WO2018016410A1 - 眼球分析装置および眼球分析方法 - Google Patents

眼球分析装置および眼球分析方法 Download PDF

Info

Publication number
WO2018016410A1
WO2018016410A1 PCT/JP2017/025509 JP2017025509W WO2018016410A1 WO 2018016410 A1 WO2018016410 A1 WO 2018016410A1 JP 2017025509 W JP2017025509 W JP 2017025509W WO 2018016410 A1 WO2018016410 A1 WO 2018016410A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
eyeball
emitted
unit
wavelength
Prior art date
Application number
PCT/JP2017/025509
Other languages
English (en)
French (fr)
Inventor
小出 珠貴
優二 池田
Original Assignee
株式会社アサヒビジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサヒビジョン filed Critical 株式会社アサヒビジョン
Priority to JP2017566439A priority Critical patent/JP6438603B2/ja
Publication of WO2018016410A1 publication Critical patent/WO2018016410A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to an eyeball analyzing apparatus and an eyeball analyzing method.
  • Patent Document 1 An apparatus that non-invasively measures an eyeball by an optical method has been conventionally proposed (for example, Patent Document 1).
  • an object of the present invention is to provide an eyeball analysis apparatus and an eyeball analysis method that can detect a minute change in the state of the eyeball and are useful for early detection of a disease or the like.
  • an eyeball analyzing apparatus of the present invention includes a light irradiating means, a light separating means, and a spectroscopic means, and the light irradiating means irradiates light to the eyeball.
  • the outgoing light emitted from the eyeball irradiated with is separated according to the position of the space of the eyeball, and the outgoing light emitted from the eyeball irradiated with the light is split by the spectroscopic means.
  • the eyeball analysis method of the present invention includes an irradiation step of irradiating light to the eyeball, a light separation step of separating outgoing light emitted from the irradiated eyeball according to a position in the space of the eyeball, and the irradiation And a spectroscopic step of splitting the outgoing light emitted from the eyeball.
  • an eyeball analysis apparatus and an eyeball analysis method that can detect minute changes in the state of the eyeball and are useful for early detection of diseases and the like.
  • FIG. 1 is a diagram showing an example of the configuration of an eyeball analyzer of the present invention.
  • FIG. 2 is a diagram showing another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 3 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 4 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 5 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 6 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 7 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 1 is a diagram showing an example of the configuration of an eyeball analyzer of the present invention.
  • FIG. 2 is a diagram showing another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 3 is a diagram showing still another example of the configuration of
  • FIG. 8 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 9 is a diagram showing still another example of the configuration of the eyeball analyzer of the present invention.
  • FIG. 10 is a graph showing an example of the function of the wavelength selection filter of FIG.
  • FIG. 11 is a diagram illustrating an example of the configuration of the wavelength selection filter of FIG.
  • FIG. 12 is a schematic diagram showing the concept of three-dimensional spectroscopic analysis in which the wavelength is changed.
  • the light applied to the eyeball may be, for example, monochromatic light or, for example, mixed light including light having a plurality of wavelengths, for example, continuous light, monochromatic light, or a mixed light thereof. It may be.
  • the monochromatic light may be laser light, for example.
  • the laser beam may be, for example, a pulse laser beam or a CW (continuous oscillation) laser beam.
  • the mixed light including the light of the plurality of wavelengths may be, for example, continuous light or a mixed light of a plurality of monochromatic lights.
  • the continuous light may be, for example, white light or super continuum (SC) light.
  • the eyeball analyzer of the present invention may include, for example, at least one of the following A unit and B unit.
  • a unit Including the light separating means and the spectroscopic means,
  • the light separating means includes a microlens array;
  • the spectroscopic means includes a diffraction grating;
  • the emitted light is two-dimensionally separated by the microlens array,
  • the two-dimensionally separated outgoing light is split by the diffraction grating. unit.
  • the light separating means includes imaging means;
  • the spectroscopic means includes a wavelength tunable filter, The emitted light is split by the wavelength tunable filter, The spectrally emitted light is imaged by the imaging means, and the spectrally emitted light is two-dimensionally separated by pixels on an image obtained by imaging. unit.
  • the eyeball analyzer of the present invention for example, in the eyeball analyzer including the A unit, further includes coherent anti-Stokes Raman spectroscopy (CARS) light irradiating means, and the CARS light irradiating means provides continuous light and laser light.
  • the mixed light may be irradiated onto the eyeball, and the Raman scattered light included in the light emitted from the eyeball irradiated with the mixed light may be dispersed by the diffraction grating. Thereby, for example, analysis with higher sensitivity can be performed.
  • CARS coherent anti-Stokes Raman spectroscopy
  • the CARS light irradiation means includes a wavelength selection filter, and the mixed light is spectrally separated by the wavelength selection filter, and only the light of a necessary wavelength is selectively irradiated to the eyeball.
  • the wavelength selection filter includes a diffraction grating and a wavelength selection mask, the mixed light is dispersed by the diffraction grating, and only light having a necessary wavelength passes through the wavelength selection mask and is irradiated to the eyeball. May be.
  • the spectroscopic means may further include a narrow band filter, and the split outgoing light may pass through the narrow band filter.
  • the eyeball analyzer of the present invention may further include, for example, a circular polarization unit, and the light incident on the eyeball may be circularly polarized by the circular polarization unit.
  • the eyeball analyzer of the present invention further includes a circularly polarized light analyzing means, and the circularly polarized light analyzing means causes a difference in absorbance with respect to left and right circularly polarized light (dichroism) in at least a part of the eyeball. May be detected.
  • the eyeball analyzer of the present invention may further include, for example, linearly polarizing means, and the outgoing light emitted from the eyeball irradiated with the continuous light may be linearly polarized by the linearly polarizing means.
  • the eyeball analyzer of the present invention further includes linearly polarized light analyzing means, and the linearly polarized light is analyzed by the linearly polarized light analyzing means, whereby left and right circularly polarized light in at least a part of the eyeball. A difference in refractive index with respect to (optical rotation) may be detected.
  • the spectroscopy by the spectroscopic means is not particularly limited.
  • the emitted light is Raman scattered light, it is Raman spectroscopy.
  • analysis may be quantitative analysis (measurement) or qualitative analysis unless otherwise specified.
  • Embodiments 1 to 3 below are examples of an eyeball analyzer including the A unit.
  • Embodiments 4 to 6 are examples of an eyeball analyzer including the B unit.
  • Embodiments 7 to 8 are examples of an eyeball analyzer including both the A unit and the B unit.
  • the following embodiment is an illustration and this invention is not limited at all by this.
  • FIG. 1 shows an example of the configuration of the eyeball analyzer of the present invention.
  • the figure is an example of an eyeball analyzing apparatus including the A unit.
  • this eyeball analyzing apparatus includes a light irradiation means 10 for irradiating the eyeball with continuous light and an A unit 100A.
  • the A unit 100A has a light separating unit 20 that separates outgoing light (emitted light) emitted (emitted) from the eyeball 1 irradiated with the continuous light according to the position of the space of the eyeball 1, and the wavelength of the emitted light.
  • a spectroscopic means 31 for performing spectroscopic analysis every time.
  • the A unit 100 ⁇ / b> A further includes a lens 41 and an imaging unit 42.
  • the light irradiation means 10 includes a light source 10A, a lens 11, a beam splitter 12, and a lens 13.
  • a white light source for example, a super continuum (hereinafter sometimes referred to as “SC”) light source, an LED (light emitting diode), or the like can be used.
  • SC super continuum
  • the beam splitter is not particularly limited, but may be, for example, a beam splitter having polarization separation ability, or a half mirror having no polarization separation ability when polarization separation ability is not required.
  • the light separating means 20 includes a microlens array 21, a mask (field mask) 22, and a lens 23.
  • the lens 23 may be a telecentric lens, for example.
  • the spectroscopic means 31 is a diffraction grating.
  • the spectroscopic means (diffraction grating) 31 may be, for example, a VPH (Volume Phase Holographic) grating or a grism.
  • the lens 41 may be a collimator lens, for example.
  • the image pickup means 42 shows a front portion of an image pickup element on which light displays an image.
  • the imaging means 42 may be, for example, a general camera, a cooled CCD (Charge Coupled Device) camera, a CMOS (Complementary Metal Oxide Semiconductor) camera, or a camera sensitive to infrared rays.
  • a lens 11 and a beam splitter 12 are arranged in this order from the continuous light irradiation side. Further, in the optical path of the outgoing light emitted from the eyeball 1, the lens 13, the beam splitter 12, the microlens array 21, the mask 22, the lens 23, the diffraction grating 31, the lens 41, and the imaging are sequentially arranged from the outgoing light outgoing side. Means 42 are arranged in this order. Further, the irradiation direction of the continuous light emitted from the light source 10A and the emission direction of the emitted light emitted from the eyeball 1 are perpendicular to each other in FIG. 1, but the angle is not limited to be perpendicular and is arbitrary.
  • the eyeball 1 is irradiated with continuous light by the light irradiation means 10.
  • continuous light is emitted from the light source 10A.
  • the continuous light may be, for example, white light or super continuum (SC) light.
  • SC super continuum
  • the continuous light emitted from the light source 10 ⁇ / b> A is converged by the lens 11, then reflected by the beam splitter 12, further converged by the lens 13, and then applied to the eyeball 1.
  • the light can reach the lower layer than the fundus, so that the state of the space between the fundus and the lower layer can be analyzed as described later. .
  • Examples of the portion of the space between the fundus and the lower layer below the fundus that can be analyzed according to the present invention include, for example, the fundus, the retina, the tomographic space between the fundus and the fundus, and the space. Blood vessels to be used.
  • the light irradiated to the eyeball 1 is mainly continuous light
  • the light irradiated on the eyeball is not limited to continuous light as described above.
  • the continuous light irradiated on the eyeball 1 is emitted from the eyeball 1 by reflection, fluorescence, scattering, or the like by the eyeball 1.
  • the outgoing light emitted from the eyeball 1 is converged by the lens 13 and passes through the beam splitter 12.
  • the emitted light that has passed through the beam splitter 12 is processed by the A unit 100A as follows. That is, first, the emitted light is incident on the microlens array 21 of the light separating means 20 and is separated two-dimensionally, and then separated through the mask 22 according to the position of the space of the eyeball 1. Further, it is collimated by the lens 23. The outgoing light that has been two-dimensionally separated and transmitted through the lens 23 is split by the spectral means (diffraction grating) 31 for each wavelength. In the figure, an example in which the emitted light is separated into monochromatic lights by the diffraction grating 31 is shown.
  • the light split by the diffraction grating 31 is converged by the lens 41 and irradiated to the imaging means 42. Thereby, an image is formed on the imaging means 42.
  • the image is supplied to, for example, spectrum analysis means (not shown), and the spectrum of each visual field is analyzed. Thereby, a minute change in the state of the eyeball 1 can also be detected.
  • an image is formed by simultaneously irradiating the image pickup means 42 with light of different wavelengths separated for each wavelength by the spectroscopic means (diffraction grating) 31.
  • time simultaneity of analysis can be secured.
  • the eyeball 1 may be analyzed while being scanned by a scanning mechanism (not shown) in order to widen the field of analysis (the range of the space of the eyeball 1 to be analyzed).
  • the eyeball analyzer including the unit A has an advantage that the time simultaneity of the analysis can be ensured.
  • unit A can simultaneously analyze light of different wavelengths, it is useful, for example, for analysis using information of a plurality of wavelengths as a probe.
  • the use of the eyeball analyzer including the unit A is not limited to this, and can be used for analysis using infrared light, for example.
  • the diffraction grating 31 for example, a prism or the like may be used as the spectroscopic means, and the emitted light may be spectrally divided for each wavelength.
  • a wavelength filter may be used in place of the diffraction grating 31, and only the wavelength of specific light may be extracted from the emitted light.
  • the light separating unit 20 may further include at least one of an image slicer, a slit, an aperture (diaphragm), a fiber bundle, and the like.
  • FIG. 2 shows another example of the configuration of the eyeball analyzer of the present invention.
  • the spectroscopic means is composed only of the diffraction grating 31.
  • the apparatus of FIG. Is configured.
  • the narrow band filter 33 may be an order cut filter instead of the narrow band filter.
  • the narrow band filter 33 is disposed between the diffraction grating 31 and the lens 41 in FIG.
  • the position of the narrow band filter 33 is not limited to this, and the same effect can be obtained even if it is disposed between the lens 23 and the diffraction grating 31, for example.
  • the eyeball analysis apparatus of FIG. 2 is the same as the eyeball analysis apparatus of FIG. Since the narrow band filter 33 can cut light in an unnecessary wavelength band, for example, the image forming surface (detector surface) of the imaging means 42 can be used effectively. More specifically, for example, a portion of the image forming surface (detector surface) where no spectral spectrum is projected can be used for enlarging the measurement visual field in the eyeball. Thereby, this embodiment is particularly effective in the case of a spectrum having a high wavelength resolution (analyzing wavelength or more detailed information related thereto).
  • FIG. 3 shows still another example of the configuration of the eyeball analyzer of the present invention.
  • a polarizing plate 61 is disposed between the lens 11 and the beam splitter 12 in the light irradiation means 10.
  • the polarizing plate 61 may be rotatable about the optical axis.
  • the half-wave plate 26 and the polarizing plate 27 are arranged in this order from the light emitting side between the lens 23 and the spectroscopic means (diffraction grating) 31.
  • the polarizing plate 27 may be a polarizing beam splitter instead of the polarizing plate, for example. Except for these, the eyeball analysis apparatus of FIG. 3 is the same as the eyeball analysis apparatus of FIG.
  • continuous light is emitted from the light source 10A.
  • the continuous light emitted from the light source 10 ⁇ / b> A is converged by the lens 11 and then converted into linearly polarized light by the polarizing plate 61.
  • the polarized continuous light is processed by the beam splitter 12 and the lens 13 in the same manner as in FIG. 1 and irradiated to the eyeball 1. Further, at least a part of the polarized light becomes emitted light from the eyeball 1 and becomes the lens 13 and the beam. Passes through the splitter 12.
  • the emitted light that has passed through the beam splitter 12 is processed by the A unit 100A as follows. That is, first, the emitted light is processed in the same manner as in FIG. 1 by the microlens array 21, the mask 22, and the lens 23 of the light separating unit 20, and is separated according to the position of the space of the eyeball 1. Next, the emitted light transmitted through the lens 23 enters the half-wave plate 26. The half-wave plate 26 can be rotated, whereby the direction of the linearly polarized light of the emitted light can be changed.
  • the emitted light that has passed through the half-wave plate 26 is selectively emitted as linearly polarized light in a specific direction by the polarizing plate 27, and then dispersed by wavelength by the spectroscopic means (diffraction grating 31).
  • the light separated for each wavelength by the spectroscopic means (diffraction grating 31) is processed in the same manner as in FIG. 1 by the lens 41, the imaging means 42, and optionally the spectral analysis means (not shown).
  • a difference in refractive index (optical rotation) with respect to left and right circularly polarized light in at least a part of the eyeball 1 may be detected.
  • the arrangement and usage of the polarizing plate are not limited to the example of FIG.
  • the polarizing plate when analyzing the data obtained by the eyeball analyzer of the present invention by Raman spectroscopy, if a filter that passes only linearly polarized light in a specific direction caused by Raman scattering is used, luminescence light emitted from molecules in the eyeball, etc. Background light (light without linearly polarized light, non-polarized light) can be suppressed.
  • the continuous light emitted from the light source 10A or the light emitted from the eyeball 1 includes background light, it is between the beam splitter 12 and the microlens array 21 (light incident side of the microlens array 21).
  • Etc. are arranged as a polarizing filter by arranging a linearly polarizing plate (linearly polarizing means). Thereby, it is possible to transmit only the linearly polarized light necessary for Raman scattering without transmitting the background light.
  • a circularly polarizing plate may be used instead of the linearly polarizing plate, and the light incident on the eyeball 1 or the light emitted (emitted) from the eyeball 1 may be circularly polarized.
  • a circularly polarizing plate for example, the half-wave plate 26 is replaced with a rotatable quarter-wave plate, or adjacent to the light incident side or the light exit side of the half-wave plate 26, A rotatable quarter wave plate may be used.
  • the circularly polarizing plate (circularly polarizing means) 61 may be capable of switching the left and right of the rotation direction of the circularly polarized light to be transmitted.
  • circularly polarized light can be converted into linearly polarized light by the quarter wavelength plate.
  • the half-wave plate 26 can change the direction of linearly polarized light or the direction of rotation of circularly polarized light.
  • a difference in absorbance with respect to left and right circularly polarized light in at least a part of the eyeball 1 can be detected.
  • optical isomers in the eyeball 1 can be detected. Examples of the optical isomers include L-forms and D-forms of amino acids or amino acid residues.
  • FIG. 4 shows still another example of the configuration of the eyeball analyzer of the present invention.
  • the figure is an example of an eyeball analyzing apparatus including the B unit.
  • this eyeball analyzing apparatus includes a light irradiation means 10 for irradiating the eyeball with continuous light and a B unit 100B.
  • the configuration of the light irradiation means 10 is the same as in FIG.
  • the B unit 100B includes a light separating unit (imaging unit) 20B that separates the outgoing light emitted from the eyeball 1 irradiated with the continuous light according to the position of the space of the eyeball 1, and the spectral separation of the outgoing light for each wavelength.
  • B unit 100 ⁇ / b> B further includes lenses 25 and 41.
  • the components of the B unit 100B are arranged in the order of the lens 25, the spectroscopic means (wavelength variable filter) 32, the lens 41, and the light separating means (imaging means) 20B from the exit side of the light emitted from the eyeball 1, as shown in the figure. Has been.
  • the eyeball analyzer of FIG. 4 has the wavelength tunable filter 32 as the spectroscopic means instead of the diffraction grating 31 of FIGS.
  • the wavelength tunable filter (tunable filter) 32 may be, for example, a Fabry-Perot etalon.
  • the lens 41 may be, for example, a collimator lens.
  • the imaging unit 20B may include, for example, an imaging element that displays an image with light, and an image may be formed on the front surface of the imaging element.
  • the imaging unit 20B may be a camera, for example, as in the imaging unit 42 of the first embodiment (FIGS. 1 to 3), and an image may be formed on the imaging surface. In FIG.
  • the image forming surface of the imaging means 20B is, for example, a camera lens or an infrared camera (for example, a black silicon element when the wavelength is 1.2 ⁇ m or less, an InGaAs element or an HgCdTe element when the wavelength is 0.7 to 1.8 ⁇ m, the wavelength In the case of 1 to 5 ⁇ m, it may be an imaging surface of an InSb element or HgCdTe).
  • a camera lens or an infrared camera for example, a black silicon element when the wavelength is 1.2 ⁇ m or less, an InGaAs element or an HgCdTe element when the wavelength is 0.7 to 1.8 ⁇ m, the wavelength In the case of 1 to 5 ⁇ m, it may be an imaging surface of an InSb element or HgCdTe).
  • At least a partial image (for example, a fundus image) of the eyeball 1 is formed on the image plane 24 on the light incident side of the lens 25 by the emitted light transmitted through the beam splitter 12. Further, the emitted light is incident on the lens 25 from the image plane 24, collimated by the lens 25, and then dispersed by the wavelength tunable filter 32 to extract monochromatic light having a specific wavelength. The extracted monochromatic light is converged by the lens 41 and irradiated to the imaging means 20B. Then, the imaged means 20B captures the dispersed outgoing light, and the dispersed outgoing light is two-dimensionally separated by pixels on the image obtained by imaging.
  • a partial image for example, a fundus image
  • the light separating means 20 can separate the emitted light emitted from the eyeball 1 two-dimensionally according to the position of the space of the eyeball 1.
  • the image is supplied to, for example, spectrum analysis means (not shown), and the spectrum of each visual field is analyzed. Thereby, a minute change in the state of the eyeball 1 can also be detected. Further, by changing the wavelength of the monochromatic light extracted by the wavelength tunable filter 32, it is possible to analyze with light of different wavelengths.
  • the eyeball analyzer including the unit B for example, it has an advantage of high spatial resolution. For this reason, the eyeball analyzer including the unit B is useful for analysis using infrared light, for example.
  • the use of the eyeball analysis apparatus including the unit B is not limited to this, and can be used for analysis using visible light, for example.
  • the field of analysis may be expanded by scanning using a scanning mechanism (not shown) as necessary.
  • FIG. 5 shows still another example of the configuration of the eyeball analyzer of the present invention.
  • the spectroscopic means is constituted only by the wavelength tunable filter 32, but the apparatus of FIG. 5 further includes a narrow band filter 33 as shown in the figure, and the wavelength tunable filter 32 and the narrow band filter 33 perform spectroscopy. Means 30 are configured.
  • the narrow band filter 33 may be any other filter instead of the narrow band filter, for example, a wide band filter or an order cut filter. Further, the narrow band filter 33 is disposed between the wavelength tunable filter 32 and the lens 41 in FIG.
  • the eyeball analysis apparatus of FIG. 5 is the same as the eyeball analysis apparatus of FIG. Further, the arrangement position of the narrow band filter 33 is not limited to the position of FIG. 5.
  • the narrow band filter 33 may be configured so that the emitted light transmitted through the wavelength tunable filter 23 can be incident on the narrow band filter 33. It may be between the lens 41 and the imaging means 20B.
  • the narrow band filter 33 blocks (cuts) unnecessary wavelength band light (light having a wavelength different from the detection target wavelength or light of other orders) included in the emitted light transmitted through the wavelength tunable filter 23. As described above, only light in a necessary wavelength band can be selectively transmitted.
  • FIG. 6 shows still another example of the configuration of the eyeball analyzer of the present invention.
  • a polarizing plate 61 is disposed between the lens 11 and the beam splitter 12 in the light irradiation means 10.
  • the half-wave plate 26 and the polarizing plate 27 are arranged in this order from the light emitting side between the lens 25 and the wavelength tunable filter 32.
  • the polarizing plate 27 may be a polarizing beam splitter instead of the polarizing plate, for example, as in FIG.
  • the eyeball analysis apparatus of FIG. 6 is the same as the eyeball analysis apparatus of FIG. 6 is the same as the eyeball analyzer of FIG. 3 except that it has a B unit 100B instead of the A unit 100A.
  • the process is the same as in FIG. 3 until the continuous light emitted from the light source 10A is applied to the eyeball 1 and further passes through the beam splitter 12 as light emitted from the eyeball 1.
  • the emitted light transmitted through the beam splitter 12 is processed as follows by the B unit 100B. That is, first, the emitted light is processed in the same manner as in FIG. 4 by the image plane 24 and the lens 25 of the light separating means 20 and separated according to the position of the space of the eyeball 1. Next, the emitted light that has passed through the lens 25 enters the half-wave plate 26.
  • the half-wave plate 26 can be rotated, whereby the direction of the linearly polarized light of the emitted light can be changed.
  • the emitted light transmitted through the half-wave plate 26 is selectively emitted as linearly polarized light in one direction by a polarizing plate 27, and then separated by wavelength by a wavelength tunable filter 32 to obtain monochromatic light having a specific wavelength. Is taken out.
  • the extracted monochromatic light is processed in the same manner as in FIG. 4 by the lens 41, the imaging means 20B, and optionally the spectrum analysis means (not shown).
  • the eyeball analyzer of FIG. 6 can be used for Raman spectroscopy, for example, using a filter that passes only linearly polarized light as in FIG. 3, or a circularly polarizing plate is used instead of the linearly polarizing plate. It may be used for detection of optical isomers therein.
  • FIG. 7 shows an example of still another configuration of the eyeball analyzer of the present invention.
  • this apparatus includes a light irradiation means 10, an A unit 200A, and a B unit 200B.
  • the light irradiation means 10 includes two light sources.
  • the A unit and the B unit include the light separating means and the spectroscopic means as in the first to sixth embodiments (FIGS. 1 to 6).
  • the light irradiation means 10 includes two light sources 10A and 10B, a reflecting mirror 71 and a lens 72, and beam splitters 73, 74 and 75.
  • the light sources 10A and 10B are not particularly limited, but may be the same as the light source 10A of the first to sixth embodiments (FIGS. 1 to 6), for example.
  • the reflecting mirror 71 may be a galvanometer mirror, for example. The reflecting mirror 71 can change the reflection direction of light by rotation.
  • a lens 72 and a beam splitter 73 are arranged in this order from the continuous light irradiation side.
  • the light source 10A, the lens 72, and the beam splitter 73 allow the irradiation unit 300A. Is configured.
  • the irradiation direction of the continuous light passing through the irradiation unit 300A is perpendicular to the transmission direction of the light passing through each of the A unit 200A and the B unit 200B, but the angle is not particularly limited and is vertical. It is not necessary.
  • the beam splitter 73 is disposed on the light incident side of the lens 77 in the A unit 200A.
  • a beam splitter 75 is disposed on the light emission side of the irradiation unit 300A.
  • the beam splitter 75 is disposed on the light incident side of the lens 76 in the B unit 200B.
  • a reflecting mirror 71 is disposed on the light exit side of the light source 10B.
  • a beam splitter 74, a beam splitter 75, and an A unit 200A are arranged in order from the emission side of the emitted light in the optical path of the emitted light emitted from the eyeball 1.
  • the A unit 200A is the same as the A unit 100A of the apparatus of FIG. 2 except that the lens 76 is disposed on the light incident side of the microlens array 21.
  • the B unit 200B is the same as the B unit 100B in FIG. 5 except that the lens 77 is disposed on the light incident side of the image plane 24.
  • transmits A unit 200A and B unit 200B is mutually parallel in FIG. 7, an angle is not specifically limited to parallel and is arbitrary.
  • continuous light is irradiated from the light source 10A.
  • the continuous light emitted from the light source 10A passes through the lens 72 and the beam splitter 73 in this order, is reflected by the beam splitter 75, passes through the beam splitter 74, and is applied to the eyeball 1.
  • At least a part of the continuous light irradiated to the eyeball 1 is emitted from the eyeball 1 by reflection, fluorescence, scattering, or the like by the eyeball 1.
  • the outgoing light emitted from the eyeball 1 passes through the beam splitter 74.
  • Part of the emitted light that has passed through the beam splitter 74 passes through the beam splitter 75 and is converged by the lens 76 of the A unit 200A.
  • the light transmitted through the lens 76 is processed by the A unit 200A in the same manner as the A unit 100A in FIG.
  • the image formed on the image pickup means 42 of the A unit 200A is supplied to, for example, spectrum analysis means (not shown), and the spectrum spectrum of each field of view is analyzed.
  • a part of the emitted light transmitted through the beam splitter 74 is reflected by the beam splitter 75, further reflected by the beam splitter 73, and converged by the lens 77 of the B unit 200B.
  • the light transmitted through the lens 77 is processed by the B unit 200B in the same manner as the B unit 100B in FIG.
  • the image formed on the imaging unit 20B of the B unit 200B is supplied to, for example, a spectrum analysis unit (not shown), and the spectral spectrum of each field of view is analyzed.
  • the eyeball analyzer of FIG. 7 can be used as follows, for example. First, continuous light is irradiated from the light source 10B. The continuous light emitted from the light source 10B is reflected by the reflecting mirror 71, further reflected by the beam splitter 74, and applied to the eyeball 1. As described above, the reflecting mirror 71 can change the reflection direction of the light by rotating, and thereby the inside of the eyeball 1 can be scanned and the analysis field of view can be enlarged. At least a part of the continuous light irradiated to the eyeball 1 is emitted from the eyeball 1 due to reflection by the eyeball 1 or the like.
  • the outgoing light emitted from the eyeball 1 passes through the beam splitter 74, and then passes through or is reflected by the beam splitter 75, and is processed by the A unit 200A and the B unit 100B in the same manner as the light from the light source 10A. .
  • the two light sources (light irradiating means) 10A and 10B can be switched appropriately according to the purpose, or two can be used simultaneously.
  • one of the two light sources may be a light source that emits visible light, and the other may be a light source that emits infrared light.
  • the A unit 200A and the B unit 200B can be appropriately switched according to the purpose, or two can be used simultaneously.
  • a polarizing plate may be used as in the apparatus of FIG. 7
  • FIG. 8 shows an example of still another configuration of the eyeball analyzer of the present invention.
  • This apparatus is the same as FIG. 7 except that it has an irradiation unit (laser unit) 300B instead of the light source 10B of FIG.
  • the laser unit 300B is light irradiation means for coherent anti-Stokes Raman spectroscopy (CARS).
  • the laser unit 300B includes light irradiating means (light sources) 10C and 10D, an optical path length adjusting unit 101, and a relay lens 102.
  • the optical path length adjustment unit 101 is composed of, for example, a mirror that can reflect light, and reflects continuous light (Stokes light) emitted from the light source 10D.
  • the optical path length of the said continuous light can be adjusted by the optical path length adjustment unit 101 moving back and forth along the irradiation direction of the said continuous light from light source 10D as shown by the arrow in a figure.
  • the optical path length adjustment unit 101 plays a role of matching the incident timing of continuous light and ultrashort pulse laser (pump light and probe light) to the eyeball, which will be described later.
  • the light source 10D is a light source that emits super continuum light (SC), for example.
  • the light source 10C emits laser light (monochromatic pulsed light).
  • the laser light serves as excitation light of supercontinuum light emitted from the light source 10D using, for example, femtosecond or picosecond laser as seed light.
  • the laser light is, for example, visible light or infrared ultrashort pulse laser.
  • the light source 10A may be a white light source, and the irradiation unit 300A may be a white light source unit including the white light source.
  • the light source 10A may be, for example, a halogen light source or a black body (depending on the wavelength range).
  • the lens 72 may be, for example, a diffusion plate, a condenser lens, a collimator lens, or the like.
  • the optical path length of the supercontinuum light emitted from the light source 10 ⁇ / b> D is adjusted by the optical path length adjustment unit 101.
  • the laser light emitted from the light source 10 ⁇ / b> C is reflected by the relay lens 102.
  • the supercontinuum light (continuous light) and the optical path of the laser light overlap to form mixed light.
  • the mixed light is reflected by the reflecting mirror 71, is irradiated onto the eyeball 1 through the same path as the apparatus of FIG. 7, and the anti-Stokes Raman scattered light emitted from the eyeball 1 further enters the A unit 200A and the B unit 200B. To do.
  • the light emitted from the eyeball 1 is split by the diffraction grating 32.
  • the eyeball analyzer of FIG. 8 can be used in the same manner as the apparatus of FIG.
  • continuous light can be emitted from the light source 10A and used in the same manner as the apparatus of FIG.
  • the eyeball 1 is irradiated with the mixed light of the supercontinuum light (SC) from the light source 10D and the laser light (monochromatic pulsed light) from the light source 10C, and is generated in the eyeball.
  • Anti-Stokes Raman scattering light is split by the diffraction grating 32.
  • anti-Stokes Raman light is much higher in intensity than ordinary Raman scattered light, and is not affected by the luminescence light generated by the pump light, so that analysis with higher sensitivity can be performed.
  • the “fundus tomography” includes a tomography of the space between the fundus and the lower layer than the fundus.
  • the wavelength of Stokes light (among continuous light irradiated on the eyeball 1, light related to excitation of molecules in the eyeball serving as a probe) is not particularly limited, but is, for example, 1000 to 1550 nm. is there.
  • the wavelength of the pump light (laser light emitted from the light source 10C) is not particularly limited, but is, for example, 700 nm or more.
  • the output of the light source 10C is not particularly limited, for example, when the light emission duration from the light source 10C is 10 seconds, it is 15.6 mW or less.
  • the output of the light source should not exceed the maximum permissible exposure (MPE) specified in, for example, standardization of laser safety (JISC6802) and protection from optical hazards in optical optics (JIST15004-2). It is preferable to make it.
  • MPE maximum permissible exposure
  • JISC6802 standardization of laser safety
  • JIST15004-2 protection from optical hazards in optical optics
  • the exposure amount of the first light source the exposure amount of the second light source
  • the eyeball is used instead of the light emitted from the light source.
  • the exposure amount of the light applied to may not exceed the maximum allowable exposure amount.
  • E1 Exposure amount E1 max of light emitted from the first light source: Maximum allowable exposure amount E2 at the wavelength of light emitted from the first light source
  • E2 Exposure amount E2 max of light emitted from the second light source Emission of the second light source Maximum allowable exposure at the wavelength of the incident light
  • FIG. 9 shows an example of still another configuration of the eyeball analyzer of the present invention.
  • the light irradiation means 10 includes a wavelength selection filter (band-pass filter) 78, and the wavelength selection filter 78 is arranged between the reflecting mirror 71 and the beam splitter 74, as shown in FIG. The same.
  • the mixed light reflected by the reflecting mirror 71 is spectrally separated by the wavelength selection filter 78, and only the light having a necessary wavelength is selectively irradiated to the eyeball 1.
  • Stokes light light related to excitation of molecules in the eyeball serving as a probe among continuous light irradiated on the eyeball 1
  • pump light light source 10C
  • Only the laser beam emitted from the light passes through (transmits) the wavelength selection filter 78 and is selectively applied to the eyeball 1.
  • the function of the wavelength selection filter 78 is schematically shown in the graph of FIG.
  • the horizontal axis is the wavelength and the vertical axis is the transmittance.
  • the wavelength selection filter 78 only the light of the wavelength ⁇ p of the pump light and the wavelength band ⁇ s of the Stokes light passes through the wavelength selection filter 78, and the light of other wavelengths is cut.
  • FIG. 10 is an example and does not limit the present invention.
  • the wavelength ⁇ p of the pump light and the wavelength band ⁇ s of the Stokes light in FIG. 10 are examples, and the present invention is not limited to this. Further, for example, in FIG. 10, there is one wavelength band of Stokes light.
  • all of the Stokes light of the plurality of wavelength bands may pass through the wavelength selection filter 78.
  • the wavelength selection filter 78 when there are a plurality of wavelength bands of Stokes light, for example, analysis corresponding to a plurality of diseases (for example, cataract and Alzheimer's disease) is possible, and it is possible to cope with early diagnosis thereof.
  • the amount of light energy incident on the eyeball 1 is suppressed and the safety of eyeball analysis is improved. Can do.
  • the scattered light and luminescence light generated in the eye is reduced, the background light is reduced, the Raman light is easy to detect, and the wavelength of the Raman light is increased.
  • the accuracy of corresponding analysis is improved.
  • a monochromatic laser light source that emits only Stokes light instead of continuous light is used as the light source 10D, and the same effect as the use of the wavelength selection filter 78 can be obtained without using the wavelength selection filter 78.
  • it is preferable to use continuous light because it becomes more robust (robust) to instabilities such as temperature drift of the laser output wavelength due to temperature changes.
  • a plurality of wavelength selection filters 78 may be used and switched to pass the Stokes light wavelength bands corresponding to the respective wavelength selection filters. Further, for example, in addition to or in place of using a plurality of wavelength selection filters 78, the wavelength selection filter 78 may be a wavelength tunable filter.
  • the wavelength selection filter 78 may include a diffraction grating and a wavelength selection mask in order to pass Stokes light of a plurality of wavelength bands.
  • FIG. 11 shows an example of a wavelength selection filter 78 including a diffraction grating and a wavelength selection mask.
  • a diffraction grating 78a, a lens 78b, a wavelength selection mask 78c, a lens 78d, and a diffraction grating 78e are arranged in this order from the light incident side (the lower side in the figure).
  • the mixed light is split by the diffraction grating 78a.
  • the split mixed light passes through the lens 78b, and only light in one or more (two in the figure) wavelength bands is selectively passed through the wavelength selection mask 78c.
  • the light that has passed through the wavelength selection mask 78c is irradiated to the eyeball 1 after passing through the lens 78d and the diffraction grating 78e.
  • the wavelength selection mask 78c may be, for example, a wavelength selection filter or a wavelength variable filter. Further, in the wavelength selection filter 78 of FIG. 11, the light incident side and the light emission side can be reversed.
  • the eyeball analyzer and the eyeball analysis method of the present invention can be used for the following applications, for example. However, these are examples and do not limit the present invention.
  • a plane perpendicular to the direction of light incident on the eyeball can be analyzed in the eyeball according to the position of the eyeball space.
  • the surface to be analyzed is not particularly limited, but may be, for example, the fundus or at least a part of the retina, cornea, or lens.
  • FIG. 12 schematically shows the concept of three-dimensional spectroscopic analysis in the present invention.
  • FIG. 12 shows that in addition to the plane direction (X direction and Y direction), an analysis corresponding to a change in wavelength (Z direction) is performed.
  • spectroscopic analysis at a specific wavelength of visible light can be performed by imaging an intraocular blood vessel, an optic nerve or the like.
  • the direction parallel to the incident direction of light is three-dimensionally included. It is also possible to analyze. In addition to this, an analysis (four-dimensional spectroscopic analysis) in which the wavelength is further changed can be performed. For example, in addition to the four-dimensional spectroscopic analysis in which the wavelength is changed, five-dimensional spectroscopic analysis in which the measurement time is changed (time is added in the measurement direction) is also possible.
  • the relationship between the wavelength of the emitted light from the specific position and the polarization azimuth angle ( ⁇ ) of the emitted light is plotted two-dimensionally.
  • the state of the eyeball at the specific position can be analyzed.
  • the state of the eyeball include the degree of disease progression. More specifically, for example, the ratio of L-alginic acid and D-alginic acid at the specific position is calculated from the relationship between the wavelength at the specific position and the polarization azimuth angle ( ⁇ ). The degree of progression of cataract can be judged.
  • the degree of progression of the disease at the various positions can be determined.
  • the present invention can be used for the analysis of denatured proteins (such as crystallin) and substances secreted into the eyeball. Specifically, for example, it can be used for early detection of Alzheimer's disease by analyzing amyloid protein in the eyeball.
  • tryptophan in the lens-constituting protein is analyzed by analyzing oxidized kynurenine or 3-hydroxykynurenine, or by combining lysine residues in the protein and sugars in the body ( Analysis of advanced glycated end products) enables early detection of the above-mentioned cataracts.
  • the present invention can analyze the deep part of the fundus or the space between the fundus and the fundus by using light having a long wavelength with high transmission power.
  • Capillary state, retina state, etc. can be analyzed.
  • the eyeball can be analyzed non-invasively and simply.
  • the light applied to the eyeball is mixed light including light of a plurality of wavelengths (for example, white light, continuous light such as SC light, or mixed light of a plurality of monochromatic lights). It can be.
  • SS-OCT Swept Source Optical Coherence Tomography
  • multiple wavelengths of light are incident in time, which increases the measurement (analysis) time and increases the time required for the patient.
  • the burden also becomes large.
  • the eyeball can be analyzed only by irradiating the eyeball with the mixed light including the light of the plurality of wavelengths once. As a result, the analysis time can be greatly shortened compared to SS-OCT, and the burden on the patient can be reduced.
  • this description is merely an example and does not limit the present invention.
  • Embodiments 1 to 9 have described examples of the eyeball analysis apparatus and eyeball analysis method of the present invention, and further described examples of uses of the present invention.
  • this invention is not limited to these, Arbitrary changes are possible.
  • the present invention is not limited to only an ocular device including one or both of the A unit and the B unit.
  • the Raman spectroscopy such as CARS has been mainly described.
  • the spectroscopy that can be used in the present invention is not limited to this.
  • general spectroscopy such as Fourier spectroscopy, time domain spectroscopy, etc. Any spectroscopic method used can be used.
  • the present invention it is possible to provide an eyeball analysis apparatus and an eyeball analysis method that can detect a minute change in the state of the eyeball and are useful for early detection of a disease or the like.
  • the present invention can greatly contribute to early detection of various diseases related to the state of the eyeball.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Eye Examination Apparatus (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明は、眼球の状態の微細な変化も検出可能で、疾患の早期発見等に有用な眼球分析装置および眼球分析方法を提供することを目的とする。 本発明の眼球分析装置は、例えば、光照射手段10、光分離手段20、分光手段31を含み、光照射手段10により、光が眼球1に照射され、光分離手段20により、前記光を照射された眼球1から出射する出射光が、眼球1の空間の位置に応じて分離され、分光手段31により、前記光を照射された眼球1から出射する出射光が、分光される。

Description

眼球分析装置および眼球分析方法
 本発明は、眼球分析装置および眼球分析方法に関する。
 光学的方法によって眼球を非侵襲的に測定する装置については、従来から提案されている(例えば、特許文献1等)。
特開平5-261067号公報
 しかしながら、そのような装置では、例えば、眼球中のクリスタリンタンパク質の変性、眼球中の微量物質、網膜の微細な変化等を検出することはできなかったため、疾患の早期発見等が困難であった。
 そこで、本発明は、眼球の状態の微細な変化も検出可能で、疾患の早期発見等に有用な眼球分析装置および眼球分析方法を提供することを目的とする。
 前記目的を達成するために、本発明の眼球分析装置は、光照射手段、光分離手段、分光手段を含み、前記光照射手段により、光が眼球に照射され、前記光分離手段により、前記光を照射された前記眼球から出射する出射光が、前記眼球の空間の位置に応じて分離され、前記分光手段により、前記光を照射された前記眼球から出射する出射光が、分光される。
 本発明の眼球分析方法は、眼球に光を照射する照射工程と、前記照射された眼球から出射する出射光を、前記眼球の空間の位置に応じて分離する光分離工程と、前記照射された眼球から出射する出射光を、分光する分光工程と、を含む。
 本発明によれば、眼球の状態の微細な変化も検出可能で、疾患の早期発見等に有用な眼球分析装置および眼球分析方法を提供することができる。
図1は、本発明の眼球分析装置の構成の一例を示す図である。 図2は、本発明の眼球分析装置の構成の別の一例を示す図である。 図3は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図4は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図5は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図6は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図7は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図8は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図9は、本発明の眼球分析装置の構成のさらに別の一例を示す図である。 図10は、図9の波長選択フィルターの機能の一例を示すグラフである。 図11は、図9の波長選択フィルターの構成の一例を示す図である。 図12は、波長を変化させた三次元分光分析の概念を示す模式図である。
 つぎに、本発明について、例を挙げて説明する。ただし、本発明は、以下の説明により、なんら限定されない。
 本発明において、前記眼球に照射される光は、例えば、単色光でも、また、例えば、複数の波長の光を含む混合光であっても良く、例えば、連続光、単色光またはそれらの混合光であっても良い。前記単色光は、例えば、レーザー光であっても良い。前記レーザー光は、例えば、パルスレーザー光でも良いし、CW(連続発振)レーザー光でも良い。また、前記複数の波長の光を含む混合光は、例えば、連続光であってもよく、複数の単色光の混合光であってもよい。前記連続光は、例えば、白色光、またはスーパーコンティニューム(SC)光であっても良い。
 本発明の眼球分析装置は、例えば、下記のAユニット及びBユニットの少なくとも一方のユニットを含んでいても良い。
 
(Aユニット)
前記光分離手段および前記分光手段を含み、
前記光分離手段が、マイクロレンズアレイを含み、
前記分光手段が、回折格子を含み、
前記マイクロレンズアレイにより、前記出射光が二次元的に分離され、
前記回折格子により、前記二次元的に分離された出射光が分光される、
ユニット。
(Bユニット)
前記光分離手段および前記分光手段を含み、
前記光分離手段が、撮像手段を含み、
前記分光手段が、波長可変フィルターを含み、
前記波長可変フィルターにより、前記出射光が分光され、
前記撮像手段により、前記分光された出射光が撮像され、撮像して得られた画像上の画素によって前記分光された出射光が二次元的に分離される、
ユニット。
 本発明の眼球分析装置は、例えば、前記Aユニットを含む眼球分析装置において、さらに、コヒーレントアンチストークスラマン分光(CARS)用光照射手段を含み、前記CARS用光照射手段により、連続光及びレーザー光の混合光が眼球に照射され、前記回折格子により、前記混合光が照射された眼球からの出射光に含まれるラマン散乱光が分光されても良い。これにより、例えば、さらに感度が高い分析をすることができる。
 本発明の眼球分析装置は、例えば、前記CARS用光照射手段が、波長選択フィルターを含み、前記波長選択フィルターにより、前記混合光が分光され、必要な波長の光のみが選択的に眼球に照射されても良い。また、例えば、前記波長選択フィルターが、回折格子および波長選択マスクを含み、前記回折格子により、前記混合光が分光され、必要な波長の光のみが前記波長選択マスクを通過し、眼球に照射されても良い。
 本発明の眼球分析装置は、例えば、前記Aユニット及び前記Bユニットにおいて、前記分光手段が、さらに、狭帯域フィルターを含み、前記分光された出射光が前記狭帯域フィルターを通過しても良い。
 本発明の眼球分析装置は、例えば、さらに、円偏光手段を含み、前記円偏光手段により、前記眼球に入射する光が、円偏光されても良い。この場合、例えば、本発明の眼球分析装置が、さらに、円偏光分析手段を含み、前記円偏光分析手段により、前記眼球の少なくとも一部における、左右の円偏光に対する吸光度の違い(二色性)が検出されても良い。
 本発明の眼球分析装置は、例えば、さらに、直線偏光手段を含み、前記直線偏光手段により、前記連続光を照射された前記眼球から出射する出射光が、直線偏光されても良い。この場合、例えば、本発明の眼球分析装置が、さらに、直線偏光分析手段を含み、前記直線偏光分析手段により前記直線偏光が分析されることで、前記眼球の少なくとも一部における、左右の円偏光に対する屈折率の違い(旋光性)が検出されても良い。
 本発明において、前記分光手段による分光は特に制限されず、例えば、前記出射光がラマン散乱光であれば、ラマン分光である。
 また、本発明において「分析」とは、特に断らない限り、定量分析(測定)でも良いし、定性分析でも良い。
 以下、本発明の具体的な実施形態について説明する。以下の実施形態1~3は、前記Aユニットを含む眼球分析装置の例である。実施形態4~6は、前記Bユニットを含む眼球分析装置の例である。実施形態7~8は、前記Aユニットおよび前記Bユニットを両方含む眼球分析装置の例である。ただし、以下の実施形態は例示であり、本発明は、これにより、なんら限定されない。
[実施形態1]
 図1に、本発明の眼球分析装置の構成の一例を示す。同図は、前記Aユニットを含む眼球分析装置の一例である。図示のとおり、この眼球分析装置は、連続光を眼球に照射する光照射手段10と、Aユニット100Aとから構成されている。Aユニット100Aは、前記連続光を照射された眼球1から出射(射出)する出射光(射出光)を、眼球1の空間の位置に応じて分離する光分離手段20と、前記出射光を波長ごとに分光する分光手段31とを含む。また、Aユニット100Aは、さらに、レンズ41および撮像手段42を含む。
 光照射手段10は、光源10A、レンズ11、ビームスプリッタ12およびレンズ13により構成されている。光源10Aとしては、例えば、白色光源、スーパーコンティニューム(以下「SC」ということがある。)光源、またはLED(発光ダイオード)等を用いることができる。なお、本発明において、ビームスプリッタは、特に限定されないが、例えば、偏光分離能を有するビームスプリッタでも良いし、偏光分離能が必要ない場合は、偏光分離能を有しないハーフミラー等でも良い。
 光分離手段20は、マイクロレンズアレイ21、マスク(視野マスク)22およびレンズ23により構成されている。レンズ23は、例えば、テレセントリックレンズであっても良い。
 分光手段31は、回折格子である。分光手段(回折格子)31は、例えば、VPH(Volume Phase Holographic)グレーティングまたはグリズムであっても良い。
 レンズ41は、例えば、コリメータレンズであっても良い。図1において、撮像手段42は、光が像を表示する撮像素子の前面の部分を示している。撮像手段42は、例えば、一般的なカメラ、冷却CCD(Charge Coupled Device)カメラ、またはCMOS(Complementary Metal Oxide Semiconductor)カメラ、または赤外線に感度を有するカメラであっても良い。
 光源10Aから照射される連続光の光路には、前記連続光の照射側から順に、レンズ11およびビームスプリッタ12がこの順序で配置されている。また、眼球1から出射される出射光の光路には、前記出射光の出射側から順に、レンズ13、ビームスプリッタ12、マイクロレンズアレイ21、マスク22、レンズ23、回折格子31、レンズ41および撮像手段42が、この順序で配置されている。また、光源10Aから照射される連続光の照射方向と、眼球1から出射される出射光の出射方向とは、図1では互いに垂直であるが、角度は垂直に限定されず、任意である。
 図1の眼球分析装置は、例えば、以下のようにして使用することができる。まず、光照射手段10により、連続光が眼球1に照射される。具体的には、まず、光源10Aから連続光を照射される。前記連続光は、例えば、白色光、またはスーパーコンティニューム(SC)光であっても良い。光源10Aから照射された前記連続光は、レンズ11によって収束され、つぎに、ビームスプリッタ12によって反射され、さらに、レンズ13によって収束された後に、眼球1に照射される。なお、眼球1の眼底に光が照射される場合は、前記光が眼底よりも下層にも届くことにより、後述するように、眼底および眼底よりも下層の間の空間の状態を分析可能である。本発明により分析可能な眼底および眼底よりも下層の間の空間の部位としては、例えば、後述するように、眼底、網膜、前記眼底および眼底よりも下層の間の空間の断層、前記空間に存在する血管等が挙げられる。また、本実施例および後述する他の実施例では、主に、眼球1に照射される光が連続光である場合について説明する。しかし、本発明において、眼球に照射される光(例えば、光源10Aから出射される光)は、前述のとおり、連続光に限定されない。
 つぎに、眼球1に照射された前記連続光の少なくとも一部が、眼球1による反射、蛍光もしくは散乱等で、眼球1から出射される。眼球1から出射された出射光は、レンズ13によって収束され、ビームスプリッタ12を透過する。
 ビームスプリッタ12を透過した前記出射光は、Aユニット100Aにより、以下のように処理される。すなわち、まず、前記出射光は、光分離手段20のマイクロレンズアレイ21に入射し、二次元的に分離され、その後、マスク22を透過することで、眼球1の空間の位置に応じて分離され、さらに、レンズ23によりコリメートされる。二次元的に分離されてレンズ23を透過した前記出射光は、分光手段(回折格子)31により波長ごとに分光される。なお、同図では、前記出射光が、回折格子31により、各単色光に分離される例を示している。そして、回折格子31により分光された光は、レンズ41によって収束され、撮像手段42に照射される。これにより、撮像手段42に画像が形成される。その画像を、例えば、スペクトル解析手段(図示せず)に供し、各視野の分光スペクトルを解析する。これにより、眼球1の状態の微細な変化も検出可能である。
 図1の眼球分析装置によれば、分光手段(回折格子)31により波長ごとに分光した異なる波長の光を、同時に撮像手段42に照射して画像を形成する。これにより、分析の時間同時性が確保できる。また、例えば、分析の視野(分析対象となる眼球1の空間の範囲)を広げるために、スキャン機構(図示せず)によりスキャンを行いながら眼球1を分析しても良い。このように、ユニットAを含む眼球分析装置は、分析の時間同時性が確保できるという利点がある。また、ユニットAは、異なる波長の光を同時に分析できるため、例えば、複数の波長の情報をプローブとした分析に有用である。ただし、ユニットAを含む眼球分析装置の用途はこれに限定されず、例えば、赤外光を用いた分析等にも使用できる。
 なお、分光手段として、回折格子31に代えて、例えば、プリズム等を用い、前記出射光を波長ごとに分光しても良い。また、例えば、回折格子31に代えて、波長フィルターを用い、前記出射光から特定の光の波長のみを取り出すようにしても良い。また、光分離手段20は、例えば、さらに、イメージスライサー、スリット、アパーチャー(ダイヤフラム)、ファイバーバンドル等の少なくとも一つを含んでいても良い。
[実施形態2]
 図2に、本発明の眼球分析装置の構成の別の一例を示す。図1の装置は、分光手段が回折格子31のみにより構成されていたが、図2の装置は、図示のとおり、さらに狭帯域フィルター33を含み、回折格子31および狭帯域フィルター33により分光手段30が構成されている。なお、狭帯域フィルター33は、狭帯域フィルターに代えて、オーダーカットフィルターであっても良い。また、狭帯域フィルター33は、図2では、回折格子31とレンズ41との間に配置されている。ただし、狭帯域フィルター33の位置は、これに限定されず、例えば、レンズ23と回折格子31との間に配置されていても、同様の効果を得ることができる。回折格子31を透過した前記出射光は、必要な波長帯域の光のみが選択的に狭帯域フィルター33を透過し、レンズ41に照射される。これら以外は、図2の眼球分析装置は、図1の眼球分析装置と同じである。狭帯域フィルター33によって、必要のない波長帯の光をカットできるので、例えば、撮像手段42の画像形成面(検出器面)を有効に用いることができる。より具体的には、例えば、前記画像形成面(検出器面)において、分光スペクトルを映さない部分を、眼球内の測定視野の拡大に充てることができる。これにより、本実施形態は、特に、波長分解能が高い(波長またはそれに関する、より詳細な情報を分析する)スペクトルの場合に有効である。
[実施形態3]
 図3に、本発明の眼球分析装置の構成のさらに別の一例を示す。図示のとおり、この眼球分析装置は、光照射手段10において、レンズ11とビームスプリッタ12との間に、偏光板61が配置されている。偏光板61は、例えば、光軸を軸として回転可能であっても良い。また、Aユニット100Aにおいて、レンズ23と分光手段(回折格子)31との間に、1/2波長板26および偏光板27が、光出射側から前記順序で配置されている。なお、偏光板27は、例えば、偏光板に代えて偏光ビームスプリッタであっても良い。これら以外は、図3の眼球分析装置は、図1の眼球分析装置と同じである。
 図3の眼球分析装置は、例えば、以下のようにして使用することができる。まず、図1と同様、光源10Aから連続光を照射させる。光源10Aから照射された連続光は、レンズ11によって収束された後、偏光板61によって直線偏光にされる。偏光された前記連続光は、ビームスプリッタ12、レンズ13によって図1と同様に処理されて眼球1に照射され、さらに、その少なくとも一部が、眼球1からの出射光となってレンズ13およびビームスプリッタ12を通過する。
 ビームスプリッタ12を透過した前記出射光は、Aユニット100Aにより、以下のように処理される。すなわち、まず、前記出射光は、光分離手段20のマイクロレンズアレイ21、マスク22およびレンズ23によって、図1と同様に処理され、眼球1の空間の位置に応じて分離される。つぎに、レンズ23を透過した前記出射光は、1/2波長板26に入射する。1/2波長板26は、回転させることが可能であり、これにより、前記出射光の直線偏光の方位を変えることができる。1/2波長板26を透過した前記出射光は、偏光板27により、特定の方向の直線偏光が選択的に出射され、その後、分光手段(回折格子31)により波長ごとに分光される。分光手段(回折格子31)により波長ごとに分光された光は、レンズ41、撮像手段42および任意にスペクトル解析手段(図示せず)により、図1と同様に処理される。このとき、前記スペクトル解析手段によって異なる方向の直線偏光の分光スペクトルを比較することにより、眼球1の少なくとも一部における、左右の円偏光に対する屈折率の違い(旋光性)が検出されてもよい。
 なお、本発明において、偏光板の配置および使用方法は、図3の例に限定されない。例えば、本発明の眼球分析装置により得られたデータをラマン分光法により分析する場合、ラマン散乱によって生じる特定の方位の直線偏光だけを通すフィルターを使えば、眼球内の分子から発せられるルミネッセンス光などのバックグラウンド光(直線偏光を持たない光、無偏光)を抑えることができる。具体的には、例えば、光源10Aから照射された連続光または眼球1からの出射光がバックグラウンド光を含む場合、ビームスプリッタ12とマイクロレンズアレイ21との間(マイクロレンズアレイ21の光入射側)等に直線偏光板(直線偏光手段)を配置して偏光フィルターとする。これにより、バックグラウンド光を透過させず、ラマン散乱に必要な直線偏光だけを透過させて用いることができる。
 また、例えば、直線偏光板に代えて、円偏光板を用い、眼球1に入射する光または眼球1から出射(射出)される光を円偏光しても良い。円偏光板を用いた場合は、例えば1/2波長板26を回転可能な1/4波長板に置き換えるか、または、1/2波長板26の光入射側または光出射側に隣接して、回転可能な1/4波長板を用いても良い。円偏光板(円偏光手段)61は、例えば、透過させる円偏光の回転方向の左右を切り替え可能であっても良い。また、前記1/4波長板により、円偏光を直線偏光に変換することができる。また、1/2波長板26により、直線偏光の方位または円偏光の回転方向を変えることができる。このようにすれば、例えば、眼球1の少なくとも一部における、左右の円偏光に対する吸光度の違いを検出することができる。これにより、例えば、眼球1中の光学異性体の検出を行うことができる。前記光学異性体としては、例えば、アミノ酸又はアミノ酸残基のL体とD体が挙げられる。
[実施形態4]
 図4に、本発明の眼球分析装置の構成のさらに別の一例を示す。同図は、前記Bユニットを含む眼球分析装置の一例である。図示のとおり、この眼球分析装置は、連続光を眼球に照射する光照射手段10と、Bユニット100Bとから構成されている。
 光照射手段10の構成は、図1と同じである。Bユニット100Bは、前記連続光を照射された眼球1から出射する出射光を、眼球1の空間の位置に応じて分離する光分離手段(撮像手段)20Bと、前記出射光を波長ごとに分光する分光手段(波長可変フィルター)32とを含む。また、Bユニット100Bは、さらに、レンズ25および41を含む。Bユニット100Bの構成要素は、図示のとおり、眼球1からの出射光の出射側から、レンズ25、分光手段(波長可変フィルター)32、レンズ41、光分離手段(撮像手段)20Bの順序で配置されている。
 また、図4の眼球分析装置は、分光手段として、図1~3の回折格子31に代えて、前述のとおり、波長可変フィルター32を有する。波長可変フィルター(チューナブルフィルター)32は、例えば、ファブリペローエタロン等であっても良い。
 図4の眼球分析装置において、レンズ41は、例えば、コリメータレンズであっても良い。
 撮像手段20Bは、例えば、光が像を表示する撮像素子を含んでも良く、その撮像素子の前面に画像が形成されても良い。撮像手段20Bは、実施形態1(図1~3)の撮像手段42と同様、例えば、カメラであっても良く、その撮像面に画像が形成されても良い。図4において、撮像手段20Bの画像形成面は、例えば、カメラレンズ、または赤外線カメラ(例えば、波長1.2μm以下の場合はブラックシリコン素子、波長0.7~1.8μmの場合はInGaAs素子やHgCdTe素子、波長1~5μmの場合はInSb素子またはHgCdTe)の撮像面であっても良い。
 図4の眼球分析装置は、例えば、以下のようにして使用することができる。まず、光源10Aから連続光を照射する。照射された連続光が、レンズ11、ビームスプリッタ12およびレンズ13を透過して眼球1に照射され、さらに、眼球1からの出射光に変換されてレンズ13およびビームスプリッタ12を透過するまでは、図1の眼球分析装置と同様である。
 つぎに、ビームスプリッタ12を透過した前記出射光により、レンズ25の光入射側の像面24に、眼球1の少なくとも一部の画像(例えば眼底像)が結像される。さらに、前記出射光は、像面24からレンズ25に入射し、レンズ25によりコリメートされた後に、波長可変フィルター32により分光され、特定波長の単色光が取り出される。取り出された単色光は、レンズ41によって収束され、撮像手段20Bに照射される。そして、撮像手段20Bにより、前記分光された出射光が撮像され、撮像して得られた画像上の画素によって前記分光された出射光が二次元的に分離される。このようにして、光分離手段20により、眼球1から出射する出射光を、眼球1の空間の位置に応じて二次元的に分離することができる。その画像を、例えば、スペクトル解析手段(図示せず)に供し、各視野の分光スペクトルを解析する。これにより、眼球1の状態の微細な変化も検出可能である。また、波長可変フィルター32により取り出される単色光の波長を変更することで、異なる波長の光による分析が可能である。
 図4のようにユニットBを含む眼球分析装置によれば、例えば、空間分解能が高いという利点を有する。このため、ユニットBを含む眼球分析装置は、例えば、赤外光を用いた分析に有用である。ただし、ユニットBを含む眼球分析装置の用途はこれに限定されず、例えば、可視光を用いた分析等にも使用できる。また、例えば、実施形態1~3(図1~3)の装置と同様、必要に応じ、スキャン機構(図示せず)を用いてスキャンすることにより、分析の視野を広げても良い。
[実施形態5]
 図5に、本発明の眼球分析装置の構成のさらに別の一例を示す。図4の装置は、分光手段が波長可変フィルター32のみにより構成されていたが、図5の装置は、図示のとおり、さらに狭帯域フィルター33を含み、波長可変フィルター32および狭帯域フィルター33により分光手段30が構成される。なお、狭帯域フィルター33は、狭帯域フィルターに代えて、他の任意のフィルターでも良く、例えば、広帯域フィルターでも良いし、オーダーカットフィルターでも良い。また、狭帯域フィルター33は、図5では波長可変フィルター32とレンズ41との間に配置されている。波長可変フィルター32を透過した前記出射光は、必要な波長帯域の光のみが選択的に狭帯域フィルター33を透過し、レンズ41に照射される。これら以外は、図5の眼球分析装置は、図4の眼球分析装置と同じである。また、狭帯域フィルター33の配置位置は、図5の位置に限定されず、例えば、波長可変フィルター23を透過した前記出射光を狭帯域フィルター33に入射させることができれば良く、具体的には、レンズ41と撮像手段20Bとの間等でも良い。狭帯域フィルター33により、波長可変フィルター23を透過した前記出射光に含まれる不要な波長帯域の光(検出対象の波長とは異なる波長の光、または他の次数の光)を遮断(カット)し、前記のとおり、必要な波長帯域の光のみを選択的に透過させることができる。
[実施形態6]
 図6に、本発明の眼球分析装置の構成のさらに別の一例を示す。図示のとおり、この眼球分析装置は、光照射手段10において、レンズ11とビームスプリッタ12との間に、偏光板61が配置されている。また、Bユニット100Bにおいて、レンズ25と波長可変フィルター32との間に、1/2波長板26および偏光板27が、光出射側から前記順序で配置されている。なお、偏光板27は、図3と同様、例えば、偏光板に代えて偏光ビームスプリッタであっても良い。これら以外は、図6の眼球分析装置は、図4の眼球分析装置と同じである。また、図6の眼球分析装置は、Aユニット100Aに代えてBユニット100Bを有すること以外は、図3の眼球分析装置と同じである。
 図6の眼球分析装置は、例えば、以下のようにして使用することができる。まず、光源10Aから出射された連続光が眼球1に照射され、さらに眼球1からの出射光となってビームスプリッタ12を通過するまでは、図3と同じである。ビームスプリッタ12を透過した前記出射光は、Bユニット100Bにより、以下のように処理される。すなわち、まず、前記出射光は、光分離手段20の像面24およびレンズ25によって、図4と同様に処理され、眼球1の空間の位置に応じて分離される。つぎに、レンズ25を透過した前記出射光は、1/2波長板26に入射する。1/2波長板26は、回転させることが可能であり、これにより、前記出射光の直線偏光の方位を変えることができる。1/2波長板26を透過した前記出射光は、偏光板27により、一方向の直線偏光が選択的に出射され、その後、波長可変フィルター32により、波長ごとに分離され、特定波長の単色光が取り出される。取り出された単色光は、レンズ41、撮像手段20Bおよび任意にスペクトル解析手段(図示せず)により、図4と同様に処理される。
 図6の眼球分析装置は、例えば、図3と同様に、直線偏光だけを通すフィルターを用いてラマン分光法等に用いることも出来るし、直線偏光板に代えて円偏光板を用い、眼球1中の光学異性体の検出等に用いても良い。
[実施形態7]
 図7に、本発明の眼球分析装置のさらに別の構成の一例を示す。図示のとおり、この装置は、光照射手段10、Aユニット200AおよびBユニット200Bにより構成されている。光照射手段10は、光源を2つ含む。また、AユニットおよびBユニットは、実施形態1~6(図1~6)と同様、光分離手段および分光手段を含む。
 光照射手段10は、2つの光源10Aおよび10Bと、反射鏡71およびレンズ72と、ビームスプリッタ73、74および75とにより構成されている。光源10Aおよび10Bは、特に限定されないが、例えば、実施形態1~6(図1~6)の光源10Aと同様でも良い。反射鏡71は、例えば、ガルバノミラーであっても良い。反射鏡71は、回転により光の反射方向変化させることができる。
 光源10Aから照射される連続光の光路には、前記連続光の照射側から順に、レンズ72およびビームスプリッタ73が、この順序で配置され、光源10A、レンズ72およびビームスプリッタ73により、照射ユニット300Aが構成されている。なお、照射ユニット300Aを透過する連続光の照射方向は、図7では、Aユニット200AおよびBユニット200Bをそれぞれ透過する光の透過方向に対し垂直であるが、角度は特に限定されず、垂直でなくても良い。そして、ビームスプリッタ73は、Aユニット200Aにおけるレンズ77の光入射側に配置されている。また、照射ユニット300Aの光出射側には、ビームスプリッタ75が配置されている。ビームスプリッタ75は、Bユニット200Bにおけるレンズ76の光入射側に配置されている。
 光源10Bの光出射側には、反射鏡71が配置されている。また、眼球1から出射される出射光の光路には、前記出射光の出射側から順に、ビームスプリッタ74、ビームスプリッタ75、およびAユニット200Aが配置されている。
 Aユニット200Aは、マイクロレンズアレイ21の光入射側にレンズ76が配置されていること以外は、図2の装置のAユニット100Aと同じである。Bユニット200Bは、像面24の光入射側にレンズ77が配置されていること以外は、図5のBユニット100Bと同じである。なお、Aユニット200AおよびBユニット200Bをそれぞれ透過する光の透過方向は、図7では互いに平行であるが、角度は特に平行に限定されず、任意である。
 図7の眼球分析装置は、例えば、以下のようにして使用することができる。まず、光源10Aから連続光を照射させる。光源10Aから照射された連続光は、レンズ72およびビームスプリッタ73をこの順序で透過した後、ビームスプリッタ75で反射され、ビームスプリッタ74を透過して眼球1に照射される。眼球1に照射された前記連続光の少なくとも一部は、眼球1による反射、蛍光もしくは散乱等で、眼球1から出射される。眼球1から出射された出射光は、ビームスプリッタ74を透過する。ビームスプリッタ74を透過した前記出射光の一部は、ビームスプリッタ75を透過し、Aユニット200Aのレンズ76によって収束される。レンズ76を透過した光は、Aユニット200Aによって、図2のAユニット100Aと同様に処理される。Aユニット200Aの撮像手段42に形成された画像は、例えば、スペクトル解析手段(図示せず)に供され、各視野の分光スペクトルが解析される。
 また、ビームスプリッタ74を透過した前記出射光の一部は、ビームスプリッタ75により反射され、さらにビームスプリッタ73により反射され、Bユニット200Bのレンズ77によって収束される。レンズ77を透過した光は、Bユニット200Bによって、図5のBユニット100Bと同様に処理される。Bユニット200Bの撮像手段20Bに形成された画像は、例えば、スペクトル解析手段(図示せず)に供され、各視野の分光スペクトルが解析される。
 また、図7の眼球分析装置は、例えば、以下のようにしても使用することができる。まず、光源10Bから連続光を照射させる。光源10Bから照射された連続光は、反射鏡71により反射され、さらにビームスプリッタ74により反射されて眼球1に照射される。反射鏡71は、前記のとおり、回転により光の反射方向を変化させることが可能であり、これにより、眼球1内をスキャンして分析視野を拡大することができる。眼球1に照射された前記連続光の少なくとも一部は、眼球1による反射等で、眼球1から出射される。眼球1から出射された出射光は、ビームスプリッタ74を透過し、その後、ビームスプリッタ75を透過し、または反射され、光源10Aからの光と同様に、Aユニット200AおよびBユニット100Bで処理される。
 図7の装置によれば、例えば、2つの光源(光照射手段)10Aおよび10Bを、目的に応じて適宜切り替えて、または2つを同時に用いることができる。例えば、2つの光源の一方が可視光を照射する光源で、他方が赤外光を照射する光源でも良い。また、例えば、Aユニット200AおよびBユニット200Bを、目的に応じて適宜切り替えて、または2つを同時に用いることができる。
 また、図7の装置の構成は、他にも適宜変更が可能である。例えば、図3または6の装置と同様に、偏光板を用いても良い。
[実施形態8]
 図8に、本発明の眼球分析装置のさらに別の構成の一例を示す。この装置は、図7の光源10Bに代えて照射ユニット(レーザーユニット)300Bを有すること以外は、図7と同じである。レーザーユニット300Bは、コヒーレントアンチストークスラマン分光(CARS)用光照射手段である。レーザーユニット300Bは、光照射手段(光源)10Cおよび10Dと、光路長調整ユニット101と、リレーレンズ102とにより構成される。光路長調整ユニット101は、例えば、光を反射可能なミラー等から構成されており、光源10Dから照射された連続光(ストークス光)を反射する。そして、光路長調整ユニット101が、図中の矢印に示すとおり、光源10Dからの前記連続光の照射方向に沿って前後に移動することで、前記連続光の光路長を調整できる。これによって、光路長調整ユニット101は、例えば、後述する、連続光と超短パルスレーザー(ポンプ光およびプローブ光)の眼球への入射タイミングを合わせる役割を果たす。
 光源10Dは、例えば、スーパーコンティニューム光(SC)を発する光源である。光源10Cは、レーザー光(単色パルス光)を照射する。前記レーザー光は、例えばフェムト秒またはピコ秒レーザーを種光とし、光源10Dから照射されるスーパーコンティニューム光の励起光の役割を果たす。また、前記レーザー光は、例えば、可視光または赤外線の超短パルスレーザーである。
 また、図8の装置において、光源10Aが、白色光源であり、照射ユニット300Aが、前記白色光源を含む白色光源ユニットであっても良い。光源10Aは、例えば、ハロゲン光源または黒体(波長域による)であっても良い。レンズ72は、例えば、拡散板、コンデンサーレンズ、コリメータレンズ等であっても良い。
 図8の眼球分析装置は、例えば、以下のようにして使用することができる。まず、光源10Cおよび10Dから光を照射させる。光源10Dから照射されたスーパーコンティニューム光は、光路長調整ユニット101により光路長が調整される。光源10Cから照射されたレーザー光は、リレーレンズ102により反射される。これにより、前記スーパーコンティニューム光(連続光)および前記レーザー光の光路が重なって混合光となる。前記混合光は、反射鏡71により反射され、図7の装置と同様の経路により、眼球1に照射され、眼球1から射出されたアンチストークスラマン散乱光がさらにAユニット200AおよびBユニット200Bに入射する。Bユニット200Bでは、回折格子32により、眼球1からの出射光が分光される。これら以外は、図8の眼球分析装置は、図7の装置と同様にして使用できる。例えば、光源10Cおよび10Dに加え、またはそれに代えて、光源10Aから連続光を照射させて、図7の装置と同様に使用することができる。
 図8の装置によれば、前記のとおり、光源10Dによるスーパーコンティニューム光(SC)と光源10Cによるレーザー光(単色パルス光)との混合光を眼球1に照射し、眼球内で生成されたアンチストークスラマン散乱光を回折格子32により分光する。一般に、アンチストークスラマン光は通常のラマン散乱光にくらべて非常に強度が高く、かつポンプ光によって発生するルミネッセンス光の影響を受けないので、これによりさらに感度が高い分析をすることができる。
 図8の装置によれば、例えば、レーザーユニット300BおよびBユニット200Bを用いてCARSを行うことで、例えば、眼内における白内障の空間分布情報を取得し、白内障マッピングができる。これにより、例えば、進行が進んでいない状態においても白内障が検知できる。また、前記CARSを行うことで、例えば、眼底断層の3次元マッピング(眼底写真+深さ)を行うことができる。このためには、ラマン散乱光としては解像度が高いことが好ましい。また、透過力の高い近赤外線光(波長1000~1550nm)を用いることが好ましい。ただし、これらの用途は例示であり、図8の装置の用途は、これらに限定されない。また、この装置の構成も、特に限定されない。例えば、図5の装置(Bユニットを含みAユニットを含まない)の光源10をレーザーユニット300Bに変えた装置を、図8の装置と同様の用途に用いることも出来る。なお、本発明において「眼底断層」は、眼底および眼底よりも下層の間の空間の断層を含む。
 なお、図8の装置において、ストークス光(眼球1に照射される連続光のうち、プローブとなる眼球中の分子の励起に関わる光)の波長は、特に限定されないが、例えば、1000~1550nmである。網膜、眼底等を分析する場合は、眼球中の水の吸収帯等を考慮して、分析対象部位まで光を届きやすくする観点から、波長が1400nmを超えないことが好ましい。また、ポンプ光(光源10Cから出射されるレーザー光)の波長も特に限定されないが、例えば、700nm以上である。光源10Cの出力も特に限定されないが、例えば、光源10Cからの光の放出持続時間が10秒の場合、15.6mW以下である。
 図8の装置に限らず、本発明の眼球分析装置において、眼球に照射される光の波長、出力等は、安全性を考慮して適切に選択することが好ましい。また、光源の出力は、例えば、レーザ安全性の標準化(JISC6802)および眼光学機器における光ハザードからの保護(JIST15004-2)等に定める最大許容露光量(MPE:Maximum Permissible Exposure)を超えないようにすることが好ましい。光源が複数の場合であって、それぞれの出射光の波長における最大許容露光量が同じ(同じ規制波長帯)場合は、全光源の出力の和が、最大許容露光量を超えないようにすることが好ましい。また、光源が2つの場合であって、それぞれの出射光の波長における最大許容露光量が異なる(異なる規制波長帯)場合は、第1の光源の露光量と、第2の光源の露光量とが、下記数式(1)の関係を満たすことが好ましい。光源が3つ以上の場合も、同様である。また、例えば、後述する図9のように、混合光が波長選択フィルターにより分光され、必要な波長の光のみが選択的に眼球に照射される場合は、光源からの出射光に代えて、眼球に照射される光の露光量が、最大許容露光量を超えないようにしても良い。
 
(E1/E1max)+(E2/E2max)≦1      (1)
 
E1:第1の光源の出射光の露光量
E1max:第1の光源の出射光の波長における最大許容露光量
E2:第2の光源の出射光の露光量
E2max:第2の光源の出射光の波長における最大許容露光量
 
[実施形態9]
 図9に、本発明の眼球分析装置のさらに別の構成の一例を示す。この装置は、光照射手段10が、波長選択フィルター(バンドパスフィルター)78を含み、波長選択フィルター78が、反射鏡71とビームスプリッタ74との間に配置されていること以外は、図8と同じである。反射鏡71により反射された混合光は、波長選択フィルター78により分光され、必要な波長の光のみが、選択的に眼球1に照射される。具体的には、例えば、前記混合光に含まれる光のうち、ストークス光(眼球1に照射される連続光のうち、プローブとなる眼球中の分子の励起に関わる光)およびポンプ光(光源10Cから出射されるレーザー光)のみが波長選択フィルター78を通過(透過)し、選択的に眼球1に照射される。
 図10のグラフに、波長選択フィルター78の機能を模式的に示す。同図において、横軸は波長であり、縦軸は透過率である。図示のとおり、ポンプ光の波長λと、ストークス光の波長帯λの光のみが波長選択フィルター78を通過し、他の波長の光はカットされる。ただし、図10は例示であり、本発明をなんら限定しない。例えば、図10におけるポンプ光の波長λおよびストークス光の波長帯λは、一例であって、本発明はこれに限定されない。また、例えば、図10ではストークス光の波長帯が1つであるが、ストークス光の波長帯が複数の場合は、前記複数の波長帯のストークス光が全て波長選択フィルター78を透過しても良い。ストークス光の波長帯が複数であると、例えば、複数の疾患(例えば、白内障およびアルツハイマー病)に対応する分析が可能であり、それらの早期診断等に対応できる。
 必要な波長以外の光を波長選択フィルター78で遮断(カット)し、眼球1に入射させないようにすることで、例えば、眼球1に入射する光エネルギー量を抑え、眼球分析の安全性を高めることができる。また、例えば、必要な波長以外の光がなくなることで、眼内で発生する散乱光およびルミネッセンス光が減少することでバックグラウンド光が減少し、ラマン光が検出しやすくなり、ラマン光の波長に対応した分析(例えば、特定タンパク質等の分子の分析)の精度が向上する。
 また、例えば、光源10Dとして、連続光に代えてストークス光のみを出射する単色レーザー光源を用い、波長選択フィルター78を用いなくても、波長選択フィルター78の使用と同様の効果を得ることができる。しかしながら、連続光を用いた方が、温度変化によるレーザー出力波長の温度ドリフトなどの不安定性に強くなる(ロバストになる)ため好ましい。
 ストークス光の波長帯が複数の場合は、例えば、波長選択フィルター78を複数用い、それぞれを切り替えることで、それぞれの波長選択フィルターに対応したストークス光の波長帯を通過させるようにしても良い。また、例えば、波長選択フィルター78を複数用いることに加え、またはそれに代えて、波長選択フィルター78が波長可変フィルターであっても良い。
 また、例えば、複数の波長帯のストークス光を通過させるために、波長選択フィルター78が回折格子および波長選択マスクを含んでいても良い。図11に、回折格子および波長選択マスクを含む波長選択フィルター78の一例を示す。図示のとおり、この波長可変フィルター78は、回折格子78a、レンズ78b、波長選択マスク78c、レンズ78d、および回折格子78eが、光入射側(図の下側)から前記順序で配置されている。図示のとおり、まず、回折格子78aにより混合光が分光される。分光された混合光は、レンズ78bを通過し、波長選択マスク78cにより、1つまたは複数(図では2つ)の波長帯の光のみが選択的に通過される。波長選択マスク78cを通過した光は、レンズ78dおよび回折格子78eを通過した後に、眼球1に照射される。なお、波長選択マスク78cは、例えば、波長選択フィルターまたは波長可変フィルターであっても良い。また、図11の波長選択フィルター78において、光入射側と光出射側とを逆にして用いることも出来る。
[本発明の用途]
 本発明の眼球分析装置および眼球分析方法は、例えば、以下の用途に用いることができる。ただし、これらは例示であって、本発明をなんら限定しない。
 本発明によれば、例えば、眼球内において、前記眼球への光の入射方向に対し垂直な面を、前記眼球の空間の位置に応じて分析することができる。分析対象とする前記面は、特に限定されないが、例えば、眼底であっても良いし、網膜、角膜、または水晶体の少なくとも一部であっても良い。
 また、本発明によれば、前記眼球からの出射光を波長ごとに分光することにより、例えば、前記面方向の分析において、さらに波長を変化させた分析(三次元分光分析)を行うことができる。図12に、本発明における三次元分光分析の概念を模式的に示す。図12は、前記平面方向(X方向およびY方向とする)に加え、さらに、波長の変化(Z方向とする)に応じた分析を行うことを示している。異なる波長帯で三次元分光分析を行うことによって、例えば、眼底断層写真の撮像により、赤外線波長の違いによる深度の違いの分析を行うことができる。また、例えば、可視光または赤外線の特定の波長の吸収を利用して、白内障検査に用いることができる。また、例えば、眼内血管、視神経等の撮像により、可視光の特定の波長での分光分析を行うことができる。
 また、本発明によれば、例えば、前記眼球への光の入射方向に対し垂直な面方向に加え、前記光の入射方向に平行な方向(前記眼球の奥行き方向)も含めて三次元的に分析することも可能である。また、これに加え、さらに波長を変化させた分析(四次元分光分析)を行うことができる。また、例えば、前記波長を変化させた四次元分光分析に加え、さらに、測定時刻を変化させた(測定方向に時間を加えた)五次元分光分析も可能である。
 また、本発明によれば、例えば、前記眼球内の空間の特定位置において、前記特定位置からの出射光の波長と、前記出射光の偏光方位角(Δθ)との関係を二次元的にプロットすることで、前記特定位置における眼球の状態を分析できる。前記眼球の状態としては、例えば、疾患の進行度合い等が挙げられる。より具体的には、例えば、前記特定位置における波長と偏光方位角(Δθ)との関係から、前記特定位置におけるL-アルギン酸とD-アルギン酸との割合を算出し、これにより、前記特定位置における白内障の進行度合いを判断できる。また、同様にして前記眼球内の様々な位置の波長と偏光方位角(Δθ)との関係をプロットすることで、前記様々な位置の疾患の進行度合いを判断できる。
 また、本発明の用途は、前記の説明に限定されず、眼球分析における任意の用途に広く使用可能である。例えば、本発明は、タンパク質(クリスタリンなど)の変性、眼球に分泌される物質などの分析に用いることができる。具体的には、例えば、眼球中のアミロイドタンパク質の分析により、アルツハイマー病の早期発見等に用いることができる。また、例えば、水晶体構成タンパク質(クリスタリン)中のトリプトファンが、酸化されたキヌレニンもしくは3-ヒドロキシキヌレニンを分析することで、または、タンパク質中のリジン残基と体内の糖が結合してできたAGE(advanced glycated end products)を分析することで、前述した白内障の早期発見も可能である。また、例えば、本発明は、透過力が高い長波長の光を用いることにより、眼底の深部、または、眼底および眼底よりも下層の間の空間まで分析可能であり、これにより、視神経の状態、毛細血管の状態、網膜の状態などを分析することができる。また、本発明によれば、例えば、非侵襲的に、かつ簡便に眼球の分析を行うことができる。
 また、本発明では、例えば、前述のとおり、眼球に照射する光を、複数の波長の光を含む混合光(例えば、白色光、SC光等の連続光、または複数の単色光の混合光)とすることができる。現在広く用いられている波長掃引型OCT(SS-OCT:Swept Source Optical Coherence Tomography)では、複数の波長の光を時間的に分けて入射するため、測定(分析)時間が長くなり、患者への負担も大となる。これに対し、本発明においては、例えば、前記複数の波長の光を含む混合光を一度だけ眼球に照射するのみで眼球の分析が可能である。これにより、SS-OCTと比較して分析時間を大幅に短縮可能であり、患者への負担を軽減できる。ただし、この説明は例示であり、本発明をなんら限定しない。
 以上、実施形態1~9により、本発明の眼球分析装置および眼球分析方法の例について説明し、さらに、本発明の用途の例について説明した。ただし、本発明は、これらに限定されず、任意の変更が可能である。例えば、本発明は、AユニットおよびBユニットの一方または両方を含む眼球装置のみには限定されない。また、例えば、分光法としては、CARS等のラマン分光法を中心に説明したが、本発明に用いることのできる分光法はこれに限定されず、例えば、フーリエ分光、時間領域分光等の、一般的に用いられる任意の分光法を使用可能である。
 以上、説明したとおり、本発明によれば、眼球の状態の微細な変化も検出可能で、疾患の早期発見等に有用な眼球分析装置および眼球分析方法を提供することができる。これにより、本発明は、眼球の状態に関連した各種疾患の早期発見等に多大な貢献が可能である。
10 光照射手段
10A、10B、10C、10D 光源
11、13、23、25、41、72、76、77 レンズ
12、73、74、75 ビームスプリッタ
20 光分離手段
20B 撮像手段(光分離手段)
21 マイクロレンズアレイ
22 マスク(視野マスク)
24 像面
26 1/2波長板
27 偏光板
61 偏光板または円偏光板(円偏光手段)
42 撮像手段
30 分光手段
31 回折格子(分光手段)
32 波長可変フィルター(分光手段)
33 狭帯域フィルター
71 反射鏡
78 波長選択フィルター
78a、78e 回折格子
78b、78d レンズ
78c 波長選択マスク
100A、200A Aユニット
100B、200B Bユニット
300A 照射ユニット(白色光源ユニット)
300B 照射ユニット(レーザーユニット)

Claims (11)

  1. 光照射手段、光分離手段、分光手段を含み、
    前記光照射手段により、光が眼球に照射され、
    前記光分離手段により、前記光を照射された前記眼球から出射する出射光が、前記眼球の空間の位置に応じて分離され、
    前記分光手段により、前記光を照射された前記眼球から出射する出射光が、分光される、
    眼球分析装置。
  2. 下記のAユニット及びBユニットの少なくとも一方のユニットを含む請求項1記載の眼球分析装置。
     
    (Aユニット)
    前記光分離手段および前記分光手段を含み、
    前記光分離手段が、マイクロレンズアレイを含み、
    前記分光手段が、回折格子を含み、
    前記マイクロレンズアレイにより、前記出射光が二次元的に分離され、
    前記回折格子により、前記二次元的に分離された出射光が分光される、
    ユニット。
    (Bユニット)
    前記光分離手段および前記分光手段を含み、
    前記光分離手段が、撮像手段を含み、
    前記分光手段が、波長可変フィルターを含み、
    前記波長可変フィルターにより、前記出射光が分光され、
    前記撮像手段により、前記分光された出射光が撮像され、撮像して得られた画像上の画素によって前記分光された出射光が二次元的に分離される、
    ユニット。
  3. 前記Aユニットを含む眼球分析装置において、さらに、コヒーレントアンチストークスラマン分光(CARS)用光照射手段を含み、
    前記CARS用光照射手段により、連続光及びレーザー光の混合光が眼球に照射され、
    前記回折格子により、前記混合光が照射された眼球からの出射光に含まれるラマン散乱光が分光される
    請求項2記載の眼球分析装置。
  4. 前記CARS用光照射手段が、波長選択フィルターを含み、
    前記波長選択フィルターにより、前記混合光が分光され、必要な波長の光のみが選択的に眼球に照射される
    請求項3記載の眼球分析装置。
  5. 前記波長選択フィルターが、回折格子および波長選択マスクを含み、
    前記回折格子により、前記混合光が分光され、必要な波長の光のみが前記波長選択マスクを通過し、眼球に照射される
    請求項4記載の眼球分析装置。
  6. 前記Aユニット及び前記Bユニットにおいて、前記分光手段が、さらに、狭帯域フィルターを含み、
    前記分光された出射光が前記狭帯域フィルターを通過する、
    請求項2から5のいずれか一項に記載の眼球分析装置。
  7. さらに、円偏光手段を含み、
    前記円偏光手段により、前記眼球に入射する光が、円偏光される、
    請求項1から6のいずれか一項に記載の眼球分析装置。
  8. さらに、円偏光分析手段を含み、
    前記円偏光分析手段により、前記眼球の少なくとも一部における、左右の円偏光に対する吸光度の違いが検出される、請求項7記載の眼球分析装置。
  9. さらに、直線偏光手段を含み、
    前記直線偏光手段により、前記連続光を照射された前記眼球から出射する出射光が、直線偏光される、
    請求項1から8のいずれか一項に記載の眼球分析装置。
  10. さらに、直線偏光分析手段を含み、
    前記直線偏光分析手段により前記直線偏光が分析されることで、前記眼球の少なくとも一部における、左右の円偏光に対する屈折率の違いが検出される、
    請求項9記載の眼球分析装置。
  11. 眼球に光を照射する照射工程と、
    前記照射された眼球から出射する出射光を、前記眼球の空間の位置に応じて分離する光分離工程と、
    前記照射された眼球から出射する出射光を、分光する分光工程と、
    を含む眼球分析方法。
PCT/JP2017/025509 2016-07-19 2017-07-13 眼球分析装置および眼球分析方法 WO2018016410A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017566439A JP6438603B2 (ja) 2016-07-19 2017-07-13 眼球分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141430 2016-07-19
JP2016141430 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016410A1 true WO2018016410A1 (ja) 2018-01-25

Family

ID=60992091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025509 WO2018016410A1 (ja) 2016-07-19 2017-07-13 眼球分析装置および眼球分析方法

Country Status (2)

Country Link
JP (2) JP6438603B2 (ja)
WO (1) WO2018016410A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075108A (ja) * 2016-11-07 2018-05-17 株式会社アサヒビジョン 内視鏡装置及び生体内部器官観察方法
JP2021518565A (ja) * 2018-03-15 2021-08-02 オリバ フランス エス.アー.エス. 瞬時的エリプソメータ又は光波散乱計及び関連する測定方法
JP2021519182A (ja) * 2018-03-29 2021-08-10 イメドース システムズ ゲーエムベーハー 代謝の自動調節を検査するための装置及び方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313032A (ja) * 1991-04-11 1992-11-05 Kubota Corp 分光分析装置
JP2009533160A (ja) * 2006-04-13 2009-09-17 ズッカーマン,ラルフ 定常状態の蛍光異方性を測定することで組織機能と代謝の非侵襲計測をする方法および装置
JP2009264787A (ja) * 2008-04-22 2009-11-12 Topcon Corp 光画像計測装置
JP2012508366A (ja) * 2008-11-04 2012-04-05 ウィリアム・マーシュ・ライス・ユニバーシティ 画像マッピング分光計
JP2013544589A (ja) * 2010-11-05 2013-12-19 フリーダム メディテック インコーポレイテッド 生体組織の構造的性質に影響する疾患を非侵襲的に検出するための装置および方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096559A (ja) * 2008-10-15 2010-04-30 Konica Minolta Sensing Inc 2次元分光測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313032A (ja) * 1991-04-11 1992-11-05 Kubota Corp 分光分析装置
JP2009533160A (ja) * 2006-04-13 2009-09-17 ズッカーマン,ラルフ 定常状態の蛍光異方性を測定することで組織機能と代謝の非侵襲計測をする方法および装置
JP2009264787A (ja) * 2008-04-22 2009-11-12 Topcon Corp 光画像計測装置
JP2012508366A (ja) * 2008-11-04 2012-04-05 ウィリアム・マーシュ・ライス・ユニバーシティ 画像マッピング分光計
JP2013544589A (ja) * 2010-11-05 2013-12-19 フリーダム メディテック インコーポレイテッド 生体組織の構造的性質に影響する疾患を非侵襲的に検出するための装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075108A (ja) * 2016-11-07 2018-05-17 株式会社アサヒビジョン 内視鏡装置及び生体内部器官観察方法
JP2021518565A (ja) * 2018-03-15 2021-08-02 オリバ フランス エス.アー.エス. 瞬時的エリプソメータ又は光波散乱計及び関連する測定方法
JP2021519182A (ja) * 2018-03-29 2021-08-10 イメドース システムズ ゲーエムベーハー 代謝の自動調節を検査するための装置及び方法

Also Published As

Publication number Publication date
JP6482713B2 (ja) 2019-03-13
JP6438603B2 (ja) 2018-12-19
JPWO2018016410A1 (ja) 2018-07-19
JP2019034163A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6928623B2 (ja) 分散型構造化照明を使用する共焦点顕微鏡法のための装置及び方法
US9566001B2 (en) Ophthalmologic apparatus
JP6805539B2 (ja) 眼科撮像装置
US9820645B2 (en) Ophthalmologic apparatus
JP5645445B2 (ja) 撮像装置及び撮像方法
JP6482713B2 (ja) 眼球分析装置
CN112639582B (zh) 高光谱设备和方法
JP6378776B2 (ja) 光侵入深さ評価方法、その評価方法を用いた性能検査方法および光断層画像撮像装置
JP6458467B2 (ja) 眼科撮影装置
US9033506B2 (en) Apparatus and method for optical coherence tomography
JP6754492B2 (ja) 生体組織分析装置および生体組織分析方法
US20200025744A1 (en) Optical sectioning apparatus using advanced optical interference microscopy
JP6392999B2 (ja) 眼球分析装置および眼球分析方法
JP2019051369A (ja) 眼科装置
JP5692716B2 (ja) 眼底観察装置
WO2023010174A1 (en) Spectral domain optical imaging with wavelength comb illumination
JP6418817B2 (ja) 断層画像撮像装置及びその制御方法
AU2021214441A1 (en) Apparatus and method for spectral domain optical imaging

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017566439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830929

Country of ref document: EP

Kind code of ref document: A1