WO2018016245A1 - 電解液、電気化学デバイス、二次電池、及び、モジュール - Google Patents

電解液、電気化学デバイス、二次電池、及び、モジュール Download PDF

Info

Publication number
WO2018016245A1
WO2018016245A1 PCT/JP2017/022243 JP2017022243W WO2018016245A1 WO 2018016245 A1 WO2018016245 A1 WO 2018016245A1 JP 2017022243 W JP2017022243 W JP 2017022243W WO 2018016245 A1 WO2018016245 A1 WO 2018016245A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
lithium
carbonate
fluorinated
Prior art date
Application number
PCT/JP2017/022243
Other languages
English (en)
French (fr)
Inventor
坂田 英郎
穣輝 山崎
博之 有馬
謙三 高橋
木下 信一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2018528451A priority Critical patent/JP6787400B2/ja
Priority to US16/319,060 priority patent/US20190214682A1/en
Priority to PL17830765T priority patent/PL3483973T3/pl
Priority to CN201780045366.2A priority patent/CN109643826B/zh
Priority to EP21159886.7A priority patent/EP3849009B1/en
Priority to EP17830765.8A priority patent/EP3483973B1/en
Priority to CN202111158815.9A priority patent/CN113903997B/zh
Publication of WO2018016245A1 publication Critical patent/WO2018016245A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic solution, an electrochemical device, a secondary battery, and a module.
  • lithium-ion secondary batteries having high energy density is in progress. Further, as the application field of lithium ion secondary batteries expands, improvement of battery characteristics is desired. In particular, when lithium ion secondary batteries are used in vehicles, the battery characteristics will become increasingly important.
  • Patent Document 1 as a mixed non-aqueous electrolyte for a lithium secondary battery having a low initial battery resistance, an organic silicon compound represented by the following general formula [1] is used in an amount of 0.01% by mass to 15% by mass, and an electrolyte.
  • the fluorine-containing alkali metal salt is contained in an amount of 0.1 mol / liter to 3 mol / liter, and the content of the fluorinated organosilicon compound produced by the reaction between the organosilicon compound and the fluorine-containing alkali metal salt is 0
  • R 1 represents an alkyloxy group having 1 to 11 carbon atoms, a silyloxy group, or an alkylsilyloxy group having 1 to 11 carbon atoms.
  • n represents the number of R 1 bonded to M, and is M oxidation number-1 or M oxidation number-3. When n is 2 or more, R 1 may be the same or different.
  • R 2 to R 4 each independently represents an alkyl group having 1 to 11 carbon atoms, an alkenyl group having 1 to 11 carbon atoms, an alkyloxy group having 1 to 11 carbon atoms, or an aryl group having 6 to 11 carbon atoms. . ]
  • Patent Document 2 discloses an electrode assembly in which a negative electrode capable of inserting and extracting lithium and a positive electrode are opposed to each other with a separator as a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery having good cycle characteristics.
  • the non-aqueous electrolyte is contained in a container, and the positive electrode current collector and the portion that is electrically connected to the positive electrode current collector are made of valve metal or an alloy thereof.
  • a non-aqueous electrolyte used for a non-aqueous electrolyte secondary battery which is produced by dehydrochlorination of chloroethylene carbonate and contains vinylene derived from the chloroethylene carbonate in a proportion of 1 ppm to 50% by weight Containing 0.1 to 30% by weight of carbonate, cyclic carbonate, chain carbonate, lactone, chain carboxylic acid ester, cyclic ether, chain ether and It describes a non-aqueous electrolyte, wherein the nonaqueous solvent selected from the group consisting of yellow compound are those formed by dissolving LiPF 6 as the lithium salt.
  • Patent Document 3 includes a non-aqueous electrolyte secondary battery that satisfies high input / output characteristics and good high-temperature cycle characteristics and a silicon compound represented by formula (1) as a non-aqueous electrolyte used therein.
  • a feature non-aqueous electrolyte for a lithium secondary battery is described.
  • SiF x R 1 l R 2 m R 3 n Formula (1) ⁇ In the chemical formula (1), R 1 to R 3 may be the same as or different from each other, and are organic groups having 1 to 12 carbon atoms, where x is 1 to 3, l, m, and n are From 0 to 3, 1 ⁇ l + m + n ⁇ 3. ⁇
  • the present invention provides an electrolytic solution capable of obtaining an electrochemical device or module such as a lithium secondary battery having a small IV resistance value (internal resistance) and excellent cycle characteristics.
  • the present invention also provides an electrochemical device or module such as a lithium secondary battery having a small IV resistance value (internal resistance) and excellent cycle characteristics.
  • the present inventors have found that the above problem can be solved brilliantly by combining at least two kinds of compounds, and have completed the present invention.
  • the present invention provides a solvent, an electrolyte salt, at least one compound (X) selected from the group consisting of a compound represented by the general formula (1) and a compound represented by the general formula (2), and An electrolytic solution comprising at least one organic silicon compound selected from the group consisting of a compound represented by the general formula (3) and a compound represented by the general formula (4).
  • R 11 X 11 —SO 3 M 11 (However, R 11 is a linear or branched alkyl group having 1 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms, or a straight chain having 2 to 6 carbon atoms. Or a branched alkynyl group, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkenyl group having 3 to 6 carbon atoms, or an alkylsilyl group having 3 to 6 carbon atoms.
  • alkylsilyl group may hydrogen atoms bonded to carbon atoms substituted by a halogen atom, may have a cyclic structure, optionally .
  • X 11 also have an ether bond or thioether bond O or S, and M 11 is at least one selected from the group consisting of Li, Na, K and Cs.
  • R 21 and R 22 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms or a linear or branched alkenyl group having 2 to 6 carbon atoms.
  • the alkyl group, the cycloalkyl group and the alkyl silyl group may hydrogen atoms bonded to carbon atoms substituted by a halogen atom, may have a cyclic structure.
  • R 21 and R 22 may be bonded to each other to form a cyclic structure, and M 21 is at least one selected from the group consisting of Li, Na, K and Cs.
  • Formula (3) (R 31 ) n31 —M 31 —O—SiR 32 R 33 R 34 (However, M 31 represents a metal atom, P, B, or P ⁇ O. R 31 represents an alkyloxy group having 1 to 11 carbon atoms, a silyloxy group, or an alkylsilyloxy group having 1 to 11 carbon atoms.
  • n 31 represents the number of R 31 that binds to M 31, if .n 31 is an oxidation number -3 oxidation number -1 or M 31 of M 31 is 2 or more, also R 31 are either the same or different R 32 to R 34 may be the same or different and each represents an alkyl group having 1 to 11 carbon atoms, an alkenyl group having 2 to 11 carbon atoms, an alkyloxy group having 1 to 11 carbon atoms, or 6 to 6 carbon atoms. 11 represents an aryl group.
  • R 41 to R 43 may be the same or different and each represents an alkyl group having 1 to 11 carbon atoms, an alkenyl group having 2 to 11 carbon atoms, an alkyloxy group having 1 to 11 carbon atoms, or 6 to 11 carbon atoms. Represents an aryl group of
  • R 11 is a linear or branched alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms
  • X 11 is O
  • M 11 is preferably Li.
  • R 21 and R 22 are the same or different and are each a linear or branched alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms.
  • M 21 is preferably Li.
  • the electrolytic solution preferably contains 0.001 to 5% by mass of the compound (X) with respect to the solvent.
  • the electrolytic solution preferably contains 0.001 to 5% by mass of the organosilicon compound with respect to the solvent.
  • the solvent preferably contains at least one selected from the group consisting of non-fluorinated saturated cyclic carbonates, fluorinated saturated cyclic carbonates, non-fluorinated chain carbonates, and fluorinated chain carbonates.
  • the electrolyte salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiTaF 6 , LiPO 2 F 2 , FSO 3 Li, CF 3 SO 3 Li, LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ).
  • the present invention is also an electrochemical device comprising the above-described electrolytic solution.
  • the present invention is also a secondary battery comprising the above-described electrolytic solution.
  • the present invention comprises the above-described electrolytic solution, and the positive electrode current collector and a portion that is electrically connected to the positive electrode current collector are made of a valve metal or an alloy thereof. It is also a secondary battery.
  • the present invention is also a module comprising the above-described electrochemical device or the above-described secondary battery.
  • the electrolyte solution of the present invention can provide an electrochemical device or module such as a lithium secondary battery having a small IV resistance value (internal resistance) and excellent cycle characteristics.
  • the electrochemical device, secondary battery, and module of the present invention have a small IV resistance value (internal resistance) and excellent cycle characteristics.
  • the electrolytic solution of the present invention comprises a solvent, an electrolyte salt, at least one compound (X) selected from the group consisting of a compound represented by the general formula (1) and a compound represented by the general formula (2), and And at least one organic silicon compound selected from the group consisting of a compound represented by the general formula (3) and a compound represented by the general formula (4).
  • the compound represented by the general formula (1) is: Formula (1): R 11 X 11 —SO 3 M 11 (However, R 11 is a linear or branched alkyl group having 1 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms, or a straight chain having 2 to 6 carbon atoms. Or a branched alkynyl group, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkenyl group having 3 to 6 carbon atoms, or an alkylsilyl group having 3 to 6 carbon atoms.
  • alkylsilyl group may hydrogen atoms bonded to carbon atoms substituted by a halogen atom, may have a cyclic structure, optionally .
  • X 11 also have an ether bond or thioether bond O or S, and M 11 is at least one selected from the group consisting of Li, Na, K and Cs.
  • R 11 is preferably a linear or branched alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms, and 1 to 6 carbon atoms.
  • the linear or branched alkyl group is more preferable.
  • a hydrogen atom bonded to a carbon atom is not substituted with a halogen atom, does not have a cyclic structure, and does not have an ether bond or a thioether bond.
  • the alkyl group preferably has 5 or less carbon atoms, more preferably 4 or less, still more preferably 1 or more, and even more preferably 2 or more.
  • R 11 represents methyl group, ethyl group, propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, t-butyl group, hexyl group, 2-fluoroethyl group, 2 , 2,2-trifluoroethyl group and dodecyl group, preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, butyl group, hexyl group 2,2,2-trifluoroethyl group and dodecyl group are more preferable, methyl group, ethyl group, propyl group, isopropyl group, butyl group, n-butyl group, 2,2,2-trifluoroethyl group More preferably at least one selected from the group consisting of a group and a dodecyl group, an ethyl group, a propyl group
  • X 11 is O or S, and is preferably O.
  • M 11 is at least one selected from the group consisting of Li, Na, K and Cs, is preferably Li or Na, more preferably Li.
  • Examples of the compound represented by the general formula (1), CH 3 OSO 3 Li, C 2 H 5 OSO 3 Li, CH 3 CH 2 CH 2 OSO 3 Li, CH 3 CH (CH 3) OSO 3 Li, CH 3 CH 2 CH 2 CH 2 OSO 3 Li, CH 3 CH 2 CH (CH 3 ) OSO 3 Li, CH 3 CH 2 C (CH 3 ) 2 OSO 3 Li, CH 3 CH 2 CH 2 CH 2 CH 2 OSO 3 Li, CH 3 (CH 2 ) 11 OSO 3 Na, CFH 2 CH 2 OSO 3 Li, CF 3 CH 2 OSO 3 Li, and the like can be given.
  • R 11 is linear or branched having 1 to 6 carbon atoms. Or an alkyl group having 3 to 6 carbon atoms, X 11 is preferably O, and M 11 is preferably Li. That is, as the compound represented by the general formula (1), Formula (1-1): R 11 O—SO 3 Li (Wherein R 11 is a linear or branched alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms.
  • the alkyl group is a hydrogen atom bonded to a carbon atom. May be substituted with a halogen atom, or may have a cyclic structure.
  • the cycloalkyl group may have a hydrogen atom bonded to a carbon atom substituted with a halogen atom).
  • the monoalkyl sulfate lithium salt is preferred.
  • the compound represented by the general formula (2) is Formula (2): R 21 R 22 N—SO 3 M 21 (However, R 21 and R 22 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms or a linear or branched alkenyl group having 2 to 6 carbon atoms. A linear or branched alkynyl group having 2 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, a cycloalkenyl group having 3 to 6 carbon atoms, or an alkylsilyl group having 3 to 6 carbon atoms. .
  • the alkyl group, the cycloalkyl group and the alkyl silyl group may hydrogen atoms bonded to carbon atoms substituted by a halogen atom, may have a cyclic structure.
  • R 21 and R 22 may be bonded to each other to form a cyclic structure, and M 21 is at least one selected from the group consisting of Li, Na, K, and Cs.
  • R 21 and R 22 are the same or different and are each a linear or branched alkyl group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms.
  • M 21 is preferably Li.
  • a hydrogen atom bonded to a carbon atom is not substituted with a halogen atom, does not have a cyclic structure, and does not have an ether bond or a thioether bond.
  • M 21 is at least one selected from the group consisting of Li, Na, K and Cs, and is preferably Li.
  • Examples of the compound represented by the general formula (2) include (CH 3 ) 2 NSO 3 Li, (C 2 H 5 ) 2 NSO 3 Li, (CH 3 ) (C 2 H 5 ) NSO 3 Li, and (C 3 H 7) 2 NSO 3 Li, (C 3 H 7) (CH 3) NSO 3 Li, (C 3 H 7) (C 2 H 5) NSO 3 Li, (C 4 H 9) 2 NSO 3 Li, ( C 5 H 11 ) 2 NSO 3 Li and the like can be mentioned, and among them, at least one selected from the group consisting of (CH 3 ) 2 NSO 3 Li and (C 2 H 5 ) 2 NSO 3 Li is preferable.
  • the electrolytic solution has an IV resistance value that is smaller and can obtain an electrochemical device with even better cycle characteristics, and therefore contains 0.001 to 5% by mass of the compound (X) with respect to the solvent. Is preferred. As content of compound (X), 0.05 mass% or more is more preferable, and 2 mass% or less is more preferable.
  • the organosilicon compound is at least one selected from the group consisting of a compound represented by general formula (3) and a compound represented by general formula (4).
  • Formula (3) (R 31 ) n31 —M 31 —O—SiR 32 R 33 R 34 (However, M 31 represents a metal atom, P, B, or P ⁇ O. R 31 represents an alkyloxy group having 1 to 11 carbon atoms, a silyloxy group, or an alkylsilyloxy group having 1 to 11 carbon atoms.
  • n 31 represents the number of R 31 that binds to M 31, if .n 31 is an oxidation number -3 oxidation number -1 or M 31 of M 31 is 2 or more, also R 31 are either the same or different R 32 to R 34 may be the same or different and each represents an alkyl group having 1 to 11 carbon atoms, an alkenyl group having 2 to 11 carbon atoms, an alkyloxy group having 1 to 11 carbon atoms, or 6 to 6 carbon atoms. 11 represents an aryl group).
  • R 31 includes methoxy group, ethoxy group, propoxy group, isopropoxy group, normal butoxy group, sec-butoxy group, tert-butoxy group, pentoxy group, hexyloxy group, phenoxy group, trimethylsilyloxy group, triethylsilyloxy group , Trimethoxysilyloxy group, triethoxysilyloxy group and the like.
  • a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a normal butoxy group, and a trimethylsilyloxy group are preferable.
  • R 32 to R 34 are methyl group, ethyl group, vinyl group, propyl group, isopropyl group, 1-propenyl group, 2-propenyl group, 1-propynyl group, 2-propynyl group, n-butyl group, isobutyl group Sec-butyl group, t-butyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-2-propenyl group, 1-methylenepropyl group, 1-methyl-2-propenyl group, 1,2-dimethylvinyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-methyl-2-methylpropyl group 2,2-dimethylpropyl group, phenyl group, methylphenyl group, ethylphenyl group, pentamethylphenyl group, meth
  • R 32 to R 34 are preferably an alkyl group or an oxyalkyl group having 4 or less carbon atoms, and specifically include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a normal butyl group.
  • Group, isobutyl group, sec-butyl group, methoxy group, ethoxy group, propoxy group, isopropoxy group, normal butoxy group, isobutoxy group and sec-butoxy group are preferable, and methyl group is more preferable.
  • Examples of the compound represented by the general formula (3) include the following compounds. Magnesium bis (trimethylsiloxide), tris (trimethylsilyl) borate, tris (trimethoxysilyl) borate, tris (triethylsilyl) borate, tris (triethoxysilyl) borate, tris (dimethylvinylsilyl) borate, Tris borate (diethylvinylsilyl), tris aluminum (trimethylsiloxide), dimethoxyaluminoxytrimethylsilane, dimethoxyaluminoxytrimethoxysilane, diethoxyaluminoxytrimethylsilane, diethoxyaluminoxytriethoxysilane, dipropyloxyaluminoxy Trimethylsilane, dibutoxyaluminoxytrimethylsilane, dibutoxyaluminoxytrimethoxysilane, dibutoxyaluminoxytriethylsilane, dibutoxyaluminoxytrieth Si
  • M 31 is P ⁇ O or P
  • R 31 is an alkylsilyloxy group having 1 to 4 carbon atoms
  • n 31 is 2
  • 32 to R 34 is an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the general formula (3) may be included singly or in combination of two or more in the electrolytic solution.
  • R 41 to R 43 may be the same or different and each represents an alkyl group having 1 to 11 carbon atoms, an alkenyl group having 2 to 11 carbon atoms, an alkyloxy group having 1 to 11 carbon atoms, or 6 to 11 carbon atoms.
  • R 41 to R 43 are methyl group, ethyl group, vinyl group, propyl group, isopropyl group, 1-propenyl group, 2-propenyl group, 1-propynyl group, 2-propynyl group, n-butyl group, isobutyl group Sec-butyl group, t-butyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 2-methyl-2-propenyl group, 1-methylenepropyl group, 1-methyl-2-propenyl group, 1,2-dimethylvinyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-methyl-2-methylpropyl group 2,2-dimethylpropyl group, phenyl group, methylphenyl group, ethylphenyl group, pentamethylphenyl group, meth
  • R 41 to R 43 are preferably an alkyl group having 4 or less carbon atoms or an alkyloxy group having 4 or less carbon atoms, specifically a methyl group, an ethyl group, or a propyl group.
  • An isopropyl group, a normal butyl group, an isobutyl group, a sec-butyl group, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a normal butoxy group, an isobutoxy group, and a sec-butoxy group are preferable, and a methyl group is more preferable.
  • Examples of the compound represented by the general formula (4) include the following compounds. Trimethylsilyl fluoride, triethylsilyl fluoride, tripropylsilyl fluoride, tributylsilyl fluoride, tritert-butylsilyl fluoride, dimethylethylsilyl fluoride, dimethylpropylsilyl fluoride, dimethylbutylsilyl fluoride, methyldiethylsilylfluoride Ride, methyldipropylsilyl fluoride, methyldibutylsilyl fluoride, methylditert-butylsilylfluoride, diethylpropylsilylfluoride, diethylbutylsilylfluoride, diethyltert-butylsilylfluoride, ethyldipropylsilylfluoride, Ethyl dibutyl silyl fluoride, ethyl di ter
  • trimethylsilyl fluoride triethylsilyl fluoride, dimethylethylsilyl fluoride, and methyldiethylsilyl fluoride are preferable.
  • the compound represented by the general formula (4) may be included singly or in combination of two or more in the electrolytic solution.
  • the electrolytic solution contains an organosilicon compound in an amount of 0.001 to 5% by mass with respect to the solvent because an electrochemical device having a smaller IV resistance value and more excellent cycle characteristics can be obtained. Is preferred.
  • content of the said organosilicon compound 0.01 mass% or more is more preferable, 0.3 mass% or more is further more preferable, 0.5 mass% or more is especially preferable, and 2 mass% or less is more preferable.
  • the electrolytic solution of the present invention contains a solvent.
  • the solvent is preferably a non-aqueous solvent, and the electrolytic solution of the present invention is preferably a non-aqueous electrolytic solution.
  • the solvent preferably contains carbonate.
  • the solvent preferably contains a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate may be a non-fluorinated cyclic carbonate or a fluorinated cyclic carbonate.
  • the chain carbonate may be a non-fluorinated chain carbonate or a fluorinated chain carbonate.
  • the solvent preferably contains at least one selected from the group consisting of a non-fluorinated saturated cyclic carbonate, a fluorinated saturated cyclic carbonate, a fluorinated chain carbonate, and a non-fluorinated chain carbonate. Especially, it is more preferable that at least 1 sort (s) selected from the group which consists of a fluorinated saturated cyclic carbonate and a fluorinated chain carbonate is included.
  • non-fluorinated saturated cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate.
  • the non-fluorinated saturated cyclic carbonate is at least one compound selected from the group consisting of ethylene carbonate, propylene carbonate, and butylene carbonate in that the dielectric constant is high and the viscosity is suitable. It is preferable.
  • 1 type of the compound mentioned above may be used, and 2 or more types may be used together.
  • the content of the non-fluorinated saturated cyclic carbonate is preferably 0 to 99% by volume, more preferably 1% by volume or more, and more preferably 90% by volume or less based on the solvent.
  • the fluorinated saturated cyclic carbonate is a saturated cyclic carbonate to which a fluorine atom is added.
  • X 1 to X 4 are the same or different and are each —H, —CH 3 , —F, a fluorinated alkyl group optionally having an ether bond, or fluorine optionally having an ether bond
  • at least one of X 1 to X 4 is —F, a fluorinated alkyl group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond
  • a compound represented by When the fluorinated saturated cyclic carbonate is contained, when the electrolytic solution of the present invention is applied to a lithium ion secondary battery or the like, a stable film can be formed on the negative electrode, and the side reaction of the electrolytic solution at the negative electrode is sufficient. Can be suppressed. As a result, extremely stable and excellent charge / discharge characteristics can be obtained.
  • the “ether bond” is a bond represented by —O—.
  • one or two of X 1 to X 4 may have —F, a fluorinated alkyl group that may have an ether bond, or an ether bond.
  • a fluorinated alkoxy group is preferred.
  • X 1 to X 4 represent —H, —F, a fluorinated alkyl group (a), an ether bond, because a decrease in viscosity at a low temperature, an increase in flash point, and an improvement in solubility of the electrolyte salt can be expected.
  • the fluorinated alkyl group (b) or the fluorinated alkoxy group (c) is preferable.
  • the fluorinated alkyl group (a) is obtained by substituting at least one hydrogen atom of the alkyl group with a fluorine atom.
  • the number of carbon atoms in the fluorinated alkyl group (a) is preferably 1-20, more preferably 2-17, still more preferably 2-7, and particularly preferably 2-5. If the carbon number is too large, the low-temperature characteristics may be lowered or the solubility of the electrolyte salt may be lowered. If the carbon number is too small, the solubility of the electrolyte salt is lowered, the discharge efficiency is lowered, and further, An increase in viscosity may be observed.
  • fluorinated alkyl groups (a) those having 1 carbon atom include CFH 2 —, CF 2 H—, and CF 3 —.
  • fluorinated alkyl groups those having 2 or more carbon atoms are represented by the following general formula (a-1): R 1 -R 2- (a-1) (Wherein R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; provided that R 1 and A fluorinated alkyl group represented by (at least one of R 2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms other than the carbon atom, the hydrogen atom, and the fluorine atom.
  • R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R 1 is preferably a linear or branched alkyl group having 1 to 16 carbon atoms.
  • the number of carbon atoms of R 1 is more preferably 1 to 6, and further preferably 1 to 3.
  • R 1 specifically, as a linear or branched alkyl group, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 —,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferable. However, since the viscosity tends to increase when the branch has CH 3 -or CF 3- , the number is preferably small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 2 is linear, it is composed of only the above-mentioned linear minimum structural unit, and —CH 2 —, —CH 2 CH 2 — or —CF 2 — is particularly preferable. From the viewpoint of further improving the solubility of the electrolyte salt, —CH 2 — or —CH 2 CH 2 — is more preferable.
  • R 2 When R 2 is branched, it comprises at least one of the aforementioned branched minimum structural units, and R 2 is represented by the general formula — (CX a X b ) — (X a is H, F CH 3 or CF 3 ; X b is CH 3 or CF 3, provided that when X b is CF 3 , X a is H or CH 3 .
  • the solubility of the electrolyte salt can be further improved.
  • Preferred fluorinated alkyl groups (a) include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CHF—, CF 3 CF 2 CF 2 —, HCF 2 CF 2 CF 2 —, H 2 CFCF 2 CF 2 —, CH 3 CF 2 CF 2 —,
  • the fluorinated alkyl group (b) having an ether bond is obtained by substituting at least one hydrogen atom of the alkyl group having an ether bond with a fluorine atom.
  • the fluorinated alkyl group (b) having an ether bond preferably has 2 to 17 carbon atoms. If the number of carbon atoms is too large, the viscosity of the fluorinated saturated cyclic carbonate increases, and the fluorine-containing group increases, so that the solubility of the electrolyte salt decreases due to a decrease in the dielectric constant, and compatibility with other solvents. Decrease may be observed. From this viewpoint, the fluorinated alkyl group (b) having an ether bond preferably has 2 to 10 carbon atoms, and more preferably 2 to 7 carbon atoms.
  • the alkylene group constituting the ether portion of the fluorinated alkyl group (b) having an ether bond may be a linear or branched alkylene group.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • the alkylene group may be composed of these minimum structural units alone, and may be linear (i), branched (ii), or linear (i) and branched (ii). You may comprise by the combination. Preferred specific examples will be described later.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 3- OR 4 ) n1- (b-1) (Wherein R 3 may have a fluorine atom, preferably an alkyl group having 1 to 6 carbon atoms; R 4 may have a fluorine atom, preferably an alkylene having 1 to 4 carbon atoms) N1 is an integer of 1 to 3; provided that at least one of R 3 and R 4 has a fluorine atom).
  • R 3 and R 4 include the following, and these can be combined as appropriate to form a fluorinated alkyl group (b) having an ether bond represented by the general formula (b-1). However, it is not limited to these.
  • R 3 the general formula: X c 3 C— (R 5 ) n2 — (the three X c are the same or different and each is H or F; R 5 represents a fluorine atom having 1 to 5 carbon atoms)
  • R 3 includes CH 3 —, CF 3 —, HCF 2 —, and H 2 CF—.
  • R 3 is linear, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CF 2 CF 2 —, CF 3 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2- , CF 3 CF 2 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2
  • n2 is 1, and as R 3 is branched, the
  • R 3 is more preferably linear.
  • n1 is an integer of 1 to 3, preferably 1 or 2.
  • R 4 may be the same or different.
  • R 4 include the following linear or branched ones.
  • the fluorinated alkoxy group (c) is obtained by substituting at least one hydrogen atom of the alkoxy group with a fluorine atom.
  • the fluorinated alkoxy group (c) preferably has 1 to 17 carbon atoms. More preferably, it has 1 to 6 carbon atoms.
  • the fluorinated alkoxy group (c) is represented by the general formula: X d 3 C— (R 6 ) n3 —O— (the three X d are the same or different, and all are H or F; R 6 is preferably carbon number)
  • fluorinated alkoxy group (c) examples include a fluorinated alkoxy group in which an oxygen atom is bonded to the terminal of the alkyl group exemplified as R 1 in the general formula (a-1).
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond and the fluorinated alkoxy group (c) in the fluorinated saturated cyclic carbonate is preferably 10% by mass or more. If the fluorine content is too low, the effect of lowering the viscosity at low temperatures and the effect of increasing the flash point may not be sufficiently obtained. From this viewpoint, the fluorine content is more preferably 12% by mass or more, and further preferably 15% by mass or more. The upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is determined based on ⁇ (number of fluorine atoms) based on the structural formula of each group. ⁇ 19) / Formula amount of each group ⁇ ⁇ 100 (%).
  • the fluorine content of the entire fluorinated saturated cyclic carbonate is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated saturated cyclic carbonate is ⁇ (number of fluorine atoms ⁇ 19) / molecular weight of fluorinated saturated cyclic carbonate ⁇ ⁇ 100 (%) based on the structural formula of the fluorinated saturated cyclic carbonate. It is a calculated value.
  • fluorinated saturated cyclic carbonate examples include the following.
  • Etc. can also be used.
  • fluorinated saturated cyclic carbonate in which at least one of X 1 to X 4 is a fluorinated alkyl group (a) and the rest are all —H are:
  • fluorinated saturated cyclic carbonates in which at least one of X 1 to X 4 is a fluorinated alkyl group (b) having an ether bond or a fluorinated alkoxy group (c), and the rest are all —H as,
  • the fluorinated saturated cyclic carbonate is preferably any of the following compounds.
  • fluorinated saturated cyclic carbonates fluoroethylene carbonate and difluoroethylene carbonate are more preferable.
  • the fluorinated saturated cyclic carbonate is not limited to the specific examples described above. Moreover, the said fluorinated saturated cyclic carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content of the fluorinated saturated cyclic carbonate is preferably 0 to 99% by volume in the solvent, more preferably 1% by volume or more, further preferably 5% by volume or more, more preferably 95% by volume or less, and 90% by volume. % Or less is more preferable.
  • Rf 2 OCOOR 6 (B) (Wherein Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms, and R 6 is an alkyl group optionally containing a fluorine atom having 1 to 7 carbon atoms). Can be mentioned.
  • the electrolyte solution of the present invention preferably contains the fluorinated chain carbonate in that it can be suitably used even under a high voltage.
  • Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms
  • R 6 is an alkyl group that may contain a fluorine atom having 1 to 7 carbon atoms.
  • the fluorinated alkyl group is obtained by substituting at least one hydrogen atom of the alkyl group with a fluorine atom.
  • Rf 2 and R 6 preferably have 2 to 7 carbon atoms, more preferably 2 to 4 in view of low viscosity. If the carbon number is too large, the low-temperature characteristics may be lowered or the solubility of the electrolyte salt may be lowered. If the carbon number is too small, the solubility of the electrolyte salt is lowered, the discharge efficiency is lowered, and further, An increase in viscosity may be observed.
  • Examples of the fluorinated alkyl group having 1 carbon atom include CFH 2 —, CF 2 H—, and CF 3 —.
  • Examples of the fluorinated alkyl group having 2 or more carbon atoms include the following general formula (d-1): R 1 -R 2- (d-1) (Wherein R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; provided that R 1 and A fluorinated alkyl group represented by (at least one of R 2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms other than the carbon atom, the hydrogen atom, and the fluorine atom.
  • R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R 1 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the number of carbon atoms of R 1 is more preferably 1 to 6, and further preferably 1 to 3.
  • R 1 specifically, as a linear or branched alkyl group, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 —,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferable. However, since the viscosity tends to increase when the branch has CH 3 -or CF 3- , the number is preferably small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 2 is linear, it is composed of only the above-mentioned linear minimum structural unit, and —CH 2 —, —CH 2 CH 2 — or —CF 2 — is particularly preferable. From the viewpoint of further improving the solubility of the electrolyte salt, —CH 2 — or —CH 2 CH 2 — is more preferable.
  • R 2 When R 2 is branched, it comprises at least one of the aforementioned branched minimum structural units, and R 2 is represented by the general formula — (CX a X b ) — (X a is H, F CH 3 or CF 3 ; X b is CH 3 or CF 3, provided that when X b is CF 3 , X a is H or CH 3 .
  • the solubility of the electrolyte salt can be further improved.
  • fluorinated alkyl groups include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CF 2 CF 2 —, HCF 2 CF 2 CF 2- , H 2 CFCF 2 CF 2- , CH 3 CF 2 CF 2- ,
  • examples of the fluorinated alkyl group for Rf 2 and R 6 include CF 3 —, CF 3 CF 2 —, (CF 3 ) 2 CH—, CF 3 CH 2 —, C 2 F 5 CH 2 —, HCF 2.
  • R 6 is an alkyl group containing no fluorine atom, it is an alkyl group having 1 to 7 carbon atoms.
  • R 6 preferably has 1 to 4 carbon atoms, and more preferably 1 to 3 in terms of low viscosity.
  • alkyl group not containing a fluorine atom examples include CH 3 —, CH 3 CH 2 —, (CH 3 ) 2 CH—, C 3 H 7 — and the like. Of these, CH 3 — and CH 3 CH 2 — are preferred because of their low viscosity and good rate characteristics.
  • the fluorinated chain carbonate preferably has a fluorine content of 20 to 70% by mass.
  • the fluorine content is more preferably 30% by mass or more, further preferably 35% by mass or more, more preferably 60% by mass or less, and still more preferably 50% by mass or less.
  • the fluorine content is based on the structural formula of the fluorinated chain carbonate, ⁇ (Number of fluorine atoms ⁇ 19) / molecular weight of fluorinated chain carbonate ⁇ ⁇ 100 (%) The value calculated by
  • the fluorinated chain carbonate is preferably one of the following compounds from the viewpoint of low viscosity.
  • the content of the fluorinated chain carbonate is preferably 1 to 90% by volume in the solvent. When the content is within the above range, compatibility can be maintained.
  • the content of the fluorinated chain carbonate is more preferably 30% by volume or more in the electrolytic solution, more preferably 40% by volume or more, and more preferably 85% by volume or less in that the solubility of the salt can be maintained. 80% by volume or less is more preferable.
  • non-fluorinated chain carbonate examples include CH 3 OCOOCH 3 (dimethyl carbonate: DMC), CH 3 CH 2 OCOOCH 2 CH 3 (diethyl carbonate: DEC), CH 3 CH 2 OCOOCH 3 (ethyl methyl carbonate: EMC). ), CH 3 OCOOCH 2 CH 2 CH 3 (methylpropyl carbonate), methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, and other hydrocarbon-based chain carbonates.
  • at least one selected from the group consisting of ethyl methyl carbonate, diethyl carbonate, and dimethyl carbonate is preferable.
  • the content of the non-fluorinated chain carbonate is preferably 0 to 99% by volume in the solvent, more preferably 1% by volume or more, and more preferably 90% by volume or less.
  • the electrolytic solution of the present invention preferably contains 10 to 99.99% by mass of the solvent, more preferably 10 to 95% by mass, and more preferably 15 to 90% by mass with respect to the electrolytic solution. Further preferred.
  • the solvent contains a total of 40 to 100% by volume of at least one selected from the group consisting of non-fluorinated saturated cyclic carbonates, fluorinated saturated cyclic carbonates, non-fluorinated chain carbonates, and fluorinated chain carbonates. It is preferably 60 to 100% by volume, more preferably 90 to 100% by volume, and particularly preferably 100% by volume.
  • the solvent is selected from the group consisting of at least one saturated cyclic carbonate selected from the group consisting of non-fluorinated saturated cyclic carbonates and fluorinated saturated cyclic carbonates, and non-fluorinated chain carbonates and fluorinated chain carbonates. And at least one chain carbonate.
  • the volume ratio of the saturated cyclic carbonate and the chain carbonate is preferably 10/90 to 90/10, more preferably 20/80 or more, and more preferably 80/20 or less, It is more preferably 30/70 or more, further preferably 70/30 or less, and particularly preferably 50/50 or less.
  • the solvent preferably contains the non-fluorinated chain carbonate and the non-fluorinated cyclic carbonate.
  • An electrolytic solution containing a solvent having this composition can be suitably used for an electrochemical device used at a relatively low voltage.
  • the solvent preferably contains 70 to 100% by volume in total of the non-fluorinated chain carbonate and the non-fluorinated cyclic carbonate, more preferably 80 to 100% by volume, and 90 to 100% by volume. More preferably, it is particularly preferably 100% by volume.
  • the volume ratio of the non-fluorinated chain carbonate to the non-fluorinated cyclic carbonate is preferably 10/90 to 95/5, more preferably 20/80 or more, still more preferably 50/50 or more, and 60/40
  • the above is particularly preferable, 90/10 or less is more preferable, and 80/20 or less is further preferable.
  • the solvent contains at least one chain carbonate selected from the group consisting of the non-fluorinated chain carbonate and the fluorinated chain carbonate, and the fluorinated cyclic carbonate.
  • An electrolytic solution containing a solvent having this composition can be suitably used for an electrochemical device used at a relatively high voltage.
  • the solvent preferably contains 70 to 100% by volume of the chain carbonate and the fluorinated cyclic carbonate in total, more preferably 80 to 100% by volume, still more preferably 90 to 100% by volume, It is particularly preferable to contain the volume%.
  • the volume ratio of the chain carbonate to the fluorinated cyclic carbonate is preferably 10/90 to 95/5, more preferably 20/80 or more, still more preferably 50/50 or more, and particularly preferably 60/40 or more. 90/10 or less is more preferable, and 80/20 or less is more preferable.
  • the electrolytic solution of the present invention contains an electrolyte salt.
  • the electrolyte salt any salt that can be used for an electrolytic solution for an electrochemical device such as a secondary battery or an electric double layer capacitor can be used, and among them, a lithium salt is preferable.
  • the lithium salt is not particularly limited as long as it is known to be used for this purpose, and any lithium salt can be used. Specific examples include the following.
  • Inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAlF 4 , LiSbF 6 , LiTaF 6 , LiWF 7 ; Lithium fluorophosphates such as LiPO 3 F and LiPO 2 F 2 ; Lithium tungstates such as LiWOF 5 ; HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 Carboxylic acid lithium salts such as CO 2 Li, CF 3 CF 2 CF 2 CO 2 Li; FSO 3 Li, CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 Sulfonic acid lithium salts such
  • lithium salts may be used alone or in combination of two or more.
  • a preferable example in the case of using two or more types in combination is a combination of LiPF 6 and LiBF 4 , LiPF 6 and FSO 3 Li, LiPF 6 and LiPO 2 F 2 and the like, and has an effect of improving load characteristics and cycle characteristics. .
  • the combined use of LiPF 6 and FSO 3 Li, and the combination of LiPF 6 and LiPO 2 F 2 is preferable because the effect is remarkable.
  • the combined use of LiPF 6 and LiPO 2 F 2 has a remarkable effect with a small amount of addition. Is particularly preferred because
  • the concentration of LiBF 4 or FSO 3 Li with respect to 100% by mass of the entire electrolytic solution is not limited in the blending amount, as long as the effects of the present invention are not significantly impaired.
  • it is usually 0.01% by mass or more, preferably 0.1% by mass or more, and the upper limit thereof is usually 30% by mass or less, preferably 20% by mass or less, based on the electrolytic solution.
  • the concentration of LiPO 2 F 2 with respect to 100% by mass of the entire electrolytic solution is not limited as long as the amount of the present invention is not significantly impaired.
  • the upper limit is usually 10% by mass or less, preferably 5% by mass or less, usually 0.001% by mass or more, preferably 0.01% by mass or more, with respect to the electrolytic solution.
  • effects such as output characteristics, load characteristics, low temperature characteristics, cycle characteristics, and high temperature characteristics are improved.
  • it if it is too much, it may be deposited at low temperature to deteriorate the battery characteristics, and if it is too little, the effect of improving the low temperature characteristics, cycle characteristics, high temperature storage characteristics, etc. may be reduced.
  • the concentration of these lithium salts in the electrolytic solution is not particularly limited as long as the effects of the present invention are not impaired, but the electric conductivity of the electrolytic solution is in a good range, and good battery performance is ensured.
  • the total molar concentration of lithium in the electrolytic solution is preferably 0.3 mol / L or more, more preferably 0.4 mol / L or more, still more preferably 0.5 mol / L or more, and preferably It is 3 mol / L or less, more preferably 2.5 mol / L or less, and still more preferably 2.0 mol / L or less. Within this range, it is possible to obtain an electrochemical device having a smaller IV resistance value and more excellent cycle characteristics.
  • the electrical conductivity of the electrolyte may be insufficient.
  • the concentration is too high, the electrical conductivity may decrease due to an increase in viscosity. May decrease.
  • an ammonium salt is preferable.
  • the ammonium salt include the following (IIa) to (IIe).
  • R 1a , R 2a , R 3a and R 4a are the same or different, and all are alkyl groups optionally containing an ether bond having 1 to 6 carbon atoms; X ⁇ is an anion)
  • Preferred examples include quaternary ammonium salts.
  • the ammonium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Preferred specific examples of the tetraalkyl quaternary ammonium salt include compounds represented by the general formula (IIa-1):
  • R 5a is an alkyl group having 1 to 6 carbon atoms
  • R 6a is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • R 7a is an alkyl group having 1 to 4 carbon atoms
  • z is 1 or 2
  • X - is an alkyl ether group containing trialkylammonium salt represented by the anion
  • Etc By introducing an alkyl ether group, the viscosity can be lowered.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • inorganic anions include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ and SbF 6 ⁇ .
  • organic anion include CF 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ and the like.
  • BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ and SbF 6 ⁇ are preferred from the viewpoint of good oxidation resistance and ion dissociation properties.
  • tetraalkyl quaternary ammonium salt examples include Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N CF 3 SO 2) 2 N, Et 4 NC 4 F 9 SO 3, Et 3 MeNBF 4, Et 3 MeNClO 4, Et 3 MeNPF 6, Et 3 MeNAsF 6, Et 3 MeNSbF 6, Et 3 MeNCF 3 SO 3, Et 3 MeN (CF 3 SO 2 ) 2 N, Et 3 MeNC 4 F 9 SO 3 , N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium salt and the like, and particularly, Et 4 NBF. 4, Et 4 NPF 6, Et 4 NSbF 6, Et 4 NAsF 6, Et 3 MeNBF 4, N, - Diethyl -N- methyl -N- (2-methoxyethyl) ammonium salts are preferred.
  • R 8a and R 9a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n2 is an integer of 0 to 5; n1 is an integer of 0 to 5) represented by Spirocyclic bipyrrolidinium salt, general formula (IIb-2):
  • R 10a and R 11a are the same or different and each is an alkyl group having 1 to 4 carbon atoms;
  • X - is an anion;
  • n4 is an integer of 0 to 5;
  • n3 is an integer of 0 to 5
  • R 12a and R 13a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n6 is an integer of 0 to 5; n5 is an integer of 0 to 5) represented by Spiro ring bipyrrolidinium salts are preferred.
  • the spiro-ring bipyrrolidinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Anion X - of the preferred embodiment are the same as for (IIa). Among them, high dissociative, terms the internal resistance is low under a high voltage, BF 4 -, PF 6 - , (CF 3 SO 2) 2 N- or (C 2 F 5 SO 2) 2 N- is preferable.
  • spiro ring bipyrrolidinium salt examples include, for example,
  • This spiro ring bipyrrolidinium salt is excellent in terms of solubility in a solvent, oxidation resistance, and ionic conductivity.
  • R 14a and R 15a are the same or different, and both are alkyl groups having 1 to 6 carbon atoms; X 2 ⁇ is an anion)
  • the imidazolium salt shown by can be illustrated preferably.
  • the imidazolium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • imidazolium salts include, for example,
  • This imidazolium salt is excellent in terms of low viscosity and good solubility.
  • N-alkylpyridinium salts represented by the formula are preferred.
  • the N-alkylpyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorine-containing alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • N-alkylpyridinium salts include, for example,
  • This N-alkylpyridinium salt is excellent in that it has low viscosity and good solubility.
  • N, N-dialkylpyrrolidinium salt represented by the formula is preferably exemplified. Further, the oxidation resistance of the N, N-dialkylpyrrolidinium salt in which part or all of the hydrogen atoms are substituted with fluorine atoms and / or fluorine-containing alkyl groups having 1 to 4 carbon atoms is improved. It is preferable from the point.
  • N, N-dialkylpyrrolidinium salts include, for example,
  • This N, N-dialkylpyrrolidinium salt is excellent in that it has low viscosity and good solubility.
  • ammonium salts (IIa), (IIb) and (IIc) are preferable in terms of good solubility, oxidation resistance and ionic conductivity,
  • lithium salt as electrolyte salt for electrical double layer capacitors.
  • the lithium salt LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred.
  • a magnesium salt may be used.
  • the magnesium salt for example, Mg (ClO 4 ) 2 , Mg (OOC 2 H 5 ) 2 and the like are preferable.
  • the concentration is preferably 0.6 mol / liter or more. If it is less than 0.6 mol / liter, not only the low-temperature characteristics are deteriorated, but also the initial internal resistance is increased.
  • the concentration of the electrolyte salt is more preferably 0.9 mol / liter or more.
  • the upper limit of the concentration is preferably 3.0 mol / liter or less, and more preferably 2.0 mol / liter or less in terms of low temperature characteristics.
  • the ammonium salt is triethylmethylammonium tetrafluoroborate (TEMABF 4 )
  • the concentration is preferably 0.8 to 1.9 mol / liter from the viewpoint of excellent low-temperature characteristics.
  • SBPBF 4 spirobipyrrolidinium tetrafluoroborate
  • it is preferably 0.7 to 2.0 mol / liter.
  • the electrolytic solution of the present invention preferably further contains polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having —OH, —OCOOH, or —COOH at the terminal.
  • polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having —OH, —OCOOH, or —COOH at the terminal.
  • the stability of the electrode interface can be improved and the battery characteristics can be improved.
  • the polyethylene oxide include polyethylene oxide monool, polyethylene oxide carboxylic acid, polyethylene oxide diol, polyethylene oxide dicarboxylic acid, polyethylene oxide triol, and polyethylene oxide tricarboxylic acid. These may be used alone or in combination of two or more. Of these, a mixture of polyethylene oxide monool and polyethylene oxide diol and a mixture of polyethylene oxide carboxylic acid and polyethylene oxide dicarboxylic acid are preferable in terms of better battery characteristics.
  • the weight average molecular weight of the polyethylene oxide is too small, it may be easily oxidized and decomposed.
  • the weight average molecular weight is more preferably 3000 to 4000.
  • the said weight average molecular weight can be measured by polystyrene conversion by a gel permeation chromatography (GPC) method.
  • the polyethylene oxide content is preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 mol / kg in the electrolytic solution. When there is too much content of the said polyethylene oxide, there exists a possibility that a battery characteristic may be impaired.
  • the polyethylene oxide content is more preferably 5 ⁇ 10 ⁇ 6 mol / kg or more.
  • the electrolytic solution of the present invention preferably further contains at least one selected from the group consisting of unsaturated cyclic carbonates, fluorinated saturated cyclic carbonates, and cyclic sulfonic acid compounds as additives. By containing these compounds, deterioration of battery characteristics can be suppressed.
  • the unsaturated cyclic carbonate is a cyclic carbonate containing an unsaturated bond, that is, a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule.
  • vinylene carbonate compounds such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate; 4-vinyl ethylene carbonate (VEC), 4- Methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinyleneethylene carbonate, 5-methyl-4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4, And vinyl ethylene carbonate compounds such as 5-divinylethylene carbonate, 4,4-dimethyl-5-methylene ethylene carbonate, and 4,4-diethyl-5-methylene ethylene carbonate.
  • the molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight is preferably 50 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to electrolyte solution, and the effect of this invention will fully be expressed easily.
  • the molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more, and more preferably 150 or less.
  • a fluorinated unsaturated cyclic carbonate can also be used suitably.
  • the number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 fluorine atoms.
  • fluorinated unsaturated cyclic carbonate examples include a fluorinated vinylene carbonate derivative, a fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond.
  • Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- And vinyl vinylene carbonate.
  • fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon double bond examples include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5 -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate , 4,5-diflu B-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenyl
  • the molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight is preferably 50 or more and 500 or less. If it is this range, it will be easy to ensure the solubility of the fluorinated unsaturated cyclic carbonate with respect to electrolyte solution, and the effect of this invention will be easy to be expressed.
  • the said unsaturated cyclic carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • fluorinated saturated cyclic carbonate As said fluorinated saturated cyclic carbonate, the compound illustrated as a fluorinated saturated cyclic carbonate which can be used for the said solvent can be mentioned.
  • the cyclic sulfonic acid compound examples include 1,3-propane sultone, 1,4-butane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, and 3-fluoro-1 , 3-propane sultone and the like.
  • the electrolyte solution of the present invention preferably contains 1,3-propane sultone and / or 1,4-butane sultone in that the high temperature characteristics can be improved.
  • the content thereof is 0.1 to 10 in the electrolytic solution. It is preferable that it is mass%, 1 mass% or more is more preferable, and 5 mass% or less is more preferable.
  • the electrolyte solution of the present invention includes cyclic and chain carboxylic acid esters, ether compounds, nitrogen-containing compounds, boron-containing compounds, organosilicon-containing compounds, non-flammable (flame retardant) agents, and interfaces as long as the effects of the present invention are not impaired.
  • Other solvents or additives such as activators, high dielectric additives, cycle and rate characteristics improvers, or overcharge inhibitors may also be included.
  • Examples of the cyclic carboxylic acid ester include those having 3 to 12 total carbon atoms in the structural formula. Specific examples include gamma butyrolactone, gamma valerolactone, gamma caprolactone, isopsilon caprolactone, and the like. Among these, gamma butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
  • the compounding quantity of cyclic carboxylic acid ester is 100 mass% of solvent normally, Preferably it is 0.1 mass% or more, More preferably, it is 1 mass% or more. Within this range, the electrical conductivity of the electrolytic solution is improved, and the large current discharge characteristics of the electrolytic solution battery are easily improved. Moreover, the compounding quantity of cyclic carboxylic acid ester becomes like this. Preferably it is 10 mass% or less, More preferably, it is 5 mass% or less. By setting the upper limit in this way, the viscosity of the electrolytic solution is set in an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge characteristics of the electrolytic solution battery are set in a favorable range. Make it easier.
  • cyclic carboxylic acid ester a fluorinated cyclic carboxylic acid ester (fluorinated lactone) can also be suitably used.
  • fluorine-containing lactone examples include the following formula (C):
  • X 15 to X 20 are the same or different and all are —H, —F, —Cl, —CH 3 or a fluorinated alkyl group; provided that at least one of X 15 to X 20 is a fluorinated alkyl
  • Examples of the fluorinated alkyl group for X 15 to X 20 include —CFH 2 , —CF 2 H, —CF 3 , —CH 2 CF 3 , —CF 2 CF 3 , —CH 2 CF 2 CF 3 , —CF (CF 3 ) 2 and the like are mentioned, and —CH 2 CF 3 and —CH 2 CF 2 CF 3 are preferable from the viewpoint of high oxidation resistance and an effect of improving safety.
  • X 15 to X 20 is a fluorinated alkyl group, —H, —F, —Cl, —CH 3 or the fluorinated alkyl group is substituted at only one position of X 15 to X 20.
  • a plurality of locations may be substituted.
  • it is 1 to 3 sites, more preferably 1 to 2 sites from the viewpoint of good solubility of the electrolyte salt.
  • the substitution position of the fluorinated alkyl group is not particularly limited. However, since the synthesis yield is good, X 17 and / or X 18 is particularly preferably X 17 or X 18 is a fluorinated alkyl group, particularly —CH 2 CF 3. , —CH 2 CF 2 CF 3 is preferable. X 15 to X 20 other than the fluorinated alkyl group are —H, —F, —Cl or CH 3 , and —H is particularly preferable from the viewpoint of good solubility of the electrolyte salt.
  • one of A and B is CX 26 X 27 (X 26 and X 27 are the same or different, and each of them is —H, —F, —Cl, —CF 3 , —CH 3 or a hydrogen atom)
  • Rf 12 is a fluorinated alkyl group or a fluorinated group which may have an ether bond
  • X 21 and X 22 are the same or different; all are —H, —F, —Cl, —CF 3 or CH 3 ;
  • Examples of the chain carboxylic acid ester include those having 3 to 7 carbon atoms in the structural formula. Specifically, methyl acetate, ethyl acetate, acetate n-propyl, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate , Isobutyric acid-n-propyl, isobutyric acid isopropyl and the like.
  • methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate, etc. are ions due to viscosity reduction. It is preferable from the viewpoint of improvement of conductivity.
  • fluorinated chain carboxylic acid ester (fluorine-containing ester) can also be used suitably.
  • fluorine-containing ester the following formula (H): Rf 10 COORf 11 (H) (Wherein Rf 10 is a fluorinated alkyl group having 1 to 2 carbon atoms, Rf 11 is a fluorinated alkyl group having 1 to 4 carbon atoms), and the flame retardant property is high, And it is preferable from the viewpoint of good compatibility with other solvents and oxidation resistance.
  • Rf 10 examples include CF 3- , CF 3 CF 2- , HCF 2 CF 2- , HCF 2- , CH 3 CF 2- , CF 3 CH 2- and the like, among which CF 3- , CF 3 CF 2 -is particularly preferable from the viewpoint of good rate characteristics.
  • Rf 11 examples include —CF 3 , —CF 2 CF 3 , —CH (CF 3 ) 2 , —CH 2 CF 3 , —CH 2 CH 2 CF 3 , —CH 2 CF 2 CFHCF 3 , —CH 2 C 2 F 5 , —CH 2 CF 2 CF 2 H, —CH 2 CH 2 C 2 F 5 , —CH 2 CF 2 CF 3 , —CH 2 CF 2 CF 2 CF 3 and the like can be exemplified, among them —CH 2 CF 3 , —CH (CF 3 ) 2 , —CH 2 C 2 F 5 , and —CH 2 CF 2 CF 2 H are particularly preferable from the viewpoint of good compatibility with other solvents.
  • fluorinated chain carboxylic acid ester examples include, for example, CF 3 C ( ⁇ O) OCH 2 CF 3 , CF 3 C ( ⁇ O) OCH 2 CH 2 CF 3 , and CF 3 C ( ⁇ O) OCH 2 C.
  • CF 3 C ( ⁇ O) OCH 2 CF 3 CF 3 C ( ⁇ O) OCH 2 CH 2 CF 3
  • CF 3 C ( ⁇ O) OCH 2 C One or more of 2 F 5 , CF 3 C ( ⁇ O) OCH 2 CF 2 CF 2 H, CF 3 C ( ⁇ O) OCH (CF 3 ) 2, etc.
  • a chain ether having 3 to 10 carbon atoms and a cyclic ether having 3 to 6 carbon atoms are preferable.
  • the chain ether having 3 to 10 carbon atoms include diethyl ether, di-n-butyl ether, dimethoxymethane, methoxyethoxymethane, diethoxymethane, dimethoxyethane, methoxyethoxyethane, diethoxyethane, and ethylene glycol di-n-propyl.
  • Examples include ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether and the like.
  • a fluorinated ether can also be suitably used.
  • the fluorinated ether include the following general formula (I): Rf 13 -O-Rf 14 (I) (Wherein Rf 13 and Rf 14 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms, provided that at least one of Rf 13 and Rf 14 is fluorine.
  • a fluorinated ether (I) represented by formula (1).
  • Rf 13 and Rf 14 may be a fluorinated alkyl group having 1 to 10 carbon atoms.
  • both Rf 13 and Rf 14 are fluorinated alkyl groups having 1 to 10 carbon atoms.
  • Rf 13 and Rf 14 may be the same or different from each other.
  • Rf 13 and Rf 14 are the same or different, Rf 13 is a fluorinated alkyl group having 3 to 6 carbon atoms, and Rf 14 is a fluorinated alkyl group having 2 to 6 carbon atoms. preferable.
  • the fluorinated ether (I) preferably has a fluorine content of 40 to 75% by mass. When it has a fluorine content in this range, it is particularly excellent in the balance between incombustibility and compatibility. Moreover, it is preferable also from a point with favorable oxidation resistance and safety
  • the lower limit of the fluorine content is more preferably 45% by mass, still more preferably 50% by mass, and particularly preferably 55% by mass.
  • the upper limit is more preferably 70% by mass, and still more preferably 66% by mass.
  • the fluorine content of the fluorinated ether (I) is determined based on the structural formula of the fluorinated ether (I): ⁇ (number of fluorine atoms ⁇ 19) / molecular weight of the fluorinated ether (I) ⁇ ⁇ 100 (% ).
  • Rf 13 examples include CF 3 CF 2 CH 2 —, CF 3 CFHCF 2 —, HCF 2 CF 2 CF 2 —, HCF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CFHCF 2 CH 2 —, HCF 2 CF 2 CF 2 —, HCF 2 CF 2 CH 2 CH 2 —, HCF 2 CF (CF 3 ) CH 2 — and the like can be mentioned.
  • Rf 14 for example, —CH 2 CF 2 CF 3 , —CF 2 CFHCF 3 , —CF 2 CF 2 CF 2 H, —CH 2 CF 2 CF 2 H, —CH 2 CH 2 CF 2 CF 3 , —CH 2 CF 2 CFHCF 3 , —CF 2 CF 2 CF 2 CF 2 H, —CH 2 CF 2 CF 2 H, —CH 2 CH 2 CF 2 CF 2 H, —CH 2 CF (CF 3 ) CF 2 H, —CF 2 CF 2 H, —CH 2 CF 2 H, —CF 2 CH 3 and the like can be mentioned.
  • fluorinated ether (I) include, for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3 , C 6 F 13 OCH 3 , C 6 F 13 OC 2 H 5 , C 8 F 17 OCH 3 , C 8 F 17 OC 2 H 5 , CF 3 CFHCF 2 CH (CH 3 ) OCF 2 CFHCF 3 , HCF 2 CF 2 OCH (C 2 H 5 ) 2 , HCF 2 CF 2 OC 4 H 9 , HCF 2 CF 2 OCH 2 CH (C 2 H 5 ) 2 , HCF 2 CF 2 OCH 2 CH (CH 3) 2 or the like can be mentioned.
  • fluorinated ether (I) having a high boiling point.
  • the boiling point of the fluorinated ether (I) is preferably 67 to 120 ° C. More preferably, it is 80 degreeC or more, More preferably, it is 90 degreeC or more.
  • fluorinated ether (I) examples include CF 3 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3 , HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , and HCF 2 CF 2 CH 2 OCH 2 CF 2 CF 2 H , CF 3 CFHCF 2 CH 2 OCF 2 CFHCF 3, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 1 type of H, etc. or two The above is mentioned.
  • HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106 ° C.), CF 3 CF 2 CH is advantageous because of its high boiling point, compatibility with other solvents, and good solubility of the electrolyte salt.
  • 2 OCF 2 CFHCF 3 (boiling point 82 ° C.), HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C.) and CF 3 CF 2 CH 2 OCF 2 CF 2 H (boiling point 68 ° C.).
  • HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106 ° C.) and HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C.).
  • HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106 ° C.)
  • HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C.).
  • One type is more preferable.
  • Examples of the cyclic ether having 3 to 6 carbon atoms include 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane, and fluorinated compounds thereof. Is mentioned. Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and improve the degree of ion dissociation. Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are particularly preferable because they have low viscosity and give high ionic conductivity.
  • nitrogen-containing compound examples include nitrile, fluorine-containing nitrile, carboxylic acid amide, fluorine-containing carboxylic acid amide, sulfonic acid amide, and fluorine-containing sulfonic acid amide.
  • 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxaziridinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide and the like can be used.
  • boron-containing compound examples include boric acid esters such as trimethyl borate and triethyl borate, boric ether, and alkyl borate.
  • organosilicon-containing compound examples include (CH 3 ) 4 —Si, (CH 3 ) 3 —Si—Si (CH 3 ) 3, and the like.
  • Examples of the incombustible (flame retardant) agent include phosphate esters and phosphazene compounds.
  • Examples of the phosphate ester include fluorine-containing alkyl phosphate esters, non-fluorinated alkyl phosphate esters, and aryl phosphate esters. Especially, it is preferable that it is a fluorine-containing alkyl phosphate ester at the point which can exhibit a nonflammable effect in a small quantity.
  • fluorine-containing alkyl phosphate ester examples include fluorine-containing dialkyl phosphate esters described in JP-A No. 11-233141, alkyl phosphate esters described in JP-A No. 11-283669, or And fluorine-containing trialkyl phosphates.
  • nonflammable (flame retardant) agent (CH 3 O) 3 P ⁇ O, (CF 3 CH 2 O) 3 P ⁇ O, and the like are preferable.
  • the surfactant may be any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant. From the viewpoint of good cycle characteristics and rate characteristics, a fluorine atom It is preferable that it contains.
  • Rf 15 COO ⁇ M + (J) (In the formula, Rf 15 is a fluorine-containing alkyl group which may contain an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different) Are all H or an alkyl group having 1 to 3 carbon atoms), or a fluorine-containing carboxylate represented by the following formula (K): Rf 16 SO 3 ⁇ M + (K) (In the formula, Rf 16 is a fluorine-containing alkyl group which may contain an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different; These are preferably fluorine-containing sulfonates represented by the following formula: H or an alkyl group having 1 to 3 carbon atoms;
  • the content of the surfactant is preferably 0.01 to 2% by mass in the electrolytic solution from the viewpoint that the surface tension of the electrolytic solution can be reduced without reducing the charge / discharge cycle characteristics.
  • high dielectric additive examples include sulfolane, methyl sulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, acetonitrile, propionitrile and the like.
  • cycle characteristic and rate characteristic improving agent examples include methyl acetate, ethyl acetate, tetrahydrofuran, 1,4-dioxane and the like.
  • the overcharge preventing agent is preferably an overcharge preventing agent having an aromatic ring in that the battery can be prevented from being ruptured or ignited during overcharging.
  • the overcharge preventing agent having an aromatic ring include cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran, dibenzofuran, dichloroaniline.
  • Aromatic compounds such as toluene, fluorinated aromatic compounds such as hexafluorobenzene, fluorobenzene, 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5 -Fluorinated anisole compounds such as difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more.
  • the content of the overcharge inhibitor is preferably 0.1 to 5% by mass in the electrolytic solution from the viewpoint that the battery can be prevented from bursting or firing in the case of overcharging or the like.
  • the electrolytic solution of the present invention may further contain other known auxiliary agents as long as the effects of the present invention are not impaired.
  • auxiliary agents include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, Carboxylic anhydrides such as glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; 2,4,8,10-tetraoxa Spiro compounds such as spiro [5,5] undecane and 3,9-divinyl-2,4,8,10-tetraoxaspiro [5,5] undecane; ethylene sulfite, methyl fluorosulfon
  • electrolytic solution of the present invention may be further combined with a polymer material to form a gel (plasticized) gel electrolytic solution.
  • Examples of such a polymer material include conventionally known polyethylene oxide and polypropylene oxide, modified products thereof (JP-A-8-222270 and JP-A-2002-1000040); polyacrylate polymers, polyacrylonitrile, and polyvinylidene fluoride.
  • Fluorine resins such as vinylidene fluoride-hexafluoropropylene copolymer (JP-A-4-506726, JP-A-8-507407, JP-A-10-294131); Examples include composites with resins (Japanese Patent Laid-Open Nos. 11-35765 and 11-86630).
  • the electrolytic solution of the present invention may also contain an ion conductive compound described in Japanese Patent Application No. 2004-301934.
  • This ion conductive compound has the formula (1-1): A- (D) -B (1-1) [Wherein D represents the formula (2-1): -(D1) n- (FAE) m- (AE) p- (Y) q- (2-1) (In the formula, D1 represents the formula (2a):
  • Rf is a fluorine-containing ether group which may have a crosslinkable functional group; the R 10 group or a bond that binds the Rf main chain
  • ether having a fluorine-containing ether group in the side chain represented by unit FAE is represented by formula (2b):
  • Rfa is hydrogen atom, a crosslinkable functional group which may have a fluorinated alkyl group; R 11 is a group or a bond that binds the Rfa main chain) fluorinated alkyl group in the side chain represented by Ether units having: AE is the formula (2c):
  • R 13 has a hydrogen atom, an alkyl group which may have a crosslinkable functional group, an aliphatic cyclic hydrocarbon group which may have a crosslinkable functional group, or a crosslinkable functional group.
  • An aromatic hydrocarbon group which may be present R 12 is an ether unit represented by R 13 and a group or a bond which bonds the main chain;
  • Y represents the formulas (2d-1) to (2d-3):
  • a and B are the same or different and are a hydrogen atom, a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group, a fluorine atom and / or a phenyl group which may contain a crosslinkable functional group, —COOH A group, —OR (wherein R is a hydrogen atom or a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group), an ester group or a carbonate group (provided that when D is terminated with an oxygen atom, a —COOH group;
  • the electrolytic solution of the present invention may be prepared by any method using the components described above.
  • the electrolytic solution of the present invention can be suitably applied to electrochemical devices such as secondary batteries.
  • the electrochemical device or secondary battery provided with such an electrolytic solution of the present invention is also one aspect of the present invention.
  • the electrochemical device include lithium ion secondary batteries, capacitors (electric double layer capacitors), radical batteries, solar cells (particularly dye-sensitized solar cells), fuel cells, various electrochemical sensors, electrochromic elements, electrochemical A switching element, an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, etc. are mentioned, A lithium ion secondary battery and an electric double layer capacitor are suitable. Below, the case of a lithium ion secondary battery is demonstrated as an example of the electrochemical device or secondary battery of this invention.
  • the lithium ion secondary battery includes a positive electrode, a negative electrode, and the above-described electrolytic solution.
  • a positive electrode is comprised from the positive electrode active material layer containing the positive electrode active material which is a material of a positive electrode, and a collector.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • a material containing lithium and at least one transition metal is preferable.
  • Specific examples include lithium-containing transition metal composite oxides and lithium-containing transition metal phosphate compounds.
  • the lithium containing transition metal complex oxide which produces a high voltage is especially preferable.
  • lithium-containing transition metal composite oxide examples include: Formula (L): Li a Mn 2-b M 1 b O 4 (where 0.9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn) , Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge, at least one metal selected from the group consisting of lithium and manganese spinel composite oxides, Formula (M): LiNi 1-c M 2 c O 2 (where 0 ⁇ c ⁇ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg) , At least one metal selected from the group consisting of Ca, Sr, B, Ga, In, Si and Ge), or Formula (N): LiCo 1-d M 3 d O 2 (where 0 ⁇ d ⁇ 0.5; M 3 is Fe, Ni, Mn, Cu, Zn, Al, Sn, Cr, V,
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 can be provided because the lithium ion secondary battery with high energy density and high output can be provided.
  • LiNi 0.5 Mn 1.5 O 4 or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferred.
  • LiFePO 4 LiNi 0.8 Co 0.2 O 2 , Li 1.2 Fe 0.4 Mn 0.4 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiV 3 O 6 etc. are mentioned.
  • lithium phosphate in the positive electrode active material because continuous charge characteristics are improved.
  • the lower limit of the amount of lithium phosphate to be used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.5% by mass with respect to the total of the positive electrode active material and lithium phosphate. %, And the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 5% by mass or less.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
  • these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried.
  • the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously.
  • the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.
  • the amount of the surface adhering substance is, in terms of mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, further preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably as the lower limit. Is used at 10% or less, more preferably 5% or less.
  • the surface adhering substance can suppress the oxidation reaction of the electrolyte solution on the surface of the positive electrode active material and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently manifested. If it is too high, the resistance may increase in order to inhibit the entry and exit of lithium ions.
  • Examples of the shape of the particles of the positive electrode active material include a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, and a column shape as conventionally used. Moreover, primary particles may aggregate to form secondary particles.
  • the tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and further preferably 1.0 g / cm 3 or more. If the tap density of the positive electrode active material is lower than the lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the necessary amount of conductive material and binder increases, so that the positive electrode to the positive electrode active material layer The filling rate of the active material is restricted, and the battery capacity may be restricted. By using a complex oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. In general, the tap density is preferably as large as possible, and there is no particular upper limit.
  • the upper limit is preferably 4.0 g / cm 3 or less, more preferably 3.7 g / cm 3 or less, and still more preferably 3.5 g / cm 3 or less.
  • the tap density is determined as the powder packing density (tap density) g / cc when 5 to 10 g of the positive electrode active material powder is put in a 10 ml glass graduated cylinder and tapped 200 times with a stroke of about 20 mm.
  • the median diameter d50 of the positive electrode active material particles is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably. Is 0.8 ⁇ m or more, most preferably 1.0 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 27 ⁇ m or less, further preferably 25 ⁇ m or less, and most preferably 22 ⁇ m or less. If the lower limit is not reached, a high tap density product may not be obtained, and if the upper limit is exceeded, it takes time for the diffusion of lithium in the positive electrode active material layer.
  • the median diameter d50 is measured by a known laser diffraction / scattering particle size distribution measuring device.
  • LA-920 manufactured by HORIBA is used as a particle size distribution meter
  • a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
  • the average primary particle diameter of the positive electrode active material is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and still more preferably 0.8.
  • the upper limit is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
  • the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
  • SEM scanning electron microscope
  • BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, still more preferably 0.3 m 2 / g or more, and preferably 50 m 2 / g or less, more preferably 40 m 2 / g or less, and further preferably 30 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered. If the BET specific surface area is larger, the tap density is difficult to increase, and a problem may occur in applicability when forming the positive electrode active material layer.
  • the BET specific surface area was measured by preliminarily drying the sample at 150 ° C. for 30 minutes under a nitrogen flow using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.), It is defined by a value measured by a nitrogen adsorption BET one-point method using a gas flow method using a nitrogen helium mixed gas that is accurately adjusted so that the relative pressure value is 0.3.
  • a surface area meter for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.
  • the positive electrode active material particles are mainly secondary particles. It is preferable.
  • the particles of the positive electrode active material preferably contain 0.5 to 7.0% by volume of fine particles having an average secondary particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less. By containing fine particles having an average primary particle size of 1 ⁇ m or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be further accelerated. Output performance can be improved.
  • a general method is used as a manufacturing method of the inorganic compound.
  • various methods are conceivable for preparing a spherical or elliptical active material.
  • a transition metal source material is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring.
  • a spherical precursor is prepared and recovered, and dried as necessary.
  • a Li source such as LiOH, Li 2 CO 3 , LiNO 3 is added, and the active material is obtained by baking at a high temperature. .
  • the positive electrode active material may be used alone, or one or more of different compositions may be used in any combination or ratio.
  • a preferable combination in this case is a combination of LiCoO 2 and LiMn 2 O 4 such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 or a part of this Mn substituted with another transition metal or the like. Or a combination with LiCoO 2 or a part of this Co substituted with another transition metal or the like.
  • the content of the positive electrode active material is preferably 50 to 99% by mass, more preferably 80 to 99% by mass of the positive electrode mixture, from the viewpoint of high battery capacity.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, Preferably it is 99 mass% or less, More preferably, it is 98 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
  • the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in the production of the electrode.
  • polyvinylidene fluoride polytetrafluoroethylene, polyethylene, polypropylene , SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose, NBR (Acrylonitrile-butadiene rubber), fluoro rubber, ethylene-propylene rubber, styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Tadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated product thereof, syndiotact
  • the content of the binder is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 1.5% by mass or more, as a ratio of the binder in the positive electrode active material layer. Usually, it is 80 mass% or less, Preferably it is 60 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 10 mass% or less.
  • the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. 1 type may be used independently or 2 or more types may be used together by arbitrary combinations and a ratio.
  • the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and usually 5% by mass or less, preferably 3%. It is in the range of not more than mass%, more preferably not more than 2 mass%. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
  • a known conductive material can be arbitrarily used as the conductive material.
  • Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite; carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and usually 50% by mass or less, preferably 30% by mass in the positive electrode active material layer. % Or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
  • the solvent for forming the slurry the positive electrode active material, the conductive material, the binder, and a solvent capable of dissolving or dispersing the thickener used as necessary may be used.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous medium include water, a mixed medium of alcohol and water, and the like.
  • the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone.
  • Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • amines such as diethylenetriamine and N, N-dimethylaminopropylamine
  • ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF)
  • NMP N-methylpyrrolidone
  • Amides such as dimethylformamide and dimethylacetamide
  • aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, tantalum, stainless steel, and nickel, or metal materials such as alloys thereof; carbon materials such as carbon cloth and carbon paper. Among these, a metal material, particularly aluminum or an alloy thereof is preferable.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material.
  • a thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred.
  • the thickness of the thin film is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
  • a conductive additive is applied to the surface of the current collector.
  • the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of the current collector) is 20 Is preferably 15 or less, most preferably 10 or less, and preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the positive electrode active material increases and the battery capacity may decrease.
  • the positive electrode may be manufactured by a conventional method.
  • the above-mentioned positive electrode active material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry-like positive electrode mixture, which is applied to a current collector, dried and then pressed.
  • a method of densification is mentioned.
  • the densification can be performed by a hand press, a roller press or the like.
  • the density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more, still more preferably 2.2 g / cm 3 or more, and preferably 5 g / cm 3 or less. More preferably, it is 4.5 g / cm ⁇ 3 > or less, More preferably, it is the range of 4 g / cm ⁇ 3 > or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and a high output may not be obtained.
  • the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of increasing the stability at high output and high temperature.
  • the sum of the electrode areas of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 15 times or more, and more preferably 40 times or more.
  • the outer surface area of the battery outer case in the case of a square shape with a bottom, is the total area calculated from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal.
  • the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder.
  • the total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.
  • the thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the composite layer obtained by subtracting the metal foil thickness of the core material is preferably as a lower limit with respect to one side of the current collector. Is 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
  • the negative electrode is composed of a negative electrode active material layer containing a negative electrode active material and a current collector.
  • Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, such as organic pyrolysis products and artificial graphite and natural graphite under various pyrolysis conditions; occluding and releasing lithium such as tin oxide and silicon oxide. Possible metal oxide materials; lithium metal; various lithium alloys; lithium-containing metal composite oxide materials. These negative electrode active materials may be used in combination of two or more.
  • artificial graphite or purified natural graphite produced by high-temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment with pitch or other organic substances on these graphites
  • carbonized material obtained by carbonizing natural graphite, artificial graphite, artificial carbonaceous material, and artificial graphite material at least once in the range of 400 to 3200 ° C., and a negative electrode active material layer.
  • a carbonaceous material comprising at least two kinds of carbonaceous materials having different crystallinity and / or having an interface in contact with the different crystalline carbonaceous materials, and at least two kinds of different orientations of the negative electrode active material layer
  • a carbonaceous material having an interface with which the carbonaceous material is in contact is more preferable because of a good balance between initial irreversible capacity and high current density charge / discharge characteristics.
  • these carbon materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • Examples of the carbonaceous material obtained by heat treating the artificial carbonaceous material and the artificial graphite material at least once in the range of 400 to 3200 ° C. include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, and these Oxidized pitch, needle coke, pitch coke and carbon agents partially graphitized from these, pyrolytic products of organic materials such as furnace black, acetylene black, pitch-based carbon fiber, carbonizable organic materials and their carbides, Alternatively, a solution obtained by dissolving an organic substance that can be carbonized in a low molecular organic solvent such as benzene, toluene, xylene, quinoline, n-hexane, and a carbide thereof.
  • a low molecular organic solvent such as benzene, toluene, xylene, quinoline, n-hexane, and a carbide thereof.
  • the metal material used as the negative electrode active material excluding lithium-titanium composite oxide
  • simple lithium, simple metal and alloy forming lithium alloy or oxidation thereof
  • Any of compounds such as oxides, carbides, nitrides, silicides, sulfides or phosphides may be used, and there is no particular limitation.
  • the single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements, more preferably aluminum, silicon and tin (hereinafter abbreviated as “specific metal elements”). ) Simple metals and alloys or compounds containing these atoms. These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • a negative electrode active material having at least one kind of atom selected from a specific metal element, a metal simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, one type or two or more specific types Alloys comprising metal elements and one or more other metal elements, as well as compounds containing one or more specific metal elements, and oxides, carbides, nitrides and silicides of the compounds And composite compounds such as sulfides or phosphides.
  • these simple metals, alloys or metal compounds as the negative electrode active material, the capacity of the battery can be increased.
  • a compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a nonmetallic element is also included.
  • a simple metal, an alloy, or a nonmetallic element such as silicon and tin
  • an alloy of these elements and a metal that does not operate as a negative electrode can be used.
  • a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than tin and silicon, a metal that does not operate as a negative electrode, and a nonmetallic element may be used. it can.
  • a composite material including Si or Sn as the first constituent element and the second and third constituent elements in addition thereto can be given.
  • the second constituent element is, for example, at least one of cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, and zirconium.
  • the third constituent element is at least one of boron, carbon, aluminum, and phosphorus.
  • the metal material silicon or tin alone (which may contain a small amount of impurities), SiOv (0 ⁇ v ⁇ 2), SnOw (0 ⁇ w) ⁇ 2), Si—Co—C composite material, Si—Ni—C composite material, Sn—Co—C composite material, and Sn—Ni—C composite material are preferable.
  • the lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable from the viewpoint of high current density charge / discharge characteristics, A lithium-containing composite metal oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium (hereinafter abbreviated as “lithium titanium composite oxide”) is more preferable. That is, it is particularly preferable to use a lithium-titanium composite oxide having a spinel structure in a negative electrode active material for an electrolyte battery because the output resistance is greatly reduced.
  • lithium titanium complex oxide general formula (O): Li x Ti y M z O 4 (O) [In the general formula (O), M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. ] It is preferable that it is a compound represented by these.
  • This structure is particularly preferable because of a good balance of battery performance.
  • compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (i), Li 1 Ti 2 O 4 in (ii), and Li 4/5 Ti 11/5 O in (iii). 4 .
  • structure of Z ⁇ 0, for example, Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.
  • the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less. It is more preferably at most 10 mass%, further preferably at most 10 mass%, particularly preferably at most 8 mass%.
  • the ratio of the binder to the negative electrode active material exceeds the above range, the binder ratio in which the amount of the binder does not contribute to the battery capacity increases, and the battery capacity may be reduced.
  • the strength of the negative electrode may be reduced.
  • the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more. 0.6 mass% or more is more preferable, and is usually 5 mass% or less, preferably 3 mass% or less, and more preferably 2 mass% or less.
  • the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
  • the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5% by mass or less. 3 mass% or less is preferable and 2 mass% or less is more preferable.
  • the ratio of the thickener to the negative electrode active material is less than the above range, applicability may be significantly reduced.
  • it exceeds the said range the ratio of the negative electrode active material which occupies for a negative electrode active material layer will fall, and the problem that the capacity
  • Examples of the conductive material for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • the solvent for forming the slurry As the solvent for forming the slurry, the negative electrode active material, the binder, and the thickener and conductive material used as necessary can be dissolved or dispersed as long as it is a solvent. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water and alcohol.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Examples include dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • methyl ethyl ketone cyclohexanone
  • methyl acetate methyl acrylate
  • diethyltriamine N
  • N- Examples include dimethylaminopropylamine, tetrahydr
  • Examples of the material for the negative electrode current collector include copper, nickel, and stainless steel. Among these, copper is preferable from the viewpoint of easy processing into a thin film and cost.
  • the thickness of the current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and is usually 100 ⁇ m or less, preferably 50 ⁇ m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be reduced too much, and conversely if it is too thin, handling may be difficult.
  • the negative electrode may be manufactured by a conventional method.
  • the above-described negative electrode material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry, which is applied to a current collector, dried, pressed and densified.
  • a method of forming the above-described thin film layer (negative electrode active material layer) containing the negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.
  • the electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g ⁇ cm ⁇ 3 or more, and 1.2 g ⁇ cm ⁇ 3 or more. but more preferably, particularly preferably 1.3 g ⁇ cm -3 or more, preferably 2.2 g ⁇ cm -3 or less, more preferably 2.1 g ⁇ cm -3 or less, 2.0 g ⁇ cm -3 or less More preferred is 1.9 g ⁇ cm ⁇ 3 or less.
  • the density of the negative electrode active material present on the current collector exceeds the above range, the negative electrode active material particles are destroyed, increasing the initial irreversible capacity, or the electrolyte solution near the current collector / negative electrode active material interface In some cases, high current density charge / discharge characteristics are deteriorated due to a decrease in permeability.
  • the amount is less than the above range, the conductivity between the negative electrode active materials decreases, the battery resistance increases, and the capacity per unit volume may decrease.
  • the thickness of the negative electrode plate is designed according to the positive electrode plate to be used, and is not particularly limited.
  • the thickness of the composite layer obtained by subtracting the thickness of the metal foil of the core is usually 15 ⁇ m or more, preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more, and usually 300 ⁇ m or less, preferably 280 ⁇ m or less, more preferably 250 ⁇ m or less.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.
  • the lithium ion secondary battery preferably further includes a separator.
  • the material and shape of the separator are not particularly limited as long as they are stable to the electrolytic solution and excellent in liquid retention, and known ones can be used. Among them, a resin, glass fiber, inorganic material, etc., formed of a material that is stable with respect to the electrolytic solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. preferable.
  • polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. These materials, such as a polypropylene / polyethylene two-layer film and a polypropylene / polyethylene / polypropylene three-layer film, may be used alone or in combination of two or more in any combination and ratio.
  • the said separator is the porous sheet
  • the thickness of the separator is arbitrary, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if it is thicker than the above range, not only battery performance such as rate characteristics may be lowered, but also the energy density of the entire electrolyte battery may be lowered.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
  • the average pore diameter of a separator is also arbitrary, it is 0.5 micrometer or less normally, 0.2 micrometer or less is preferable, and it is 0.05 micrometer or more normally. If the average pore diameter exceeds the above range, a short circuit tends to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used. Used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 ⁇ m on both surfaces of the positive electrode and using a fluororesin as a binder.
  • the electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
  • the battery capacity decreases. Also, if the above range is exceeded, the void space is small, the battery expands, and the member expands or the vapor pressure of the electrolyte liquid component increases and the internal pressure rises. In some cases, the gas release valve that lowers various characteristics such as storage at high temperature and the like, or releases the internal pressure to the outside is activated.
  • the current collecting structure is not particularly limited, but in order to more effectively realize the high current density charge / discharge characteristics by the electrolytic solution of the present invention, it is necessary to make the structure that reduces the resistance of the wiring part and the joint part. preferable. Thus, when internal resistance is reduced, the effect using the electrolyte solution of this invention is exhibited especially favorable.
  • the electrode group has the above laminated structure
  • a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used.
  • the internal resistance increases. Therefore, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance.
  • the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.
  • the material of the outer case is not particularly limited as long as it is a material that is stable with respect to the electrolytic solution used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
  • the metal is welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things.
  • the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used.
  • Resins are preferably used.
  • the shape of the lithium ion secondary battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large shape.
  • the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery.
  • the module provided with the electrochemical device provided with the electrolyte solution of this invention, or a secondary battery is also one of this invention.
  • the present invention is also provided with the above-described electrolytic solution, and the positive electrode current collector and the portion that is electrically connected to the positive electrode current collector are made of a valve metal or an alloy thereof. It is also a featured secondary battery.
  • the secondary battery is preferably a lithium ion secondary battery.
  • the configuration of the secondary battery the configuration of the lithium ion secondary battery described above can be applied as it is except that a valve metal or an alloy thereof is partially used.
  • valve metal examples include aluminum, titanium, tantalum, and chromium. More preferably, the positive electrode current collector is made of aluminum or an aluminum alloy.
  • a portion in contact with the electrolytic solution in a portion electrically connected to the positive electrode current collector is made of a valve metal or an alloy thereof.
  • the battery outer case, and the lead wire and safety valve accommodated in the battery outer case, which are electrically connected to the positive electrode current collector and in contact with the electrolyte are valve metal or an alloy thereof. It is preferable to comprise. Stainless steel coated with a valve metal or an alloy thereof may be used.
  • An example of the electrochemical device using the electrolytic solution of the present invention is an electric double layer capacitor.
  • the electric double layer capacitor at least one of the positive electrode and the negative electrode is a polarizable electrode, and the following electrodes described in detail in JP-A-9-7896 can be used as the polarizable electrode and the nonpolarizable electrode.
  • the polarizable electrode mainly composed of activated carbon preferably contains non-activated carbon having a large specific surface area and a conductive agent such as carbon black imparting electron conductivity.
  • the polarizable electrode can be formed by various methods.
  • a polarizable electrode made of activated carbon and carbon black can be formed by mixing activated carbon powder, carbon black, and a phenolic resin, and firing and activating in an inert gas atmosphere and a water vapor atmosphere after press molding.
  • the polarizable electrode is joined to the current collector with a conductive adhesive or the like.
  • activated carbon powder, carbon black, and a binder can be kneaded in the presence of alcohol, formed into a sheet, and dried to form a polarizable electrode.
  • a polarizable electrode For example, polytetrafluoroethylene is used as the binder.
  • activated carbon powder, carbon black, binder and solvent are mixed to form a slurry, and this slurry is coated on the metal foil of the current collector and dried to obtain a polarizable electrode integrated with the current collector. it can.
  • An electric double layer capacitor may be formed by using a polarizable electrode mainly composed of activated carbon for both electrodes, but a configuration using a non-polarizable electrode on one side, for example, a positive electrode mainly composed of a battery active material such as a metal oxide, and activated carbon
  • a positive electrode mainly composed of a battery active material such as a metal oxide such as a metal oxide
  • activated carbon A structure combining a polarizable electrode negative electrode mainly composed of carbon, a negative electrode mainly composed of a carbon material capable of reversibly occluding and releasing lithium ions, or a negative electrode composed mainly of lithium metal or lithium alloy and activated carbon.
  • a combination with a polar electrode is also possible.
  • carbonaceous materials such as carbon black, graphite, expanded graphite, porous carbon, carbon nanotube, carbon nanohorn, and ketjen black may be used instead of or in combination with activated carbon.
  • the non-polarizable electrode is preferably composed mainly of a carbon material capable of reversibly occluding and releasing lithium ions, and an electrode obtained by occluding lithium ions in this carbon material is used for the electrode.
  • a lithium salt is used as the electrolyte. According to the electric double layer capacitor having this configuration, a higher withstand voltage exceeding 4 V can be obtained.
  • Solvents used to prepare the slurry for electrode preparation are preferably those that dissolve the binder.
  • Dimethyl acid, ethanol, methanol, butanol or water is appropriately selected.
  • Examples of the activated carbon used for the polarizable electrode include phenol resin-based activated carbon, coconut-based activated carbon, and petroleum coke-based activated carbon. Among these, it is preferable to use petroleum coke activated carbon or phenol resin activated carbon in that a large capacity can be obtained.
  • Activated carbon activation treatment methods include a steam activation treatment method, a molten KOH activation treatment method, and the like, and it is preferable to use activated carbon obtained by a molten KOH activation treatment method in terms of obtaining a larger capacity.
  • Preferred conductive agents used for the polarizable electrode include carbon black, ketjen black, acetylene black, natural graphite, artificial graphite, metal fiber, conductive titanium oxide, and ruthenium oxide.
  • the mixing amount of the conductive agent such as carbon black used for the polarizable electrode is so as to obtain good conductivity (low internal resistance), and if it is too large, the product capacity is reduced. It is preferable to set it as 50 mass%.
  • activated carbon As the activated carbon used for the polarizable electrode, activated carbon having an average particle size of 20 ⁇ m or less and a specific surface area of 1500 to 3000 m 2 / g is used so that an electric double layer capacitor having a large capacity and a low internal resistance can be obtained. Is preferred.
  • a preferable carbon material for constituting an electrode mainly composed of a carbon material capable of reversibly inserting and extracting lithium ions natural graphite, artificial graphite, graphitized mesocarbon spherule, graphitized whisker, gas layer Examples thereof include a grown carbon fiber, a fired product of furfuryl alcohol resin, and a fired product of novolac resin.
  • the current collector is only required to be chemically and electrochemically corrosion resistant.
  • As the current collector of the polarizable electrode mainly composed of activated carbon stainless steel, aluminum, titanium or tantalum can be preferably used. Of these, stainless steel or aluminum is a particularly preferable material in terms of both characteristics and cost of the obtained electric double layer capacitor.
  • As the current collector of the electrode mainly composed of a carbon material capable of reversibly inserting and extracting lithium ions stainless steel, copper or nickel is preferably used.
  • lithium ions in order to preliminarily store lithium ions in a carbon material capable of reversibly inserting and extracting lithium ions, (1) mixing powdered lithium with a carbon material capable of reversibly inserting and extracting lithium ions. (2) A lithium foil is placed on an electrode formed of a carbon material capable of reversibly occluding and releasing lithium ions and a binder, and the electrode is in contact with the lithium salt.
  • the electric double layer capacitor As the electric double layer capacitor, a wound type electric double layer capacitor, a laminate type electric double layer capacitor, a coin type electric double layer capacitor, etc. are generally known, and the electric double layer capacitor of the present invention is also in these types. Can do.
  • a positive electrode and a negative electrode made of a laminate (electrode) of a current collector and an electrode layer are wound through a separator to produce a wound element, and the wound element is made of aluminum. And then filled with an electrolytic solution, preferably a non-aqueous electrolytic solution, and then sealed and sealed with a rubber sealing body.
  • separator conventionally known materials and structures can be used in the present invention.
  • a polyethylene porous membrane, polypropylene fiber, glass fiber, cellulose fiber non-woven fabric and the like can be mentioned.
  • a laminate type electric double layer capacitor in which a sheet-like positive electrode and a negative electrode are laminated via an electrolytic solution and a separator, and a positive electrode and a negative electrode are formed into a coin shape by fixing with a gasket and the electrolytic solution and the separator.
  • a configured coin type electric double layer capacitor can also be used.
  • a secondary battery having a small IV resistance value (internal resistance) and excellent cycle characteristics, a module using the secondary battery, and an electric double layer capacitor are suitably used. Obtainable.
  • Chain carbonate a dimethyl carbonate b: ethyl methyl carbonate c: diethyl carbonate d: CF 3 CH 2 OCOOCH 3 e: CF 3 CH 2 OCOOCH 2 CF 3
  • Cyclic carbonate EC ethylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one additive 1 (compound (X))
  • F C 2 H 5 OSO 3 Li
  • G CH 3 CH 2 CH 2 OSO 3 Li H: CH 3 CH 2 CH 2 CH 2 OSO 3 Li I: CH 3 (CH 2 ) 11 OSO 3 Na J: (CH 3 ) 2 NSO 3 Li K: (C 2 H 5) 2 NSO 3 Li
  • N Tris borate (trimethylsilyl)
  • O Trimethylsilyl fluoride
  • P Trieth
  • the negative electrode, positive electrode, and polyethylene separator produced as described above were laminated in the order of the negative electrode, separator, and positive electrode to produce a battery element.
  • the battery element was inserted into a bag made of a laminate film in which both surfaces of an aluminum sheet (thickness: 40 ⁇ m) were covered with a resin layer while projecting positive and negative terminals, and then the electrolyte solutions described in Tables 1 and 2 Each was injected into a bag and vacuum sealed to produce a sheet-like lithium ion secondary battery.
  • CC charging was performed at a temperature of 25 ° C. until the depth of charge (SOC) was 20%.
  • SOC depth of charge
  • CC discharge was performed up to 3 V at a discharge rate of 10 C, and a voltage drop for 10 seconds from the discharge was measured.
  • the measured voltage drop value (V) was divided by the corresponding current value to calculate IV resistance ( ⁇ ), and the average value was taken as IV resistance.
  • IV resistance of the battery of the comparative example 1 is set to 100, and it represents with a relative ratio.
  • the negative electrode, positive electrode, and polyethylene separator produced as described above were laminated in the order of the negative electrode, separator, and positive electrode to produce a battery element.
  • the battery element was inserted into a bag made of a laminate film in which both surfaces of an aluminum sheet (thickness: 40 ⁇ m) were covered with a resin layer while projecting positive and negative terminals, and then the electrolyte solutions described in Tables 3 and 4 Each was injected into a bag and vacuum sealed to produce a sheet-like lithium ion secondary battery.
  • CC charging was performed at a temperature of 25 ° C. until the SOC was 20%.
  • CC discharge was performed up to 3 V at a discharge rate of 10 C, and a voltage drop for 10 seconds from the discharge was measured.
  • the measured voltage drop value (V) was divided by the corresponding current value to calculate IV resistance ( ⁇ ), and the average value was taken as IV resistance.
  • IV resistance of the battery of the comparative example 5 is set to 100, and it represents with a relative ratio.
  • a positive electrode was housed in a stainless steel positive electrode can, and a separator (polypropylene microporous film) impregnated with a nonaqueous electrolyte solution and a negative electrode were sequentially placed thereon.
  • the positive electrode can and the stainless steel sealing plate were caulked and sealed through an insulating gasket to produce a coin-type battery.
  • the inner surface of the positive electrode can made of stainless steel was covered with an aluminum foil so that the non-aqueous electrolyte did not contact the positive electrode can.
  • the electrolytic solution of the present invention can be suitably used as an electrolytic solution for electrochemical devices such as lithium ion secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れたリチウム二次電池等の電気化学デバイス又はモジュールを得ることができる電解液を提供する。溶媒、電解質塩、一般式:R1111-SO11で表される化合物及び一般式:R2122N-SO21で表される化合物からなる群より選択される少なくとも1種の化合物(X)、並びに、一般式:(R31n31-M31-O-SiR323334で表される化合物及び一般式:R414243-Si-Fで表される化合物からなる群より選択される少なくとも1種の有機ケイ素化合物を含有することを特徴とする電解液である。

Description

電解液、電気化学デバイス、二次電池、及び、モジュール
本発明は、電解液、電気化学デバイス、二次電池、及び、モジュールに関する。
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度をもつリチウムイオン二次電池の開発が進められている。また、リチウムイオン二次電池の適用分野が拡大するにつれて電池特性の改善が要望されている。特に今後、車載用にリチウムイオン二次電池が使われた場合、電池特性はますます重要となる。
特許文献1には、初期電池抵抗が小さいリチウム二次電池用混合型非水電解液として、下記一般式[1]で表される有機ケイ素化合物0.01質量%~15質量%と、電解質であるフッ素含有アルカリ金属塩0.1モル/リットル~3モル/リットルと、を含有し、前記有機ケイ素化合物と前記フッ素含有アルカリ金属塩との反応により生成するフッ素化有機ケイ素化合物の含有量が0.2質量%以下であることを特徴とするリチウム二次電池用非水電解液が記載されている。
Figure JPOXMLDOC01-appb-C000001
[一般式[1]中、Mは、金属原子、リン原子、ホウ素原子、又はP=Oを表わす。Rは、炭素数1~11のアルキルオキシ基、シリルオキシ基、又は炭素数1~11のアルキルシリルオキシ基を表わす。nは、Mに結合するRの個数を表わし、Mの酸化数-1又はMの酸化数-3である。nが2以上の場合、Rは同一でも異なってもよい。R~Rは、それぞれ独立に、炭素数1~11のアルキル基、炭素数1~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。]
特許文献2には、サイクル特性の良い非水電解液二次電池に用いる非水電解液として、リチウムを吸蔵・放出することが可能な負極及び正極をセパレーターを介して対向させてなる電極組立体、並びに非水電解液を容器に収容してなり、正極集電体及びこれと電気的に接続されている部分のうち非水電解液と接触する部分が弁金属又はその合金で構成されている非水電解液二次電池に用いられる非水電解液であって、クロロエチレンカーボネートの脱塩化水素により製造され、該クロロエチレンカーボネート由来の有機ハロゲン化物を1ppm以上50重量%以下の割合で含むビニレンカーボネートを0.1~30重量%含む、環状カーボネート、鎖状カーボネート、ラクトン、鎖状カルボン酸エステル、環状エーテル、鎖状エーテル及び含硫黄化合物からなる群より選ばれる非水溶媒にリチウム塩としてLiPFを溶解して成るものであることを特徴とする非水電解液が記載されている。
特許文献3には、高い入出力特性と良好な高温サイクル特性を満たす非水電解液二次電池及びそれに用いた非水電解液として、式(1)で表されるケイ素化合物を含有することを特徴とするリチウム二次電池用非水電解液が記載されている。
SiF       ・・・式(1)
{化学式(1)中、R~Rは、互いに同一であっても異なっていてもよく、炭素数1~12の有機基であって、xは1~3,l,m,nは0~3で、1≦l+m+n≦3である。}
特許第5274563号公報 特許第4568920号公報 特開2004-87459公報
本発明は、IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れたリチウム二次電池等の電気化学デバイス又はモジュールを得ることができる電解液を提供する。
本発明は、また、IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れたリチウム二次電池等の電気化学デバイス又はモジュールを提供する。
本発明者らは、少なくとも2種類の化合物を組み合わせることにより、上記課題が見事に解決されること見出し、本発明を完成するに至った。
すなわち、本発明は、溶媒、電解質塩、一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群より選択される少なくとも1種の化合物(X)、並びに、一般式(3)で表される化合物及び一般式(4)で表される化合物からなる群より選択される少なくとも1種の有機ケイ素化合物を含有することを特徴とする電解液である。
一般式(1):R1111-SO11
(但し、R11は、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルケニル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルキニル基、炭素数3~6のシクロアルキル基、炭素数3~6のシクロアルケニル基、又は、炭素数3~6のアルキルシリル基である。上記アルキル基、上記シクロアルキル基及び上記アルキルシリル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、環状構造を有していてもよく、エーテル結合又はチオエーテル結合を有してもよい。X11はO又はSであり、M11はLi、Na、K及びCsからなる群より選択される少なくとも1種である。)
一般式(2):R2122N-SO21
(但し、R21及びR22は、同じであるか又は異なって、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~6の直鎖状若しくは分岐鎖状アルケニル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルキニル基、炭素数3~6のシクロアルキル基、炭素3~6のシクロアルケニル基、又は、炭素数3~6のアルキルシリル基である。上記アルキル基、上記シクロアルキル基及び上記アルキルシリル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、環状構造を有していてもよい。また、R21及びR22は互いに結合して環状構造を形成してもよい。M21はLi、Na、K及びCsからなる群より選択される少なくとも1種である。)
一般式(3):(R31n31-M31-O-SiR323334
(但し、M31は、金属原子、P、B又はP=Oを表わす。R31は、炭素数1~11のアルキルオキシ基、シリルオキシ基又は炭素数1~11のアルキルシリルオキシ基である。n31は、M31に結合するR31の個数を表わし、M31の酸化数-1又はM31の酸化数-3である。n31が2以上の場合、R31は同一でも異なってもよい。R32~R34は、同じであるか又は異なって、炭素数1~11のアルキル基、炭素数2~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。)
一般式(4):R414243-Si-F
(R41~R43は、同じであるか又は異なって、炭素数1~11のアルキル基、炭素数2~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。)
一般式(1)において、R11は、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であり、X11はOであり、M11はLiであることが好ましい。
一般式(2)において、R21及びR22は、同じであるか又は異なって、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であり、M21はLiであることが好ましい。
上記電解液は、上記溶媒に対して0.001~5質量%の化合物(X)を含有することが好ましい。
上記電解液は、上記溶媒に対して0.001~5質量%の上記有機ケイ素化合物を含有することが好ましい。
上記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート、非フッ素化鎖状カーボネート及びフッ素化鎖状カーボネートからなる群より選択される少なくとも1種を含むことが好ましい。
上記電解質塩は、LiPF、LiBF、LiSbF、LiTaF、LiPO、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF及びLiPF(Cからなる群より選択される少なくとも1種であることが好ましい。
本発明は、上述の電解液を備えることを特徴とする電気化学デバイスでもある。
本発明は、上述の電解液を備えることを特徴とする二次電池でもある。
本発明は、上述の電解液を備え、正極集電体及びこれと電気的に接続されている部分のうち電解液と接触する部分が、弁金属又はその合金で構成されていることを特徴とする二次電池でもある。
本発明は、上述の電気化学デバイス、又は、上述の二次電池を備えることを特徴とするモジュールでもある。
本発明の電解液は、IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れたリチウム二次電池等の電気化学デバイス又はモジュールを得ることができる。
本発明の電気化学デバイス、二次電池、及び、モジュールは、IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れる。
以下、本発明を具体的に説明する。
本発明の電解液は、溶媒、電解質塩、一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群より選択される少なくとも1種の化合物(X)、並びに、一般式(3)で表される化合物及び一般式(4)で表される化合物からなる群より選択される少なくとも1種の有機ケイ素化合物を含有する。
一般式(1)で表される化合物は、
一般式(1):R1111-SO11
(但し、R11は、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルケニル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルキニル基、炭素数3~6のシクロアルキル基、炭素数3~6のシクロアルケニル基、又は、炭素数3~6のアルキルシリル基である。上記アルキル基、上記シクロアルキル基及び上記アルキルシリル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、環状構造を有していてもよく、エーテル結合又はチオエーテル結合を有してもよい。X11はO又はSであり、M11はLi、Na、K及びCsからなる群より選択される少なくとも1種である。)で表される。
一般式(1)において、R11は、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であることが好ましく、炭素数1~6の直鎖状又は分岐鎖状のアルキル基であることがより好ましい。上記アルキル基又は上記シクロアルキル基は、炭素原子に結合した水素原子がハロゲン原子により置換されておらず、環状構造を有しておらず、エーテル結合及びチオエーテル結合を有していないことが好ましい。上記アルキル基の炭素数は、5以下であることがより好ましく、4以下であることが更に好ましく、1以上であることが好ましく、2以上であることがより好ましい。
一般式(1)において、R11としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、n-ブチル基、イソブチル基、t-ブチル基、ヘキシル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基及びドデシル基からなる群より選択される少なくとも1種であることが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、ブチル基、ヘキシル基、2,2,2-トリフルオロエチル基及びドデシル基であることがより好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、n-ブチル基、2,2,2-トリフルオロエチル基及びドデシル基からなる群より選択される少なくとも1種であることが更に好ましく、エチル基、プロピル基、イソプロピル基、n-ブチル基、及びブチル基からなる群より選択される少なくとも1種であることが特に好ましく、エチル基であることが殊更に好ましい。
一般式(1)において、X11はO又はSであり、Oであることが好ましい。
一般式(1)において、M11はLi、Na、K及びCsからなる群より選択される少なくとも1種であり、Li又はNaであることが好ましく、Liであることがより好ましい。
一般式(1)で表される化合物としては、CHOSOLi、COSOLi、CHCHCHOSOLi、CHCH(CH)OSOLi、CHCHCHCHOSOLi、CHCHCH(CH)OSOLi、CHCHC(CHOSOLi、CHCHCHCHCHCHOSOLi、CH(CH11OSONa、CFHCHOSOLi、CFCHOSOLi等を挙げることができる。
IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れた電気化学デバイスを得ることができることから、一般式(1)において、R11は、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であり、X11はOであり、M11はLiであることが好ましい。
すなわち、一般式(1)で表される化合物としては、
一般式(1-1):R11O-SOLi
(但し、R11は、炭素数1~6の直鎖状又は分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基である。上記アルキル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、また、環状構造を有していてもよい。上記シクロアルキル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよい。)で表されるモノアルキル硫酸リチウム塩が好ましい。
一般式(1)で表される化合物としては、CHOSOLi、COSOLi、CHCHCHOSOLi、CHCH(CH)OSOLi、CHCHCHCHOSOLi、CHCHCH(CH)OSOLi、CHCHC(CHOSOLi、CHCHCHCHCHCHOSOLi、CFHCHOSOLi及びCFCHOSOLiからなる群より選択される少なくとも1種であることが好ましく、COSOLi、CHCHCHOSOLi、CHCH(CH)OSOLi及びCHCHCHCHOSOLiからなる群より選択される少なくとも1種であることがより好ましく、COSOLiであることが更に好ましい。
一般式(2)で表される化合物は、
一般式(2):R2122N-SO21
(但し、R21及びR22は、同じであるか又は異なって、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~6の直鎖状若しくは分岐鎖状アルケニル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルキニル基、炭素数3~6のシクロアルキル基、炭素3~6のシクロアルケニル基、又は、炭素数3~6のアルキルシリル基である。上記アルキル基、上記シクロアルキル基及び上記アルキルシリル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、環状構造を有していてもよい。また、R21及びR22は互いに結合して環状構造を形成してもよい。M21はLi、Na、K及びCsからなる群より選択される少なくとも1種である。)で表される。
一般式(2)において、R21及びR22は、同じであるか又は異なって、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であり、M21はLiであることが好ましい。上記アルキル基又は上記シクロアルキル基は、炭素原子に結合した水素原子がハロゲン原子により置換されておらず、環状構造を有しておらず、エーテル結合及びチオエーテル結合を有していないことが好ましい。
一般式(2)において、M21はLi、Na、K及びCsからなる群より選択される少なくとも1種であり、Liであることが好ましい。
一般式(2)で表される化合物としては、(CHNSOLi、(CNSOLi、(CH)(C)NSOLi、(CNSOLi、(C)(CH)NSOLi、(C)(C)NSOLi、(CNSOLi、(C11NSOLi等が挙げられ、なかでも、(CHNSOLi及び(CNSOLiからなる群より選択される少なくとも1種が好ましい。
上記電解液は、IV抵抗値が更に小さく、サイクル特性がより一層優れた電気化学デバイスを得ることができることから、上記溶媒に対して0.001~5質量%の化合物(X)を含有することが好ましい。化合物(X)の含有量としては、0.05質量%以上がより好ましく、2質量%以下がより好ましい。
上記有機ケイ素化合物は、一般式(3)で表される化合物及び一般式(4)で表される化合物からなる群より選択される少なくとも1種である。
一般式(3):(R31n31-M31-O-SiR323334
(但し、M31は、金属原子、P、B又はP=Oを表わす。R31は、炭素数1~11のアルキルオキシ基、シリルオキシ基又は炭素数1~11のアルキルシリルオキシ基である。n31は、M31に結合するR31の個数を表わし、M31の酸化数-1又はM31の酸化数-3である。n31が2以上の場合、R31は同一でも異なってもよい。R32~R34は、同じであるか又は異なって、炭素数1~11のアルキル基、炭素数2~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。)で表される化合物について説明する。
31としては、Mg、B、Al、Si、P、P=O、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、Sn、Y、Zr、Nb等が挙げられる。なかでも、Al、B、P、P=O、Ti又はZrが好ましく、B、P又はP=Oがより好ましい。
31としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ノルマルブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基、ヘキシルオキシ基、フェノキシ基、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリメトキシシリルオキシ基、トリエトキシシリルオキシ基等が挙げられる。なかでも、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ノルマルブトキシ基、トリメチルシリルオキシ基が好ましい。
32~R34としては、メチル基、エチル基、ビニル基、プロピル基、イソプロピル基、1-プロペニル基、2-プロペニル基、1-プロピニル基、2-プロピニル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-2-プロペニル基、1-メチレンプロピル基、1-メチル-2-プロペニル基、1,2-ジメチルビニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-メチル-2-メチルプロピル基、2,2-ジメチルプロピル基、フェニル基、メチルフェニル基、エチルフェニル基、ペンタメチルフェニル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基、ヘキシルオキシ基、フェノキシ基等が挙げられる。
溶解性の点から、R32~R34としては、炭素数が4以下のアルキル基又はオキシアルキル基であることが望ましく、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、sec-ブチル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、sec-ブトキシ基が好ましく、メチル基がより好ましい。
一般式(3)で表される化合物としては、次の化合物が挙げられる。
マグネシウムビス(トリメチルシロキサイド)、ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)、ホウ酸トリス(トリエチルシリル)、ホウ酸トリス(トリエトキシシリル)、ホウ酸トリス(ジメチルビニルシリル)、ホウ酸トリス(ジエチルビニルシリル)、アルミニウムトリス(トリメチルシロキサイド)、ジメトキシアルミノキシトリメチルシラン、ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリメチルシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロピロキシアルミノキシトリメチルシラン、ジブトキシアルミノキシトリメチルシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエチルシラン、ジブトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリプロピルシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシラン、ジブトキシアルミノキシトリプロピロキシシラン、ジブトキシアルミノキシトリフェノキシシラン、リン酸トリス(トリメチルシリル)、リン酸トリス(トリエチルシリル)、リン酸トリス(トリプロピルシリル)、リン酸トリス(トリフェニルシリル)、リン酸トリス(トリメトキシシリル)、リン酸トリス(トリエトキシシリル)、リン酸トリス(トリフェノキシシリル)、リン酸トリス(ジメチルビニルシリル)、リン酸トリス(ジエチルビニルシリル)、スカンジウムトリス(トリメチルシロキシド)、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)、チタンテトラキス(トリメトキシシロキシド)、チタンオキシビス(トリメチルシロキシド)、バナジウムオキシトリス(トリメチルシロキシド)、亜鉛ビス(トリメチルシロキシド)、ゲルマニウムテトラキス(トリメチルシロキシド)、スズテトラキス(トリメチルシロキシド)、イットリウムトリス(トリメチルシロキシド)、ジルコニウムテトラキス(トリメチルシロキシド)、ニオブペンタキス(トリメチルシロキシド)、亜リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリエチルシリル)、リン酸トリス(トリプロピルシリル)、亜リン酸トリス(トリフェニルシリル)、亜リン酸トリス(トリメトキシシリル)、亜リン酸トリス(トリエトキシシリル)、亜リン酸トリス(トリフェノキシシリル)、亜リン酸トリス(ジメチルビニルシリル)、亜リン酸トリス(ジエチルビニルシリル)等。
なかでも、ホウ酸トリス(トリメチルシリル)、ホウ酸トリス(トリメトキシシリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリメトキシシリル)、ジメトキシアルミノキシトリメトキシシラン、ジエトキシアルミノキシトリエトキシシラン、ジプロポキシアルミノキシトリエトキシシラン、ジブトキシアルミノキシトリメトキシシラン、ジブトキシアルミノキシトリエトキシシラン、チタンテトラキス(トリメチルシロキシド)、チタンテトラキス(トリエチルシロキシド)、亜リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリエチルシリル)が好ましい。
一般式(3)で表される化合物として、M31がP=O又はPであって、R31が炭素数1~4のアルキルシリルオキシ基であって、n31が2であって、R32~R34が炭素数1~4のアルキル基であるものが好ましい。
一般式(3)で表される化合物は、上記電解液中に、1種単独で含まれていても、2種以上が含まれていてもよい。
一般式(4):R414243-Si-F
(R41~R43は、同じであるか又は異なって、炭素数1~11のアルキル基、炭素数2~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。)で表される化合物について説明する。
41~R43としては、メチル基、エチル基、ビニル基、プロピル基、イソプロピル基、1-プロペニル基、2-プロペニル基、1-プロピニル基、2-プロピニル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-2-プロペニル基、1-メチレンプロピル基、1-メチル-2-プロペニル基、1,2-ジメチルビニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-メチル-2-メチルプロピル基、2,2-ジメチルプロピル基、フェニル基、メチルフェニル基、エチルフェニル基、ペンタメチルフェニル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペントキシ基、ヘキシルオキシ基、フェノキシ基等が挙げられる。
溶解性の点から、R41~R43としては、炭素数が4以下のアルキル基又は炭素数が4以下のアルキルオキシ基であることが望ましく、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、sec-ブチル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ノルマルブトキシ基、イソブトキシ基、sec-ブトキシ基が好ましく、メチル基がより好ましい。
一般式(4)で表される化合物としては、次の化合物が挙げられる。
トリメチルシリルフルオライド、トリエチルシリルフルオライド、トリプロピルシリルフルオライド、トリブチルシリルフルオライド、トリtert-ブチルシリルフルオライド、ジメチルエチルシリルフルオライド、ジメチルプロピルシリルフルオライド、ジメチルブチルシリルフルオライド、メチルジエチルシリルフルオライド、メチルジプロピルシリルフルオライド、メチルジブチルシリルフルオライド、メチルジtert-ブチルシリルフルオライド、ジエチルプロピルシリルフルオライド、ジエチルブチルシリルフルオライド、ジエチルtert-ブチルシリルフルオライド、エチルジプロピルシリルフルオライド、エチルジブチルシリルフルオライド、エチルジtert-ブチルシリルフルオライド、プロピルジブチルシリルフルオライド、プロピルジtert-ブチルシリルフルオライド等。
なかでも、トリメチルシリルフルオライド、トリエチルシリルフルオライド、ジメチルエチルシリルフルオライド、メチルジエチルシリルフルオライドが好ましい。
一般式(4)で表される化合物は、上記電解液中に、1種単独で含まれていても、2種以上が含まれていてもよい。
上記電解液は、IV抵抗値が更に小さく、サイクル特性がより一層優れた電気化学デバイスを得ることができることから、上記溶媒に対して0.001~5質量%の上記有機ケイ素化合物を含有することが好ましい。上記有機ケイ素化合物の含有量としては、0.01質量%以上がより好ましく、0.3質量%以上が更に好ましく、0.5質量%以上が特に好ましく、2質量%以下がより好ましい。
本発明の電解液は、溶媒を含有する。上記溶媒は、非水溶媒であることが好ましく、本発明の電解液は、非水電解液であることが好ましい。
上記溶媒は、カーボネートを含むことが好ましい。
上記溶媒は、環状カーボネート及び鎖状カーボネートを含むことが好ましい。
上記環状カーボネートは、非フッ素化環状カーボネートであってもよいし、フッ素化環状カーボネートであってもよい。
上記鎖状カーボネートは、非フッ素化鎖状カーボネートであってもよいし、フッ素化鎖状カーボネートであってもよい。
上記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート、フッ素化鎖状カーボネート及び非フッ素化鎖状カーボネートからなる群より選択される少なくとも1種を含むことが好ましい。なかでも、フッ素化飽和環状カーボネート及びフッ素化鎖状カーボネートからなる群より選択される少なくとも1種を含むことがより好ましい。
上記非フッ素化飽和環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等を挙げることができる。
なかでも、上記非フッ素化飽和環状カーボネートとしては、誘電率が高く、粘度が好適となる点で、エチレンカーボネート、プロピレンカーボネート、及び、ブチレンカーボネートからなる群より選択される少なくとも1種の化合物であることが好ましい。
上記非フッ素化飽和環状カーボネートとして、上述した化合物の1種を用いてもよいし、2種以上を併用してもよい。
上記非フッ素化飽和環状カーボネートの含有量は、上記溶媒に対して0~99体積%が好ましく、1体積%以上がより好ましく、90体積%以下がより好ましい。
上記フッ素化飽和環状カーボネートは、フッ素原子が付加した飽和環状カーボネートであり、具体的には、下記一般式(A):
Figure JPOXMLDOC01-appb-C000002
(式中、X~Xは同じか又は異なり、それぞれ-H、-CH、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X~Xの少なくとも1つは、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物が挙げられる。
上記フッ素化飽和環状カーボネートを含むと、本発明の電解液をリチウムイオン二次電池等に適用した場合に、負極に安定な被膜を形成することができ、負極での電解液の副反応を充分に抑制することができる。その結果、極めて安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
誘電率、耐酸化性が良好な点から、X~Xの1つ又は2つが、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X~Xは、-H、-F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1~20が好ましく、2~17がより好ましく、2~7が更に好ましく、2~5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH-、CFH-及びCF-が挙げられる。
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a-1):
-R- (a-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~16の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~6がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000003
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000006
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基(a)としては、例えばCFCF-、HCFCF-、HCFCF-、CHCF-、CFCHF-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
等が挙げられる。
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2~17であることが好ましい。炭素数が多過ぎると、上記フッ素化飽和環状カーボネートの粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2~10がより好ましく、2~7が更に好ましい。
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000009
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b-1):
-(ORn1-       (b-1)
(式中、Rはフッ素原子を有していてもよい、好ましくは炭素数1~6のアルキル基;Rはフッ素原子を有していてもよい、好ましくは炭素数1~4のアルキレン基;n1は1~3の整数;ただし、R及びRの少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
及びRとしては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b-1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
(1)Rとしては、一般式:X C-(Rn2-(3つのXは同じか又は異なりいずれもH又はF;Rは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
n2が0の場合、Rとしては、CH-、CF-、HCF-及びHCF-が挙げられる。
n2が1の場合の具体例としては、Rが直鎖状のものとして、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCHCH-、FCHCF-、FCHCFCH-、CHCF-、CHCH-、CHCFCH-、CHCFCF-、CHCHCH-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCHCHCH-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCHCFCFCHCH-、CHCFCHCFCHCH-等が例示できる。
n2が1であり、かつRが分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000010
等が挙げられる。
ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、Rが直鎖状のものがより好ましい。
(2)上記一般式(b-1)の-(ORn1-において、n1は1~3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、Rは同じでも異なっていてもよい。
の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
直鎖状のものとしては、-CH-、-CHF-、-CF-、-CHCH-、-CFCH-、-CFCF-、-CHCF-、-CHCHCH-、-CHCHCF-、-CHCFCH-、-CHCFCF-、-CFCHCH-、-CFCFCH-、-CFCHCF-、-CFCFCF-等が例示できる。
分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000011
等が挙げられる。
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1~17であることが好ましい。より好ましくは、炭素数1~6である。
上記フッ素化アルコキシ基(c)としては、一般式:X C-(Rn3-O-(3つのXは同じか又は異なりいずれもH又はF;Rは好ましくは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a-1)におけるRとして例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
上記フッ素化飽和環状カーボネートにおけるフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
また、誘電率、耐酸化性が良好な点からは、上記フッ素化飽和環状カーボネート全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、上記フッ素化飽和環状カーボネートのフッ素含有率は、フッ素化飽和環状カーボネートの構造式に基づいて、{(フッ素原子の個数×19)/フッ素化飽和環状カーボネートの分子量}×100(%)により算出した値である。
上記フッ素化飽和環状カーボネートとしては、具体的には、例えば、以下が挙げられる。
~Xの少なくとも1つが-Fであるフッ素化飽和環状カーボネートの具体例として、
Figure JPOXMLDOC01-appb-C000012
等が挙げられる。これらの化合物は、耐電圧が高く、電解質塩の溶解性も良好である。
他に、
Figure JPOXMLDOC01-appb-C000013
等も使用できる。
~Xの少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
等が挙げられる。
~Xの少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
等が挙げられる。
なかでも、上記フッ素化飽和環状カーボネートとしては、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
上記フッ素化飽和環状カーボネートとしては、なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネートがより好ましい。
なお、上記フッ素化飽和環状カーボネートは、上述した具体例のみに限定されるものではない。また、上記フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記フッ素化飽和環状カーボネートの含有量は、溶媒中0~99体積%であることが好ましく、1体積%以上がより好ましく、5体積%以上が更に好ましく、95体積%以下がより好ましく、90体積%以下が更に好ましい。
上記フッ素化鎖状カーボネートとしては、一般式(B):
RfOCOOR     (B)
(式中、Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
本発明の電解液は、高電圧下でも好適に使用できる点で、上記フッ素化鎖状カーボネートを含むことが好ましい。
Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。
上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。Rがフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
Rf及びRは、低粘性である点で、炭素数が2~7であることが好ましく、2~4であることがより好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
炭素数が1のフッ素化アルキル基としては、CFH-、CFH-及びCF-が挙げられる。
炭素数が2以上のフッ素化アルキル基としては、下記一般式(d-1):
-R- (d-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~6がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000025
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000028
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基としては、具体的には、例えば、CFCF-、HCFCF-、HCFCF-、CHCF-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
等が挙げられる。
なかでも、RfとRのフッ素化アルキル基としては、CF-、CFCF-、(CFCH-、CFCH-、CCH-、HCFCFCH-、CFCFHCFCH-が好ましく、難燃性が高く、レート特性や耐酸化性が良好な点から、CFCH-、CFCFCH-、HCFCFCH-がより好ましい。
がフッ素原子を含まないアルキル基の場合は炭素数1~7のアルキル基である。Rは、低粘性である点で、炭素数が1~4であることが好ましく、1~3であることがより好ましい。
上記フッ素原子を含まないアルキル基としては、例えば、CH-、CHCH-、(CHCH-、C-等が挙げられる。なかでも、粘度が低く、レート特性が良好な点から、CH-、CHCH-が好ましい。
上記フッ素化鎖状カーボネートは、フッ素含有率が20~70質量%であることが好ましい。フッ素含有率が上述の範囲であると、溶剤との相溶性、塩の溶解性を維持することができる。上記フッ素含有率は、30質量%以上がより好ましく、35質量%以上が更に好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。
なお、本発明においてフッ素含有率は、上記フッ素化鎖状カーボネートの構造式に基づいて、
{(フッ素原子の個数×19)/フッ素化鎖状カーボネートの分子量}×100(%)
により算出した値である。
上記フッ素化鎖状カーボネートとしては、低粘性である点で、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000031
上記フッ素化鎖状カーボネートの含有量は、溶媒中1~90体積%であることが好ましい。上記含有量が上述の範囲内であると、相溶性を維持することができる。
上記フッ素化鎖状カーボネートの含有量は、塩の溶解性を維持することができる点で、電解液中30体積%以上がより好ましく、40体積%以上が更に好ましく、85体積%以下がより好ましく、80体積%以下が更に好ましい。
上記非フッ素化鎖状カーボネートとしては、例えば、CHOCOOCH(ジメチルカーボネート:DMC)、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
上記非フッ素化鎖状カーボネートの含有量は、溶媒中0~99体積%であることが好ましく、1体積%以上がより好ましく、90体積%以下がより好ましい。
本発明の電解液は、上記溶媒を電解液に対して、10~99.99質量%含有することが好ましく、10~95質量%含有することがより好ましく、15~90質量%含有することが更に好ましい。
上記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート、非フッ素化鎖状カーボネート及びフッ素化鎖状カーボネートからなる群より選択される少なくとも1種を、合計で、40~100体積%含むことが好ましく、60~100体積%含むことがより好ましく、90~100体積%含むことが更に好ましく、100体積%含むことが特に好ましい。
上記溶媒は、非フッ素化飽和環状カーボネート及びフッ素化飽和環状カーボネートからなる群より選択される少なくとも1種の飽和環状カーボネートと、非フッ素化鎖状カーボネート及びフッ素化鎖状カーボネートからなる群より選択される少なくとも1種の鎖状カーボネートとを含むことが好ましい。
上記飽和環状カーボネートと上記鎖状カーボネートとの体積比は、10/90~90/10であることが好ましく、20/80以上であることがより好ましく、80/20以下であることがより好ましく、30/70以上であることが更に好ましく、70/30以下であることが更に好ましく、50/50以下であることが特に好ましい。
上記溶媒は、上記非フッ素化鎖状カーボネート及び上記非フッ素化環状カーボネートを含むことが好ましい。この組成の溶媒を含有する電解液は、比較的低電圧で使用される電気化学デバイスに好適に利用できる。
上記溶媒は、上記非フッ素化鎖状カーボネート及び上記非フッ素化環状カーボネートを合計で70~100体積%含むことが好ましく、80~100体積%含むことがより好ましく、90~100体積%含むことが更に好ましく、100体積%含むことが特に好ましい。
上記非フッ素化鎖状カーボネートと上記非フッ素化環状カーボネートとの体積比としては、10/90~95/5が好ましく、20/80以上がより好ましく、50/50以上が更に好ましく、60/40以上が特に好ましく、90/10以下がより好ましく、80/20以下が更に好ましい。
上記溶媒は、上記非フッ素化鎖状カーボネート及び上記フッ素化鎖状カーボネートからなる群より選択される少なくとも1種の鎖状カーボネート、及び、上記フッ素化環状カーボネートを含むことも好ましい。この組成の溶媒を含有する電解液は、比較的高電圧で使用される電気化学デバイスに好適に利用できる。
上記溶媒は、上記鎖状カーボネート及び上記フッ素化環状カーボネートを合計で70~100体積%含むことが好ましく、80~100体積%含むことがより好ましく、90~100体積%含むことが更に好ましく、100体積%含むことが特に好ましい。
上記鎖状カーボネートと上記フッ素化環状カーボネートとの体積比としては、10/90~95/5が好ましく、20/80以上がより好ましく、50/50以上が更に好ましく、60/40以上が特に好ましく、90/10以下がより好ましく、80/20以下が更に好ましい。
本発明の電解液は、電解質塩を含有する。
上記電解質塩としては、二次電池、電気二重層キャパシタ等の電気化学デバイス用の電解液に使用することができる任意のものを用いることができるが、なかでも、リチウム塩が好ましい。
リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、
LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiPOF、LiPO等のフルオロリン酸リチウム類;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
FSOLi、CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
リチウムジフルオロオキサラトボレート、リチウムビス(オキサラト)ボレート等のリチウムオキサラトボレート塩類;
リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビス(オキサラト)フォスフェート、リチウムトリス(オキサラト)フォスフェート等のリチウムオキサラトフォスフェート塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;
等が挙げられる。
なかでも、LiPF、LiBF、LiSbF、LiTaF、LiPO、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF及びLiPF(Cからなる群より選択される少なくとも1種が、IV抵抗値が更に小さく、サイクル特性がより一層優れた電気化学デバイスを得ることができることから特に好ましい。
これらのリチウム塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFや、LiPFとFSOLi、LiPFとLiPO等の併用であり、負荷特性やサイクル特性を向上させる効果がある。これらの中では、LiPFとFSOLi、LiPFとLiPOの併用がその効果が顕著である理由から好ましく、その中でもLiPFとLiPOの併用が微量の添加で著しい効果が発現する為に特に好ましい。
LiPFとLiBF、LiPFとFSOLiを併用する場合、上記電解液全体100質量%に対するLiBF或いはFSOLiの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、一方その上限は通常30質量%以下、好ましくは20質量%以下である。一方、LiPFとLiPOの併用の場合においても上記電解液全体100質量%に対するLiPOの濃度は配合量に制限は無く、本発明の効果を著しく損なわない限り任意であるが、上記電解液に対して、通常0.001質量%以上、好ましくは0.01質量%以上であり、一方その上限は、通常10質量%以下、好ましくは5質量%以下である。この範囲であれば、出力特性、負荷特性、低温特性、サイクル特性、高温特性等の効果が向上する。一方で多すぎる場合は、低温において析出して電池特性を低下させる場合があり、少なすぎる場合は、低温特性やサイクル特性、高温保存特性等の向上効果が低下する場合がある。
上記電解液中のこれらのリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、上記電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、さらに好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、さらに好ましくは2.0mol/L以下である。この範囲であれば、IV抵抗値が更に小さく、サイクル特性がより一層優れた電気化学デバイスを得ることができる。一方でリチウムの総モル濃度が低すぎると、電解液の電気伝導率が不十分の場合があり、一方、濃度が高すぎると、粘度上昇のため電気伝導度が低下する場合があり、電池性能が低下する場合がある。
電気二重層キャパシタ用電解液の電解質塩としては、アンモニウム塩が好ましい。
上記アンモニウム塩としては、以下(IIa)~(IIe)が挙げられる。
(IIa)テトラアルキル4級アンモニウム塩
一般式(IIa):
Figure JPOXMLDOC01-appb-C000032
(式中、R1a、R2a、R3a及びR4aは同じか又は異なり、いずれも炭素数1~6のエーテル結合を含んでいてもよいアルキル基;Xはアニオン)で示されるテトラアルキル4級アンモニウム塩が好ましく例示できる。また、このアンモニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
テトラアルキル4級アンモニウム塩の好ましい具体例としては、一般式(IIa-1):
Figure JPOXMLDOC01-appb-C000033
(式中、R1a、R2a及びXは前記と同じ;x及びyは同じか又は異なり0~4の整数で、かつx+y=4)で示されるテトラアルキル4級アンモニウム塩、一般式(IIa-2):
Figure JPOXMLDOC01-appb-C000034
(式中、R5aは炭素数1~6のアルキル基;R6aは炭素数1~6の2価の炭化水素基;R7aは炭素数1~4のアルキル基;zは1又は2;Xはアニオン)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩、
などがあげられる。アルキルエーテル基を導入することにより、粘性の低下を図ることができる。
アニオンXは、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、例えばAlCl 、BF 、PF 、AsF 、TaF 、I、SbF が挙げられる。有機アニオンとしては、例えばCFCOO、CFSO 、(CFSO、(CSOなどが挙げられる。
これらのうち、耐酸化性やイオン解離性が良好な点から、BF 、PF 、AsF 、SbF が好ましい。
テトラアルキル4級アンモニウム塩の好適な具体例としては、EtNBF、EtNClO、EtNPF、EtNAsF、EtNSbF、EtNCFSO、EtN(CFSON、EtNCSO、EtMeNBF、EtMeNClO、EtMeNPF、EtMeNAsF、EtMeNSbF、EtMeNCFSO、EtMeN(CFSON、EtMeNCSO、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩などが挙げられ、特に、EtNBF、EtNPF、EtNSbF、EtNAsF、EtMeNBF、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩が好ましい。
(IIb)スピロ環ビピロリジニウム塩
一般式(IIb-1):
Figure JPOXMLDOC01-appb-C000035
(式中、R8a及びR9aは同じか又は異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n1は0~5の整数;n2は0~5の整数)で示されるスピロ環ビピロリジニウム塩、一般式(IIb-2):
Figure JPOXMLDOC01-appb-C000036
(式中、R10a及びR11aは同じか又は異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n3は0~5の整数;n4は0~5の整数)で示されるスピロ環ビピロリジニウム塩、又は、一般式(IIb-3):
Figure JPOXMLDOC01-appb-C000037
(式中、R12aおよびR13aは同じかまたは異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n5は0~5の整数;n6は0~5の整数)で示されるスピロ環ビピロリジニウム塩が好ましく挙げられる。また、このスピロ環ビピロリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)の場合と同じである。なかでも、解離性が高く、高電圧下での内部抵抗が低い点から、BF-、PF-、(CFSON-または(CSON-が好ましい。
スピロ環ビピロリジニウム塩の好ましい具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000038
などが挙げられる。
このスピロ環ビピロリジニウム塩は溶媒への溶解性、耐酸化性、イオン伝導性の点で優れている。
(IIc)イミダゾリウム塩
一般式(IIc):
Figure JPOXMLDOC01-appb-C000039
(式中、R14a及びR15aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)
で示されるイミダゾリウム塩が好ましく例示できる。また、このイミダゾリウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
イミダゾリウム塩の好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000040
などがあげられる。
このイミダゾリウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IId):N-アルキルピリジニウム塩
一般式(IId):
Figure JPOXMLDOC01-appb-C000041
(式中、R16aは炭素数1~6のアルキル基;Xはアニオン)
で示されるN-アルキルピリジニウム塩が好ましく例示できる。また、このN-アルキルピリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
N-アルキルピリジニウム塩の好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000042
などが挙げられる。
このN-アルキルピリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IIe)N,N-ジアルキルピロリジニウム塩
一般式(IIe):
Figure JPOXMLDOC01-appb-C000043
(式中、R17a及びR18aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)
で示されるN,N-ジアルキルピロリジニウム塩が好ましく例示できる。また、このN,N-ジアルキルピロリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4の含フッ素アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
N,N-ジアルキルピロリジニウム塩の好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
などが挙げられる。
このN,N-ジアルキルピロリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
これらのアンモニウム塩のうち、(IIa)、(IIb)及び(IIc)が溶解性、耐酸化性、イオン伝導性が良好な点で好ましく、さらには
Figure JPOXMLDOC01-appb-C000046
(式中、Meはメチル基;Etはエチル基;X、x、yは式(IIa-1)と同じ)
が好ましい。
また、電気二重層キャパシタ用電解質塩として、リチウム塩を用いてもよい。リチウム塩としては、例えば、LiPF、LiBF、LiAsF、LiSbF、LiN(SOが好ましい。
更に容量を向上させるために、マグネシウム塩を用いてもよい。マグネシウム塩としては、例えば、Mg(ClO、Mg(OOC等が好ましい。
電解質塩が上記アンモニウム塩である場合、濃度は、0.6モル/リットル以上であることが好ましい。0.6モル/リットル未満であると、低温特性が悪くなるだけでなく、初期内部抵抗が高くなってしまう。上記電解質塩の濃度は、0.9モル/リットル以上であることがより好ましい。
上記濃度の上限は、低温特性の点で、3.0モル/リットル以下であることが好ましく、2.0モル/リットル以下であることがより好ましい。
上記アンモニウム塩が、4フッ化ホウ酸トリエチルメチルアンモニウム(TEMABF)の場合、その濃度は、低温特性に優れる点で、0.8~1.9モル/リットルであることが好ましい。
また、4フッ化ホウ酸スピロビピロリジニウム(SBPBF)の場合は、0.7~2.0モル/リットルであることが好ましい。
本発明の電解液は、更に、重量平均分子量が2000~4000であり、末端に-OH、-OCOOH、又は、-COOHを有するポリエチレンオキシドを含有することが好ましい。
このような化合物を含有することにより、電極界面の安定性が向上し、電池特性を向上させることができる。
上記ポリエチレンオキシドとしては、例えば、ポリエチレンオキシドモノオール、ポリエチレンオキシドカルボン酸、ポリエチレンオキシドジオール、ポリエチレンオキシドジカルボン酸、ポリエチレンオキシドトリオール、ポリエチレンオキシドトリカルボン酸等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
なかでも、電池特性がより良好となる点で、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールの混合物、及び、ポリエチレンオキシドカルボン酸とポリエチレンオキシドジカルボン酸の混合物であることが好ましい。
上記ポリエチレンオキシドの重量平均分子量が小さすぎると、酸化分解されやすくなるおそれがある。上記重量平均分子量は、3000~4000がより好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により測定することができる。
上記ポリエチレンオキシドの含有量は、電解液中1×10-6~1×10-2mol/kgであることが好ましい。上記ポリエチレンオキシドの含有量が多すぎると、電池特性を損なうおそれがある。
上記ポリエチレンオキシドの含有量は、5×10-6mol/kg以上であることがより好ましい。
本発明の電解液は、更に、添加剤として、不飽和環状カーボネート、フッ素化飽和環状カーボネート、及び、環状スルホン酸化合物からなる群より選択される少なくとも1種を含有していることが好ましい。これらの化合物を含有することにより、電池特性の低下を抑制することができる。
上記不飽和環状カーボネートは、不飽和結合を含む環状カーボネート、すなわち、環状カーボネートであって、分子内に炭素-炭素不飽和結合を少なくとも1つ有するものである。具体的には、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート(VEC)、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニレンエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。このうち、ビニレンカーボネート、4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート又は4,5-ジビニルエチレンカーボネートが好ましく、ビニレンカーボネート又は4-ビニルエチレンカーボネートが特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
また、不飽和環状カーボネートとしては、フッ素化不飽和環状カーボネートも好適に用いることができる。
フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上あれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4-フルオロビニレンカーボネート、4-フルオロ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
フッ素化不飽和環状カーボネートの分子量は特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、500以下である。この範囲であれば、電解液に対するフッ素化不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
上記不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記フッ素化飽和環状カーボネートとしては、上記溶媒に使用可能なフッ素化飽和環状カーボネートとして例示した化合物を挙げることができる。
上記環状スルホン酸化合物としては、例えば、1,3-プロパンスルトン、1,4-ブタンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン等が挙げられる。
なかでも、高温特性を向上させることができる点で、本発明の電解液は、1,3-プロパンスルトン、及び/又は、1,4-ブタンスルトンを含有することが好ましい。
上記不飽和環状カーボネート、フッ素化飽和環状カーボネート、及び、環状スルホン酸化合物からなる群より選択される少なくとも1種の化合物を添加剤として用いる場合、その含有量は、電解液中0.1~10質量%であることが好ましく、1質量%以上がより好ましく、5質量%以下がより好ましい。
本発明の電解液は、本発明の効果を損なわない範囲で、環状及び鎖状カルボン酸エステル、エーテル化合物、窒素含有化合物、ホウ素含有化合物、有機ケイ素含有化合物、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性及びレート特性改善剤、又は、過充電防止剤等の他の溶媒又は添加剤を更に含有してもよい。
上記環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3~12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イソプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルの配合量は、通常、溶媒100質量%中、好ましくは0.1質量%以上、より好ましくは1質量%以上である。この範囲であると、電解液の電気伝導率を改善し、電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは10質量%以下、より好ましくは5質量%以下である。このように上限を設定することにより、電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、電解液電池の大電流放電特性を良好な範囲としやすくする。
また、上記環状カルボン酸エステルとしては、フッ素化環状カルボン酸エステル(含フッ素ラクトン)も好適に用いることができる。含フッ素ラクトンとしては、例えば、下記式(C):
(式中、X15~X20は同じか又は異なり、いずれも-H、-F、-Cl、-CH又はフッ素化アルキル基;ただし、X15~X20の少なくとも1つはフッ素化アルキル基である)で示される含フッ素ラクトンが挙げられる。
15~X20におけるフッ素化アルキル基としては、例えば、-CFH、-CFH、-CF、-CHCF、-CFCF、-CHCFCF、-CF(CF等が挙げられ、耐酸化性が高く、安全性向上効果がある点から-CHCF、-CHCFCFが好ましい。
15~X20の少なくとも1つがフッ素化アルキル基であれば、-H、-F、-Cl、-CH又はフッ素化アルキル基は、X15~X20の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1~3箇所、更には1~2箇所である。
フッ素化アルキル基の置換位置は特に限定されないが、合成収率が良好なことから、X17及び/又はX18が、特にX17又はX18がフッ素化アルキル基、なかでも-CHCF、-CHCFCFであることが好ましい。フッ素化アルキル基以外のX15~X20は、-H、-F、-Cl又はCHであり、特に電解質塩の溶解性が良好な点から-Hが好ましい。
含フッ素ラクトンとしては、上記式で示されるもの以外にも、例えば、下記式(D):
Figure JPOXMLDOC01-appb-C000048
(式中、A及びBはいずれか一方がCX2627(X26及びX27は同じか又は異なり、いずれも-H、-F、-Cl、-CF、-CH又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rf12はエーテル結合を有していてもよいフッ素化アルキル基又はフッ素化アルコキシ基;X21及びX22は同じか又は異なり、いずれも-H、-F、-Cl、-CF又はCH;X23~X25は同じか又は異なり、いずれも-H、-F、-Cl又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0又は1)で示される含フッ素ラクトン等も挙げられる。
式(D)で示される含フッ素ラクトンとしては、下記式(E):
Figure JPOXMLDOC01-appb-C000049
(式中、A、B、Rf12、X21、X22及びX23は式(D)と同じである)で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましく挙げられ、更には、AとBの組合せにより、下記式(F):
Figure JPOXMLDOC01-appb-C000050
(式中、Rf12、X21、X22、X23、X26及びX27は式(D)と同じである)で示される含フッ素ラクトンと、下記式(G):
Figure JPOXMLDOC01-appb-C000051
(式中、Rf12、X21、X22、X23、X26及びX27は式(D)と同じである)で示される含フッ素ラクトンがある。
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000052
等が挙げられる。
フッ素化環状カルボン酸エステルを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
上記鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3~7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、プロピオン酸-n-ブチル、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が粘度低下によるイオン伝導度の向上の点から好ましい。
また、フッ素化鎖状カルボン酸エステル(含フッ素エステル)も好適に用いることができる。含フッ素エステルとしては、下記式(H):
Rf10COORf11    (H)
(式中、Rf10は炭素数1~2のフッ素化アルキル基、Rf11は炭素数1~4のフッ素化アルキル基)で示されるフッ素化鎖状カルボン酸エステルが、難燃性が高く、かつ他溶媒との相溶性や耐酸化性が良好な点から好ましい。
Rf10としては、例えばCF-、CFCF-、HCFCF-、HCF-、CHCF-、CFCH-等が例示でき、なかでもCF-、CFCF-が、レート特性が良好な点から特に好ましい。
Rf11としては、例えば-CF、-CFCF、-CH(CF、-CHCF、-CHCHCF、-CHCFCFHCF、-CH、-CHCFCFH、-CHCH、-CHCFCF、-CHCFCFCF等が例示でき、なかでも-CHCF、-CH(CF、-CH、-CHCFCFHが、他溶媒との相溶性が良好な点から特に好ましい。
フッ素化鎖状カルボン酸エステルの具体例としては、例えばCFC(=O)OCHCF、CFC(=O)OCHCHCF、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCH(CF等の1種又は2種以上が例示でき、なかでもCFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CFが、他溶媒との相溶性及びレート特性が良好な点から特に好ましい。
上記エーテル化合物としては、炭素数3~10の鎖状エーテル、及び炭素数3~6の環状エーテルが好ましい。
炭素数3~10の鎖状エーテルとしては、ジエチルエーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、ジエトキシメタン、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
また、上記エーテル化合物としては、フッ素化エーテルも好適に用いることができる。
上記フッ素化エーテルとしては、下記一般式(I):
Rf13-O-Rf14    (I)
(式中、Rf13及びRf14は同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフッ素化アルキル基である。ただし、Rf13及びRf14の少なくとも一方は、フッ素化アルキル基である。)で表されるフッ素化エーテル(I)が挙げられる。フッ素化エーテル(I)を含有させることにより、電解液の難燃性が向上するとともに、高温高電圧での安定性、安全性が向上する。
上記一般式(I)においては、Rf13及びRf14の少なくとも一方が炭素数1~10のフッ素化アルキル基であればよいが、電解液の難燃性及び高温高電圧での安定性、安全性を一層向上させる観点から、Rf13及びRf14が、ともに炭素数1~10のフッ素化アルキル基であることが好ましい。この場合、Rf13及びRf14は同じであってもよく、互いに異なっていてもよい。
なかでも、Rf13及びRf14が、同じか又は異なり、Rf13が炭素数3~6のフッ素化アルキル基であり、かつ、Rf14が炭素数2~6のフッ素化アルキル基であることが好ましい。
Rf13およびRf14の合計炭素数が少な過ぎるとフッ素化エーテルの沸点が低くなりすぎ、また、Rf13又はRf14の炭素数が多過ぎると、電解質塩の溶解性が低下し、他の溶媒との相溶性にも悪影響が出始め、また粘度が上昇するためレート特性(粘性)が低減する。Rf13の炭素数が3又は4、Rf14の炭素数が2又は3のとき、沸点およびレート特性に優れる点で有利である。
上記フッ素化エーテル(I)は、フッ素含有率が40~75質量%であることが好ましい。この範囲のフッ素含有率を有するとき、不燃性と相溶性のバランスに特に優れたものになる。また、耐酸化性、安全性が良好な点からも好ましい。
上記フッ素含有率の下限は、45質量%がより好ましく、50質量%が更に好ましく、55質量%が特に好ましい。上限は70質量%がより好ましく、66質量%が更に好ましい。
なお、フッ素化エーテル(I)のフッ素含有率は、フッ素化エーテル(I)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化エーテル(I)の分子量}×100(%)により算出した値である。
Rf13としては、例えば、CFCFCH-、CFCFHCF-、HCFCFCF-、HCFCFCH-、CFCFCHCH-、CFCFHCFCH-、HCFCFCFCF-、HCFCFCFCH-、HCFCFCHCH-、HCFCF(CF)CH-等が挙げられる。また、Rf14としては、例えば、-CHCFCF、-CFCFHCF、-CFCFCFH、-CHCFCFH、-CHCHCFCF、-CHCFCFHCF、-CFCFCFCFH、-CHCFCFCFH、-CHCHCFCFH、-CHCF(CF)CFH、-CFCFH、-CHCFH、-CFCH等が挙げられる。
上記フッ素化エーテル(I)の具体例としては、例えばHCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CH等が挙げられる。
なかでも、片末端又は両末端にHCF-又はCFCFH-を含むものが分極性に優れ、沸点の高いフッ素化エーテル(I)を与えることができる。フッ素化エーテル(I)の沸点は、67~120℃であることが好ましい。より好ましくは80℃以上、更に好ましくは90℃以上である。
このようなフッ素化エーテル(I)としては、例えば、CFCHOCFCFHCF、CFCFCHOCFCFHCF、HCFCFCHOCFCFHCF、HCFCFCHOCHCFCFH、CFCFHCFCHOCFCFHCF、HCFCFCHOCFCFH、CFCFCHOCFCFH等の1種又は2種以上が挙げられる。
なかでも、高沸点、他の溶媒との相溶性や電解質塩の溶解性が良好な点で有利なことから、HCFCFCHOCFCFHCF(沸点106℃)、CFCFCHOCFCFHCF(沸点82℃)、HCFCFCHOCFCFH(沸点92℃)及びCFCFCHOCFCFH(沸点68℃)からなる群より選択される少なくとも1種であることが好ましく、HCFCFCHOCFCFHCF(沸点106℃)及びHCFCFCHOCFCFH(沸点92℃)からなる群より選択される少なくとも1種であることがより好ましい。
炭素数3~6の環状エーテルとしては、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコール-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離度を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
上記窒素含有化合物としては、ニトリル、含フッ素ニトリル、カルボン酸アミド、含フッ素カルボン酸アミド、スルホン酸アミド及び含フッ素スルホン酸アミド等が挙げられる。また、1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサジリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等も使用できる。
上記ホウ素含有化合物としては、例えば、トリメチルボレート、トリエチルボレート等のホウ酸エステル、ホウ酸エーテル、及び、ホウ酸アルキル等が挙げられる。
上記有機ケイ素含有化合物としては、例えば、(CH-Si、(CH-Si-Si(CH等が挙げられる。
上記不燃(難燃)化剤としては、リン酸エステルやホスファゼン系化合物が挙げられる。上記リン酸エステルとしては、例えば、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステル等が挙げられる。なかでも、少量で不燃効果を発揮できる点で、含フッ素アルキルリン酸エステルであることが好ましい。
上記含フッ素アルキルリン酸エステルとしては、具体的には、特開平11-233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11-283669号公報に記載されたアルキルリン酸エステル、又は、含フッ素トリアルキルリン酸エステル等が挙げられる。
上記不燃(難燃)化剤としては、(CHO)P=O、(CFCHO)P=O等が好ましい。
上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、サイクル特性、レート特性が良好となる点から、フッ素原子を含むものであることが好ましい。
このようなフッ素原子を含む界面活性剤としては、例えば、下記式(J):
Rf15COO    (J)
(式中、Rf15は炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)で表される含フッ素カルボン酸塩や、下記式(K):
Rf16SO     (K)
(式中、Rf16は炭素数3~10のエーテル結合を含んでいてもよい含フッ素アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもHまたは炭素数が1~3のアルキル基)である)で表される含フッ素スルホン酸塩等が好ましい。
上記界面活性剤の含有量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させることができる点から、電解液中0.01~2質量%であることが好ましい。
上記高誘電化添加剤としては、例えば、スルホラン、メチルスルホラン、γ-ブチロラクトン、γ-バレロラクトン、アセトニトリル、プロピオニトリル等が挙げられる。
上記サイクル特性及びレート特性改善剤としては、例えば、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
上記過充電防止剤としては、過充電等のときに電池の破裂・発火を抑制することができる点で、芳香環を有する過充電防止剤であることが好ましい。上記芳香環を有する過充電防止剤としては、例えば、シクロヘキシルベンゼン、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ベンゾフラン、ジベンゾフラン、ジクロロアニリン、トルエン等の芳香族化合物;ヘキサフルオロベンゼン、フルオロベンゼン、2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の芳香族化合物のフッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt-ブチルベンゼン又はt-アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
上記過充電防止剤の含有量は、過充電等の場合に電池の破裂や発火を防止できる点で、電解液中0.1~5質量%であることが好ましい。
本発明の電解液は、本発明の効果を損なわない範囲で、公知のその他の助剤を更に含有してもよい。上記公知のその他の助剤としては、例えば、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタン酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等のスピロ化合物;エチレンサルファイト、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミドといった鎖状スルホン、含フッ素鎖状スルホン、鎖状スルホン酸エステル、含フッ素鎖状スルホン酸エステル、環状スルホン、含フッ素環状スルホン、スルホン酸ハライド及び含フッ素スルホン酸ハライド等の含硫黄化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物等の含フッ素芳香族化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
また、本発明の電解液は、更に高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。
そのほか、本発明の電解液は、特願2004-301934号明細書に記載されているイオン伝導性化合物も含んでいてもよい。
このイオン伝導性化合物は、式(1-1):
A-(D)-B    (1-1)
[式中、Dは式(2-1):
-(D1)-(FAE)-(AE)-(Y)-    (2-1)
(式中、D1は、式(2a):
Figure JPOXMLDOC01-appb-C000053
(式中、Rfは架橋性官能基を有していてもよい含フッ素エーテル基;R10はRfと主鎖を結合する基又は結合手)で示される側鎖に含フッ素エーテル基を有するエーテル単位;
FAEは、式(2b):
Figure JPOXMLDOC01-appb-C000054
(式中、Rfaは水素原子、架橋性官能基を有していてもよいフッ素化アルキル基;R11はRfaと主鎖を結合する基又は結合手)で示される側鎖にフッ素化アルキル基を有するエーテル単位;
AEは、式(2c):
Figure JPOXMLDOC01-appb-C000055
(式中、R13は水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基又は架橋性官能基を有していてもよい芳香族炭化水素基;R12はR13と主鎖を結合する基又は結合手)で示されるエーテル単位;
Yは、式(2d-1)~(2d-3):
Figure JPOXMLDOC01-appb-C000056
の少なくとも1種を含む単位;
nは0~200の整数;mは0~200の整数;pは0~10000の整数;qは1~100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない);
A及びBは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、-COOH基、-OR(Rは水素原子又はフッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は-COOH基、-OR、エステル基及びカーボネート基ではない)]で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
本発明の電解液には必要に応じて、さらに他の添加剤を配合してもよい。他の添加剤としては、例えば、金属酸化物、ガラス等が挙げられる。
本発明の電解液は、上述した成分を用いて、任意の方法で調製するとよい。
本発明の電解液は、二次電池等の電気化学デバイスに好適に適用することができる。このような本発明の電解液を備えた電気化学デバイス又は二次電池もまた、本発明の一つである。
上記電気化学デバイスとしては、リチウムイオン二次電池、キャパシタ(電気二重層キャパシタ)、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ等が挙げられ、リチウムイオン二次電池、電気二重層キャパシタが好適である。
以下に、本発明の電気化学デバイス又は二次電池の例として、リチウムイオン二次電池の場合を説明する。
上記リチウムイオン二次電池は、正極、負極、及び、上述の電解液を備える。
<正極>
正極は、正極の材料である正極活物質を含む正極活物質層と、集電体とから構成される。
上記正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム含有遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。なかでも、正極活物質としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましい。
上記リチウム含有遷移金属複合酸化物としては、例えば、
式(L):LiMn2-b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、
式(M):LiNi1-c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、又は、
式(N):LiCo1-d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が挙げられる。
なかでも、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、LiNi0.5Mn1.5またはLiNi1/3Co1/3Mn1/3が好ましい。
その他の上記正極活物質として、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiV等が挙げられる。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、さらに好ましくは3.5g/cm以下である。
なお、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると正極活物質層内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、さらに好ましくは0.3m/g以上であり、また、好ましくは50m/g以下、より好ましくは40m/g以下、さらに好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
上記リチウムイオン二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の1種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33などのLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤の50~99質量%が好ましく、80~99質量%がより好ましい。また、正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、エチレン-プロピレンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物、シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記高密度化は、ハンドプレス、ローラープレス等により行うことができる。正極活物質層の密度は、好ましくは1.5g/cm以上、より好ましくは2g/cm以上、さらに好ましくは2.2g/cm以上であり、また、好ましくは5g/cm以下、より好ましくは4.5g/cm以下、さらに好ましくは4g/cm以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
本発明の電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
<負極>
負極は、負極活物質を含む負極活物質層と、集電体とから構成される。
上記負極活物質としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金;リチウム含有金属複合酸化物材料等を挙げることができる。これらの負極活物質は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましく、天然黒鉛、人造黒鉛、人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料、負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、負極活物質層が少なくとも2種以上の異なる配向性の炭素質が接する界面を有している炭素質材料、から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよくより好ましい。また、これらの炭素材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素剤、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶剤に溶解させた溶液及びこれらの炭化物等が挙げられる。
上記負極活物質として用いられる金属材料(但し、リチウムチタン複合酸化物を除く)としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として作動しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
具体的には、Si単体、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiOv(0<v≦2)、LiSiOあるいはスズ単体、SnSiO、LiSnO、MgSn、SnOw(0<w≦2)が挙げられる。
また、SiまたはSnを第1の構成元素とし、それに加えて第2、第3の構成元素を含む複合材料が挙げられる。第2の構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム及びジルコニウムのうち少なくとも1種である。第3の構成元素は、例えば、ホウ素、炭素、アルミニウム及びリンのうち少なくとも1種である。
特に、高い電池容量および優れた電池特性が得られることから、上記金属材料として、ケイ素またはスズの単体(微量の不純物を含んでよい)、SiOv(0<v≦2)、SnOw(0≦w≦2)、Si-Co-C複合材料、Si-Ni-C複合材料、Sn-Co-C複合材料、Sn-Ni-C複合材料が好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記)が好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
上記リチウムチタン複合酸化物としては、一般式(O):
LiTi    (O)
[一般式(O)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
で表される化合物であることが好ましい。
上記の一般式(O)で表わされる組成の中でも、
(i)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(ii)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(iii)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(i)ではLi4/3Ti5/3、(ii)ではLiTi、(iii)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。負極活物質に対する結着剤の割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅が好ましい。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚すぎると、電池全体の容量が低下し過ぎることがあり、逆に薄すぎると取扱いが困難になることがある。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。また、合金材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ましく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
<セパレータ>
上記リチウムイオン二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本発明の電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<電池設計>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、本発明の電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
上記リチウムイオン二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
なお、本発明の電解液を備える電気化学デバイス又は二次電池を備えるモジュールもまた、本発明の一つである。
本発明は、また、上述の電解液を備え、正極集電体及びこれと電気的に接続されている部分のうち電解液と接触する部分が、弁金属又はその合金で構成されていることを特徴とする二次電池でもある。上記二次電池は、リチウムイオン二次電池であることが好ましい。上記二次電池の構成としては、部分的に弁金属又はその合金を使用する以外は、上述したリチウムイオン二次電池の構成がそのまま適用できる。
上記弁金属としては、アルミニウム、チタン、タンタル、クロム等が挙げられる。上記正極集電体は、アルミニウム又はアルミニウムの合金で構成されていることがより好ましい。
上記二次電池は、上記正極集電体と電気的に接続されている部分のうち電解液と接触する部分についても、弁金属又はその合金で構成されていることが好ましい。特に、電池外装ケース、及び、上記電池外装ケースに収容されるリード線や安全弁などのうち正極集電体と電気的に接続されていて、かつ電解液と接触する部分は、弁金属又はその合金で構成することが好ましい。弁金属又はその合金により被覆したステンレスを使用してもよい。
本発明の電解液を用いた電気化学デバイスの例として、電気二重層キャパシタが挙げられる。
上記電気二重層キャパシタでは、正極及び負極の少なくとも一方は分極性電極であり、分極性電極及び非分極性電極としては特開平9-7896号公報に詳しく記載されている以下の電極が使用できる。
活性炭を主体とする分極性電極は、好ましくは大比表面積の不活性炭と電子伝導性を付与するカーボンブラック等の導電剤とを含むものである。分極性電極は種々の方法で形成することができる。例えば、活性炭粉末とカーボンブラックとフェノール系樹脂を混合し、プレス成形後不活性ガス雰囲気中及び水蒸気雰囲気中で焼成、賦活することにより、活性炭とカーボンブラックからなる分極性電極を形成できる。好ましくは、この分極性電極は集電体と導電性接着剤などで接合する。
また、活性炭粉末、カーボンブラック及び結合剤をアルコールの存在下で混練してシート状に成形し、乾燥して分極性電極とすることもできる。この結合剤には、例えばポリテトラフルオロエチレンが用いられる。また、活性炭粉末、カーボンブラック、結合剤及び溶媒を混合してスラリーとし、このスラリーを集電体の金属箔にコートし、乾燥して集電体と一体化された分極性電極とすることもできる。
活性炭を主体とする分極性電極を両極に用いて電気二重層キャパシタとしてもよいが、片側に非分極性電極を用いる構成、例えば、金属酸化物等の電池活物質を主体とする正極と、活性炭を主体とする分極性電極の負極とを組合せた構成、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする負極、又はリチウム金属やリチウム合金の負極と、活性炭を主体とする分極性電極とを組合せた構成も可能である。
また、活性炭に代えて又は併用して、カーボンブラック、グラファイト、膨張黒鉛、ポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラックなどの炭素質材料を用いてもよい。
非分極性電極としては、好ましくはリチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とするものとし、この炭素材料にリチウムイオンを吸蔵させたものを電極に使用する。この場合、電解質にはリチウム塩が使用される。この構成の電気二重層キャパシタによれば、さらに高い4Vを超える耐電圧が得られる。
電極の作製におけるスラリーの調製に用いる溶媒は結合剤を溶解するものが好ましく、結合剤の種類に合わせ、N-メチルピロリドン、ジメチルホルムアミド、トルエン、キシレン、イソホロン、メチルエチルケトン、酢酸エチル、酢酸メチル、フタル酸ジメチル、エタノール、メタノール、ブタノール又は水が適宜選択される。
分極性電極に用いる活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などがある。これらのうち大きい容量を得られる点で石油コークス系活性炭又はフェノール樹脂系活性炭を使用するのが好ましい。また、活性炭の賦活処理法には、水蒸気賦活処理法、溶融KOH賦活処理法などがあり、より大きな容量が得られる点で溶融KOH賦活処理法による活性炭を使用するのが好ましい。
分極性電極に用いる好ましい導電剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、金属ファイバ、導電性酸化チタン、酸化ルテニウムがあげられる。分極性電極に使用するカーボンブラック等の導電剤の混合量は、良好な導電性(低い内部抵抗)を得るように、また多すぎると製品の容量が減るため、活性炭との合計量中1~50質量%とするのが好ましい。
また、分極性電極に用いる活性炭としては、大容量で低内部抵抗の電気二重層キャパシタが得られるように、平均粒径が20μm以下で比表面積が1500~3000m/gの活性炭を使用するのが好ましい。また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極を構成するための好ましい炭素材料としては、天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛化ウィスカ、気層成長炭素繊維、フルフリルアルコール樹脂の焼成品又はノボラック樹脂の焼成品があげられる。
集電体は化学的、電気化学的に耐食性のあるものであればよい。活性炭を主体とする分極性電極の集電体としては、ステンレス、アルミニウム、チタン又はタンタルが好ましく使用できる。これらのうち、ステンレス又はアルミニウムが、得られる電気二重層キャパシタの特性と価格の両面において特に好ましい材料である。リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極の集電体としては、好ましくはステンレス、銅又はニッケルが使用される。
また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料にあらかじめリチウムイオンを吸蔵させるには、(1)粉末状のリチウムを、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料に混ぜておく方法、(2)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極上にリチウム箔を載せ、電極と電気的に接触させた状態で、この電極をリチウム塩を溶かした電解液中に浸漬することによりリチウムをイオン化させ、リチウムイオンを炭素材料中に取り込ませる方法、(3)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極をマイナス側に置き、リチウム金属をプラス側に置いてリチウム塩を電解質とする電解液中に浸漬し、電流を流して電気化学的に炭素材料中にリチウムをイオン化した状態で取り込ませる方法がある。
電気二重層キャパシタとしては、巻回型電気二重層キャパシタ、ラミネート型電気二重層キャパシタ、コイン型電気二重層キャパシタなどが一般に知られており、本発明の電気二重層キャパシタもこれらの形式とすることができる。
例えば巻回型電気二重層キャパシタは、集電体と電極層の積層体(電極)からなる正極及び負極を、セパレータを介して巻回して巻回素子を作製し、この巻回素子をアルミニウム製などのケースに入れ、電解液、好ましくは非水系電解液を満たしたのち、ゴム製の封口体で封止して密封することにより組み立てられる。
セパレータとしては、従来公知の材料と構成のものが本発明においても使用できる。例えば、ポリエチレン多孔質膜、ポリプロピレン繊維やガラス繊維、セルロース繊維の不織布などがあげられる。
また、公知の方法により、電解液とセパレータを介してシート状の正極及び負極を積層したラミネート型電気二重層キャパシタや、ガスケットで固定して電解液とセパレータを介して正極及び負極をコイン型に構成したコイン型電気二重層キャパシタとすることもできる。
このように本発明の電解液を用いれば、IV抵抗値(内部抵抗)が小さく、サイクル特性にも優れた二次電池や、その二次電池を用いたモジュールや、電気二重層キャパシタを好適に得ることができる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実験1(4.2V級リチウム電池評価)
以下のようにして表1及び2に記載の電解液を調製し、得られた各電解液を用いてリチウムイオン二次電池を作製し、それぞれのIV抵抗を評価した。
(電解液の調製)
乾燥アルゴン雰囲気下で、鎖状カーボネートと環状カーボネートとを表1及び2に示す割合で混合し、この溶液に、乾燥した添加剤1及び添加剤2を表1及び2に示す量添加し、更に、乾燥したLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。添加剤1及び2の配合割合は、鎖状カーボネート及び環状カーボネートに対する質量%で表した。
なお、表中の化合物は以下の通りである。
鎖状カーボネート
a:ジメチルカーボネート
b:エチルメチルカーボネート
c:ジエチルカーボネート
d:CFCHOCOOCH
e:CFCHOCOOCHCF
環状カーボネート
EC:エチレンカーボネート
FEC:4-フルオロ-1,3-ジオキソラン-2-オン
添加剤1(化合物(X))
F:COSOLi
G:CHCHCHOSOLi
H:CHCHCHCHOSOLi
I:CH(CH11OSONa
J:(CHNSOLi
K:(CNSOLi
添加剤2(有機ケイ素化合物)
L:リン酸トリス(トリメチルシリル)
M:亜リン酸トリス(トリメチルシリル)
N:ホウ酸トリス(トリメチルシリル)
O:トリメチルシリルフルオライド
P:トリエチルシリルフルオライド
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、これらを水溶媒中で混合してスラリー状とした負極合剤スラリーを準備した。負極活物質、増粘剤、結着剤の固形分比は、97.6/1.2/1.2(質量%比)とした。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(正極の作製)
正極活物質としてLiCoO、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN-メチル-2-ピロリドンディスパージョンを用い、これらを混合してスラリー状とした正極合剤スラリーを準備した。正極活物質、導電材、結着剤の固形分比は、92/3/5(質量%比)とした。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを、負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表1及び2に記載の電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(充放電処理)
上記、作成した電池について、充放電処理を行った。具体的には、25℃の環境下において、0.2Cの充電レート(定電流)で正負極端子間の電圧が4.2Vに到達するまで定電流充電(CC充電)を行った後、電流値が0.02Cになるまで定電圧充電(CV充電)を行った。そして、引き続き0.2Cの放電レートで正負極端子間の電圧が3.0Vに到達するまでCC放電を行いすべての電池で放電容量が理論容量通り得られていることを確認した。
<IV抵抗>
温度25℃で、充電深度(SOC)が20%の状態までCC充電を行った。SOC20%に調整した各電池に対し、10Cの放電レートで3VまでCC放電を行い、放電から10秒間の電圧降下を測定した。測定された電圧降下の値(V)を、対応する電流値で除してIV抵抗(Ω)を算出し、その平均値をIV抵抗とした。
なお、表1及び2のIV抵抗の記載については比較例1の電池のIV抵抗を100とし相対比で表す。
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
実験2(4.9V級リチウム電池評価)
以下のようにして表3及び4記載の電解液を調製し、得られた各電解液を用いてリチウムイオン二次電池を作製し、それぞれのIV抵抗を評価した。
(電解液の調製)
乾燥アルゴン雰囲気下で、鎖状カーボネートと環状カーボネートとを表3及び4に示す割合で混合し、この溶液に、乾燥した添加剤1及び添加剤2を表3及び4に示す量添加し、更に、乾燥したLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。添加剤1及び2の配合割合は、鎖状カーボネート及び環状カーボネートに対する質量%で表した。
表3及び4中の各成分は、上述のとおりである。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、これらを水溶媒中で混合してスラリー状とした負極合剤スラリーを準備した。負極活物質、増粘剤、結着剤の固形分比は、97.6/1.2/1.2(質量%比)とした。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(正極の作製)
正極活物質としてLiNi0.5Mn1.5、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN-メチル-2-ピロリドンディスパージョンを用い、これらを混合してスラリー状とした正極合剤スラリーを準備した。正極活物質、導電材、結着剤の固形分比は、92/3/5(質量%比)とした。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを、負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、表3及び4に記載の電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
(充放電処理)
上記、作成した電池について、充放電処理を行った。具体的には、25℃の環境下において、0.2Cの充電レート(定電流)で正負極端子間の電圧が4.9Vに到達するまで定電流充電(CC充電)を行った後、電流値が0.02Cになるまで定電圧充電(CV充電)を行った。そして、引き続き0.2Cの放電レートで正負極端子間の電圧が3.0Vに到達するまでCC放電を行い放電容量がすべての電池で理論容量通り得られていることを確認した。
<IV抵抗>
温度25℃で、SOCが20%の状態までCC充電を行った。SOC20%に調整した各電池に対し、10Cの放電レートで3VまでCC放電を行い、放電から10秒間の電圧降下を測定した。測定された電圧降下の値(V)を、対応する電流値で除してIV抵抗(Ω)を算出し、その平均値をIV抵抗とした。
なお、表3及び4のIV抵抗の記載については比較例5の電池のIV抵抗を100とし相対比で表す。
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
実験3(4.9V級リチウム電池評価)
以下のようにして表5記載の電解液を調製し、得られた各電解液を用いてリチウムイオン二次電池を作製し、それぞれのサイクル特性を評価した。
(電解液の調製)
乾燥アルゴン雰囲気下で、鎖状カーボネートと環状カーボネートとを表5に示す割合で混合し、この溶液に、乾燥した添加剤1及び添加剤2を表5に示す量添加し、更に、乾燥したLiPFを1.0モル/リットルの濃度となるように添加して、非水電解液を得た。添加剤1及び2の配合割合は、鎖状カーボネート及び環状カーボネートに対する質量%で表した。
表5中の各成分は、上述のとおりである。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、これらを水溶媒中で混合してスラリー状とした負極合剤スラリーを準備した。負極活物質、増粘剤、結着剤の固形分比は、97.6/1.2/1.2(質量%比)とした。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮形成して、負極とした。
(正極の作製)
正極活物質としてLiNi0.5Mn1.5、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN-メチル-2-ピロリドンディスパージョンを用い、これらを混合してスラリー状とした正極合剤スラリーを準備した。正極活物質、導電材、結着剤の固形分比は、92/3/5(質量%比)とした。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(リチウムイオン二次電池の作製)
ステンレス鋼製の正極缶に正極を収容し、その上に非水電解液を含浸させたセパレーター(ポリプロピレンの微孔フイルム)及び負極を順次載置した。この正極缶とステンレス鋼製の封孔板とを、絶縁性のガスケットを介してかしめて密封し、コイン型電池を製作した。なお、正極を収容する前にステンレス鋼製の正極缶の内面をアルミニウム箔で被覆して、非水電解液が正極缶に接触しないようにした。
(充放電処理)
上記、作成した電池について、充放電処理を行った。具体的には、25℃の環境下において、0.2Cの充電レート(定電流)で正負極端子間の電圧が4.9Vに到達するまで定電流充電(CC充電)を行った後、電流値が0.02Cになるまで定電圧充電(CV充電)を行った。そして、引き続き0.2Cの放電レートで正負極端子間の電圧が3.0Vに到達するまでCC放電を行い放電容量がすべての電池で理論容量通り得られていることを確認した。
<サイクル特性>
60℃において、0.2Cに相当する電流で4.9Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.2Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.2Cとはその1/5の電流値を表わす。その後、上記の条件で充放電を行い、初期容量に対し80%に達するまでサイクルを続け80%に達したサイクル数を表5に記載した。
Figure JPOXMLDOC01-appb-T000061
本発明の電解液は、リチウムイオン二次電池等の電気化学デバイス用の電解液として好適に利用できる。

Claims (11)

  1. 溶媒、
    電解質塩、
    一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群より選択される少なくとも1種の化合物(X)、並びに、
    一般式(3)で表される化合物及び一般式(4)で表される化合物からなる群より選択される少なくとも1種の有機ケイ素化合物
    を含有することを特徴とする電解液。
    一般式(1):R1111-SO11
    (但し、R11は、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルケニル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルキニル基、炭素数3~6のシクロアルキル基、炭素数3~6のシクロアルケニル基、又は、炭素数3~6のアルキルシリル基である。前記アルキル基、前記シクロアルキル基及び前記アルキルシリル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、環状構造を有していてもよく、エーテル結合又はチオエーテル結合を有してもよい。X11はO又はSであり、M11はLi、Na、K及びCsからなる群より選択される少なくとも1種である。)
    一般式(2):R2122N-SO21
    (但し、R21及びR22は、同じであるか又は異なって、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~6の直鎖状若しくは分岐鎖状アルケニル基、炭素数2~6の直鎖状若しくは分岐鎖状のアルキニル基、炭素数3~6のシクロアルキル基、炭素3~6のシクロアルケニル基、又は、炭素数3~6のアルキルシリル基である。前記アルキル基、前記シクロアルキル基及び前記アルキルシリル基は、炭素原子に結合した水素原子がハロゲン原子により置換されていてもよく、環状構造を有していてもよい。また、R21及びR22は互いに結合して環状構造を形成してもよい。M21はLi、Na、K及びCsからなる群より選択される少なくとも1種である。)
    一般式(3):(R31n31-M31-O-SiR323334
    (但し、M31は、金属原子、P、B又はP=Oを表わす。R31は、炭素数1~11のアルキルオキシ基、シリルオキシ基又は炭素数1~11のアルキルシリルオキシ基である。n31は、M31に結合するR31の個数を表わし、M31の酸化数-1又はM31の酸化数-3である。n31が2以上の場合、R31は同一でも異なってもよい。R32~R34は、同じであるか又は異なって、炭素数1~11のアルキル基、炭素数2~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。)
    一般式(4):R414243-Si-F
    (R41~R43は、同じであるか又は異なって、炭素数1~11のアルキル基、炭素数2~11のアルケニル基、炭素数1~11のアルキルオキシ基、または炭素数6~11のアリール基を表わす。)
  2. 一般式(1)において、R11は、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であり、X11はOであり、M11はLiである請求項1記載の電解液。
  3. 一般式(2)において、R21及びR22は、同じであるか又は異なって、炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数3~6のシクロアルキル基であり、M21はLiである請求項1又は2記載の電解液。
  4. 前記溶媒に対して0.001~5質量%の化合物(X)を含有する請求項1、2又は3記載の電解液。
  5. 前記溶媒に対して0.001~5質量%の有機ケイ素化合物を含有する請求項1、2、3又は4に記載の電解液。
  6. 溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート、非フッ素化鎖状カーボネート及びフッ素化鎖状カーボネートからなる群より選択される少なくとも1種を含む請求項1、2、3、4又は5記載の電解液。
  7. 電解質塩は、LiPF、LiBF、LiSbF、LiTaF、LiPO、FSOLi、CFSOLi、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、リチウムビスオキサラトボレート、リチウムジフルオロオキサラトボレート、リチウムテトラフルオロオキサラトフォスフェート、リチウムジフルオロビスオキサラトフォスフェート、LiBFCF、LiBF、LiPF(CF及びLiPF(Cからなる群より選択される少なくとも1種である請求項1、2、3、4、5又は6記載の電解液。
  8. 請求項1、2、3、4、5、6又は7記載の電解液を備えることを特徴とする電気化学デバイス。
  9. 請求項1、2、3、4、5、6又は7記載の電解液を備えることを特徴とする二次電池。
  10. 請求項1、2、3、4、5、6又は7記載の電解液を備え、正極集電体及びこれと電気的に接続されている部分のうち電解液と接触する部分が、弁金属又はその合金で構成されていることを特徴とする二次電池。
  11. 請求項8記載の電気化学デバイス、又は、請求項9若しくは10記載の二次電池を備えることを特徴とするモジュール。
PCT/JP2017/022243 2016-07-22 2017-06-16 電解液、電気化学デバイス、二次電池、及び、モジュール WO2018016245A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018528451A JP6787400B2 (ja) 2016-07-22 2017-06-16 電解液、電気化学デバイス、二次電池、及び、モジュール
US16/319,060 US20190214682A1 (en) 2016-07-22 2017-06-16 Electrolyte solution, electrochemical device, secondary battery, and module
PL17830765T PL3483973T3 (pl) 2016-07-22 2017-06-16 Roztwór elektrolitu, urządzenie elektrochemiczne, bateria akumulatorowa oraz moduł
CN201780045366.2A CN109643826B (zh) 2016-07-22 2017-06-16 电解液、电化学器件、二次电池和组件
EP21159886.7A EP3849009B1 (en) 2016-07-22 2017-06-16 Electrolyte solution, electrochemical device, secondary battery, and module
EP17830765.8A EP3483973B1 (en) 2016-07-22 2017-06-16 Electrolyte solution, electrochemical device, secondary battery, and module
CN202111158815.9A CN113903997B (zh) 2016-07-22 2017-06-16 电解液、电化学器件、二次电池和组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016144389 2016-07-22
JP2016-144389 2016-07-22

Publications (1)

Publication Number Publication Date
WO2018016245A1 true WO2018016245A1 (ja) 2018-01-25

Family

ID=60992098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022243 WO2018016245A1 (ja) 2016-07-22 2017-06-16 電解液、電気化学デバイス、二次電池、及び、モジュール

Country Status (7)

Country Link
US (1) US20190214682A1 (ja)
EP (2) EP3483973B1 (ja)
JP (1) JP6787400B2 (ja)
CN (2) CN113903997B (ja)
HU (2) HUE057628T2 (ja)
PL (2) PL3849009T3 (ja)
WO (1) WO2018016245A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003776A1 (ja) * 2017-06-30 2019-01-03 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール
CN112136242A (zh) * 2018-05-14 2020-12-25 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件
JP2022548140A (ja) * 2020-06-05 2022-11-16 寧徳新能源科技有限公司 電気化学装置及び電子装置
US11631894B2 (en) 2017-06-30 2023-04-18 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, secondary cell, and module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787401B2 (ja) 2016-07-22 2020-11-18 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池、及び、モジュール
US10923770B2 (en) * 2016-12-02 2021-02-16 Nec Corporation Lithium ion secondary battery
EP3544110B1 (en) 2016-12-20 2023-12-20 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
JP6696591B2 (ja) * 2016-12-27 2020-05-20 ダイキン工業株式会社 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
CN111900470B (zh) * 2020-05-15 2021-08-27 浙江锂威能源科技有限公司 一种多功能高电压锂离子电池电解液及高电压锂离子电池
CN112952193B (zh) * 2021-03-23 2022-04-01 广东聚圣科技有限公司 一种凝胶态电解质、制备方法及锂离子电池的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087459A (ja) * 2002-06-25 2004-03-18 Mitsubishi Chemicals Corp 非水電解液二次電池
JP2007173113A (ja) * 2005-12-22 2007-07-05 Gs Yuasa Corporation:Kk 非水電解質二次電池
CN101867065A (zh) * 2010-06-21 2010-10-20 张家港市国泰华荣化工新材料有限公司 一种阻燃型电解质溶液及其应用
JP2015072856A (ja) * 2013-10-04 2015-04-16 旭化成株式会社 非水蓄電デバイス用電解液及びリチウムイオン二次電池
WO2016009923A1 (ja) * 2014-07-16 2016-01-21 ダイキン工業株式会社 電解液及び硫酸エステル塩の製造方法
JP2016035820A (ja) * 2014-08-01 2016-03-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9007104D0 (en) 1990-03-29 1990-05-30 Dowty Electronic Components A battery and a method of manufacture therefor
US5296318A (en) 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
JPH08222270A (ja) 1994-12-13 1996-08-30 Japan Energy Corp イオン伝導体
JP3496338B2 (ja) 1995-06-16 2004-02-09 旭硝子株式会社 電気二重層キャパシタ
JPH10294131A (ja) 1997-04-18 1998-11-04 Asahi Glass Co Ltd ポリマー電解質を有するリチウム電池
JPH1135765A (ja) 1997-07-24 1999-02-09 Sharp Corp 高分子固体電解質とその製造方法
JP3841127B2 (ja) 1997-09-16 2006-11-01 株式会社ジーエス・ユアサコーポレーション ゲル電解質
JP4568920B2 (ja) * 1999-01-18 2010-10-27 三菱化学株式会社 非水電解液二次電池及びそれに用いる非水電解液
JP2002100405A (ja) 2000-09-20 2002-04-05 Hitachi Chem Co Ltd ゲル状高分子固体電解質用樹脂組成物およびゲル状高分子固体電解質
JP2004039510A (ja) * 2002-07-05 2004-02-05 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP4450550B2 (ja) * 2002-11-21 2010-04-14 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP2004301934A (ja) 2003-03-28 2004-10-28 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置の製造方法
JP2005293962A (ja) * 2004-03-31 2005-10-20 Sony Corp 電解質用組成物、高分子電解質およびそれを用いた電池
KR100804696B1 (ko) * 2006-11-20 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해질, 및 이를 포함하는 리튬 이차전지
CN101442140B (zh) * 2007-11-22 2011-10-12 比亚迪股份有限公司 非水电解液及其制备方法和含有该电解液的锂离子电池
WO2010016521A1 (ja) 2008-08-06 2010-02-11 三井化学株式会社 非水電解液、リチウム二次電池及びその製造方法、並びに混合型非水電解液
KR20130142375A (ko) * 2012-06-19 2013-12-30 에스케이이노베이션 주식회사 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
EP2983233B1 (en) * 2013-04-01 2019-03-06 UBE Industries, Ltd. Nonaqueous electrolyte solution and electricity storage device using same
JP6319024B2 (ja) * 2013-09-27 2018-05-09 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP2015133278A (ja) * 2014-01-15 2015-07-23 ソニー株式会社 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR102375099B1 (ko) * 2014-06-30 2022-03-17 솔브레인 주식회사 전해질 및 이를 포함하는 리튬 이차 전지
JP2016018844A (ja) * 2014-07-07 2016-02-01 パナソニック株式会社 キャパシタ用非水電解液及びキャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087459A (ja) * 2002-06-25 2004-03-18 Mitsubishi Chemicals Corp 非水電解液二次電池
JP2007173113A (ja) * 2005-12-22 2007-07-05 Gs Yuasa Corporation:Kk 非水電解質二次電池
CN101867065A (zh) * 2010-06-21 2010-10-20 张家港市国泰华荣化工新材料有限公司 一种阻燃型电解质溶液及其应用
JP2015072856A (ja) * 2013-10-04 2015-04-16 旭化成株式会社 非水蓄電デバイス用電解液及びリチウムイオン二次電池
WO2016009923A1 (ja) * 2014-07-16 2016-01-21 ダイキン工業株式会社 電解液及び硫酸エステル塩の製造方法
JP2016035820A (ja) * 2014-08-01 2016-03-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483973A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003776A1 (ja) * 2017-06-30 2019-01-03 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール
JPWO2019003776A1 (ja) * 2017-06-30 2019-12-12 ダイキン工業株式会社 電解液、電気化学デバイス、二次電池及びモジュール
US11374259B2 (en) 2017-06-30 2022-06-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, secondary cell, and module
US11631894B2 (en) 2017-06-30 2023-04-18 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, secondary cell, and module
CN112136242A (zh) * 2018-05-14 2020-12-25 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件
CN112136242B (zh) * 2018-05-14 2024-03-08 大金工业株式会社 电解液、电化学器件、锂离子二次电池和组件
US11996522B2 (en) 2018-05-14 2024-05-28 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium-ion secondary battery, and module
JP2022548140A (ja) * 2020-06-05 2022-11-16 寧徳新能源科技有限公司 電気化学装置及び電子装置
JP7434533B2 (ja) 2020-06-05 2024-02-20 寧徳新能源科技有限公司 電気化学装置及び電子装置

Also Published As

Publication number Publication date
EP3849009B1 (en) 2022-07-20
EP3483973B1 (en) 2021-10-13
JP6787400B2 (ja) 2020-11-18
HUE060241T2 (hu) 2023-02-28
EP3483973A1 (en) 2019-05-15
JPWO2018016245A1 (ja) 2019-02-28
CN113903997B (zh) 2024-08-30
EP3483973A4 (en) 2020-07-08
PL3849009T3 (pl) 2022-11-21
PL3483973T3 (pl) 2022-02-21
CN109643826A (zh) 2019-04-16
CN109643826B (zh) 2022-03-15
US20190214682A1 (en) 2019-07-11
HUE057628T2 (hu) 2022-05-28
EP3849009A1 (en) 2021-07-14
CN113903997A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
JP6724894B2 (ja) 電解液
JP6024745B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6787400B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6024746B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6787401B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6197943B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP5757374B1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6269817B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6123912B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6696591B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2018186068A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2018116730A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2019003780A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JPWO2019003776A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP2014194866A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、モジュール、及び、環状n−アシルスルホンアミド化合物
JP2017004691A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2017179468A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2017069058A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2018106979A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2017004690A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2018116652A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
CN110383567B (zh) 电解液、电化学器件、锂离子二次电池和组件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018528451

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830765

Country of ref document: EP

Effective date: 20190207