘米。再者,降低聚氨酯组合物的表面张力是利用表面活性剂来达成,其中该表面活性剂是包含以下种类:BYK348,BYK349,BUK307,Capstone FC-51,Capstone FC-50,Dabco DC193,Dabco5598,Dabco LK-221,和其他等等。
二、复型色彩的聚氨酯结构生产
数种颜色的聚氨酯组合物必须使用隔离的机制据以防止组合物间的扩散以及材料迁移,预防机制的达成是藉由一边界壁的创作,边界壁的形成是遮片上的黑线。如图九遮片上的黑线部分(20,图9),经预定光源曝照,将于柔印版(flexo plate,21)上产生槽孔(22),如是即如图9所示,模具中的界壁形成,黑线的厚度、印刷版的敏感度以及曝光度将影响界壁的厚度以及高度,越宽的线径将导致越高的界壁,以及越高的曝光度亦将导致界壁的上升,据以使模具得因颜色相异的色块区(24、25)所组成,各别地填充入界壁(23)所区隔出的限制区域(26,如图10所示),而界壁的高度范围是0-100%的印刷版厚度且得100%分离PU组成的颜色。
三、多层结构生产
于模具中浇注聚氨酯可由以下步骤来完成,其中在每个步骤中可以使用不同的材料的层。在每个步骤中的材料灌注,接着固化,之后再继续下层的施作。多重步骤的倒模致使不同形式聚氨酯型态以及其他材料的多层结构,该层型材料是不同级别的聚氨酯、发泡聚氨酯、环氧聚合物、聚合物熔体、聚合物溶液、聚合物分散体、制品、薄膜以及纤维,其中当该层材料含有液态溶剂时,于施加下层前须烘干。依此过程所创建的多层结构具有特定的层厚度,适合用于复合材料的生产,例如人造皮革或增强聚合物的结构以及其它相关应用。请参照图11所示,是一人造皮革的结构示例,其中包括三层:基座(27)、发泡聚氨酯(28)和皮肤纹理化层(29)。
四、自动充模
模具是安装在根据填充程序由X-Y方向步进电机移动工作台。动模由聚氨酯注射枪液体聚氨酯组合物填补。聚氨酯组合物可在注射之前进行预热。模具填充由聚氨酯注射枪,每一个特定的聚氨酯 组合物和彩色的数目完成。充型过程与聚氨酯组合模具传递到加热后,基板连接,并准备从上模具移除程序。
五、质感对比涂布
附着在表面上具有纹理细上材料聚氨酯组件可绘对比度提高。这绘图程序是于表面涂层2-50微米的油墨层。该绘图是由传统的印刷技术,如网纹辊印刷、移印、辊筒印花等制成。油墨和聚氨酯之间的色差提供高对比度度的图像从数米的间距可见光,且不受阴影效果聚氨酯本身的纹理。
附图说明书
图1-1~1-3是光聚合物板显影序列。
图2是透明和非透明区域负掩模结构。
图3是遮模的对图案制作的流程示意图。
图4是根据遮模的透明区域的所进行的光聚合物固化过程示意图。
图5是固化后的光聚合板纹理图案示意图。
图6是通过洗涤过程从部分固化的光聚合板制成(如图5)的图案示意图。
图7是随黑线的厚度和曝光量所造成光聚合物印刷板纹理浮雕深度减小的示意图。
图8是模具材料注入上部的图案和成品的脱模程序示意图。
图9是由掩模黑线所生成的界壁制成示意图。
图10是由两个界壁的高度,以及各该界壁的高度比内侧聚氨酯材料的接触和外壁标称板深度的差异所产生的效果并分离聚氨酯材料时,界壁的高度将等于板浮雕的示意图。
图11是由浇注不同的聚氨酯层的顺序制成的多层结构示意图。
图12显示了聚氨酯表面喷漆与网纹辊纹理对比图。
图13是图案制作图像的例示图。
图中附图标记说明:
不透明区间1                         透明区间2
黑线13                              透明区间遮片14
浮雕深度15、16                      图案17
硅化合物18                          模具19
黑线部分20                          柔印版21
槽孔22                              界壁23
色块区24、25                        限制区域26
基座27                              发泡聚氨酯28
皮肤纹理化层29                      鞋上部件30
灰阶图像31、38                      网纹辊32
网纹33                              分辨率34
纹理35                              镂空的字母36
具体实施方式
具体实施例1
图13显示一150分辨率(34)10%的简单圆屏图像,其中包含4个纹理类型(35)、镂空的字母(36),以及每个字母围绕有的0.2毫米白线的6个实体字母(37)和灰阶图像(38)。其中负对象是成像于由一ESCO CDI Spark 4835激光雷射制成的1.7mm DuPont Cyrel DSP67柔性印刷版上。
盘主曝光是由杜邦公司赛丽1000曝光单元,20分钟。背板暴露没有被应用。柔印板,显影处理(感光树脂1000P,溶剂洗涤处理器)后,被用来作为硅模具生产的图案。白线周围正信产生0.2毫米宽度和高度0.3毫米墙壁。硅浇注料双组分胶,Polytek TinSil70-60,混合并倒在柔性版。硅橡胶固化后,约20小时,将模具从柔印板分离。
墙壁的限制信件充满了彩色杜拉ELAST80液体双组分聚氨酯从以往更添加化学色料:黄色、橙色、红色、黑色、棕色和粉红色等。着色程序是通过加入5%的颜料多元醇型糊组合物所完成。有 几个点值得注意,其中PU组成物是由界壁23张开扩展均匀。然后整个模具中填充有青色颜料着色相同的组成。再填写所有进程由于PU注塑机(赛普SD1)完成。将模具安装在X-Y步进轴向的工作台-SXYxC(雅马哈汽车公司),并根据该程序在灌装过程中控制位移方向与位移量。其中参数设定喷射率为3g/秒。经填充模具在70℃烘箱中加热5分钟。组成比附着在压力下1KG/平方厘米的文章(聚酯网HF SD2120P,GME)。30分钟后以网状的固化的聚氨酯组合物从模具中取出。聚氨酯渗透提供了良好的密合性的网格。所有的纹理是相同的图案的纹理。聚氨酯部分的标称厚度为1.5毫米。负10%的屏幕产生的销质感,每英寸150管脚,50微米的深度。销的前端分别为20微米。采用2mm细节纹理导致以1mm深刻浮雕。镂空负型(白色部分)14pt的字母,其生产聚氨酯负型字母是采用0.5mm的深度。
具体实施例2
这里所描述的实施对象,对比具体实施例1存在一差异:围绕各正向字母的黑线为1mm,而非0.2mm。而负型物件是成像于由一ESCO CDI Spark 4835激光雷射制成的1.7mm DuPont Cyrel DSP67柔性印刷版上。印刷版主曝光于由杜邦公司赛丽1000年曝光单元并经历20分钟完成,且无须应用背板暴照。该柔印刷板经显影处理(感光树脂1000P与溶剂洗涤处理程序)之后,被用来作为硅材模具生产的图案。而围绕各该正向文字的白线生成1毫米宽度以及0.8毫米高度的界壁23。
硅浇注料双组分胶,Polytek TinSil 70-60,混合并倒在柔性印刷版上。经过硅橡胶固化后,约20小时,将模具从柔印板分离。而藉由界壁23所限制的字体填充彩色杜拉ELAST80液体双组分聚氨酯以及其他各式成色化合物:如黄色、橙色、红色、黑色、棕色和粉红色。着色程序是通过加入基于颜料5%成分量的多元醇糊剂所完成,有没有在那里聚氨酯组合物从墙壁的限制摊开分。
然后将整个模具中填充有青色颜料着色相同的组成。所有灌装 过程是由聚氨酯注塑机(Saip SD1)完成。将模具安装在X-Y步进轴向的工作台(SXYxC,雅马哈汽车公司)和根据该程序在灌装过程中移动。其中参数:喷射率为3g/秒,经填充的模具在70℃烘箱中加热5分钟,然后将组合物附着于1公斤/平方厘米的压力下的物品(聚酯网HF SD2120P,GME)。
经30分钟后以网状的固化的聚氨酯组合物从模具中取出。聚氨酯渗透提供了良好的密合性的网格。所有的纹理是相同的图案的纹理。聚氨酯部分的标称厚度为1.5毫米。负10%的屏幕产生的销质感,每英寸150管脚,50微米的深度,销的前端为20微米。并采用2mm细节纹理导致以1mm深浮雕。负型(白色)14pt字母所生产的聚氨酯负型字母采用0.5mm的深度。
具体实施例3
这里描述的实施对象对比具体实施例2,存在一差异之处:是分辨率45DPI所生成的屏幕。负文件成像上通过ESCO CDI星火4835激光(消融技术方向)的柔性印版麦德数字MAF3.96毫米。盘主曝光是由杜邦公司赛丽1000曝光单元25分完成,背板曝光耗时1分钟。
再将柔印板经显影处理(感光树脂1000P,溶剂洗涤处理器)后,被用来作为硅模具生产的图案。白线周围正信产生1毫米宽度到0.8mm高度的墙壁。硅浇注料双组分胶,Polytek TinSil70-60,混合并倒在柔性印刷版上。
硅橡胶固化后,大约20小时,将模具从柔印板分离。墙壁的限制信件充满了彩色杜拉ELAST80液体双组分聚氨酯从以往更加化学:黄色、橙色、红色、黑色、棕色和粉红色。着色通过加入基于颜料的多元醇糊剂的5%的组合物完成的。
然后整个模具中填充有青色颜料着色相同的组成。所有灌装过程是由聚氨酯注塑机(赛普SD1)完成。将模具安装在X-Y工作台(SXYxC,雅马哈汽车公司)和根据该程序在灌装过程中移动。喷射 率为3g/秒。经填充模具,在70℃烘箱中加热5分钟。然后将组合物附着于1公斤/平方厘米的压力下的文章(聚酯网HF SD2120P,GME)。
30分钟后以网状的固化的聚氨酯组合物从模具中取出。聚氨酯渗透提供了良好的密合性的网格。所有的纹理是相同的图案的纹理。聚氨酯部分的标称厚度为3毫米。负10%的屏幕产生的销质感,每英寸45针,用100微米的深度。销的前端分别为20微米。采用2mm细节纹理产生,采用2mm深浮雕。负(白色)14pt字母内产生的负的信件上PU,具有0.8mm的深度。
具体实施例4
使用如具体实施例2中所述的网片,负片是成像在柯达NX机富士胶片底片上。金属类凸版(东丽WS73HII)用真空薄膜露出。板曝光用杜邦感光树脂1000曝光单元,进行2分钟完成。而该柔性印刷板,于显影工艺之后(AQF Dantex加上水洗处理程序),其用作硅模具生产的图案,围绕正型字体的白线生成1毫米宽度以及0.6毫米高度的界壁23。硅浇注料双组分胶(Polytek TinSil70-60),将之混合并倒在柔性印刷版上。
硅橡胶固化后,经约20小时,将模具从柔印板分离。墙壁的限制信件充满了彩色杜拉ELAST80液体双组分聚氨酯从以往更加化学:黄色、橙色、红色、黑色、棕色和粉红色。着色通过加入基于颜料的多元醇糊剂的5%的组合物完成的。然后整个模具中填充有青色颜料着色相同的组成。
所有灌装过程是由聚氨酯注塑机(Saip SD1)完成。将模具安装在X-Y步进轴向工作台(SXYxC,雅马哈汽车公司)并根据该程序在灌装过程中移动。其中参数设定:喷射率为3g/秒。经填充模具在70℃烘箱中加热5分钟。然后将组合物附着于1公斤/平方厘米的压力下的物件(聚酯网HF SD2120P,GME)。经30分钟后以网状的固化的聚氨酯组合物从模具中取出。
聚氨酯渗透提供了良好的密合性的网格,致使所有的纹理是相同的图案的纹理。聚氨酯部分的标称厚度为0.6毫米直径,是采用2mm细节纹理导致0.6毫米深入抵靠。负型(白色)14pt字母的生成是来自0.4mm深度的聚氨酯负型字母,有色的正型字体是由1毫米间距的青色聚氨酯组合物彼此间离。
具体实施例5
使用如具体实施例2中所述的网片,负片是成像于由一ESCO CDI Spark 4835激光雷射制成的1.7mm DuPont Cyrel DSP67柔性印刷版上。印刷版曝光是由杜邦公司赛丽1000年曝光单元经20分钟完成,无应用到背板暴光技术。
柔印板,显影处理(感光树脂1000P,溶剂洗涤处理器)后,被用来作为硅模具生产的图案。白线周围正信产生1毫米宽度到0.8mm高度的墙壁。聚乙烯Ipethene4203,卡梅尔烯烃,加热至140℃,倾倒在凸版。融化的聚乙烯板在真空下保持在150℃10分钟为漏接删除。
然后该板和聚乙烯被冷却到室温,并在聚乙烯模具从凸版分离。墙壁的限制信件充满了彩色杜拉ELAST80液体双组分聚氨酯从以往更加化学:黄色、橙色、红色、黑色、棕色和粉红色。着色通过加入基于颜料的多元醇糊剂的5%的组合物完成的。有没有在那里聚氨酯组合物从墙壁的限制摊开分。
然后整个模具中填充有青色颜料着色相同的组成。所有灌装过程是由聚氨酯注塑机(Saip SD1)完成。将模具安装在X-Y工作台(SXYxC,雅马哈汽车公司)和根据该程序在灌装过程中移动。其中喷射率为3g/秒。经填充模具在70℃烘箱中加热5分钟。然后将组合物附着于1公斤/平方厘米的压力的物件(聚酯网HF SD2120P,GME)。
30分钟后以网状固化的聚氨酯组合物从模具中取出。聚氨酯渗透提供了良好的密合性的网格。所有的纹理是相同的图案的纹理。 聚氨酯部分的标称厚度为0.6毫米直径。负10%的屏幕产生的销质感,每英寸150管脚,50微米的深度,销的前端分别为20微米。采用2mm细节纹理导致0.6毫米深入抵接。型(白色)14pt字母生产聚氨酯负型字母采用0.4mm的深度。
具体实施例6
使用如具体实施例2中所述的网片,负片成像在柯达NX机富士胶片底片上。金属类凸版东丽WS73HII用真空薄膜露出。板曝光用杜邦感光树脂1000曝光单元,2分完成。柔印板,在显影工艺之后(AQF Dantex以及水洗处理程序),其用作硅模具生产的图案。
白线周围正信产生1毫米宽度和高度0.6毫米墙壁。硅浇注料双组分胶,Polytek TinSil70-60,混合并倒在柔性版。硅橡胶固化后,约20小时,将模具从柔印板分离。墙壁的限制信件充满了彩色杜拉ELAST80液体双组分聚氨酯从以往更加化学:黄色、橙色、红色、黑色、棕色和粉红色。着色通过加入基于颜料的多元醇糊剂的5%的组合物完成的。
然后整个模具中填充有青色颜料着色相同的组成。所有灌装过程是由聚氨酯注塑机(Saip SD1)完成。将模具安装在X-Y工作台(SXYxC,雅马哈汽车公司)并根据该程序在灌装过程中移动,其中参数设定:喷射率为3g/秒。经填充模具,在70℃烘箱中加热5分钟。
然后该组合物附着到1KG/sq.cm的压力下的文章(聚酯网的HF的SD2120P,GME)。30分钟后以网状的固化的聚氨酯组合物从模具中取出。聚氨酯渗透提供了良好的密合性的网格。所有的纹理是相同的图案的纹理。聚氨酯部分的标称厚度为0.6毫米直径。采用2mm细节纹理导致0.6毫米深入抵接。负型(白色)14pt字母内产生的负型字体上的PU采用0.5mm的深度,有色正向的字体是由1毫米间距的青色聚氨酯组合物间离。
与实施例6中制备的附聚氨酯组件涂覆在实验室标签柔印打印 机与由基于黑色溶剂油墨填充150LPI网纹辊(32)啮合。灰阶图像(31,图13)具有高对比度度的黑青色。10%的屏幕得到了暗青色遮阳由于黑针的针尖着色。固体区域被黑色墨水的100%覆盖,有纯黑色墨水颜色。
与实施例6中制备的附聚氨酯组件通过移印机ICN-2200的PS(INKCUPS公司)具有均匀的黑色墨水RUKO T200-M12从PAD板上转移到聚氨酯表面与在灰度图像区域软硅垫印刷啮合。灰阶图像(31,图13)具有高对比度度的黑青色。

Claims (12)

  1. 一种利用光敏聚合物材料制作具纹理的图案的制作方法,尤指利用雷射雕刻以及化学蚀刻等制版技术所制成的方法,其特征在于,包含:
    高分辨率的模板以及图像模具制作;
    复型色彩的聚氨酯结构生产;
    多层结构生产;
    自动充模;
    质感对比涂布。
  2. 如权利要求1所述的利用光敏聚合物材料制作具纹理的图案的制作方法,其特征在于,该图案层厚度范围是在0.43-6mm。
  3. 如权利要求1所述的利用光敏聚合物材料制作具纹理的图案的制作方法,其特征在于,该图案层上的一纹理结构是由光曝照通过一遮模组件所制成。
  4. 如权利要求1所述的利用光敏聚合物材料制作具纹理的图案的制作方法,其特征在于,该图案层的表面上的纹理是由直接雕刻技术所制成。
  5. 如权利要求1所述的利用光敏聚合物材料制作具纹理的图案的制作方法,其特征在于,该图案层的表面上的纹理是由化学蚀刻技术所制成。
  6. 如权利要求1所述的利用光敏聚合物材料制作具纹理的图案的制作方法,其特征在于,该图案层表面的该纹理深度是由该遮模组件的厚度、曝光度以及光敏聚合物的灵敏度所定义。
  7. 一种用于铸造权利要求1所述的利用光敏聚合物材料制作具纹理的图案的制作方法中的图案层模具的方法,其特征在于,铸造材料是硅的双组分组合物。
  8. 如权利要求7所述的用于铸造利用光敏聚合物材料制作具纹理的图案的制作方法中的图案层模具的方法,其特征在于,铸造材料熔化聚合物与类聚丙烯、聚乙烯、聚对苯二甲酸丁酯等高释放性 能。
  9. 如权利要求8所述的用于铸造利用光敏聚合物材料制作具纹理的图案的制作方法中的图案层模具的方法,其特征在于,还具有一模具分离界壁制备程序。
  10. 如权利要求9所述的用于铸造利用光敏聚合物材料制作具纹理的图案的制作方法中的图案层模具的方法,其特征在于,是用于在浇注过程分开不同的组合物。
  11. 如权利要求10所述的用于铸造利用光敏聚合物材料制作具纹理的图案的制作方法中的图案层模具的方法,其特征在于,具有不同性质的聚氨酯使用于其中。
  12. 如权利要求11所述的用于铸造利用光敏聚合物材料制作具纹理的图案的制作方法中的图案层模具的方法,其特征在于,该具有不同高度的分离壁因而导致层结构的不同,其造成的主要机制在于分离以及非分离的存在差异。
PCT/CN2016/091694 2016-07-26 2016-07-26 利用光敏聚合物材料制作具纹理的图案的制作方法 WO2018018407A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/091694 WO2018018407A1 (zh) 2016-07-26 2016-07-26 利用光敏聚合物材料制作具纹理的图案的制作方法
US16/158,278 US20190039267A1 (en) 2016-07-26 2018-10-11 Mold for forming three-dimensional embossments on a surface of a shoe part and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091694 WO2018018407A1 (zh) 2016-07-26 2016-07-26 利用光敏聚合物材料制作具纹理的图案的制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/158,278 Continuation-In-Part US20190039267A1 (en) 2016-07-26 2018-10-11 Mold for forming three-dimensional embossments on a surface of a shoe part and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018018407A1 true WO2018018407A1 (zh) 2018-02-01

Family

ID=61015681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091694 WO2018018407A1 (zh) 2016-07-26 2016-07-26 利用光敏聚合物材料制作具纹理的图案的制作方法

Country Status (2)

Country Link
US (1) US20190039267A1 (zh)
WO (1) WO2018018407A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230116987A1 (en) * 2021-10-15 2023-04-20 Nike, Inc. System and method for forming textured bladder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281365A (zh) * 2007-04-04 2008-10-08 韩国科学技术院 物质图形、模具、金属薄膜图形、金属图形及其形成方法
CN101554758A (zh) * 2009-04-09 2009-10-14 上海交通大学 利用纳米材料改性pdms制作热模压模具的方法
CN102944972A (zh) * 2004-04-10 2013-02-27 伊斯曼柯达公司 产生浮雕图象的方法
CN103370652A (zh) * 2010-10-11 2013-10-23 图形Ip有限公司 一种铸造方法
CN104321851A (zh) * 2012-06-11 2015-01-28 尤尼皮克塞尔显示器有限公司 制造和使用用于柔印印刷的定制柔印母版图案的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944972A (zh) * 2004-04-10 2013-02-27 伊斯曼柯达公司 产生浮雕图象的方法
CN101281365A (zh) * 2007-04-04 2008-10-08 韩国科学技术院 物质图形、模具、金属薄膜图形、金属图形及其形成方法
CN101554758A (zh) * 2009-04-09 2009-10-14 上海交通大学 利用纳米材料改性pdms制作热模压模具的方法
CN103370652A (zh) * 2010-10-11 2013-10-23 图形Ip有限公司 一种铸造方法
CN104321851A (zh) * 2012-06-11 2015-01-28 尤尼皮克塞尔显示器有限公司 制造和使用用于柔印印刷的定制柔印母版图案的方法

Also Published As

Publication number Publication date
US20190039267A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP2577400B1 (en) Method of producing a relief image from a liquid photopolymer resin
TWI309201B (en) Printing element with an integral printing surface
CN102458060A (zh) 一种具有渐变色图案效果的外壳及其制作方法
EP3371658B1 (en) Method and apparatus for producing liquid flexographic printing plates
CN102799066B (zh) 一种在二氧化钛有机无机光敏复合薄膜上制备凹透镜阵列结构的方法
WO2018018407A1 (zh) 利用光敏聚合物材料制作具纹理的图案的制作方法
CN108957611B (zh) 一种光栅片的制造方法、光栅片及显示设备
TW201803724A (zh) 基於柔版原型在鞋部件上端進行3d列印的方法
CN107656424A (zh) 利用光敏聚合物材料制作具纹理的图案的制作方法
US20170293221A1 (en) Method for producing substrate with fine projection-and-recess pattern, and substrate with fine projection-and-recess pattern obtained thereby
KR100502048B1 (ko) 고무라벨 및 그의 제조방법
KR100663395B1 (ko) 지재(紙材)를 이용하여 인조석에 무늬를 형성하는 방법 및그 방법으로 제조된 인조석
KR100795236B1 (ko) 사다리꼴 구조의 몰드를 이용한 패턴 형성 방법
US20230111563A1 (en) Imprinting film for a building material and system and method for use of same
CN110799901B (zh) 由液体光致聚合物树脂产生凸纹图像的方法
EP2652554B1 (de) Verfahren zur strukturierung einer flexodruckform
JP2749631B2 (ja) 象嵌模様入り製品の製造方法
JP2006267461A (ja) 転写用凹版とこの転写用凹版を用いた半透過型カラーフィルタの作製方法、およびこの作製方法からなる半透過型カラーフィルタ
JP3218413B2 (ja) エンボスシートの製造方法
JP2006091447A (ja) カラーフィルタのブラックマトリックスの形成方法およびカラーフィルタの形成方法
KR200368215Y1 (ko) 실사출력된 내외장석재
WO2004106040A1 (ja) 樹脂の硬化方法および樹脂成形品の製造方法
JPH01134361A (ja) フォトマスク
JPH06126845A (ja) エンボスシートの製造方法
JPH04217000A (ja) 装飾板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909988

Country of ref document: EP

Kind code of ref document: A1