WO2017069058A1 - 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール - Google Patents

電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール Download PDF

Info

Publication number
WO2017069058A1
WO2017069058A1 PCT/JP2016/080552 JP2016080552W WO2017069058A1 WO 2017069058 A1 WO2017069058 A1 WO 2017069058A1 JP 2016080552 W JP2016080552 W JP 2016080552W WO 2017069058 A1 WO2017069058 A1 WO 2017069058A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
alkyl group
fluorinated
compound
Prior art date
Application number
PCT/JP2016/080552
Other languages
English (en)
French (fr)
Inventor
知哉 日高
坂田 英郎
謙三 高橋
博之 有馬
穣輝 山崎
佳子 桑嶋
木下 信一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to PL16857373T priority Critical patent/PL3352283T3/pl
Priority to CN201680061537.6A priority patent/CN108352570B/zh
Priority to JP2017546528A priority patent/JP6583422B2/ja
Priority to EP16857373.1A priority patent/EP3352283B1/en
Priority to US15/768,137 priority patent/US10756384B2/en
Publication of WO2017069058A1 publication Critical patent/WO2017069058A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/02Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton
    • C07C255/04Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and saturated carbon skeleton containing two cyano groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/46Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C305/00Esters of sulfuric acids
    • C07C305/02Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C305/04Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/36Halogenated alcohols the halogen not being fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/34Halogenated alcohols
    • C07C31/42Polyhydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/12Saturated ethers containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrolytic solution, an electrochemical device, a lithium ion secondary battery, and a module.
  • lithium-ion secondary batteries having high energy density is in progress. Further, as the application field of lithium ion secondary batteries expands, improvement of battery characteristics is desired. In particular, when lithium ion secondary batteries are used in vehicles, the battery characteristics will become increasingly important.
  • Patent Document 1 discloses a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode made of lithium or a negative electrode material capable of occluding and releasing lithium, and a nonaqueous electrolyte solution made of an organic solvent and a solute.
  • a non-aqueous electrolyte secondary battery is described in which the organic solvent contains an additive of lithium monofluorophosphate and / or lithium difluorophosphate.
  • the present invention includes at least one compound (X) selected from the group consisting of the compound (1) represented by the general formula (1) and the compound (2) represented by the general formula (2). It is an electrolyte solution.
  • R 11 to R 14 may be the same or different, H, an alkyl group or a halogenated alkyl group, X 11 and X 12 may be the same or different, and a group 16 element)
  • R 21 and R 22 may be the same or different, H, an alkyl group or a halogenated alkyl group, Y 21 and Y 22 may be the same or different, —OR 23 or a halogen atom, R 23 is H, an alkyl group or a halogenated alkyl group
  • the content of the compound (X) is preferably 0.001 to 10000 mass ppm with respect to the electrolytic solution.
  • the electrolytic solution preferably further contains a solvent.
  • the solvent preferably contains carbonate.
  • the solvent preferably contains a chain ether.
  • the electrolytic solution further includes the compound (3) represented by the general formula (3), the compound (4) represented by the general formula (4), the compound (5) represented by the general formula (5), and the general formula. It is preferable to include at least one lithium salt (X) selected from the group consisting of the compound (6) represented by (6).
  • X 31 and X 32 are the same or different and are each —H, —F, —O, —OCN, an alkyl group that may have an ether bond, or a fluorinated alkyl group that may have an ether bond.
  • An alkoxy group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond, X 31 and X 32 may be bonded to each other to form a ring, a is 1 to An integer of 3
  • X 41 is —H, —F, —Cl, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, or an alkoxy that may have an ether bond
  • Group or a fluorinated alkoxy group optionally having an ether bond
  • X 51 represents —H, —F, —Cl, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, or an alkoxy that may have an ether bond. Group or a fluorinated alkoxy group optionally having an ether bond)
  • X 61 is —H, —F, —Cl, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, or an alkoxy that may have an ether bond. Group or a fluorinated alkoxy group optionally having an ether bond)
  • the electrolytic solution further contains at least one cyclic dicarbonyl compound selected from the group consisting of the compound (7) represented by the general formula (7) and the compound (8) represented by the general formula (8). Is preferred.
  • a a + is a metal ion, hydrogen ion or onium ion, a is an integer of 1 to 3, b is an integer of 1 to 3, p is b / a, n 73 is an integer of 1 to 4, and n 71 is 0 to 8 , N 72 is 0 or 1, Z 71 is a transition metal, a group III, group IV or group V element of the periodic table.
  • X 71 represents O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (alkylene group).
  • a halogenated alkylene group, an arylene group, and a halogenated arylene group may have a substituent or a hetero atom in the structure, and when n 72 is 1 and n 73 is 2 to 4, n 73 X 71 may be bonded to each other)
  • L 71 is a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogenated aryl group having 6 to 20 carbon atoms
  • the alkylene group, halogenated alkylene group, arylene group, and halogenated arylene group may have a substituent or a hetero atom in the structure.
  • n 71 L 71s are Each may be linked to form a ring) or -Z 73 Y 73 .
  • Y 71 , Y 72 and Z 73 are each independently O, S, NY 74 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 73 and Y 74 are each independently H, F, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen having 6 to 20 carbon atoms.
  • Aryl group (an alkyl group, a halogenated alkyl group, an aryl group and a halogenated aryl group may have a substituent or a hetero atom in the structure thereof, and when there are a plurality of Y 73 or Y 74, May combine to form a ring))
  • n81 is 0 or 1
  • n82 is 0 or 1
  • Z81 is a transition metal, a group III, group IV or group V element of the periodic table.
  • X 81 represents O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (alkylene group).
  • a halogenated alkylene group, an arylene group, and a halogenated arylene group may have a substituent or a hetero atom in the structure thereof.
  • Y 81 and Y 82 are each independently O, S, NY 84 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 84 represents H, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms (alkyl group, halogenated)
  • the alkyl group, aryl group and halogenated aryl group may have a substituent or a hetero atom in the structure thereof, and when there are a plurality of Y 84 , each may be bonded to form a ring) )
  • the electrolytic solution further includes a compound (9) containing a multiple bond of a hetero atom (excluding an oxygen atom) and an adjacent atom in the molecule, and the compound (9) has the general formula (9-1) to It is preferably at least one selected from the group consisting of compounds represented by general formula (9-3).
  • X 91 may be O or N
  • M 91 may be C
  • Z 91 may be N or absent.
  • L 91 is represented by R, OR, ORR ′, ORR′O, SR, NR, SiR, OSiR, which may contain a halogen atom, an oxygen atom, or a halogen atom
  • R and R ′ are each an alkyl group having 1 to 10 carbon atoms, an alkylene group, an alkene group, an alkyne group, a haloalkyl group having 1 to 10 carbon atoms, a haloalkylene group, a haloalkene group, a haloalkyne group, 10 cycloalkyl groups, wherein R and R ′ may together form a ring, n 91 is an alkyl group having 1 to 10 carbon atoms, an alkylene group, an alkene group, an alkyne group, a haloalkyl
  • the electrolyte further includes a compound (9) containing a multiple bond of a hetero atom (excluding an oxygen atom) and an adjacent atom in the molecule, and the compound (9) is represented by the general formula (10): NC-R 101- (CN) n101 (Wherein R 101 is a monovalent to trivalent hydrocarbon group or a monovalent to trivalent halogenated hydrocarbon group, and n 101 is an integer of 0 to 2), general formula (11): OCN-R 111 - (NCO) n111 (Wherein R 111 is a monovalent or divalent hydrocarbon group or a monovalent or divalent halogenated hydrocarbon group, and n 111 is 0 or 1), general formula (12):
  • R 121 and R 122 may be the same or different, a halogen atom, a monovalent or divalent hydrocarbon group or a monovalent or divalent halogenated hydrocarbon group, R 121 and R 122 are (May be bonded to form a ring)) (12), general formula (13):
  • R 131 and R 132 may be the same or different, and a halogen atom, a monovalent or divalent hydrocarbon group, or a monovalent or divalent halogenated hydrocarbon group, R 131 and R 132 are Compound (13) represented by the formula (14):
  • R 141 and R 142 may be the same or different, and a halogen atom, a monovalent or divalent hydrocarbon group, or a monovalent or divalent halogenated hydrocarbon group, R 141 and R 142 are Z may be bonded to form a ring, and Z is an oxygen atom or an alkylene group having 1 to 10 carbon atoms) (14), general formula (15):
  • R 151 to R 153 may be the same or different and are an organic group
  • R 161 to R 166 may be the same or different and are a halogen atom or an organic group
  • R 171 to R 178 may be the same or different and are preferably at least one selected from the group consisting of the compound (17) represented by a halogen atom or an organic group.
  • the present invention is also an electrochemical device comprising the above-described electrolytic solution.
  • the present invention is also a lithium ion secondary battery comprising the above-described electrolytic solution.
  • the present invention is also a module comprising the above-described electrochemical device or the above-described lithium ion secondary battery.
  • the electrolytic solution of the present invention it is possible to realize an electrochemical device or module that hardly generates gas even when stored at high temperatures and has a high capacity retention rate even after storage at high temperatures.
  • the electrolytic solution of the present invention is characterized by containing at least one compound (X) selected from the group consisting of the compound (1) and the compound (2).
  • Compound (1) has the general formula (1): (Wherein R 11 to R 14 may be the same or different, H, an alkyl group or a halogenated alkyl group, X 11 and X 12 may be the same or different, and are group 16 elements).
  • the alkyl group as R 11 to R 14 preferably has a lower limit of 1 carbon number.
  • the alkyl group preferably has an upper limit of 5 carbon atoms, more preferably 4.
  • the halogenated alkyl group as R 11 to R 14 preferably has a lower limit of 1 carbon number.
  • the halogenated alkyl group preferably has an upper limit of 5 carbon atoms, more preferably 4.
  • the halogenated alkyl group as R 11 to R 14 is preferably a fluorinated alkyl group.
  • the fluorinated alkyl group preferably has a lower limit of 1 carbon number.
  • the fluorinated alkyl group preferably has an upper limit of 5 carbon atoms, more preferably 4.
  • R 11 and R 13 are independently a halogenated alkyl group and R 12 and R 14 are H are preferable. More preferably, R 11 and R 13 are independently a fluorinated alkyl group, and R 12 and R 14 are H. More preferably, R 11 and R 13 are independently a fluorinated alkyl group having 1 to 5 carbon atoms, and R 12 and R 14 are H.
  • X 11 and X 12 are independently preferably O or S, and more preferably O.
  • Compound (2) has the general formula (2): (Wherein R 21 and R 22 may be the same or different, H, an alkyl group or a halogenated alkyl group, Y 21 and Y 22 may be the same or different, —OR 23 or a halogen atom, R 23 is represented by H, an alkyl group or a halogenated alkyl group.
  • the alkyl group as R 21 to R 23 preferably has a lower limit of 1 carbon number.
  • the alkyl group preferably has an upper limit of 5 carbon atoms, more preferably 4.
  • the halogenated alkyl group as R 21 to R 23 preferably has a lower limit of 1 carbon number.
  • the halogenated alkyl group preferably has an upper limit of 5 carbon atoms, more preferably 4.
  • the halogenated alkyl group as R 21 to R 23 is preferably a fluorinated alkyl group.
  • the fluorinated alkyl group preferably has a lower limit of 1 carbon number.
  • the fluorinated alkyl group preferably has an upper limit of 5 carbon atoms, more preferably 4.
  • the halogen atom is preferably an element belonging to 2 to 5 cycles, more preferably Br.
  • R 23 is preferably H.
  • one of R 21 and R 22 is H and the other is a halogenated alkyl group, and one of Y 21 and Y 22 is —OR 23 and the other is —OR 23 or a halogen atom.
  • Those are preferred. More preferably, one of R 21 and R 22 is H, the other is a fluorinated alkyl group, and one of Y 21 and Y 22 is —OH and the other is —OH or a halogen atom.
  • the content of compound (X) is preferably 0.001 to 10000 mass ppm, more preferably 0.1 mass ppm or more, still more preferably 0.5 mass ppm or more, and more preferably 150 mass ppm or less with respect to the electrolytic solution. Preferably, 30 mass ppm or less is more preferable.
  • the content of compound (X) can be measured by a GC-MS analysis method.
  • the electrolytic solution of the present invention further contains a lithium salt (X).
  • a lithium salt (X) when the electrolytic solution of the present invention is applied to a lithium ion secondary battery or the like, the Li ion transport rate in the electrolytic solution can be improved, and even when stored at a high temperature, the gas Is less likely to occur, and a high capacity retention rate can be obtained even after high-temperature storage.
  • the content of the lithium salt (X) is preferably 0.001 to 5% by mass in the electrolytic solution.
  • the content of the lithium salt (X) is more preferably 0.01% by mass or more in the electrolytic solution, further preferably 0.08% by mass or more, more preferably 3% by mass or less, and still more preferably 1% by mass or less.
  • the content of the lithium salt (X) can be measured by a GC-MS analysis method.
  • the lithium salt (X) is at least one selected from the group consisting of compounds (3) to (6) described later.
  • the lithium salt (X) is preferably at least one selected from the group consisting of compounds (3) to (5), more preferably at least one selected from the group consisting of compounds (3) and (4).
  • Compound (3) is more preferable.
  • Compound (3) has the general formula (3):
  • X 31 and X 32 are the same or different and are each —H, —F, —O, —OCN, an alkyl group that may have an ether bond, or a fluorinated alkyl group that may have an ether bond.
  • An alkoxy group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond, X 31 and X 32 may be bonded to each other to form a ring, a is 1 to (Integer of 3).
  • ether bond is a bond represented by —O—.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably have 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably do not have an ether bond.
  • X 31 and X 32 are preferably either or both of -F, a fluorinated alkyl group that may have an ether bond or a fluorinated alkoxy group that may have an ether bond, More preferably, both are —F, a fluorinated alkyl group having 1 to 3 carbon atoms which does not have an ether bond, or a fluorinated alkoxy group having 1 to 3 carbon atoms which does not have an ether bond.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group are represented by —C ⁇ N, —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, —OM (M May be substituted with a metal atom) or the like.
  • M include an alkali metal atom and may be Li.
  • the compound (3) preferably contains F atoms from the viewpoint of oxidation resistance, and LiPO 2 F 2, LiOP (O) (OCF 3 ) 2 and LiOP (O) (OCH 2 from the viewpoint of resistance.
  • CF 3 is preferably at least one selected from the group consisting of 2 .
  • Compound (4) has the general formula (4):
  • X 41 is —H, —F, —Cl, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, or an alkoxy that may have an ether bond
  • Group or a fluorinated alkoxy group optionally having an ether bond
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably have 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably do not have an ether bond.
  • X 41 has -F, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, an alkoxy group that may have an ether bond, or an ether bond It is preferably a good fluorinated alkoxy group, -F, an alkyl group having 1 to 3 carbon atoms which does not have an ether bond, or a fluorinated alkoxy group having 1 to 3 carbon atoms which does not have an ether bond It is more preferable that
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group are represented by —C ⁇ N, —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, —OM (M May be substituted with a metal atom) or the like.
  • M include an alkali metal atom and may be Li.
  • Compounds (4) include LiOSO 2 F, LiOSO 2 CH 3 , LiOSO 2 CF 3 , LiOSO 2 (OCH 3 ), LiOSO 2 (OCF 3 ), LiOSO 2 (OCH 2 CH 3 ), LiOSO 2 (OCH 2 CF 3 ), LiOSO 2 (OCF 2 CF 3 ), LiOSO 2 (OCH 2 CH 2 CH 3 ) LiOSO 2 (OCH 2 CH 2 CF 3 ) and the like.
  • the compound (4) is preferably at least one selected from the group consisting of LiOSO 2 F, LiOSO 2 CH 3 and LiOSO 2 (OCH 2 CH 3 ).
  • Compound (5) has the general formula (5):
  • X 51 represents —H, —F, —Cl, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, or an alkoxy that may have an ether bond. Group or a fluorinated alkoxy group optionally having an ether bond).
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably have 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably do not have an ether bond.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group are represented by —C ⁇ N, —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, —OM (M May be substituted with a metal atom) or the like.
  • M include an alkali metal atom and may be Li.
  • X 51 is preferably —F, a fluorinated alkyl group having 1 to 3 carbon atoms that does not have an ether bond, or a fluorinated alkoxy group having 1 to 3 carbon atoms that does not have an ether bond.
  • the compound (5) is preferably at least one selected from the group consisting of LiOSOF, LiOSOCF 3 and LiOSO (OCF 3 ).
  • Compound (6) has the general formula (6):
  • X 61 is —H, —F, —Cl, an alkyl group that may have an ether bond, a fluorinated alkyl group that may have an ether bond, or an alkoxy that may have an ether bond. Group or a fluorinated alkoxy group optionally having an ether bond).
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably have 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group preferably do not have an ether bond.
  • the alkyl group, the fluorinated alkyl group, the alkoxy group, and the fluorinated alkoxy group are represented by —C ⁇ N, —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, —OM (M May be substituted with a metal atom) or the like.
  • M include an alkali metal atom and may be Li.
  • X 61 is preferably —F or a fluorinated alkoxy group having 1 to 3 carbon atoms which does not have an ether bond.
  • LiOCOF LiOCO (CH 3 ), LiOCO (CF 3 ), LiOCO (CFH 2 ), LiOCO (CF 2 H), LiOCO (CH 2 CH 3 ), LiOCO (CH 2 CF 3 ), LiOCO (CH 2 CF 2 H), LiOCO (CF 2 CF 3 ), LiOCO (CH 2 CH 2 CH 3 ), LiOCO (CH 2 CH 2 CF 3 ), LiOCO (CH 2 CF 2 CF 3 ), LiOCO (CH 2 CF 2 CF 3 ), LiOCO (CH 2 CF 2 CF 2 H), LiOCO (OCF 3), LiOCO (OCH 2 CH 3) , and the like.
  • the compound (6) is preferably at least one selected from the group consisting of LiOCOF and LiOCO (CF 3 ).
  • the electrolytic solution of the present invention preferably further contains a cyclic dicarbonyl compound.
  • a cyclic dicarbonyl compound By containing the cyclic dicarbonyl compound, when the electrolytic solution of the present invention is applied to a lithium ion secondary battery or the like, gas is hardly generated even when stored at a high temperature, and a high capacity retention rate is obtained even after storage at a high temperature. It is done.
  • the content of the cyclic dicarbonyl compound is preferably 0.001 to 10% by mass, more preferably 0.01% by mass or more, further preferably 0.05% by mass or more, and particularly preferably 0.08% by mass or more. 3 mass% or less is more preferable, and 2 mass% or less is still more preferable.
  • the content of the cyclic dicarbonyl compound can be measured by a GC-MS analysis method.
  • the cyclic dicarbonyl compound is preferably at least one selected from the group consisting of compound (7) and compound (8).
  • Compound (7) has the general formula (7):
  • a a + is a metal ion, hydrogen ion or onium ion, a is an integer of 1 to 3, b is an integer of 1 to 3, p is b / a, n 73 is an integer of 1 to 4, and n 71 is 0 to 8 , N 72 is 0 or 1, Z 71 is a transition metal, a group III, group IV or group V element of the periodic table.
  • X 71 represents O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (alkylene group).
  • a halogenated alkylene group, an arylene group, and a halogenated arylene group may have a substituent or a hetero atom in the structure, and when n 72 is 1 and n 73 is 2 to 4, n 73 X 71 may be bonded to each other)
  • L 71 is a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogenated aryl group having 6 to 20 carbon atoms
  • the alkylene group, halogenated alkylene group, arylene group, and halogenated arylene group may have a substituent or a hetero atom in the structure.
  • n 71 L 71s are Each may be linked to form a ring) or -Z 73 Y 73 .
  • Y 71 , Y 72 and Z 73 are each independently O, S, NY 74 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 73 and Y 74 are each independently H, F, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen having 6 to 20 carbon atoms.
  • Aryl group (an alkyl group, a halogenated alkyl group, an aryl group and a halogenated aryl group may have a substituent or a hetero atom in the structure thereof, and when there are a plurality of Y 73 or Y 74, May combine to form a ring)) Indicated by
  • a a + includes lithium ion, sodium ion, potassium ion, magnesium ion, calcium ion, barium ion, cesium ion, silver ion, zinc ion, copper ion, cobalt ion, iron ion, nickel ion, manganese ion, titanium ion, Lead ion, chromium ion, vanadium ion, ruthenium ion, yttrium ion, lanthanoid ion, actinoid ion, tetrabutylammonium ion, tetraethylammonium ion, tetramethylammonium ion, triethylmethylammonium ion, triethylammonium ion, pyridinium ion, imidazolium ion , Hydrogen ion, tetraethylphosphonium ion, tetramethylphosphonium
  • a a + is preferably a lithium ion, sodium ion, magnesium ion, tetraalkylammonium ion, or hydrogen ion, and particularly preferably a lithium ion.
  • the valence a of the cation of A a + is an integer of 1 to 3. If it is larger than 3, the crystal lattice energy becomes large, which causes a problem that it becomes difficult to dissolve in a solvent. Therefore, when solubility is required, 1 is more preferable.
  • the valence b of the anion is an integer of 1 to 3, and 1 is particularly preferable.
  • the constant p representing the ratio of cation to anion is inevitably determined by the valence ratio b / a of both.
  • the ligand part of the general formula (7) will be described.
  • bonded with Z71 in General formula (7) is called a ligand.
  • Z 71 is preferably Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf or Sb. More preferably, B or P.
  • X 71 represents O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms.
  • alkylene groups and arylene groups may have a substituent or a hetero atom in the structure.
  • a halogen atom in place of hydrogen on the alkylene group and arylene group, a halogen atom, a chain or cyclic alkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, a sulfonyl group, an amino group, a cyano group, a carbonyl group It may have a group, an acyl group, an amide group, or a hydroxyl group as a substituent, or may have a structure in which nitrogen, sulfur, or oxygen is introduced instead of carbon on alkylene and arylene.
  • n 72 is 1 and n 73 is 2 to 4
  • n 73 X 71 may be bonded to each other. Examples thereof include a ligand such as ethylenediaminetetraacetic acid.
  • L 71 represents a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, or -Z 73 Y 73 (Z 73 and Y 73 will be described later).
  • the alkyl group and aryl group here may also have a substituent or a hetero atom in the structure in the same manner as X 71, and when n 71 is 2 to 8, each of n 71 L 71 is It may combine to form a ring.
  • L 71 is preferably a fluorine atom or a cyano group. This is because in the case of a fluorine atom, the solubility and dissociation degree of the salt of the anion compound are improved, and the ionic conductivity is improved accordingly. Moreover, it is because oxidation resistance improves and generation
  • Y 71 , Y 72 and Z 73 each independently represent O, S, NY 74 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 71 and Y 72 are preferably O, S or NY 74 , and more preferably O.
  • these ligands constitute a chelate structure with Z 71 . Due to the effect of this chelate, the heat resistance, chemical stability, and hydrolysis resistance of this compound are improved.
  • the constant n 72 in this ligand is 0 or 1.
  • the fluorinated hydrocarbon group is a group in which at least one hydrogen atom of the hydrocarbon group is substituted with a fluorine atom.
  • Y 73 and Y 74 are each independently H, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogenated group having 6 to 20 carbon atoms.
  • An aryl group, and these alkyl group and aryl group may have a substituent or a hetero atom in the structure, and when a plurality of Y 73 or Y 74 are present, A ring may be formed.
  • the constant n 73 related to the number of ligands described above is an integer of 1 to 4, preferably 1 or 2, and more preferably 2.
  • the constant n 71 related to the number of ligands described above is an integer of 0 to 8, preferably an integer of 0 to 4, more preferably 0, 2 or 4. Furthermore, it is preferable n 71 when n 73 is 1 is n 71 when 2, n 73 is 2 is zero.
  • the alkyl group, halogenated alkyl group, aryl group, and halogenated aryl group include those having other functional groups such as a branch, a hydroxyl group, and an ether bond.
  • Examples of the compound (7) include lithium oxalatoborate salts, which have the following formula:
  • Lithium bis (oxalato) borate represented by the following formula:
  • Lithium difluorooxalatoborate represented by the following formula:
  • Lithium tetrafluorooxalatophosphanite represented by the following formula:
  • lithium bis (oxalato) difluorophosphanite represented by
  • Compound (8) has the general formula (8):
  • n81 is 0 or 1
  • n82 is 0 or 1
  • Z81 is a transition metal, a group III, group IV or group V element of the periodic table.
  • X 81 represents O, S, an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (alkylene group).
  • a halogenated alkylene group, an arylene group, and a halogenated arylene group may have a substituent or a hetero atom in the structure thereof.
  • Y 81 and Y 82 are each independently O, S, NY 84 , a hydrocarbon group or a fluorinated hydrocarbon group.
  • Y 84 represents H, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms (alkyl group, halogenated)
  • the alkyl group, aryl group and halogenated aryl group may have a substituent or a hetero atom in the structure thereof, and when there are a plurality of Y 84 , each may be bonded to form a ring) ).
  • Z81 may be Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf, Sb, or the like.
  • n 81 is preferably 0.
  • n 82 is preferably 1.
  • X 81 is preferably O or S, and more preferably O.
  • Y 81 and Y 82 are each independently a hydrocarbon group or a fluorinated hydrocarbon group, preferably a hydrocarbon group having 1 to 3 carbon atoms or a fluorinated hydrocarbon group having 1 to 3 carbon atoms. More preferably. It is preferable that n 81 is 0 and Y 81 and Y 82 are bonded to each other to form a ring.
  • R 81 to R 84 are the same or different and H, F, an alkyl group or a fluorinated alkyl group), or a compound represented by the general formula:
  • R 85 and R 86 are the same or different, and H, F, an alkyl group or a fluorinated alkyl group, and R 87 is an alkene group or a fluorinated alkene group).
  • the alkyl group, fluorinated alkyl group, alkene group and fluorinated alkene group preferably have 1 to 10 carbon atoms, and more preferably 1 to 3 in view of good compatibility with the electrolytic solution.
  • R 81 to R 86 include, for example, H—, F—, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CF 3 —, CF 3 CF 2 —, CH 2 FCH 2 —, CF 3 CF 2 CF 2 — and the like can be mentioned.
  • Compound (8) has the general formula:
  • R 88 and R 89 are the same or different and are preferably compounds represented by H, F, an alkyl group, or a fluorinated alkyl group.
  • the alkyl group and the fluorinated alkyl group preferably have 1 to 10 carbon atoms, more preferably 1 to 3 in view of good compatibility with the electrolytic solution.
  • R 88 and R 89 examples include H-, F-, CH 3- , CH 3 CH 2- , CH 3 CH 2 CH 2- , CF 3- , CF 3 CF 2- , CH 2 FCH 2- , CF 3 CF 2 CF 2 — and the like can be mentioned.
  • Examples of the compound (8) include succinic anhydride, glutaric anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanecarboxylic anhydride, cyclopentanetetracarboxylic anhydride, phenylsuccinic anhydride, dimethylsuccinic anhydride, Examples thereof include trifluoromethyl succinic anhydride, monofluoro succinic anhydride, tetrafluoro succinic anhydride, maleic anhydride, citraconic anhydride, trifluoromethyl maleic anhydride, and the like. Of these, maleic anhydride and trifluoromethylmaleic anhydride are preferable.
  • the electrolyte solution of this invention contains a compound (9).
  • the compound (9) when the electrolytic solution of the present invention is applied to a lithium ion secondary battery or the like, gas is hardly generated even when stored at a high temperature, and a high capacity retention rate is obtained even after storage at a high temperature. .
  • the content of the compound (9) is preferably 0.001 to 20% by mass with respect to the electrolytic solution, more preferably 0.01% by mass or more, further preferably 0.08% by mass or more, and 0.5% by mass or more. Is particularly preferable, 10% by mass or less is more preferable, and 5% by mass or less is still more preferable.
  • the content of compound (9) can be measured by a GC-MS analysis method.
  • Compound (9) contains multiple bonds of heteroatoms (excluding oxygen atoms) and adjacent atoms in the molecule.
  • the heteroatom is an atom other than carbon and hydrogen.
  • the heteroatom is preferably at least one selected from the group consisting of S, P and N.
  • the multiple bond is a multiple bond between the heteroatom and an atom adjacent to the heteroatom.
  • a double bond or a triple bond is preferable, and a double bond is more preferable.
  • Examples of the multiple bond include a multiple bond between the heteroatom and a carbon atom, a multiple bond between the heteroatom and an oxygen atom, and a multiple bond between the heteroatoms.
  • Compound (9) has the general formula (9-1): Formula (9-2): And general formula (9-3):
  • X 91 may be O or N
  • M 91 may be C
  • Z 91 may be N or absent.
  • L 91 is represented by R, OR, ORR ′, ORR′O, SR, NR, SiR, OSiR, which may contain a halogen atom, an oxygen atom, or a halogen atom
  • R and R ′ are each an alkyl group having 1 to 10 carbon atoms, an alkylene group, an alkene group, an alkyne group, a haloalkyl group having 1 to 10 carbon atoms, a haloalkylene group, a haloalkene group, a haloalkyne group, 10 cycloalkyl groups, wherein R and R ′ may form a ring together, n 91 is an alkyl group having 1 to 10 carbon atoms, an alkylene group, an alkene group, an alkyne group, a haloalkyl
  • Compound (9) is represented by —C ⁇ N, —N ⁇ C ⁇ O, It is preferable that it has a structure represented by either.
  • the compound (9) is preferably at least one selected from the group consisting of the compounds (10) to (17), and is selected from the group consisting of the compounds (10) and (12) to (17). More preferably, it is at least one, more preferably at least one selected from the group consisting of compounds (10) and (12) to (15), and a group consisting of compounds (10) and (15) Particularly preferred is at least one selected from the above, and compound (10) is most preferred.
  • Compound (10) has the general formula (10): NC-R 101- (CN) n101 (Wherein R 101 is a monovalent to trivalent hydrocarbon group or a monovalent to trivalent halogenated hydrocarbon group, and n 101 is an integer of 0 to 2).
  • hydrocarbon group or the halogenated hydrocarbon group examples include an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkylene group having 1 to 10 carbon atoms, and a cycloalkylene having 3 to 10 carbon atoms.
  • the hydrocarbon group may contain —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, and —P ⁇ O.
  • Examples of the cycloalkyl group include a cyclohexyl group.
  • part or all of the hydrogen atoms are —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, —P ⁇ O or —OM 102 (M 102 is a metal atom) Etc. may be substituted.
  • Examples of the cycloalkylidine group include a cyclohexylidine group.
  • part or all of the hydrogen atoms are —S ( ⁇ O) 2 —, —S ( ⁇ O) 2 —O—, —P ⁇ O or —OM 102 (M 102 represents a metal atom) ) And the like.
  • R 102 is an alkyl group having 1 to 10 carbon atoms, or a compound represented by the formula: —R 103 —CN (R 103 is an alkylene group having 1 to 10 carbon atoms), a general formula (10-2 ): NC-R 104 -CN (Wherein R 104 is an alkylene group having 1 to 10 carbon atoms) and the general formula (10-3):
  • R 104 is preferably at least one selected from the group consisting of compounds represented by the formula (10--C 10 -C 10 alkylidyne group or C 3-10 cycloalkylidine group). 2) and at least one selected from the group consisting of compounds represented by general formula (10-3) are more preferred.
  • Compound (10) includes acetonitrile, propionitrile, butanenitrile, succinonitrile, glutaronitrile, adiponitrile, octafluoroadiponitrile, 1,3,5-pentanetricarbonitrile, 1,3,6-hexane.
  • Examples include tricarbonyl, 1,3,5-cyclohexanetricarbonitrile, CH 3 SO 3 C 2 H 5 CN, and the like. Among these, a compound having a plurality of CN groups is preferable.
  • Compound (11) has the general formula (11): OCN-R 111 - (NCO) n111 (Wherein R 111 is a monovalent or divalent hydrocarbon group or a monovalent or divalent halogenated hydrocarbon group, and n 111 is 0 or 1).
  • hydrocarbon group or the halogenated hydrocarbon group examples include an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and a 1 to 10 carbon atom.
  • examples include an alkylene group, a halogenated alkylene group having 1 to 10 carbon atoms, and a cycloalkylene group having 3 to 10 carbon atoms.
  • R 112 -NCO R 112 -NCO
  • R 112 is an alkyl group having 1 to 10 carbon atoms which may have a cyclic structure, or a halogenated alkyl group having 1 to 10 carbon atoms which may have a cyclic structure
  • OCN-R 113 -NCO wherein R 113 is an alkylene group having 1 to 10 carbon atoms which may have a cyclic structure, or a halogenated alkylene group having 1 to 10 carbon atoms which may have a cyclic structure. At least one selected from the group is preferred.
  • Examples of the compound (11) include hexanemethylene diisocyanate and 1,3-bis (isocyanatomethyl) cyclohexane.
  • Compound (12) has the general formula (12): (Wherein R 121 and R 122 may be the same or different, a halogen atom, a monovalent or divalent hydrocarbon group or a monovalent or divalent halogenated hydrocarbon group, R 121 and R 122 are May be bonded to form a ring).
  • hydrocarbon group or the halogenated hydrocarbon group examples include an alkyl group having 1 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and fluorine having 1 to 10 carbon atoms.
  • the number of carbon atoms is 2 or more, it may have an ether bond.
  • Compound (13) has the general formula (13): (In the formula, R 131 and R 132 may be the same or different, and a halogen atom, a monovalent or divalent hydrocarbon group, or a monovalent or divalent halogenated hydrocarbon group, R 131 and R 132 are May be bonded to form a ring).
  • hydrocarbon group or the halogenated hydrocarbon group examples include an alkyl group having 1 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and fluorine having 1 to 10 carbon atoms.
  • the number of carbon atoms is 2 or more, it may have an ether bond.
  • Compound (14) has the general formula (14): (In the formula, R 141 and R 142 may be the same or different, and a halogen atom, a monovalent or divalent hydrocarbon group, or a monovalent or divalent halogenated hydrocarbon group, R 141 and R 142 are Z may be bonded to form a ring, and Z is an oxygen atom or an alkylene group having 1 to 10 carbon atoms.
  • hydrocarbon group or the halogenated hydrocarbon group examples include an alkyl group having 1 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and fluorine having 1 to 10 carbon atoms.
  • the number of carbon atoms is 2 or more, it may have an ether bond.
  • R 143 and R 144 may be the same or different, and an alkylene group having 1 to 3 carbon atoms
  • R 145 and R 146 may be the same or different and are preferably at least one selected from the group consisting of compounds represented by the alkyl group having 1 to 3 carbon atoms.
  • Compounds (12) to (14) include 1,3-propane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propene sultone, methanesulfonic anhydride, propyl methanesulfonate, methanesulfone
  • Examples include tetrafluoropropyl acid, dimethyl sulfoxide, sulfolane, ethylene sulfite, glycol sulfate, methylenemethane disulfonate, 3-fluorosulfolane, 3-fluoro-1,3-propane sultone, and monofluorosulfate glycol.
  • Compound (15) has the general formula (15): (Wherein R 151 to R 153 may be the same or different and are organic groups).
  • Examples of the organic group include an alkyl group having 1 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a fluorinated alkoxy group having 1 to 10 carbon atoms, and a formula: —N A group represented by (R 154 ) 2 , a group represented by formula: —Si (R 155 ) 3 , a group represented by formula: —OSi (R 156 ) 3 , a formula: —R 158 —S—R 157 , : -O-R 159 -CN, and the like.
  • R 154 to R 157 are alkyl groups having 1 to 4 carbon atoms or fluorinated alkyl groups having 1 to 4 carbon atoms
  • R 158 and R 159 are alkylene groups having 1 to 3 carbon atoms or fluorinated alkyl having 1 to 3 carbon atoms It is a group.
  • Compound (16) has the general formula (16): (Wherein R 161 to R 166 may be the same or different and are a halogen atom or an organic group).
  • the halogen atom is preferably F.
  • the organic group is an alkoxy group such as a methoxy group or an ethoxy group, an aryloxy group such as a phenoxy group or a methylphenoxy group, an alkyl group such as a methyl group or an ethyl group, a phenyl group or a tolyl group.
  • An aryl group such as a methylthio group, an amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group or an ethylthio group, and an arylthio group such as a phenylthio group.
  • Examples of the compound (16) include hexafluorocyclotriphosphazene, pentafluoro (phenoxy) cyclotriphosphazene, ethoxy (pentafluoro) cyclotriphosphazene, ethoxy (heptafluoro) cyclotriphosphazene, and the like.
  • Compound (17) has the general formula (17): (Wherein R 171 to R 178 may be the same or different and are a halogen atom or an organic group).
  • the halogen atom is preferably F.
  • the organic group is an alkoxy group such as a methoxy group or an ethoxy group, an aryloxy group such as a phenoxy group or a methylphenoxy group, an alkyl group such as a methyl group or an ethyl group, a phenyl group or a tolyl group.
  • An aryl group such as a methylthio group, an amino group containing a substituted amino group such as a methylamino group, an alkylthio group such as a methylthio group or an ethylthio group, and an arylthio group such as a phenylthio group.
  • Examples of the compound (17) include ethoxy (pentafluoro) cyclotetraphosphazene.
  • the electrolytic solution of the present invention preferably contains a solvent.
  • the content of the solvent is preferably 70 to 99.999% by mass in the electrolytic solution, more preferably 80% by mass or more, and more preferably 92% by mass or less.
  • the solvent preferably contains carbonate.
  • the solvent preferably contains a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate may be a non-fluorinated cyclic carbonate or a fluorinated cyclic carbonate.
  • the chain carbonate may be a non-fluorinated chain carbonate or a fluorinated chain carbonate.
  • the solvent preferably contains at least one selected from the group consisting of a non-fluorinated saturated cyclic carbonate, a fluorinated saturated cyclic carbonate, a fluorinated chain carbonate, and a non-fluorinated chain carbonate.
  • At least 1 sort (s) selected from the group which consists of a fluorinated saturated cyclic carbonate and a fluorinated chain carbonate is included.
  • the solvent is preferably a non-aqueous solvent
  • the electrolytic solution of the present invention is preferably a non-aqueous electrolytic solution.
  • non-fluorinated saturated cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate.
  • the non-fluorinated saturated cyclic carbonate is at least one compound selected from the group consisting of ethylene carbonate, propylene carbonate, and butylene carbonate in that the dielectric constant is high and the viscosity is suitable. It is preferable.
  • 1 type of the compound mentioned above may be used, and 2 or more types may be used together.
  • the content of the non-fluorinated saturated cyclic carbonate is preferably 0 to 99% by volume, more preferably 1% by volume or more, and more preferably 90% by volume or less based on the solvent.
  • the fluorinated saturated cyclic carbonate is a saturated cyclic carbonate to which a fluorine atom is added.
  • X 1 to X 4 are the same or different and are each —H, —CH 3 , —F, a fluorinated alkyl group optionally having an ether bond, or fluorine optionally having an ether bond
  • at least one of X 1 to X 4 is —F, a fluorinated alkyl group that may have an ether bond, or a fluorinated alkoxy group that may have an ether bond
  • a compound represented by When the fluorinated saturated cyclic carbonate is contained, when the electrolytic solution of the present invention is applied to a lithium ion secondary battery or the like, a stable film can be formed on the negative electrode, and the side reaction of the electrolytic solution at the negative electrode is sufficient. Can be suppressed. As a result, extremely stable and excellent charge / discharge characteristics can be obtained.
  • the “ether bond” is a bond represented by —O—.
  • one or two of X 1 to X 4 may have —F, a fluorinated alkyl group that may have an ether bond, or an ether bond.
  • a fluorinated alkoxy group is preferred.
  • X 1 to X 4 represent —H, —F, a fluorinated alkyl group (a), an ether bond, because a decrease in viscosity at a low temperature, an increase in flash point, and an improvement in solubility of the electrolyte salt can be expected.
  • the fluorinated alkyl group (b) or the fluorinated alkoxy group (c) is preferable.
  • the fluorinated alkyl group (a) is obtained by substituting at least one hydrogen atom of the alkyl group with a fluorine atom.
  • the fluorinated alkyl group (a) preferably has 1 to 20 carbon atoms, more preferably 1 to 17 carbon atoms, still more preferably 1 to 7 carbon atoms, and particularly preferably 1 to 5 carbon atoms. If the carbon number is too large, the low-temperature characteristics may be lowered or the solubility of the electrolyte salt may be lowered. If the carbon number is too small, the solubility of the electrolyte salt is lowered, the discharge efficiency is lowered, and further, An increase in viscosity may be observed.
  • fluorinated alkyl groups (a) those having 1 carbon atom include CFH 2 —, CF 2 H—, and CF 3 —.
  • fluorinated alkyl groups those having 2 or more carbon atoms are represented by the following general formula (a-1): R 1 -R 2- (a-1) (Wherein R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; provided that R 1 and A fluorinated alkyl group represented by (at least one of R 2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms other than the carbon atom, the hydrogen atom, and the fluorine atom.
  • R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R 1 is preferably a linear or branched alkyl group having 1 to 16 carbon atoms.
  • the number of carbon atoms of R 1 is more preferably 1 to 6, and further preferably 1 to 3.
  • R 1 specifically, as a linear or branched alkyl group, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 —,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferable. However, since the viscosity tends to increase when the branch has CH 3 -or CF 3- , the number is preferably small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 2 is linear, it is composed of only the above-mentioned linear minimum structural unit, and —CH 2 —, —CH 2 CH 2 — or —CF 2 — is particularly preferable. From the viewpoint of further improving the solubility of the electrolyte salt, —CH 2 — or —CH 2 CH 2 — is more preferable.
  • R 2 When R 2 is branched, it comprises at least one of the aforementioned branched minimum structural units, and R 2 is represented by the general formula — (CX a X b ) — (X a is H, F CH 3 or CF 3 ; X b is CH 3 or CF 3, provided that when X b is CF 3 , X a is H or CH 3 .
  • the solubility of the electrolyte salt can be further improved.
  • Preferred fluorinated alkyl groups (a) include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CHF—, CF 3 CF 2 CF 2 —, HCF 2 CF 2 CF 2 —, H 2 CFCF 2 CF 2 —, CH 3 CF 2 CF 2 —,
  • the fluorinated alkyl group (b) having an ether bond is obtained by substituting at least one hydrogen atom of the alkyl group having an ether bond with a fluorine atom.
  • the fluorinated alkyl group (b) having an ether bond preferably has 2 to 17 carbon atoms. If the number of carbon atoms is too large, the viscosity of the fluorinated saturated cyclic carbonate increases, and the fluorine-containing group increases, so that the solubility of the electrolyte salt decreases due to a decrease in the dielectric constant, and compatibility with other solvents. Decrease may be observed. From this viewpoint, the fluorinated alkyl group (b) having an ether bond preferably has 2 to 10 carbon atoms, and more preferably 2 to 7 carbon atoms.
  • the alkylene group constituting the ether portion of the fluorinated alkyl group (b) having an ether bond may be a linear or branched alkylene group.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • the alkylene group may be composed of these minimum structural units alone, and may be linear (i), branched (ii), or linear (i) and branched (ii). You may comprise by the combination. Preferred specific examples will be described later.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 3- OR 4 ) n1- (b-1) (Wherein R 3 may have a fluorine atom, preferably an alkyl group having 1 to 6 carbon atoms; R 4 may have a fluorine atom, preferably an alkylene having 1 to 4 carbon atoms) N1 is an integer of 1 to 3; provided that at least one of R 3 and R 4 has a fluorine atom).
  • R 3 and R 4 include the following, and these can be combined as appropriate to form a fluorinated alkyl group (b) having an ether bond represented by the general formula (b-1). However, it is not limited to these.
  • R 3 the general formula: X c 3 C— (R 5 ) n2 — (the three X c are the same or different and each is H or F; R 5 represents a fluorine atom having 1 to 5 carbon atoms)
  • R 3 includes CH 3 —, CF 3 —, HCF 2 —, and H 2 CF—.
  • R 3 is linear, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CF 2 CF 2 —, CF 3 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2- , CF 3 CF 2 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 CH 2
  • n2 is 1, and as R 3 is branched, the
  • R 3 is more preferably linear.
  • n1 is an integer of 1 to 3, preferably 1 or 2.
  • R 4 may be the same or different.
  • R 4 include the following linear or branched ones.
  • the fluorinated alkoxy group (c) is obtained by substituting at least one hydrogen atom of the alkoxy group with a fluorine atom.
  • the fluorinated alkoxy group (c) preferably has 1 to 17 carbon atoms. More preferably, it has 1 to 6 carbon atoms.
  • the fluorinated alkoxy group (c) is represented by the general formula: X d 3 C— (R 6 ) n3 —O— (the three X d are the same or different, and all are H or F; R 6 is preferably carbon number)
  • fluorinated alkoxy group (c) examples include a fluorinated alkoxy group in which an oxygen atom is bonded to the terminal of the alkyl group exemplified as R 1 in the general formula (a-1).
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) in the fluorinated saturated cyclic carbonate is preferably 10% by mass or more. If the fluorine content is too low, the effect of lowering the viscosity at low temperatures and the effect of increasing the flash point may not be sufficiently obtained. From this viewpoint, the fluorine content is more preferably 12% by mass or more, and further preferably 15% by mass or more. The upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated alkyl group (a), the fluorinated alkyl group (b) having an ether bond, and the fluorinated alkoxy group (c) is determined based on ⁇ (number of fluorine atoms) based on the structural formula of each group. ⁇ 19) / Formula amount of each group ⁇ ⁇ 100 (%).
  • the fluorine content of the entire fluorinated saturated cyclic carbonate is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the upper limit is usually 76% by mass.
  • the fluorine content of the fluorinated saturated cyclic carbonate is ⁇ (number of fluorine atoms ⁇ 19) / molecular weight of fluorinated saturated cyclic carbonate ⁇ ⁇ 100 (%) based on the structural formula of the fluorinated saturated cyclic carbonate. It is a calculated value.
  • fluorinated saturated cyclic carbonate examples include the following.
  • Etc. can also be used.
  • fluorinated saturated cyclic carbonate in which at least one of X 1 to X 4 is a fluorinated alkyl group (a) and the rest are all —H are:
  • fluorinated saturated cyclic carbonates in which at least one of X 1 to X 4 is a fluorinated alkyl group (b) having an ether bond or a fluorinated alkoxy group (c), and the rest are all —H as,
  • the fluorinated saturated cyclic carbonate is preferably any of the following compounds.
  • fluorinated saturated cyclic carbonates fluoroethylene carbonate and difluoroethylene carbonate are more preferable.
  • the fluorinated saturated cyclic carbonate is not limited to the specific examples described above. Moreover, the said fluorinated saturated cyclic carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. For example, a combination of fluoroethylene carbonate and trifluoroethylene carbonate can be used.
  • the content of the fluorinated saturated cyclic carbonate is preferably 0 to 99% by volume in the solvent, more preferably 1% by volume or more, further preferably 5% by volume or more, more preferably 95% by volume or less, and 90% by volume. % Or less is more preferable.
  • Rf 2 OCOOR 6 (B) (Wherein Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms, and R 6 is an alkyl group optionally containing a fluorine atom having 1 to 7 carbon atoms). Can be mentioned.
  • the electrolyte solution of the present invention preferably contains the fluorinated chain carbonate in that it can be suitably used even under a high voltage.
  • Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms
  • R 6 is an alkyl group that may contain a fluorine atom having 1 to 7 carbon atoms.
  • the fluorinated alkyl group is obtained by substituting at least one hydrogen atom of the alkyl group with a fluorine atom.
  • Rf 2 and R 6 preferably have 2 to 7 carbon atoms, more preferably 2 to 4 in view of low viscosity. If the carbon number is too large, the low-temperature characteristics may be lowered or the solubility of the electrolyte salt may be lowered. If the carbon number is too small, the solubility of the electrolyte salt is lowered, the discharge efficiency is lowered, and further, An increase in viscosity may be observed.
  • Examples of the fluorinated alkyl group having 1 carbon atom include CFH 2 —, CF 2 H—, and CF 3 —.
  • Examples of the fluorinated alkyl group having 2 or more carbon atoms include the following general formula (d-1): R 1 -R 2- (d-1) (Wherein R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; provided that R 1 and A fluorinated alkyl group represented by (at least one of R 2 has a fluorine atom) can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt. R 1 and R 2 may further have other atoms other than the carbon atom, the hydrogen atom, and the fluorine atom.
  • R 1 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom.
  • R 1 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the number of carbon atoms of R 1 is more preferably 1 to 4, and still more preferably 1 to 3.
  • R 1 specifically, as a linear or branched alkyl group, CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 —,
  • R 1 is a linear alkyl group having a fluorine atom, CF 3 —, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 — CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CF 2 —, CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —,
  • R 1 is a branched alkyl group having a fluorine atom
  • Etc. are preferable. However, since the viscosity tends to increase when the branch has CH 3 -or CF 3- , the number is preferably small (one) or zero.
  • R 2 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom.
  • R 2 may be linear or branched.
  • An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
  • R 2 is composed of these alone or in combination.
  • the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
  • R 2 is linear, it is composed of only the above-mentioned linear minimum structural unit, and —CH 2 —, —CH 2 CH 2 — or —CF 2 — is particularly preferable. From the viewpoint of further improving the solubility of the electrolyte salt, —CH 2 — or —CH 2 CH 2 — is more preferable.
  • R 2 When R 2 is branched, it comprises at least one of the aforementioned branched minimum structural units, and R 2 is represented by the general formula — (CX a X b ) — (X a is H, F CH 3 or CF 3 ; X b is CH 3 or CF 3, provided that when X b is CF 3 , X a is H or CH 3 .
  • the solubility of the electrolyte salt can be further improved.
  • fluorinated alkyl groups include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CH 2 —, CF 3 CF 2 CF 2- , HCF 2 CF 2 CF 2- , H 2 CFCF 2 CF 2- , CH 3 CF 2 CF 2- ,
  • examples of the fluorinated alkyl group for Rf 2 and R 6 include CF 3 —, CF 3 CF 2 —, (CF 3 ) 2 CH—, CF 3 CH 2 —, C 2 F 5 CH 2 —, HCF 2.
  • R 6 is an alkyl group containing no fluorine atom, it is an alkyl group having 1 to 7 carbon atoms.
  • R 6 preferably has 1 to 4 carbon atoms, and more preferably 1 to 3 in terms of low viscosity.
  • alkyl group not containing a fluorine atom examples include CH 3 —, CH 3 CH 2 —, (CH 3 ) 2 CH—, C 3 H 7 — and the like. Of these, CH 3 — and CH 3 CH 2 — are preferred because of their low viscosity and good rate characteristics.
  • the fluorinated chain carbonate preferably has a fluorine content of 20 to 70% by mass.
  • the fluorine content is more preferably 30% by mass or more, further preferably 35% by mass or more, more preferably 60% by mass or less, and still more preferably 50% by mass or less.
  • the fluorine content is based on the structural formula of the fluorinated chain carbonate, ⁇ (Number of fluorine atoms ⁇ 19) / molecular weight of fluorinated chain carbonate ⁇ ⁇ 100 (%) The value calculated by
  • the fluorinated chain carbonate is preferably one of the following compounds from the viewpoint of low viscosity.
  • the content of the fluorinated chain carbonate is preferably 1 to 90% by volume in the solvent. When the content is within the above range, compatibility can be maintained.
  • the content of the fluorinated chain carbonate is more preferably 30% by volume or more in the electrolytic solution, more preferably 40% by volume or more, and more preferably 85% by volume or less in that the solubility of the salt can be maintained. 80% by volume or less is more preferable.
  • non-fluorinated chain carbonate examples include CH 3 OCOOCH 3 (dimethyl carbonate: DMC), CH 3 CH 2 OCOOCH 2 CH 3 (diethyl carbonate: DEC), CH 3 CH 2 OCOOCH 3 (ethyl methyl carbonate: EMC). ), CH 3 OCOOCH 2 CH 2 CH 3 (methylpropyl carbonate), methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, and other hydrocarbon-based chain carbonates.
  • at least one selected from the group consisting of ethyl methyl carbonate, diethyl carbonate, and dimethyl carbonate is preferable.
  • the content of the non-fluorinated chain carbonate is preferably 0 to 99% by volume in the solvent, more preferably 1% by volume or more, and more preferably 90% by volume or less.
  • the lower limit of the fluorinated saturated cyclic carbonate is preferably 0.1% by mass, and more preferably 0.2% by mass.
  • the upper limit of the fluorinated saturated cyclic carbonate is preferably 60% by mass, and more preferably 40% by mass.
  • the lower limit of the fluorinated chain carbonate is preferably 30% by mass, and more preferably 40% by mass.
  • the upper limit of the fluorinated chain carbonate is preferably 90% by mass, and more preferably 80% by mass.
  • the solvent preferably contains a chain ether.
  • the chain ether may be a non-fluorinated chain ether or a fluorinated chain ether. More preferably, the solvent contains a fluorinated chain ether.
  • the non-fluorinated chain ether preferably has 3 to 10 carbon atoms.
  • the non-fluorinated chain ether include diethyl ether, di-n-butyl ether, dimethoxymethane, methoxyethoxymethane, diethoxymethane, dimethoxyethane, methoxyethoxyethane, diethoxyethane, ethylene glycol di-n-propyl ether, Examples thereof include ethylene glycol di-n-butyl ether and diethylene glycol dimethyl ether.
  • fluorinated chain ether examples include the following general formula (K): Rf 1 -O-Rf 2 (K) (In the formula, Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluorinated alkyl group having 1 to 10 carbon atoms, provided that at least one of Rf 1 and Rf 2 is fluorine.
  • Fluorinated chain ether (K) represented by formula (1).
  • Rf 1 and Rf 2 may be a fluorinated alkyl group having 1 to 10 carbon atoms.
  • both Rf 1 and Rf 2 are preferably fluorinated alkyl groups having 1 to 10 carbon atoms.
  • Rf 1 and Rf 2 may be the same or different from each other.
  • Rf 1 and Rf 2 are the same or different, Rf 1 is a fluorinated alkyl group having 3 to 6 carbon atoms, and Rf 2 is a fluorinated alkyl group having 2 to 6 carbon atoms. preferable.
  • the fluorinated chain ether (K) preferably has a fluorine content of 40 to 75% by mass. When it has a fluorine content in this range, it is particularly excellent in the balance between incombustibility and compatibility. Moreover, it is preferable also from a point with favorable oxidation resistance and safety
  • the lower limit of the fluorine content is more preferably 45% by mass, still more preferably 50% by mass, and particularly preferably 55% by mass.
  • the upper limit is more preferably 70% by mass, and still more preferably 66% by mass.
  • the fluorine content of the fluorinated chain ether (K) is determined based on the structural formula of the fluorinated chain ether (K) ⁇ (number of fluorine atoms ⁇ 19) / of the fluorinated chain ether (K). Molecular weight ⁇ ⁇ 100 (%).
  • Rf 1 examples include CF 3 CF 2 CH 2 —, CF 3 CFHCF 2 —, HCF 2 CF 2 CF 2 —, HCF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CFHCF 2 CH 2 —, HCF 2 CF 2 CF 2 —, HCF 2 CF 2 CH 2 CH 2 —, HCF 2 CF (CF 3 ) CH 2 — and the like can be mentioned.
  • Rf 2 may be, for example, CF 3 CF 2 CH 2 —, CF 3 CFHCF 2 —, CF 2 HCF 2 CF 2 —, CF 2 HCF 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CFHCF 2 CH 2 —, CF 2 HCF 2 CF 2 —, CF 2 HCF 2 CF 2 CH 2 —, CF 2 HCF 2 CH 2 CH 2 —, CF 2 HCF (CF 3 ) CH 2 —, CF 2 HCF 2 —, CF 2 HCH 2 —, CH 3 CF 2 — and the like can be mentioned.
  • fluorinated chain ether (K) examples include, for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3, C 6 F 13 OCH 3, C 6 F 13 OC 2 H 5, C 8 F 17 OCH 3, C 8 F 17 OC 2 H 5, CF 3 CFHCF 2 CH ( CH 3) OCF 2 CFHCF 3, HCF 2 CF 2 OCH (C 2 H 5) 2, HCF 2 CF 2 OC 4 H 9, HCF 2 CF 2 OCH 2 CH (C 2 H 5) 2, HCF 2 CF 2 OCH 2 CH (CH 3 ) 2 and the like.
  • fluorinated chain ether (K) having a high boiling point.
  • the boiling point of the fluorinated chain ether (K) is preferably 67 to 120 ° C. More preferably, it is 80 degreeC or more, More preferably, it is 90 degreeC or more.
  • fluorinated chain ether examples include CF 3 CH 2 OCF 2 CFHCF 3 , CF 3 CF 2 CH 2 OCF 2 CFHCF 3 , HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , and HCF 2 CF.
  • HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106 ° C.), CF 3 CF 2 CH is advantageous because of its high boiling point, compatibility with other solvents, and good solubility of the electrolyte salt.
  • 2 OCF 2 CFHCF 3 (boiling point 82 ° C.), HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C.) and CF 3 CF 2 CH 2 OCF 2 CF 2 H (boiling point 68 ° C.).
  • HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 106 ° C.), HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C.) and CF 3 CF 2 CH 2 OCF More preferably, it is at least one selected from the group consisting of 2 CF 2 H (boiling point 68 ° C.).
  • the content of the chain ether is preferably 0 to 99.9% by volume, more preferably 0.1% by volume or more, and more preferably 90% by volume or less based on the solvent.
  • the content of the fluorinated chain ether is preferably 0 to 99.9% by volume, more preferably 0.1% by volume or more, and more preferably 90% by volume or less based on the solvent.
  • the solvent may also contain at least one selected from the group consisting of the fluorinated saturated cyclic carbonate and the fluorinated chain carbonate, and the fluorinated chain ether.
  • the lower limit of the fluorinated carbonate The value is preferably 40% by mass, and more preferably 50% by mass. 90 mass% is preferable and, as for the upper limit of the said fluorinated carbonate, 80 mass% is more preferable.
  • the lower limit of the fluorinated chain ether is preferably 0.1% by mass, and more preferably 0.2% by mass.
  • the upper limit of the fluorinated chain ether is preferably 70% by mass, and more preferably 60% by mass.
  • the solvent can also contain the fluorinated saturated cyclic carbonate, the fluorinated chain carbonate, and the fluorinated chain ether.
  • the lower limit of the fluorinated saturated cyclic carbonate is preferably 0.1% by mass, and 0.2% by mass. Is more preferable.
  • the upper limit of the fluorinated saturated cyclic carbonate is preferably 60% by mass, and more preferably 40% by mass.
  • the lower limit of the fluorinated chain carbonate is preferably 30% by mass, and more preferably 40% by mass.
  • the upper limit of the fluorinated chain carbonate is preferably 90% by mass, and more preferably 80% by mass.
  • the lower limit of the fluorinated chain ether is preferably 0.1% by mass, and more preferably 0.2% by mass.
  • the upper limit of the fluorinated chain ether is preferably 60% by mass, and more preferably 40% by mass.
  • the electrolytic solution of the present invention preferably contains an electrolyte salt (excluding lithium salt (X) and compound (7)).
  • an electrolyte salt excluding lithium salt (X) and compound (7).
  • electrolyte salt in addition to lithium salt, ammonium salt, metal salt, liquid salt (ionic liquid), inorganic polymer type salt, organic polymer type salt, etc. can be used for electrolyte solution. Any thing can be used.
  • a lithium salt (however, excluding lithium salt (X) and compound (7)) is preferable.
  • the lithium salt include inorganic lithium salts such as LiClO 4 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiPF 4 (CF 3) 2, LiPF 4 (C 2 F 5) 2, LiPF 4 (CF 3 SO 2) 2, LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , LiBF 2 (C 2 F 5 SO 2 ) 2 and a fluorine-containing salt or the like represented by the formula: LiPF a (C n F 2n + 1
  • the lithium salt in that it is possible to suppress the deterioration after the electrolytic solution was stored at high temperatures, LiPF 6, LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 and the formula: LiPF a (C n F 2n + 1 ) 6-a (wherein, a is an integer of 0 to 5 and n is an integer of 1 to 6) It is preferably at least one selected from the group consisting of salts.
  • LiPF a (C n F 2n + 1 ) 6-a examples include LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 LiPF 3 (C 4 F 9 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (C 3 F 7 ) 2 , LiPF 4 (C 4 F 9 ) 2
  • the alkyl group represented by C 3 F 7 or C 4 F 9 in the formula may be either a straight chain or a branched structure.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 3 mol / liter. Outside this range, the electrical conductivity of the electrolytic solution tends to be low, and the battery performance tends to deteriorate.
  • the concentration of the electrolyte salt is more preferably 0.9 mol / liter or more, and more preferably 1.5 mol / liter or less.
  • an ammonium salt is preferable.
  • the ammonium salt include the following (IIa) to (IIe).
  • R 1a , R 2a , R 3a and R 4a are the same or different, and all are alkyl groups optionally containing an ether bond having 1 to 6 carbon atoms; X ⁇ is an anion)
  • Preferred examples include quaternary ammonium salts.
  • the ammonium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • R 5a is an alkyl group having 1 to 6 carbon atoms
  • R 6a is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • R 7a is an alkyl group having 1 to 4 carbon atoms
  • z is 1 or 2
  • X - is an alkyl ether group containing trialkylammonium salt represented by the anion
  • Etc By introducing an alkyl ether group, the viscosity can be lowered.
  • the anion X ⁇ may be an inorganic anion or an organic anion.
  • inorganic anions include AlCl 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , TaF 6 ⁇ , I ⁇ and SbF 6 ⁇ .
  • organic anion include CF 3 COO ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ and the like.
  • BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ and SbF 6 ⁇ are preferred from the viewpoint of good oxidation resistance and ion dissociation properties.
  • tetraalkyl quaternary ammonium salt examples include Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N CF 3 SO 2) 2 N, Et 4 NC 4 F 9 SO 3, Et 3 MeNBF 4, Et 3 MeNClO 4, Et 3 MeNPF 6, Et 3 MeNAsF 6, Et 3 MeNSbF 6, Et 3 MeNCF 3 SO 3, Et 3 MeN (CF 3 SO 2) 2 N, may be used Et 3 MeNC 4 F 9 SO 3 , in particular, Et 4 NBF 4, Et 4 NPF 6, Et 4 NSbF 6, Et 4 NAsF 6, Et 3 MeNBF 4 N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium salt, etc. I can get lost.
  • R 8a and R 9a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n2 is an integer of 0 to 5; n1 is an integer of 0 to 5) represented by Spirocyclic bipyrrolidinium salt, general formula (IIb-2):
  • R 10a and R 11a are the same or different and each is an alkyl group having 1 to 4 carbon atoms;
  • X - is an anion;
  • n4 is an integer of 0 to 5;
  • n3 is an integer of 0 to 5
  • R 12a and R 13a are the same or different and each is an alkyl group having 1 to 4 carbon atoms; X - is an anion; n6 is an integer of 0 to 5; n5 is an integer of 0 to 5) represented by Spiro ring bipyrrolidinium salts are preferred.
  • the spiro-ring bipyrrolidinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • Anion X - of the preferred embodiment are the same as for (IIa). Among them, BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ or (C 2 F 5 SO 2 ) 2 N ⁇ is used because of its high dissociation property and low internal resistance under high voltage. preferable.
  • spiro ring bipyrrolidinium salt examples include, for example, Etc.
  • This spiro ring bipyrrolidinium salt is excellent in terms of solubility in a solvent, oxidation resistance, and ionic conductivity.
  • R 14a and R 15a are the same or different, and both are alkyl groups having 1 to 6 carbon atoms; X 2 ⁇ is an anion)
  • the imidazolium salt shown by can be illustrated preferably.
  • the imidazolium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • This imidazolium salt is excellent in terms of low viscosity and good solubility.
  • N-alkylpyridinium salts represented by the formula are preferred.
  • the N-alkylpyridinium salt in which part or all of the hydrogen atoms are substituted with a fluorine atom and / or a fluorinated alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of improving oxidation resistance.
  • This N-alkylpyridinium salt is excellent in that it has low viscosity and good solubility.
  • N, N-dialkylpyrrolidinium salt represented by the formula is preferably exemplified. Further, the oxidation resistance of the N, N-dialkylpyrrolidinium salt in which some or all of the hydrogen atoms are substituted with fluorine atoms and / or fluorinated alkyl groups having 1 to 4 carbon atoms is improved. It is preferable from the point.
  • This N, N-dialkylpyrrolidinium salt is excellent in that it has low viscosity and good solubility.
  • ammonium salts (IIa), (IIb) and (IIc) are preferable in terms of good solubility, oxidation resistance and ionic conductivity,
  • Me is a methyl group
  • Et is an ethyl group
  • X ⁇ , x, and y are the same as those in the formula (IIa-1).
  • lithium salt as electrolyte salt for electrical double layer capacitors.
  • the lithium salt LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiN (SO 2 C 2 H 5) 2 is preferred.
  • a magnesium salt may be used.
  • the magnesium salt for example, Mg (ClO 4 ) 2 , Mg (OOC 2 H 5 ) 2 and the like are preferable.
  • the concentration is preferably 1.1 mol / liter or more. If it is less than 1.1 mol / liter, not only the low-temperature characteristics are deteriorated, but also the initial internal resistance is increased.
  • the concentration of the electrolyte salt is more preferably 1.25 mol / liter or more.
  • the concentration is preferably 1.7 mol / liter or less, more preferably 1.5 mol / liter or less, from the viewpoint of low temperature characteristics.
  • the ammonium salt is triethylmethylammonium tetrafluoroborate (TEMABF 4 )
  • the concentration is preferably 1.1 to 1.4 mol / liter from the viewpoint of excellent low-temperature characteristics.
  • SBPBF 4 spirobipyrrolidinium tetrafluoroborate
  • the amount is preferably 1.3 to 1.7 mol / liter.
  • the electrolytic solution of the present invention preferably further contains polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having —OH, —OCOOH, or —COOH at the terminal.
  • polyethylene oxide having a weight average molecular weight of 2000 to 4000 and having —OH, —OCOOH, or —COOH at the terminal.
  • the stability of the electrode interface can be improved and the battery characteristics can be improved.
  • the polyethylene oxide include polyethylene oxide monool, polyethylene oxide carboxylic acid, polyethylene oxide diol, polyethylene oxide dicarboxylic acid, polyethylene oxide triol, and polyethylene oxide tricarboxylic acid. These may be used alone or in combination of two or more. Of these, a mixture of polyethylene oxide monool and polyethylene oxide diol, and a mixture of polyethylene carboxylic acid and polyethylene dicarboxylic acid are preferable in terms of better battery characteristics.
  • the weight average molecular weight of the polyethylene oxide is too small, it may be easily oxidized and decomposed.
  • the weight average molecular weight is more preferably 3000 to 4000.
  • the said weight average molecular weight can be measured by polystyrene conversion by a gel permeation chromatography (GPC) method.
  • the polyethylene oxide content is preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 mol / kg in the electrolytic solution. When there is too much content of the said polyethylene oxide, there exists a possibility that a battery characteristic may be impaired.
  • the polyethylene oxide content is more preferably 5 ⁇ 10 ⁇ 6 mol / kg or more.
  • the electrolytic solution of the present invention may further contain an unsaturated cyclic carbonate as an additive. By containing these compounds, deterioration of battery characteristics can be suppressed.
  • the unsaturated cyclic carbonate is a cyclic carbonate containing an unsaturated bond, that is, a cyclic carbonate having at least one carbon-carbon unsaturated bond in the molecule.
  • vinylene carbonate compounds such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate; 4-vinyl ethylene carbonate (VEC), 4- Methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylethylene carbonate, 5-methyl-4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4, And vinyl ethylene carbonate compounds such as 5-divinylethylene carbonate, 4,4-dimethyl-5-methylene ethylene carbonate, and 4,4-diethyl-5-methylene ethylene carbonate.
  • the molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight is preferably 50 or more and 250 or less. If it is this range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to electrolyte solution, and the effect of this invention will fully be expressed easily.
  • the molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more, and more preferably 150 or less.
  • a fluorinated unsaturated cyclic carbonate can also be used suitably.
  • the number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 fluorine atoms.
  • fluorinated unsaturated cyclic carbonate examples include a fluorinated vinylene carbonate derivative, a fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond.
  • Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluor-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- And vinyl vinylene carbonate.
  • fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon double bond examples include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5 -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate , 4,5-diflu B-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenyl
  • the molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the molecular weight is preferably 50 or more and 500 or less. If it is this range, it will be easy to ensure the solubility of the fluorinated cyclic carbonate with respect to electrolyte solution, and the effect of this invention will be easy to be expressed.
  • the said unsaturated cyclic carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content thereof is preferably 0.1 to 10% by mass in the electrolytic solution, more preferably 1% by mass or more, and more preferably 5% by mass or less.
  • the electrolytic solution of the present invention is a cyclic and chain carboxylic acid ester, a cyclic ether, a nitrogen-containing compound, a boron-containing compound, an organic silicon-containing compound, an incombustible (flame retardant) agent, an interface as long as the effects of the present invention are not impaired.
  • Other solvents or additives such as activators, high dielectric additives, cycle and rate characteristics improvers, or overcharge inhibitors may also be included.
  • Examples of the cyclic carboxylic acid ester include those having 3 to 12 total carbon atoms in the structural formula. Specific examples include gamma butyrolactone, gamma valerolactone, gamma caprolactone, epsilon caprolactone, and the like. Among these, gamma butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
  • the compounding quantity of cyclic carboxylic acid ester is 100 mass% of solvent normally, Preferably it is 0.1 mass% or more, More preferably, it is 1 mass% or more. Within this range, the electrical conductivity of the electrolytic solution is improved, and the large current discharge characteristics of the electrolytic solution battery are easily improved. Moreover, the compounding quantity of cyclic carboxylic acid ester becomes like this. Preferably it is 10 mass% or less, More preferably, it is 5 mass% or less. By setting the upper limit in this way, the viscosity of the electrolytic solution is set in an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge characteristics of the electrolytic solution battery are set in a favorable range. Make it easier.
  • cyclic carboxylic acid ester a fluorinated cyclic carboxylic acid ester (fluorinated lactone) can also be suitably used.
  • fluorine-containing lactone examples include the following formula (E):
  • X 15 to X 20 are the same or different and all are —H, —F, —Cl, —CH 3 or a fluorinated alkyl group; provided that at least one of X 15 to X 20 is a fluorinated alkyl
  • Examples of the fluorinated alkyl group for X 15 to X 20 include —CFH 2 , —CF 2 H, —CF 3 , —CH 2 CF 3 , —CF 2 CF 3 , —CH 2 CF 2 CF 3 , —CF (CF 3 ) 2 and the like are mentioned, and —CH 2 CF 3 and —CH 2 CF 2 CF 3 are preferable from the viewpoint of high oxidation resistance and an effect of improving safety.
  • X 15 to X 20 is a fluorinated alkyl group, —H, —F, —Cl, —CH 3 or the fluorinated alkyl group is substituted at only one position of X 15 to X 20.
  • a plurality of locations may be substituted.
  • it is 1 to 3 sites, more preferably 1 to 2 sites from the viewpoint of good solubility of the electrolyte salt.
  • the substitution position of the fluorinated alkyl group is not particularly limited. However, since the synthesis yield is good, X 17 and / or X 18 is particularly preferably X 17 or X 18 is a fluorinated alkyl group, particularly —CH 2 CF 3. , —CH 2 CF 2 CF 3 is preferable. X 15 to X 20 other than the fluorinated alkyl group are —H, —F, —Cl or CH 3 , and —H is particularly preferable from the viewpoint of good solubility of the electrolyte salt.
  • fluorine-containing lactone examples include those represented by the following formula (F):
  • one of A and B is CX 26 X 27 (X 26 and X 27 are the same or different, and each of them is —H, —F, —Cl, —CF 3 , —CH 3 or a hydrogen atom)
  • Rf 12 is a fluorinated alkyl group or a fluorinated group which may have an ether bond
  • X 21 and X 22 are the same or different; all are —H, —F, —Cl, —CF 3 or CH 3 ;
  • fluorine-containing lactone represented by the formula (F) examples include the following formula (G):
  • the 5-membered ring structure is easy to synthesize and has chemical stability. It is preferably mentioned from a favorable point, and further, by the combination of A and B, the following formula (H):
  • Examples of the chain carboxylic acid ester include those having 3 to 7 carbon atoms in the structural formula. Specifically, methyl acetate, ethyl acetate, acetate n-propyl, isopropyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyric acid-n- Examples include propyl and isopropyl isobutyrate.
  • methyl acetate, ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate, etc. are ions due to viscosity reduction. It is preferable from the viewpoint of improvement of conductivity.
  • fluorinated chain carboxylic acid ester can also be used suitably.
  • the fluorine-containing ester the following formula (J): Rf 10 COORf 11 (J) (Wherein Rf 10 is a fluorinated alkyl group having 1 to 2 carbon atoms, Rf 11 is a fluorinated alkyl group having 1 to 4 carbon atoms), and the flame retardant property is high, And it is preferable from the viewpoint of good compatibility with other solvents and oxidation resistance.
  • Rf 10 examples include CF 3- , CF 3 CF 2- , HCF 2 CF 2- , HCF 2- , CH 3 CF 2- , CF 3 CH 2- and the like, among which CF 3- , CF 3 CF 2 -is particularly preferable from the viewpoint of good rate characteristics.
  • Rf 11 examples include CF 3 —, CF 3 CF 2 —, (CF 3 ) 2 CH—, CF 3 CH 2 —, CF 3 CH 2 CH 2 —, CF 3 CFHCF 2 CH 2 —, C 2 F 5 CH 2 —, CF 2 HCF 2 CH 2 —, C 2 F 5 CH 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, etc., among others, CF 3 CH 2- , (CF 3 ) 2 CH—, C 2 F 5 CH 2 —, and CF 2 HCF 2 CH 2 — are particularly preferred from the viewpoint of good compatibility with other solvents.
  • fluorinated chain carboxylic acid ester examples include, for example, CF 3 C ( ⁇ O) OCH 2 CF 3 , CF 3 C ( ⁇ O) OCH 2 CH 2 CF 3 , and CF 3 C ( ⁇ O) OCH 2 C.
  • CF 3 C ( ⁇ O) OCH 2 CF 3 CF 3 C ( ⁇ O) OCH 2 CH 2 CF 3
  • CF 3 C ( ⁇ O) OCH 2 C One or more of 2 F 5 , CF 3 C ( ⁇ O) OCH 2 CF 2 CF 2 H, CF 3 C ( ⁇ O) OCH (CF 3 ) 2, etc.
  • the cyclic ether is preferably a cyclic ether having 3 to 6 carbon atoms.
  • Examples of the cyclic ether having 3 to 6 carbon atoms include 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane, and fluorinated compounds thereof. Is mentioned. Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and improve the degree of ion dissociation. Dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are particularly preferable because they have low viscosity and give high ionic conductivity.
  • nitrogen-containing compound examples include carboxylic acid amides, fluorine-containing carboxylic acid amides, sulfonic acid amides, and fluorine-containing sulfonic acid amides.
  • carboxylic acid amides examples include carboxylic acid amides, fluorine-containing carboxylic acid amides, sulfonic acid amides, and fluorine-containing sulfonic acid amides.
  • 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxaziridinone, 1,3-dimethyl-2-imidazolidinone, N-methylsuccinimide and the like can be used.
  • boron-containing compound examples include boric acid esters such as trimethyl borate and triethyl borate, boric ether, and alkyl borate.
  • organosilicon-containing compound examples include (CH 3 ) 4 —Si, (CH 3 ) 3 —Si—Si (CH 3 ) 3, and the like.
  • Examples of the incombustible (flame retardant) agent include phosphate esters and phosphazene compounds.
  • Examples of the phosphate ester include fluorine-containing alkyl phosphate esters, non-fluorinated alkyl phosphate esters, and aryl phosphate esters. Especially, it is preferable that it is a fluorine-containing alkyl phosphate ester at the point which can exhibit a nonflammable effect in a small quantity.
  • fluorine-containing alkyl phosphate ester examples include fluorine-containing dialkyl phosphate esters described in JP-A No. 11-233141 and cyclic alkyl phosphate esters described in JP-A No. 11-283669. Or fluorine-containing trialkyl phosphate ester etc. are mentioned.
  • the surfactant may be any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant. From the viewpoint of good cycle characteristics and rate characteristics, a fluorine atom It is preferable that it contains.
  • Rf 1 COO ⁇ M + (Wherein Rf 1 is a fluorinated alkyl group that may contain an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different) , Each of which is H or an alkyl group having 1 to 3 carbon atoms), or a fluorine-containing carboxylate represented by the following formula: Rf 2 SO 3 - M + (Wherein Rf 2 is a fluorinated alkyl group optionally containing an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is the same or different)
  • Rf 2 SO 3 - M + (Wherein Rf 2 is a fluorinated alkyl group optionally containing an ether bond having 3 to 10 carbon atoms; M + is Li + , Na + , K + or NHR ′ 3 + (R ′ is
  • the content of the surfactant is preferably 0.01 to 2% by mass in the electrolytic solution from the viewpoint that the surface tension of the electrolytic solution can be reduced without reducing the charge / discharge cycle characteristics.
  • high dielectric additive examples include sulfolane, methyl sulfolane, ⁇ -butyrolactone, ⁇ -valerolactone, acetonitrile, propionitrile and the like.
  • cycle characteristic and rate characteristic improving agent examples include methyl acetate, ethyl acetate, tetrahydrofuran, 1,4-dioxane and the like.
  • the overcharge preventing agent is preferably an overcharge preventing agent having an aromatic ring in that the battery can be prevented from being ruptured or ignited during overcharging.
  • the overcharge inhibitor having an aromatic ring include cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran, dibenzofuran, dichloroaniline.
  • Aromatic compounds such as toluene, fluorinated aromatic compounds such as hexafluorobenzene, fluorobenzene, 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5 -Fluorinated anisole compounds such as difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydride, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more.
  • a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene biphenyl, alkylbiphenyl, terphenyl, terphenyl hydride, cyclohexylbenzene, t-butylbenzene, t -Use of at least one selected from aromatic compounds not containing oxygen such as amylbenzene and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether and dibenzofuran in combination with overcharge prevention characteristics and high-temperature storage characteristics It is preferable from the viewpoint of balance.
  • the content of the overcharge inhibitor is preferably 0.1 to 5% by mass in the electrolytic solution from the viewpoint that the battery can be prevented from bursting or firing in the case of overcharging or the like.
  • the electrolytic solution of the present invention may further contain other known auxiliary agents as long as the effects of the present invention are not impaired.
  • auxiliary agents include carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, and methoxyethyl-methyl carbonate; 2,4,8,10-tetraoxaspiro [5,5] Spiro compounds such as undecane and 3,9-divinyl-2,4,8,10-tetraoxaspiro [5,5] undecane; hydrocarbon compounds such as heptane, octane, nonane, decane and cycloheptane. These may be used alone or in combination of two or more. By adding these auxiliaries, capacity maintenance characteristics and cycle characteristics after high temperature storage can be improved.
  • electrolytic solution of the present invention may be further combined with a polymer material to form a gel (plasticized) gel electrolytic solution.
  • Examples of such a polymer material include conventionally known polyethylene oxide and polypropylene oxide, modified products thereof (JP-A-8-222270 and JP-A-2002-1000040); polyacrylate polymers, polyacrylonitrile, and polyvinylidene fluoride.
  • Fluorine resins such as vinylidene fluoride-hexafluoropropylene copolymer (JP-A-4-506726, JP-A-8-507407, JP-A-10-294131); Examples include composites with resins (Japanese Patent Laid-Open Nos. 11-35765 and 11-86630).
  • the electrolytic solution of the present invention may also contain an ion conductive compound described in Japanese Patent Application No. 2004-301934.
  • This ion conductive compound has the formula (1-1): A- (D) -B (1-1) [Wherein D represents the formula (2-1): -(D1) n- (FAE) m- (AE) p- (Y) q- (2-1) (In the formula, D1 represents the formula (2a):
  • Rf is a fluorine-containing ether group which may have a crosslinkable functional group; the R 10 group or a bond that binds the Rf main chain
  • ether having a fluorine-containing ether group in the side chain represented by unit FAE is represented by formula (2b):
  • Rfa is hydrogen atom, a crosslinkable functional group which may have a fluorinated alkyl group; R 11 is a group or a bond that binds the Rfa main chain) fluorinated alkyl group in the side chain represented by Ether units having: AE is the formula (2c):
  • R 13 has a hydrogen atom, an alkyl group which may have a crosslinkable functional group, an aliphatic cyclic hydrocarbon group which may have a crosslinkable functional group, or a crosslinkable functional group.
  • An aromatic hydrocarbon group which may be present R 12 is an ether unit represented by R 13 and a group or a bond which bonds the main chain;
  • Y represents the formulas (2d-1) to (2d-3):
  • a unit comprising at least one of n is an integer from 0 to 200; m is an integer from 0 to 200; p is an integer from 0 to 10000; q is an integer from 1 to 100; provided that n + m is not 0, and the bonding order of D1, FAE, AE, and Y is Not specified);
  • a and B are the same or different and are a hydrogen atom, a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group, a fluorine atom and / or a phenyl group which may contain a crosslinkable functional group, —COOH A group, —OR (wherein R is a hydrogen atom or a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group), an ester group or a carbonate group (provided that when D is terminated with an oxygen atom, a —COOH group,
  • the electrolytic solution of the present invention preferably contains 0.5 to 70 ppm of HF.
  • HF By containing HF, the film formation of the additive can be promoted.
  • the content of HF is more preferably 1 ppm or more, and further preferably 2.5 ppm or more.
  • the content of HF is more preferably 60 ppm or less, still more preferably 50 ppm or less, and particularly preferably 30 ppm or less.
  • the content of HF can be measured by a neutralization titration method.
  • the electrolytic solution of the present invention may be prepared by any method using the components described above.
  • the electrolyte solution of the present invention can be suitably applied to electrochemical devices such as lithium ion secondary batteries and electric double layer capacitors.
  • electrochemical devices such as lithium ion secondary batteries and electric double layer capacitors.
  • Such an electrochemical device provided with the electrolytic solution of the present invention is also one aspect of the present invention.
  • Electrochemical devices include lithium ion secondary batteries, capacitors (electric double layer capacitors), radical batteries, solar cells (especially dye-sensitized solar cells), fuel cells, various electrochemical sensors, electrochromic devices, and electrochemical switching. Examples thereof include an element, an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, and a lithium ion secondary battery and an electric double layer capacitor are preferable.
  • the lithium ion secondary battery may include a positive electrode, a negative electrode, and the above-described electrolytic solution.
  • a positive electrode is comprised from the positive electrode mixture containing the positive electrode active material which is a material of a positive electrode, and a collector.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions.
  • a material containing lithium and at least one transition metal is preferable.
  • Specific examples include lithium-containing transition metal composite oxides and lithium-containing transition metal phosphate compounds.
  • the lithium containing transition metal complex oxide which produces a high voltage is especially preferable.
  • lithium-containing transition metal composite oxide examples include: Formula: Li a Mn 2-b M 1 b O 4 (where 0.9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, A lithium-manganese spinel composite oxide represented by V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge).
  • LiNi 1-c M 2 c O 2 (where 0 ⁇ c ⁇ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Lithium-nickel composite oxide represented by (at least one metal selected from the group consisting of Sr, B, Ga, In, Si and Ge), or Formula: LiCo 1-d M 3 d O 2 (where 0 ⁇ d ⁇ 0.5; M 3 is Fe, Ni, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Lithium-cobalt composite oxide represented by at least one metal selected from the group consisting of Sr, B, Ga, In, Si, and Ge.
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 can be provided because the lithium ion secondary battery with high energy density and high output can be provided. Or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferred.
  • LiFePO 4 LiNi 0.8 Co 0.2 O 2 , Li 1.2 Fe 0.4 Mn 0.4 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiV 3 O 6 etc. are mentioned.
  • lithium phosphate in the positive electrode active material because continuous charge characteristics are improved.
  • the lower limit of the amount of lithium phosphate to be used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and further preferably 0.5% by mass with respect to the total of the positive electrode active material and lithium phosphate. %, And the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 5% by mass or less.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
  • these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried.
  • the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously.
  • the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.
  • the amount of the surface adhering substance is, in terms of mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, further preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably as the lower limit. Is used at 10% or less, more preferably 5% or less.
  • the surface adhering substance can suppress the oxidation reaction of the electrolyte solution on the surface of the positive electrode active material and can improve the battery life. However, when the amount of the adhering quantity is too small, the effect is not sufficiently manifested. If it is too high, the resistance may increase in order to inhibit the entry and exit of lithium ions.
  • Examples of the shape of the particles of the positive electrode active material include a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, and a column shape as conventionally used. Moreover, primary particles may aggregate to form secondary particles.
  • the tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and further preferably 1.0 g / cm 3 or more. If the tap density of the positive electrode active material is lower than the lower limit, the amount of the required dispersion medium increases when the positive electrode active material layer is formed, and the necessary amount of conductive material and binder increases, so that the positive electrode to the positive electrode active material layer The filling rate of the active material is restricted, and the battery capacity may be restricted. By using a complex oxide powder having a high tap density, a high-density positive electrode active material layer can be formed.
  • the tap density is preferably as large as possible, and there is no particular upper limit, but if it is too large, diffusion of lithium ions using the electrolytic solution in the positive electrode active material layer as a medium is rate-limiting, and load characteristics may be easily reduced.
  • the upper limit is preferably 4.0 g / cm 3 or less, more preferably 3.7 g / cm 3 or less, and still more preferably 3.5 g / cm 3 or less.
  • the tap density is 5 to 10 g of the positive electrode active material powder in a 10 ml glass measuring cylinder and tapped 200 times with a stroke of about 20 mm (tap density) g / cm 3. Asking.
  • the median diameter d50 of the positive electrode active material particles is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably. Is 0.8 ⁇ m or more, most preferably 1.0 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 27 ⁇ m or less, further preferably 25 ⁇ m or less, and most preferably 22 ⁇ m or less. If the lower limit is not reached, a high tap density product may not be obtained.
  • the positive electrode of the battery that is, the active material
  • a conductive material, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur.
  • the positive electrode active materials having different median diameters d50, it is possible to further improve the filling property at the time of forming the positive electrode.
  • the median diameter d50 is measured by a known laser diffraction / scattering particle size distribution measuring device.
  • LA-920 manufactured by HORIBA is used as a particle size distribution meter
  • a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
  • the average primary particle diameter of the positive electrode active material is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and still more preferably 0.8.
  • the upper limit is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
  • the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
  • SEM scanning electron microscope
  • BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, still more preferably 0.3 m 2 / g or more, and the upper limit is preferably 50 m 2 / g or less, more preferably 40 m 2 / g or less, and further preferably 30 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to be lowered. If the BET specific surface area is larger, the tap density is difficult to increase, and a problem may occur in applicability when forming the positive electrode active material layer.
  • the BET specific surface area is large after preliminarily drying the sample for 30 minutes at 150 ° C. under a nitrogen flow using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken). It is defined by a value measured by a nitrogen adsorption BET one-point method using a gas flow method using a nitrogen-helium mixed gas that is accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure is 0.3.
  • the positive electrode active material particles are mainly secondary particles. It is preferable that The particles of the positive electrode active material preferably contain 0.5 to 7.0% by volume of fine particles having an average secondary particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less. By containing fine particles having an average primary particle size of 1 ⁇ m or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be further accelerated. Output performance can be improved.
  • a general method is used as a manufacturing method of the inorganic compound.
  • various methods are conceivable for preparing a spherical or elliptical active material.
  • a transition metal source material is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring.
  • a spherical precursor is prepared and recovered, and dried as necessary.
  • a Li source such as LiOH, Li 2 CO 3 , LiNO 3 is added, and the active material is obtained by baking at a high temperature. .
  • the positive electrode active material may be used alone, or two or more of the different compositions may be used in any combination or ratio.
  • a preferable combination in this case is a combination of LiCoO 2 and LiMn 2 O 4 such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 or a part of this Mn substituted with another transition metal or the like. Or a combination with LiCoO 2 or a part of this Co substituted with another transition metal or the like.
  • the content of the positive electrode active material is preferably 50 to 99% by mass, more preferably 80 to 99% by mass of the positive electrode mixture, from the viewpoint of high battery capacity.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, an upper limit becomes like this. Preferably it is 99 mass% or less, More preferably, it is 98 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
  • the positive electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • a binder any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in the production of the electrode.
  • polyvinylidene fluoride polytetrafluoroethylene, polyethylene, polypropylene , SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose, NBR (Acrylonitrile-butadiene rubber), fluoro rubber, ethylene-propylene rubber, styrene / butadiene / styrene block copolymer or its hydrogenated product, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / Tadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated product thereof, syndiotact
  • the content of the binder is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 1.5% by mass or more, as a ratio of the binder in the positive electrode active material layer. Usually, it is 80 mass% or less, Preferably it is 60 mass% or less, More preferably, it is 40 mass% or less, Most preferably, it is 10 mass% or less.
  • the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained and the positive electrode has insufficient mechanical strength, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. 1 type may be used independently or 2 or more types may be used together by arbitrary combinations and a ratio.
  • the ratio of the thickener to the active material is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and usually 5% by mass or less, preferably 3%. It is in the range of not more than mass%, more preferably not more than 2 mass%. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
  • a known conductive material can be arbitrarily used as the conductive material.
  • Specific examples include metal materials such as copper and nickel, graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more, and usually 50% by mass or less, preferably 30% by mass in the positive electrode active material layer. % Or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
  • the solvent for forming the slurry the positive electrode active material, the conductive material, the binder, and a solvent capable of dissolving or dispersing the thickener used as necessary may be used.
  • an aqueous solvent or an organic solvent may be used.
  • the aqueous solvent include water, a mixed medium of alcohol and water, and the like.
  • the organic solvent include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone.
  • Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • amines such as diethylenetriamine and N, N-dimethylaminopropylamine
  • ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF)
  • NMP N-methylpyrrolidone
  • Amides such as dimethylformamide and dimethylacetamide
  • aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, tantalum, stainless steel, and nickel, or metal materials such as alloys thereof; carbon materials such as carbon cloth and carbon paper. Among these, a metal material, particularly aluminum or an alloy thereof is preferable.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material.
  • a thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred.
  • the thickness of the thin film is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
  • the surface of the current collector is coated with a conductive additive.
  • the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
  • the ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of the current collector) is 20 Is preferably 15 or less, most preferably 10 or less, and preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Above this range, the current collector may generate heat due to Joule heat during high current density charge / discharge. Below this range, the volume ratio of the current collector to the positive electrode active material increases and the battery capacity may decrease.
  • the positive electrode may be manufactured by a conventional method.
  • the above-mentioned positive electrode active material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry-like positive electrode mixture, which is applied to a current collector, dried and then pressed.
  • a method of densification is mentioned.
  • the densification can be performed by a hand press, a roller press or the like.
  • the density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more, still more preferably 2.2 g / cm 3 or more, and preferably 5 g / cm 3 or less. More preferably, it is 4.5 g / cm ⁇ 3 > or less, More preferably, it is the range of 4 g / cm ⁇ 3 > or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and a high output may not be obtained.
  • the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of increasing the stability at high output and high temperature.
  • the sum of the electrode areas of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 15 times or more, and more preferably 40 times or more.
  • the outer surface area of the battery outer case in the case of a square shape with a bottom, is the total area calculated from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal.
  • the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder.
  • the total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.
  • the thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the composite layer obtained by subtracting the metal foil thickness of the core material is preferably as a lower limit with respect to one side of the current collector. Is 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
  • the negative electrode is composed of a negative electrode mixture containing a negative electrode active material and a current collector.
  • Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, such as organic pyrolysis products and artificial graphite and natural graphite under various pyrolysis conditions; occluding and releasing lithium such as tin oxide and silicon oxide. Possible metal oxide materials; lithium metal; various lithium alloys; lithium-containing metal composite oxide materials. These negative electrode active materials may be used in combination of two or more.
  • artificial graphite or purified natural graphite produced by high-temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment with pitch or other organic substances on these graphites
  • carbonized material obtained by carbonizing natural graphite, artificial graphite, artificial carbonaceous material, and artificial graphite material at least once in the range of 400 to 3200 ° C., and a negative electrode active material layer.
  • a carbonaceous material comprising at least two kinds of carbonaceous materials having different crystallinity and / or having an interface in contact with the different crystalline carbonaceous materials, and at least two kinds of different orientations of the negative electrode active material layer
  • a carbonaceous material having an interface with which the carbonaceous material is in contact is more preferable because of a good balance between initial irreversible capacity and high current density charge / discharge characteristics.
  • these carbon materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • Carbonaceous materials obtained by heat-treating the above-mentioned artificial carbonaceous materials and artificial graphite materials at least once in the range of 400 to 3200 ° C include coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, and oxidation of these pitches.
  • Treated, needle coke, pitch coke and partially carbonized carbon agents, furnace black, acetylene black, pyrolytic products of organic materials such as pitch-based carbon fibers, carbonizable organic materials and their carbides, or carbonizable Examples thereof include solutions obtained by dissolving organic substances in low molecular organic solvents such as benzene, toluene, xylene, quinoline, n-hexane, and carbides thereof.
  • the metal material used as the negative electrode active material excluding lithium-titanium composite oxide
  • simple lithium, simple metal and alloy forming lithium alloy or oxidation thereof
  • Any of compounds such as oxides, carbides, nitrides, silicides, sulfides or phosphides may be used, and there is no particular limitation.
  • the single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements, more preferably aluminum, silicon and tin (hereinafter abbreviated as “specific metal elements”). ) Simple metals and alloys or compounds containing these atoms. These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • a negative electrode active material having at least one kind of atom selected from a specific metal element, a metal simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, one type or two or more specific types Alloys comprising metal elements and one or more other metal elements, as well as compounds containing one or more specific metal elements, and oxides, carbides, nitrides and silicides of the compounds And composite compounds such as sulfides or phosphides.
  • these simple metals, alloys or metal compounds as the negative electrode active material, the capacity of the battery can be increased.
  • a compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a nonmetallic element is also included.
  • a simple metal, an alloy, or a nonmetallic element such as silicon and tin
  • an alloy of these elements and a metal that does not operate as a negative electrode can be used.
  • a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than tin and silicon, a metal that does not operate as a negative electrode, and a nonmetallic element may be used. it can.
  • the second constituent element is, for example, at least one of cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, and zirconium.
  • the third constituent element is at least one of boron, carbon, aluminum, and phosphorus.
  • the metal material silicon or tin alone (which may contain a small amount of impurities), SiOv (0 ⁇ v ⁇ 2), SnOw (0 ⁇ w) ⁇ 2), Si—Co—C composite material, Si—Ni—C composite material, Sn—Co—C composite material, and Sn—Ni—C composite material are preferable.
  • the lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable from the viewpoint of high current density charge / discharge characteristics, A lithium-containing composite metal oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium (hereinafter abbreviated as “lithium titanium composite oxide”) is more preferable. That is, it is particularly preferable to use a lithium-titanium composite oxide having a spinel structure in a negative electrode active material for an electrolyte battery because the output resistance is greatly reduced.
  • the lithium titanium composite oxide has a general formula: Li x Ti y M z O 4 [Wherein M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. ] It is preferable that it is a compound represented by these.
  • compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (i), Li 1 Ti 2 O 4 in (ii), and Li 4/5 Ti 11/5 O in (iii). 4 .
  • structure of Z ⁇ 0, for example, Li 4/3 Ti 4/3 Al 1/3 O 4 is preferable.
  • the negative electrode mixture preferably further contains a binder, a thickener, and a conductive material.
  • the ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less. It is more preferably at most 10 mass%, further preferably at most 10 mass%, particularly preferably at most 8 mass%.
  • the ratio of the binder to the negative electrode active material exceeds the above range, the binder ratio in which the amount of the binder does not contribute to the battery capacity increases, and the battery capacity may be reduced.
  • the strength of the negative electrode may be reduced.
  • the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more. 0.6 mass% or more is more preferable, and is usually 5 mass% or less, preferably 3 mass% or less, and more preferably 2 mass% or less.
  • the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
  • the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 5% by mass or less. 3 mass% or less is preferable and 2 mass% or less is more preferable.
  • the ratio of the thickener to the negative electrode active material is less than the above range, applicability may be significantly reduced.
  • it exceeds the said range the ratio of the negative electrode active material which occupies for a negative electrode active material layer will fall, and the problem that the capacity
  • Examples of the conductive material for the negative electrode include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • the solvent for forming the slurry As the solvent for forming the slurry, the negative electrode active material, the binder, and the thickener and conductive material used as necessary can be dissolved or dispersed as long as it is a solvent. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water and alcohol.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Examples include dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
  • NMP N-methylpyrrolidone
  • dimethylformamide dimethylacetamide
  • methyl ethyl ketone cyclohexanone
  • methyl acetate methyl acrylate
  • diethyltriamine N
  • N- Examples include dimethylaminopropylamine, tetrahydr
  • Examples of the material for the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost.
  • the thickness of the current collector is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and is usually 100 ⁇ m or less, preferably 50 ⁇ m or less. If the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be reduced too much, and conversely if it is too thin, handling may be difficult.
  • the negative electrode may be manufactured by a conventional method.
  • the above-described negative electrode material is added with the above-mentioned binder, thickener, conductive material, solvent, etc. to form a slurry, which is applied to a current collector, dried, pressed and densified.
  • a method of forming the above-described thin film layer (negative electrode active material layer) containing the negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.
  • the electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g ⁇ cm ⁇ 3 or more, and 1.2 g ⁇ cm ⁇ 3 or more. but more preferably, particularly preferably 1.3 g ⁇ cm -3 or more, preferably 2.2 g ⁇ cm -3 or less, more preferably 2.1 g ⁇ cm -3 or less, 2.0 g ⁇ cm -3 or less More preferred is 1.9 g ⁇ cm ⁇ 3 or less.
  • the density of the negative electrode active material present on the current collector exceeds the above range, the negative electrode active material particles are destroyed, increasing the initial irreversible capacity, or the electrolyte solution near the current collector / negative electrode active material interface In some cases, high current density charge / discharge characteristics are deteriorated due to a decrease in permeability.
  • the amount is less than the above range, the conductivity between the negative electrode active materials decreases, the battery resistance increases, and the capacity per unit volume may decrease.
  • the thickness of the negative electrode plate is designed according to the positive electrode plate to be used, and is not particularly limited.
  • the thickness of the composite layer obtained by subtracting the thickness of the metal foil of the core is usually 15 ⁇ m or more, preferably 20 ⁇ m or more. More preferably, it is 30 ⁇ m or more, and usually 300 ⁇ m or less, preferably 280 ⁇ m or less, more preferably 250 ⁇ m or less.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.
  • the lithium ion secondary battery of the present invention preferably further includes a separator.
  • the material and shape of the separator are not particularly limited as long as they are stable to the electrolytic solution and excellent in liquid retention, and known ones can be used. Among them, a resin, glass fiber, inorganic material, etc., formed of a material that is stable with respect to the electrolytic solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. preferable.
  • polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. These materials, such as a polypropylene / polyethylene two-layer film and a polypropylene / polyethylene / polypropylene three-layer film, may be used alone or in combination of two or more in any combination and ratio.
  • the said separator is the porous sheet
  • the thickness of the separator is arbitrary, but is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and usually 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if it is thicker than the above range, not only battery performance such as rate characteristics may be lowered, but also the energy density of the entire electrolyte battery may be lowered.
  • the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Further, it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
  • the average pore diameter of a separator is also arbitrary, it is 0.5 micrometer or less normally, 0.2 micrometer or less is preferable, and it is 0.05 micrometer or more normally. If the average pore diameter exceeds the above range, a short circuit tends to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used. Used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 to 1 ⁇ m and a thickness of 5 to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 ⁇ m on both surfaces of the positive electrode and using a fluororesin as a binder.
  • the electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
  • the battery capacity decreases. Also, if the above range is exceeded, the void space is small, the battery expands, and the member expands or the vapor pressure of the electrolyte liquid component increases and the internal pressure rises. In some cases, the gas release valve that lowers various characteristics such as storage at high temperature and the like, or releases the internal pressure to the outside is activated.
  • the current collecting structure is not particularly limited, but in order to more effectively realize the high current density charge / discharge characteristics by the electrolytic solution of the present invention, it is necessary to make the structure that reduces the resistance of the wiring part and the joint part. preferable. Thus, when internal resistance is reduced, the effect using the electrolyte solution of this invention is exhibited especially favorable.
  • the electrode group has the above laminated structure
  • a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used.
  • the internal resistance increases. Therefore, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance.
  • the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.
  • the material of the outer case is not particularly limited as long as it is a material that is stable with respect to the electrolytic solution used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
  • the metal is welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things.
  • the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used.
  • Resins are preferably used.
  • the shape of the lithium ion secondary battery of the present invention is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large shape.
  • the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery.
  • the module provided with the lithium ion secondary battery of this invention is also one of this invention.
  • the electric double layer capacitor may include a positive electrode, a negative electrode, and the electrolytic solution described above.
  • at least one of the positive electrode and the negative electrode is a polarizable electrode, and the following electrodes described in detail in JP-A-9-7896 can be used as the polarizable electrode and the nonpolarizable electrode.
  • the polarizable electrode mainly composed of activated carbon used in the present invention preferably contains a non-activated carbon having a large specific surface area and a conductive agent such as carbon black imparting electron conductivity.
  • the polarizable electrode can be formed by various methods.
  • a polarizable electrode made of activated carbon and carbon black can be formed by mixing activated carbon powder, carbon black, and a phenolic resin, and firing and activating in an inert gas atmosphere and a water vapor atmosphere after press molding.
  • the polarizable electrode is joined to the current collector with a conductive adhesive or the like.
  • activated carbon powder, carbon black, and a binder can be kneaded in the presence of alcohol, formed into a sheet, and dried to form a polarizable electrode.
  • a polarizable electrode For example, polytetrafluoroethylene is used as the binder.
  • activated carbon powder, carbon black, binder and solvent are mixed to form a slurry, and this slurry is coated on the metal foil of the current collector and dried to obtain a polarizable electrode integrated with the current collector. it can.
  • An electric double layer capacitor may be formed by using a polarizable electrode mainly composed of activated carbon for both electrodes, but a configuration using a non-polarizable electrode on one side, for example, a positive electrode mainly composed of a battery active material such as a metal oxide, and activated carbon
  • a positive electrode mainly composed of a battery active material such as a metal oxide such as a metal oxide
  • activated carbon A structure combining a polarizable electrode negative electrode mainly composed of carbon, a negative electrode mainly composed of a carbon material capable of reversibly occluding and releasing lithium ions, or a negative electrode composed mainly of lithium metal or lithium alloy and activated carbon.
  • a configuration combining a positive electrode with a polarity is also possible.
  • carbonaceous materials such as carbon black, graphite, expanded graphite, porous carbon, carbon nanotube, carbon nanohorn, and ketjen black may be used instead of or in combination with activated carbon.
  • the non-polarizable electrode is preferably composed mainly of a carbon material capable of reversibly occluding and releasing lithium ions, and an electrode obtained by occluding lithium ions in this carbon material is used for the electrode.
  • a lithium salt is used as the electrolyte. According to the electric double layer capacitor having this configuration, a higher withstand voltage exceeding 4 V can be obtained.
  • Solvents used to prepare the slurry for electrode preparation are preferably those that dissolve the binder.
  • Dimethyl acid, ethanol, methanol, butanol or water is appropriately selected.
  • Examples of the activated carbon used for the polarizable electrode include phenol resin-based activated carbon, coconut-based activated carbon, and petroleum coke-based activated carbon. Among these, it is preferable to use petroleum coke activated carbon or phenol resin activated carbon in that a large capacity can be obtained.
  • Activated carbon activation treatment methods include a steam activation treatment method, a molten KOH activation treatment method, and the like, and it is preferable to use activated carbon obtained by a molten KOH activation treatment method in terms of obtaining a larger capacity.
  • Preferred conductive agents used for the polarizable electrode include carbon black, ketjen black, acetylene black, natural graphite, artificial graphite, metal fiber, conductive titanium oxide, and ruthenium oxide.
  • the mixing amount of the conductive agent such as carbon black used for the polarizable electrode is so as to obtain good conductivity (low internal resistance), and if it is too large, the product capacity is reduced. It is preferable to set it as 50 mass%.
  • activated carbon As the activated carbon used for the polarizable electrode, activated carbon having an average particle size of 20 ⁇ m or less and a specific surface area of 1500 to 3000 m 2 / g is used so that an electric double layer capacitor having a large capacity and a low internal resistance can be obtained. Is preferred.
  • a preferable carbon material for constituting an electrode mainly composed of a carbon material capable of reversibly inserting and extracting lithium ions natural graphite, artificial graphite, graphitized mesocarbon spherule, graphitized whisker, gas layer Examples thereof include a grown carbon fiber, a fired product of furfuryl alcohol resin, and a fired product of novolac resin.
  • the current collector is only required to be chemically and electrochemically corrosion resistant.
  • As the current collector of the polarizable electrode mainly composed of activated carbon stainless steel, aluminum, titanium or tantalum can be preferably used. Of these, stainless steel or aluminum is a particularly preferable material in terms of both characteristics and cost of the obtained electric double layer capacitor.
  • As the current collector of the electrode mainly composed of a carbon material capable of reversibly inserting and extracting lithium ions stainless steel, copper or nickel is preferably used.
  • lithium ions in order to preliminarily store lithium ions in a carbon material capable of reversibly inserting and extracting lithium ions, (1) mixing powdered lithium with a carbon material capable of reversibly inserting and extracting lithium ions. (2) A lithium foil is placed on an electrode formed of a carbon material capable of reversibly occluding and releasing lithium ions and a binder, and the electrode is in contact with the lithium salt.
  • the electric double layer capacitor As the electric double layer capacitor, a wound type electric double layer capacitor, a laminate type electric double layer capacitor, a coin type electric double layer capacitor and the like are generally known, and the electric double layer capacitor can also be in these types. .
  • a positive electrode and a negative electrode made of a laminate (electrode) of a current collector and an electrode layer are wound through a separator to produce a wound element, and the wound element is made of aluminum. And then filled with an electrolytic solution, preferably a non-aqueous electrolytic solution, and then sealed and sealed with a rubber sealing body.
  • separator conventionally known materials and structures can be used.
  • a polyethylene porous membrane, polypropylene fiber, glass fiber, cellulose fiber non-woven fabric and the like can be mentioned.
  • a laminate type electric double layer capacitor in which a sheet-like positive electrode and a negative electrode are laminated via an electrolytic solution and a separator, and a positive electrode and a negative electrode are formed into a coin shape by fixing with a gasket and the electrolytic solution and the separator.
  • a configured coin type electric double layer capacitor can also be used.
  • the electrolytic solution of the present invention is useful as an electrolytic solution for a large-sized lithium ion secondary battery for a hybrid vehicle or a distributed power source, or an electric double layer capacitor.
  • a lithium ion secondary battery was produced by the following method.
  • the negative electrode, the positive electrode, and the polyethylene separator manufactured as described above were laminated in the order of the negative electrode, the separator, and the positive electrode to prepare a battery element.
  • This battery element was inserted into a bag made of a laminate film in which both surfaces of an aluminum sheet (thickness: 40 ⁇ m) were coated with a resin layer while projecting positive and negative terminals, and then each electrolyte was poured into the bag. Then, vacuum sealing was performed to produce a sheet-like lithium ion secondary battery.
  • a charge / discharge cycle performed under predetermined charge / discharge conditions (charging at 0.5 C at a predetermined voltage until the charging current reaches 0.1 C and discharging to 3.0 V at a current equivalent to 1 C) is defined as 3 cycles.
  • the gas amount after CC / CV charge (0.1 C cut) to 4.75 V was measured again.
  • the produced secondary battery was stored at a high temperature at 85 ° C. for 24 hours.
  • the amount of gas after the high-temperature storage test of the secondary battery was measured. The measurement temperature of the gas amount was 25 ° C.
  • the amount of gas was determined based on the following formula.
  • Generated gas volume (ml) Gas volume after high temperature storage (ml)-Gas volume before high temperature storage (ml)
  • CC / CV charging Constant current-constant voltage charging up to 4.35 V at a current corresponding to 0.2 C at 25 ° C. with the secondary battery manufactured above pressed between plates. .) (0.1 C cut), then discharged to 3 V at a constant current of 0.2 C, this was taken as one cycle, and the initial discharge capacity was determined from the discharge capacity at the third cycle.
  • 1C represents a current value for discharging the reference capacity of the battery in one hour, and, for example, 0.2C represents a current value of 1/5 thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

高温で保存してもガスが発生しにくく、高温保存後も容量維持率が高いリチウムイオン二次電池等の電気化学デバイスまたはモジュールを得ることができる電解液を提供する。一般式:Y2121C-CY2222(式中、R21及びR22は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、Y21及びY22は、同一又は異なってもよく、-OR23又はハロゲン原子、R23は、H、アルキル基又はハロゲン化アルキル基)で示される化合物等を含むことを特徴とする電解液である。

Description

電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
本発明は、電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュールに関する。
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度をもつリチウムイオン二次電池の開発が進められている。また、リチウムイオン二次電池の適用分野が拡大するにつれて電池特性の改善が要望されている。特に今後、車載用にリチウムイオン二次電池が使われた場合、電池特性はますます重要となる。
特許文献1には、正極と、リチウムまたはリチウムの吸蔵放出の可能な負極材料からなる負極と、有機溶媒と溶質とからなる非水系電解液とを備えた非水系電解液二次電池において、前記有機溶媒が、モノフルオロ燐酸リチウムおよび/またはジフルオロ燐酸リチウムの添加剤を含有することを特徴とする非水系電解液二次電池が記載されている。
特開平11-67270号公報
本発明は、高温で保存してもガスが発生しにくく、高温保存後も容量維持率が高いリチウムイオン二次電池等の電気化学デバイス又はモジュールを得ることができる電解液を提供することを課題とする。
本発明は、一般式(1)で示される化合物(1)及び一般式(2)で示される化合物(2)からなる群より選択される少なくとも1種の化合物(X)を含むことを特徴とする電解液である。
一般式(1):
Figure JPOXMLDOC01-appb-C000022
(式中、R11~R14は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、X11及びX12は、同一又は異なってもよく、16属元素)
一般式(2):
Figure JPOXMLDOC01-appb-C000023
(式中、R21及びR22は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、Y21及びY22は、同一又は異なってもよく、-OR23又はハロゲン原子、R23は、H、アルキル基又はハロゲン化アルキル基)
化合物(X)の含有量が電解液に対して0.001~10000質量ppmであることが好ましい。
上記電解液は、更に、溶媒を含むことが好ましい。上記溶媒は、カーボネートを含むことが好ましい。また、上記溶媒は、鎖状エーテルを含むことが好ましい。
上記電解液は、更に、一般式(3)で示される化合物(3)、一般式(4)で示される化合物(4)、一般式(5)で示される化合物(5)、及び、一般式(6)で示される化合物(6)からなる群より選択される少なくとも1種のリチウム塩(X)を含むことが好ましい。
一般式(3):
Figure JPOXMLDOC01-appb-C000024
(式中、X31及びX32は同じ又は異なり、それぞれ-H、-F、-O、-OCN、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基、X31及びX32はお互いに結合して環を形成してもよい、aは1~3の整数)
一般式(4):
Figure JPOXMLDOC01-appb-C000025
(式中、X41は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)
一般式(5):
Figure JPOXMLDOC01-appb-C000026
(式中、X51は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)
一般式(6):
Figure JPOXMLDOC01-appb-C000027
(式中、X61は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)
上記電解液は、更に、一般式(7)で示される化合物(7)及び一般式(8)で示される化合物(8)からなる群より選択される少なくとも1種の環状ジカルボニル化合物を含むことが好ましい。
一般式(7):
Figure JPOXMLDOC01-appb-C000028
(Aa+は金属イオン、水素イオン又はオニウムイオン。aは1~3の整数、bは1~3の整数、pはb/a、n73は1~4の整数、n71は0~8の整数、n72は0又は1、Z71は遷移金属、周期律表のIII族、IV族又はV族の元素。
71は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn72が1でn73が2~4のときにはn73個のX71はそれぞれが結合していてもよい)
71は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn71が2~8のときにはn71個のL71はそれぞれが結合して環を形成してもよい)又は-Z7373
71、Y72及びZ73は、それぞれ独立でO、S、NY74、炭化水素基又はフッ素化炭化水素基。Y73及びY74は、それぞれ独立でH、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y73又はY74が複数個存在する場合にはそれぞれが結合して環を形成してもよい))
一般式(8):
(式中、n81は0又は1、n82は0又は1、Z81は遷移金属、周期律表のIII族、IV族又はV族の元素。
81は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよい)。
81及びY82は、それぞれ独立でO、S、NY84、炭化水素基又はフッ素化炭化水素基。Y84はH、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y84が複数個存在する場合にはそれぞれが結合して環を形成してもよい))
上記電解液は、更に、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む化合物(9)を含み、化合物(9)は、一般式(9-1)~一般式(9-3)で示される化合物からなる群より選択される少なくとも1種であることが好ましい。
一般式(9-1):
Figure JPOXMLDOC01-appb-C000030
一般式(9-2):
Figure JPOXMLDOC01-appb-C000031
一般式(9-3):
Figure JPOXMLDOC01-appb-C000032
(式(9-1)、(9-2)及び(9-3)において、X91はO又はN、M91はC、P、S又はN、Z91はN又は存在していなくてよい、但しL91-C=O(Nなし、M91がC、X91がOの場合)は除く、
91はハロゲン原子、酸素原子、ハロゲン原子を含んでもよいR、OR、ORR’、ORR’O、SR、NR、SiR、OSiR、で表され、
ここでRとR’は、各々炭素数1~10のアルキル基、アルキレン基、アルケン基、アルキン基、炭素数1~10のハロアルキル基、ハロアルキレン基、ハロアルケン基、ハロアルキン基、炭素数1~10のシクロアルキル基、上記RとR’は共に環を形成することもできる、n91は1~3の整数、m91は1又は2)
上記電解液は、更に、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む化合物(9)を含み、化合物(9)は、-C≡N、-N=C=O、
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
のいずれかで表される構造を有することが好ましい。
上記電解液は、更に、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む化合物(9)を含み、化合物(9)は、一般式(10):
NC-R101-(CN)n101
(式中、R101は1~3価の炭化水素基又は1~3価のハロゲン化炭化水素基、n101は0~2の整数)で示される化合物(10)、一般式(11):
OCN-R111-(NCO)n111
(式中、R111は1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、n111は0又は1)で示される化合物(11)、一般式(12):
Figure JPOXMLDOC01-appb-C000037
(式中、R121及びR122は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R121及びR122はお互いに結合して環を形成していてもよい)で示される化合物(12)、一般式(13):
Figure JPOXMLDOC01-appb-C000038
(式中、R131及びR132は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R131及びR132はお互いに結合して環を形成していてもよい)で示される化合物(13)、一般式(14):
Figure JPOXMLDOC01-appb-C000039
(式中、R141及びR142は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R141及びR142はお互いに結合して環を形成していてもよい、Zは酸素原子又は炭素数1~10のアルキレン基)で示される化合物(14)、一般式(15):
Figure JPOXMLDOC01-appb-C000040
(式中、R151~R153は、同一又は異なってもよく、有機基)で示される化合物(15)、一般式(16):
Figure JPOXMLDOC01-appb-C000041
(式中、R161~R166は、同一又は異なってもよく、ハロゲン原子又は有機基)で示される化合物(16)、及び、一般式(17):
Figure JPOXMLDOC01-appb-C000042
(式中、R171~R178は、同一又は異なってもよく、ハロゲン原子又は有機基)で示される化合物(17)からなる群より選択される少なくとも1種であることが好ましい。
本発明は、上述の電解液を備えることを特徴とする電気化学デバイスでもある。
本発明は、上述の電解液を備えることを特徴とするリチウムイオン二次電池でもある。
本発明は、上述の電気化学デバイス、又は、上述のリチウムイオン二次電池を備えることを特徴とするモジュールでもある。
本発明の電解液を使用すれば、高温で保存してもガスが発生しにくく、高温保存後も容量維持率が高い電気化学デバイス又はモジュールを実現できる。
以下、本発明を具体的に説明する。
本発明の電解液は、化合物(1)及び化合物(2)からなる群より選択される少なくとも1種の化合物(X)を含むことを特徴とする。
化合物(1)は、一般式(1):
Figure JPOXMLDOC01-appb-C000043
(式中、R11~R14は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、X11及びX12は、同一又は異なってもよく、16属元素)で示される。
11~R14としての上記アルキル基は、炭素数の下限値が1であることが好ましい。上記アルキル基は、炭素数の上限値が5であることが好ましく、4であることがより好ましい。
11~R14としての上記ハロゲン化アルキル基は、炭素数の下限値が1であることが好ましい。上記ハロゲン化アルキル基は、炭素数の上限値が5であることが好ましく、4であることがより好ましい。
11~R14としての上記ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。上記フッ素化アルキル基は、炭素数の下限値が1であることが好ましい。上記フッ素化アルキル基は、炭素数の上限値が5であることが好ましく、4であることがより好ましい。
化合物(1)としては、R11及びR13が独立にハロゲン化アルキル基であり、かつ、R12及びR14がHであるものが好ましい。
より好ましくは、R11及びR13が独立にフッ素化アルキル基であり、かつ、R12及びR14がHであるものである。
更に好ましくは、R11及びR13が独立に炭素数が1~5のフッ素化アルキル基であり、かつ、R12及びR14がHであるものである。
11及びX12としては、独立にO又はSが好ましく、いずれもOがより好ましい。
化合物(2)は、一般式(2):
Figure JPOXMLDOC01-appb-C000044
(式中、R21及びR22は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、Y21及びY22は、同一又は異なってもよく、-OR23又はハロゲン原子、R23は、H、アルキル基又はハロゲン化アルキル基)で示される。
21~R23としての上記アルキル基は、炭素数の下限値が1であることが好ましい。上記アルキル基は、炭素数の上限値が5であることが好ましく、4であることがより好ましい。
21~R23としての上記ハロゲン化アルキル基は、炭素数の下限値が1であることが好ましい。上記ハロゲン化アルキル基は、炭素数の上限値が5であることが好ましく、4であることがより好ましい。
21~R23としての上記ハロゲン化アルキル基としては、フッ素化アルキル基が好ましい。上記フッ素化アルキル基は、炭素数の下限値が1であることが好ましい。上記フッ素化アルキル基は、炭素数の上限値が5であることが好ましく、4であることがより好ましい。
上記ハロゲン原子としては、2~5周期に属する元素が好ましく、Brがより好ましい。
23としては、Hが好ましい。
化合物(2)としては、R21及びR22の一方がHで他方がハロゲン化アルキル基であり、かつ、Y21及びY22の一方が-OR23で他方が-OR23又はハロゲン原子であるものが好ましい。
より好ましくは、R21及びR22の一方がHで他方がフッ素化アルキル基であり、かつ、Y21及びY22の一方が-OHで他方が-OH又はハロゲン原子であるものである。
化合物(X)の含有量は、電解液に対して0.001~10000質量ppmが好ましく、0.1質量ppm以上がより好ましく、0.5質量ppm以上が更に好ましく、150質量ppm以下がより好ましく、30質量ppm以下が更に好ましい。化合物(X)の含有量は、GC-MS分析の方法により測定することができる。
本発明の電解液は、更に、リチウム塩(X)を含むことが好ましい。リチウム塩(X)を含むことにより、本発明の電解液をリチウムイオン二次電池等に適用した場合に、電解液中のLiイオン輸送速度を向上することができ、高温で保存してもガスが発生しにくく、高温保存後も高い容量維持率が得られる。
リチウム塩(X)の含有量は、電解液中0.001~5質量%であることが好ましい。リチウム塩(X)の含有量は、電解液中0.01質量%以上がより好ましく、0.08質量%以上が更に好ましく、3質量%以下がより好ましく、1質量%以下が更に好ましい。リチウム塩(X)の含有量は、GC-MS分析の方法により測定することができる。
リチウム塩(X)は、後述する化合物(3)~(6)からなる群より選択される少なくとも1種である。リチウム塩(X)としては、化合物(3)~(5)からなる群より選択される少なくとも1種が好ましく、化合物(3)及び(4)からなる群より選択される少なくとも1種がより好ましく、化合物(3)が更に好ましい。
化合物(3)は、一般式(3):
Figure JPOXMLDOC01-appb-C000045
(式中、X31及びX32は同じ又は異なり、それぞれ-H、-F、-O、-OCN、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基、X31及びX32はお互いに結合して環を形成してもよい、aは1~3の整数)で示される。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基の炭素数は、1~10であることが好ましく、1~3であることがより好ましい。上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、エーテル結合を有していないことが好ましい。
31及びX32は、いずれか一方又は両方が、-F、エーテル結合を有していてもよいフッ素化アルキル基又はエーテル結合を有していていもよいフッ素化アルコキシ基であることが好ましく、両方が-F、エーテル結合を有していない炭素数1~3のフッ素化アルキル基、又は、エーテル結合を有していない炭素数1~3のフッ素化アルコキシ基であることがより好ましい。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、-C≡N、-S(=O)-、-S(=O)-O-、-OM(Mは金属原子)等で置換されていてもよい。Mとしては、アルカリ金属原子が挙げられ、Liであってよい。
化合物(3)としては、LiPO、LiPOF、LiPO、LiOP(O)(CH)F、LiOP(O)(CF)F、LiOP(O)(C)F、LiOP(O)(CHCF)F、LiOP(O)(CFCF)F、LiOP(O)(OCH)F、LiOP(O)(OCF)F、LiOP(O)(OC)F、LiOP(O)(OCHCF)F、LiOP(O)(OCFCF)F、LiOP(O)(OCH、LiOP(O)(OCH)(OCF)、LiOP(O)(OCF、LiOP(O)(OCHCF、LiOP(O)(OCHCF)(OCHCH)、LiOP(O)(OCHCFCF、LiOP(O)(OCHCHF)、LiOP(O)(OCHCHF、LiOP(O)(OCHCF)(OCN)、LiOP(O)(OCHCHF)(OCN)、LiOP(O)(OCHCN)、LiOP(O)(OCHCF)(OCHCN)等が挙げられる。
化合物(3)としては、耐酸化性の観点からF原子を含有しているものがよく、抵抗の観点からLiPO2、LiOP(O)(OCF及びLiOP(O)(OCHCFからなる群より選択される少なくとも1種であることが好ましい。
化合物(4)は、一般式(4):
Figure JPOXMLDOC01-appb-C000046
(式中、X41は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)で示される。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基の炭素数は、1~10であることが好ましく、1~3であることがより好ましい。上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、エーテル結合を有していないことが好ましい。
41は、-F、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましく、-F、エーテル結合を有していない炭素数1~3のアルキル基、又は、エーテル結合を有していない炭素数1~3のフッ素化アルコキシ基であることがより好ましい。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、-C≡N、-S(=O)-、-S(=O)-O-、-OM(Mは金属原子)等で置換されていてもよい。Mとしては、アルカリ金属原子が挙げられ、Liであってよい。
化合物(4)としては、LiOSOF、LiOSOCH、LiOSOCF、LiOSO(OCH)、LiOSO(OCF)、LiOSO(OCHCH)、LiOSO(OCHCF)、LiOSO(OCFCF)、LiOSO(OCHCHCH)LiOSO(OCHCHCF)等が挙げられる。
化合物(4)としては、LiOSOF、LiOSOCH及びLiOSO(OCHCH)からなる群より選択される少なくとも1種が好ましい。
化合物(5)は、一般式(5):
Figure JPOXMLDOC01-appb-C000047
(式中、X51は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)で示される。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基の炭素数は、1~10であることが好ましく、1~3であることがより好ましい。上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、エーテル結合を有していないことが好ましい。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、-C≡N、-S(=O)-、-S(=O)-O-、-OM(Mは金属原子)等で置換されていてもよい。Mとしては、アルカリ金属原子が挙げられ、Liであってよい。
51は、-F、エーテル結合を有していない炭素数1~3のフッ素化アルキル基、又は、エーテル結合を有していない炭素数1~3のフッ素化アルコキシ基であることが好ましい。
化合物(5)としては、LiOSOF、LiOSOCH、LiOSOCF、LiOSO(OCH)、LiOSO(OCF)、LiOSO(OCHCH)、LiOSO(OCHCF)、LiOSO(OCFCF)、LiOSO(OCHCHCH)LiOSO(OCHCHCF)等が挙げられる。
化合物(5)としては、LiOSOF、LiOSOCF及びLiOSO(OCF)からなる群より選択される少なくとも1種が好ましい。
化合物(6)は、一般式(6):
Figure JPOXMLDOC01-appb-C000048
(式中、X61は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)で示される。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基の炭素数は、1~10であることが好ましく、1~3であることがより好ましい。上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、エーテル結合を有していないことが好ましい。
上記アルキル基、上記フッ素化アルキル基、上記アルコキシ基及び上記フッ素化アルコキシ基は、-C≡N、-S(=O)-、-S(=O)-O-、-OM(Mは金属原子)等で置換されていてもよい。Mとしては、アルカリ金属原子が挙げられ、Liであってよい。
61は、-F、又は、エーテル結合を有していない炭素数1~3のフッ素化アルコキシ基であることが好ましい。
化合物(6)としては、LiOCOF、LiOCO(CH)、LiOCO(CF)、LiOCO(CFH)、LiOCO(CFH)、LiOCO(CHCH)、LiOCO(CHCF)、LiOCO(CHCFH)、LiOCO(CFCF)、LiOCO(CHCHCH)、LiOCO(CHCHCF)、LiOCO(CHCFCF)、LiOCO(CHCFCFH)、LiOCO(OCF)、LiOCO(OCHCH)等が挙げられる。
化合物(6)としては、LiOCOF及びLiOCO(CF)からなる群より選択される少なくとも1種が好ましい。
本発明の電解液は、更に、環状ジカルボニル化合物を含むことが好ましい。上記環状ジカルボニル化合物を含むことにより、本発明の電解液をリチウムイオン二次電池等に適用した場合に、高温で保存してもガスが発生しにくく、高温保存後も高い容量維持率が得られる。
上記環状ジカルボニル化合物の含有量は、0.001~10質量%が好ましく、0.01質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.08質量%以上が特に好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましい。上記環状ジカルボニル化合物の含有量は、GC-MS分析の方法により測定することができる。
上記環状ジカルボニル化合物は、化合物(7)及び化合物(8)からなる群より選択される少なくとも1種であることが好ましい。
化合物(7)は、一般式(7):
Figure JPOXMLDOC01-appb-C000049
(Aa+は金属イオン、水素イオン又はオニウムイオン。aは1~3の整数、bは1~3の整数、pはb/a、n73は1~4の整数、n71は0~8の整数、n72は0又は1、Z71は遷移金属、周期律表のIII族、IV族又はV族の元素。
71は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn72が1でn73が2~4のときにはn73個のX71はそれぞれが結合していてもよい)
71は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn71が2~8のときにはn71個のL71はそれぞれが結合して環を形成してもよい)又は-Z7373
71、Y72及びZ73は、それぞれ独立でO、S、NY74、炭化水素基又はフッ素化炭化水素基。Y73及びY74は、それぞれ独立でH、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y73又はY74が複数個存在する場合にはそれぞれが結合して環を形成してもよい))
で示される。
a+としては、リチウムイオン、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、セシウムイオン、銀イオン、亜鉛イオン、銅イオン、コバルトイオン、鉄イオン、ニッケルイオン、マンガンイオン、チタンイオン、鉛イオン、クロムイオン、バナジウムイオン、ルテニウムイオン、イットリウムイオン、ランタノイドイオン、アクチノイドイオン、テトラブチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラメチルアンモニウムイオン、トリエチルメチルアンモニウムイオン、トリエチルアンモニウムイオン、ピリジニウムイオン、イミダゾリウムイオン、水素イオン、テトラエチルホスホニウムイオン、テトラメチルホスホニウムイオン、テトラフェニルホスホニウムイオン、トリフェニルスルホニウムイオン、トリエチルスルホニウムイオン等が挙げられる。
電気化学的なデバイス等の用途に使用する場合、Aa+は、リチウムイオン、ナトリウムイオン、マグネシウムイオン、テトラアルキルアンモニウムイオン、水素イオンが好ましく、リチウムイオンが特に好ましい。Aa+のカチオンの価数aは、1~3の整数である。3より大きい場合、結晶格子エネルギーが大きくなるため、溶媒に溶解することが困難になるという問題が起こる。そのため溶解度を必要とする場合は1がより好ましい。アニオンの価数bも同様に1~3の整数であり、特に1が好ましい。カチオンとアニオンの比を表す定数pは、両者の価数の比b/aで必然的に決まる。
次に、一般式(7)の配位子の部分について説明する。本明細書において、一般式(7)におけるZ71に結合している有機又は無機の部分を配位子と呼ぶ。
71は、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf又はSbであることが好ましく、Al、B又はPであることがより好ましい。
71は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基を表す。これらのアルキレン基及びアリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよい。具体的には、アルキレン基及びアリーレン基上の水素の代わりに、ハロゲン原子、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、水酸基を置換基として持っていてもよいし、アルキレン及びアリーレン上の炭素の代わりに、窒素、硫黄、酸素が導入された構造であってもよい。またn72が1でn73が2~4のときには、n73個のX71はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
71は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基又は-Z7373(Z73、Y73については後述)を表す。ここでのアルキル基及びアリール基も、X71と同様に、その構造中に置換基、ヘテロ原子を持っていてもよく、またn71が2~8のときにはn71個のL71はそれぞれが結合して環を形成していてもよい。L71としては、フッ素原子又はシアノ基が好ましい。フッ素原子の場合には、アニオン化合物の塩の溶解度や解離度が向上し、これに伴ってイオン伝導度が向上するからである。また、耐酸化性が向上し、これにより副反応の発生を抑制することができるからである。
71、Y72及びZ73は、それぞれ独立で、O、S、NY74、炭化水素基又はフッ素化炭化水素基を表す。Y71及びY72は、O、S又はNY74であることが好ましく、Oであることがより好ましい。化合物(7)の特徴として、同一の配位子内にY71及びY72によるZ71との結合があるため、これらの配位子がZ71とキレート構造を構成している。このキレートの効果により、この化合物の耐熱性、化学的安定性、耐加水分解性が向上している。この配位子中の定数n72は0又は1であるが、特に、0の場合はこのキレートリングが五員環になるため、キレート効果が最も強く発揮され安定性が増すため好ましい。
なお、本明細書において、フッ素化炭化水素基は、炭化水素基の水素原子の少なくとも1つがフッ素原子に置換された基である。
73及びY74は、それぞれ独立で、H、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基であり、これらのアルキル基及びアリール基は、その構造中に置換基又はヘテロ原子を有してもよく、またY73又はY74が複数個存在する場合には、それぞれが結合して環を形成してもよい。
また、上述した配位子の数に関係する定数n73は、1~4の整数であり、好ましくは1又は2であり、より好ましくは2である。また、上述した配位子の数に関係する定数n71は、0~8の整数であり、好ましくは0~4の整数であり、より好ましくは0、2又は4である。更に、n73が1のときn71は2、n73が2のときn71は0であることが好ましい。
一般式(7)において、アルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基は、分岐や水酸基、エーテル結合等の他の官能基を持つものも含む。
化合物(7)としては、一般式:
Figure JPOXMLDOC01-appb-C000050
(式中、Aa+、a、b、p、n71、Z71及びL71は上述したとおり)で示される化合物、又は、一般式:
Figure JPOXMLDOC01-appb-C000051
(式中、Aa+、a、b、p、n71、Z71及びL71は上述したとおり)で示される化合物であることが好ましい。
化合物(7)としては、リチウムオキサラトボレート塩類が挙げられ、下記式:
Figure JPOXMLDOC01-appb-C000052
で示されるリチウムビス(オキサラト)ボレート、下記式:
Figure JPOXMLDOC01-appb-C000053
で示されるリチウムジフルオロオキサラトボレート、下記式:
Figure JPOXMLDOC01-appb-C000054
で示されるリチウムジシアノオキサラトボレート等が挙げられる。
化合物(7)としては、また、下記式:
Figure JPOXMLDOC01-appb-C000055
で示されるリチウムテトラフルオロオキサラトホスファナイト、下記式:
Figure JPOXMLDOC01-appb-C000056
で示されるリチウムビス(オキサラト)ジフルオロホスファナイト等が挙げられる。
化合物(8)は、一般式(8):
Figure JPOXMLDOC01-appb-C000057
(式中、n81は0又は1、n82は0又は1、Z81は遷移金属、周期律表のIII族、IV族又はV族の元素。
81は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよい)。
81及びY82は、それぞれ独立でO、S、NY84、炭化水素基又はフッ素化炭化水素基。Y84はH、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y84が複数個存在する場合にはそれぞれが結合して環を形成してもよい))で示される。
81は、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf、Sb等であってよい。しかしながら、n81は0であることが好ましい。
82は1であることが好ましい。X81は、O又はSであることが好ましく、Oであることがより好ましい。
81及びY82は、それぞれ独立で、炭化水素基又はフッ素化炭化水素基であることが好ましく、炭素数が1~3の炭化水素基又は炭素数が1~3のフッ素化炭化水素基であることがより好ましい。n81が0であって、Y81及びY82がお互いに結合して環を形成していることが好ましい。
化合物(8)は、一般式:
Figure JPOXMLDOC01-appb-C000058
(式中、R81~R84は、同じか又は異なり、H、F、アルキル基又はフッ素化アルキル基)で示される化合物、又は、一般式:
Figure JPOXMLDOC01-appb-C000059
(式中、R85及びR86は、同じか又は異なり、H、F、アルキル基又はフッ素化アルキル基、R87はアルケン基又はフッ素化アルケン基)で示される化合物
であることが好ましい。
アルキル基、フッ素化アルキル基、アルケン基及びフッ素化アルケン基の炭素数は、1~10であることが好ましく、電解液への相溶性が良好である点で、1~3がより好ましい。
81~R86としては、例えば、H-、F-、CH-、CHCH-、CHCHCH-、CF-、CFCF-、CHFCH-、CFCFCF-等が挙げられる。
87としては、例えば、CH=、CHCH=等が挙げられる。
化合物(8)は、一般式:
Figure JPOXMLDOC01-appb-C000060
(式中、R88及びR89は、同じか又は異なり、H、F、アルキル基又はフッ素化アルキル基)で示される化合物であることが好ましい。
アルキル基及びフッ素化アルキル基の炭素数は、1~10であることが好ましく、電解液への相溶性が良好である点で、1~3がより好ましい。
88及びR89としては、例えば、H-、F-、CH-、CHCH-、CHCHCH-、CF-、CFCF-、CHFCH-、CFCFCF-等が挙げられる。
化合物(8)としては、無水コハク酸、無水グルタル酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンカルボン酸無水物、シクロペンタンテトラカルボン酸無水物、フェニルコハク酸無水物、ジメチルコハク酸無水物、トリフルオロメチルコハク酸無水物、モノフルオロコハク酸無水物、テトラフルオロコハク酸無水物、無水マレイン酸、無水シトラコン酸、トリフルオロメチルマレイン酸無水物等が挙げられる。
なかでも、無水マレイン酸、トリフルオロメチルマレイン酸無水物が好ましい。
本発明の電解液は、化合物(9)を含むことが好ましい。化合物(9)を含むことにより、本発明の電解液をリチウムイオン二次電池等に適用した場合に、高温で保存してもガスが発生しにくく、高温保存後も高い容量維持率が得られる。
化合物(9)の含有量は、電解液に対して0.001~20質量%が好ましく、0.01質量%以上がより好ましく、0.08質量%以上が更に好ましく、0.5質量%以上が特に好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。化合物(9)の含有量は、GC-MS分析の方法により測定することができる。
化合物(9)は、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む。上記ヘテロ原子は、炭素及び水素以外の原子である。上記ヘテロ原子は、S、P及びNからなる群より選択される少なくとも1種であることが好ましい。上記多重結合は、上記ヘテロ原子と、上記ヘテロ原子に隣接する原子との多重結合である。上記多重結合としては、二重結合又は三重結合が好ましく、二重結合がより好ましい。上記多重結合としては、上記ヘテロ原子と炭素原子との多重結合、上記ヘテロ原子と酸素原子との多重結合、上記ヘテロ原子同士の多重結合等が挙げられる。
化合物(9)は、一般式(9-1):
Figure JPOXMLDOC01-appb-C000061
一般式(9-2):
Figure JPOXMLDOC01-appb-C000062
及び、一般式(9-3):
Figure JPOXMLDOC01-appb-C000063
(式(9-1)、(9-2)及び(9-3)において、X91はO又はN、M91はC、P、S又はN、Z91はN又は存在していなくてよい、但しL91-C=O(Nなし、M91がC、X91がOの場合)は除く、
91はハロゲン原子、酸素原子、ハロゲン原子を含んでもよいR、OR、ORR’、ORR’O、SR、NR、SiR、OSiR、で表され、
ここでRとR’は、各々炭素数1~10のアルキル基、アルキレン基、アルケン基、アルキン基、炭素数1~10のハロアルキル基、ハロアルキレン基、ハロアルケン基、ハロアルキン基、炭素数1~10のシクロアルキル基、上記RとR’は共に環を形成することもできる、n91は1~3の整数、m91は1又は2)で示される化合物からなる群より選択される少なくとも1種であることが好ましい。
化合物(9)は、-C≡N、-N=C=O、
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
のいずれかで表される構造を有することが好ましい。
化合物(9)としては、化合物(10)~(17)からなる群より選択される少なくとも1種であることが好ましく、化合物(10)及び(12)~(17)からなる群より選択される少なくとも1種であることがより好ましく、化合物(10)及び(12)~(15)からなる群より選択される少なくとも1種であることが更に好ましく、化合物(10)及び(15)からなる群より選択される少なくとも1種であることが特に好ましく、化合物(10)が最も好ましい。
化合物(10)は、一般式(10):
NC-R101-(CN)n101
(式中、R101は1~3価の炭化水素基又は1~3価のハロゲン化炭化水素基、n101は0~2の整数)で示される。
上記炭化水素基又は上記ハロゲン化炭化水素基としては、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のアルキレン基、炭素数3~10のシクロアルキレン基、炭素数1~10のアルキリジン基、炭素数3~10のシクロアルキリジン基等が挙げられる。上記炭化水素基は、-S(=O)-、-S(=O)-O-、-P=Oを含んでいてもよい。
上記シクロアルキル基としては、シクロヘキシル基等が挙げられる。上記シクロアルキル基は、水素原子の一部又は全部が、-S(=O)-、-S(=O)-O-、-P=O若しくは-OM102(M102は金属原子)等で置換されていてもよい。
上記シクロアルキリジン基としては、シクロへキシリジン基等が挙げられる。上記シクロアルキリジン基は、水素原子の一部又は全部が、-S(=O)-、-S(=O)-O-、-P=O若しくは-OM102(M102は金属原子)等で置換されていてもよい。
化合物(10)としては、一般式(10-1):
102-CN
(式中、R102は炭素数1~10のアルキル基、又は、式:-R103-CN(R103は炭素数1~10のアルキレン基))で示される化合物、一般式(10-2):
NC-R104-CN
(式中、R104は炭素数1~10のアルキレン基)で示される化合物、及び、一般式(10-3):
Figure JPOXMLDOC01-appb-C000068
(式中、R104は、炭素数1~10のアルキリジン基又は炭素数3~10のシクロアルキリジン基)で示される化合物からなる群より選択される少なくとも1種が好ましく、一般式(10-2)及び一般式(10-3)で示される化合物からなる群より選択される少なくとも1種がより好ましい。
化合物(10)としては、アセトニトリル、プロピオニトリル、ブタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、オクタフルオロアジポニトリル、1,3,5-ペンタントリカルボニトリル、1,3,6-ヘキサントリカルボニル、1,3,5-シクロヘキサントリカルボニトリル、CHSOCN等が挙げられる。これらのなかでも、CN基を複数有する化合物が好ましい。
化合物(11)は、一般式(11):
OCN-R111-(NCO)n111
(式中、R111は1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、n111は0又は1)で示される。
上記炭化水素基又は上記ハロゲン化炭化水素基としては、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数3~10のシクロアルキレン基等が挙げられる。
化合物(11)としては、一般式(11-1):
112-NCO
(式中、R112は、環状構造を有していてもよい炭素数1~10のアルキル基、又は、環状構造を有していてもよい炭素数1~10のハロゲン化アルキル基)、及び、一般式(11-2):
OCN-R113-NCO
(式中、R113は、環状構造を有していてもよい炭素数1~10のアルキレン基、又は、環状構造を有していてもよい炭素数1~10のハロゲン化アルキレン基)からなる群より選択される少なくとも1種が好ましい。
化合物(11)としては、ヘキサンメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン等が挙げられる。
化合物(12)は、一般式(12):
Figure JPOXMLDOC01-appb-C000069
(式中、R121及びR122は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R121及びR122はお互いに結合して環を形成していてもよい)で示される。
上記炭化水素基又は上記ハロゲン化炭化水素基としては、炭素数1~10のアルキル基、炭素数1~10のフッ素化アルキル基、炭素数1~10のアルコキシ基、炭素数1~10のフッ素化アルコキシ基、炭素数1~10のアルキレン基、炭素数1~10のフッ素化アルキレン基、炭素数1~10のフッ素化オキシアルキレン基、炭素数2~10のアルケニリデン基、炭素数2~10のフッ素化アルケニリデン基等が挙げられる。炭素数が2以上の場合はエーテル結合を有していてもよい。
化合物(12)としては、一般式(12-1):
Figure JPOXMLDOC01-appb-C000070
(式中、R123は、炭素数2若しくは3のアルキレン基、又は、炭素数2若しくは3のフッ素化アルキレン基)で示される化合物が好ましい。
化合物(13)は、一般式(13):
Figure JPOXMLDOC01-appb-C000071
(式中、R131及びR132は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R131及びR132はお互いに結合して環を形成していてもよい)で示される。
上記炭化水素基又は上記ハロゲン化炭化水素基としては、炭素数1~10のアルキル基、炭素数1~10のフッ素化アルキル基、炭素数1~10のアルコキシ基、炭素数1~10のフッ素化アルコキシ基、炭素数1~10のアルキレン基、炭素数1~10のフッ素化アルキレン基、炭素数1~10のフッ素化オキシアルキレン基、炭素数2~10のアルケニリデン基等が挙げられる。炭素数が2以上の場合はエーテル結合を有していてもよい。
化合物(13)としては、一般式(13-1):
Figure JPOXMLDOC01-appb-C000072
(式中、n131は0又は1、n132は0又は1、R133は炭素数2~6のアルキレン基、炭素数2~6のフッ素化アルキレン基又は炭素数2~6のアルケニリデン基)で示される化合物、及び、一般式(13-2):
Figure JPOXMLDOC01-appb-C000073
(式中、R134は、F、炭素数1~5のアルキル基又は炭素数1~5のフッ素化アルキル基、R135は、F、炭素数1~5のアルキル基又は炭素数1~5のフッ素化アルキル基)で示される化合物からなる群より選択される少なくとも1種が好ましい。
化合物(14)は、一般式(14):
Figure JPOXMLDOC01-appb-C000074
(式中、R141及びR142は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R141及びR142はお互いに結合して環を形成していてもよい、Zは酸素原子又は炭素数1~10のアルキレン基)で示される。
上記炭化水素基又は上記ハロゲン化炭化水素基としては、炭素数1~10のアルキル基、炭素数1~10のフッ素化アルキル基、炭素数1~10のアルコキシ基、炭素数1~10のフッ素化アルコキシ基、炭素数1~10のアルキレン基、炭素数1~10のフッ素化アルキレン基、炭素数1~10のフッ素化オキシアルキレン基等が挙げられる。炭素数が2以上の場合はエーテル結合を有していてもよい。
化合物(14)としては、一般式(14-1):
Figure JPOXMLDOC01-appb-C000075
(式中、R143及びR144は、同一又は異なってもよく、炭素数1~3のアルキレン基)で示される化合物、及び、一般式(14-2):
Figure JPOXMLDOC01-appb-C000076
(式中、R145及びR146は、同一又は異なってもよく、炭素数1~3のアルキル基)で示される化合物からなる群より選択される少なくとも1種が好ましい。
化合物(12)~(14)としては、1,3-プロパンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、メタンスルホン酸無水物、メタンスルホン酸プロピル、メタンスルホン酸テトラフルオロプロピル、ジメチルスルホキシド、スルホラン、エチレンサルファイト、硫酸グリコール、メチレンメタンジスルホン酸エステル、3-フルオロスルホラン、3-フルオロ-1,3-プロパンスルトン、モノフルオロ硫酸グリコール等が挙げられる。
化合物(15)は、一般式(15):
Figure JPOXMLDOC01-appb-C000077
(式中、R151~R153は、同一又は異なってもよく、有機基)で示される。
上記有機基としては、炭素数1~10のアルキル基、炭素数1~10のフッ素化アルキル基、炭素数1~10のアルコキシ基、炭素数1~10のフッ素化アルコキシ基、式:-N(R154で示される基、式:-Si(R155で示される基、式:-OSi(R156で示される基、式:-R158-S-R157、式:-O-R159-CNで示される基等が挙げられる。
154~R157は炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基、R158及びR159は炭素数1~3のアルキレン基又は炭素数1~3のフッ素化アルキル基である。
化合物(15)としては、(CHCHO)P=O、(CFCHO)P=O、(CFCFCHO)P=O、(HCFCFCHO)P=O、(CHCHO)(CHCH)P=O、(CHCH(CHO)P=O、[(CHN]P=O、[(CHSi](CHO)P=O、[(CH)SiO]P=O、[(CHCH)](CHCHSCH)P=O、(CFCHO)(NCCHCHO)P=O等が挙げられる。
化合物(16)は、一般式(16):
Figure JPOXMLDOC01-appb-C000078
(式中、R161~R166は、同一又は異なってもよく、ハロゲン原子又は有機基)で示される。
ハロゲン原子としてはFが好ましい、有機基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、フェニルチオ基等のアリールチオ基が挙げられる。
化合物(16)としては、ヘキサフルオロシクロトリホスファゼン、ペンタフルオロ(フェノキシ)シクロトリホスファゼン、エトキシ(ペンタフルオロ)シクロトリホスファゼン、エトキシ(ヘプタフルオロ)シクロトリホスファゼン等が挙げられる。
化合物(17)は、一般式(17):
Figure JPOXMLDOC01-appb-C000079
(式中、R171~R178は、同一又は異なってもよく、ハロゲン原子又は有機基)で示される。
ハロゲン原子としてはFが好ましい、有機基としては、メトキシ基やエトキシ基等のアルコキシ基、フェノキシ基やメチルフェノキシ基等のアリールオキシ基、メチル基やエチル基等のアルキル基、フェニル基やトリル基等のアリール基、メチルアミノ基等の置換型アミノ基を含むアミノ基、メチルチオ基やエチルチオ基等のアルキルチオ基、フェニルチオ基等のアリールチオ基が挙げられる。
化合物(17)としては、エトキシ(ペンタフルオロ)シクロテトラホスファゼンが挙げられる。
本発明の電解液は、溶媒を含むことが好ましい。
上記溶媒の含有量は、電解液中70~99.999質量%であることが好ましく、80質量%以上がより好ましく、92質量%以下がより好ましい。
上記溶媒は、カーボネートを含むことが好ましい。
上記溶媒は、環状カーボネート及び鎖状カーボネートを含むことが好ましい。
上記環状カーボネートは、非フッ素化環状カーボネートであってもよいし、フッ素化環状カーボネートであってもよい。
上記鎖状カーボネートは、非フッ素化鎖状カーボネートであってもよいし、フッ素化鎖状カーボネートであってもよい。
上記溶媒は、非フッ素化飽和環状カーボネート、フッ素化飽和環状カーボネート、フッ素化鎖状カーボネート及び非フッ素化鎖状カーボネートからなる群より選択される少なくとも1種を含むことが好ましい。なかでも、フッ素化飽和環状カーボネート及びフッ素化鎖状カーボネートからなる群より選択される少なくとも1種を含むことがより好ましい。
上記溶媒は、非水溶媒であることが好ましく、本発明の電解液は、非水電解液であることが好ましい。
上記非フッ素化飽和環状カーボネートとしては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等を挙げることができる。
なかでも、上記非フッ素化飽和環状カーボネートとしては、誘電率が高く、粘度が好適となる点で、エチレンカーボネート、プロピレンカーボネート、及び、ブチレンカーボネートからなる群より選択される少なくとも1種の化合物であることが好ましい。
上記非フッ素化飽和環状カーボネートとして、上述した化合物の1種を用いてもよいし、2種以上を併用してもよい。
上記非フッ素化飽和環状カーボネートの含有量は、上記溶媒に対して0~99体積%が好ましく、1体積%以上がより好ましく、90体積%以下がより好ましい。
上記フッ素化飽和環状カーボネートは、フッ素原子が付加した飽和環状カーボネートであり、具体的には、下記一般式(A):
Figure JPOXMLDOC01-appb-C000080
(式中、X~Xは同じか又は異なり、それぞれ-H、-CH、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X~Xの少なくとも1つは、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物が挙げられる。
上記フッ素化飽和環状カーボネートを含むと、本発明の電解液をリチウムイオン二次電池等に適用した場合に、負極に安定な被膜を形成することができ、負極での電解液の副反応を充分に抑制することができる。その結果、極めて安定で優れた充放電特性が得られる。
なお、本明細書中で「エーテル結合」は、-O-で表される結合である。
誘電率、耐酸化性が良好な点から、X~Xの1つ又は2つが、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基であることが好ましい。
低温での粘性の低下、引火点の上昇、更には電解質塩の溶解性の向上が期待できることから、X~Xは、-H、-F、フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であることが好ましい。
上記フッ素化アルキル基(a)は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。フッ素化アルキル基(a)の炭素数は、1~20が好ましく、1~17がより好ましく、1~7が更に好ましく、1~5が特に好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
上記フッ素化アルキル基(a)のうち、炭素数が1のものとしては、CFH-、CFH-及びCF-が挙げられる。
上記フッ素化アルキル基(a)のうち、炭素数が2以上のものとしては、下記一般式(a-1):
-R- (a-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~16の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~6がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000081
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000084
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基(a)としては、例えばCFCF-、HCFCF-、HCFCF-、CHCF-、CFCHF-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
等が挙げられる。
上記エーテル結合を有するフッ素化アルキル基(b)は、エーテル結合を有するアルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記エーテル結合を有するフッ素化アルキル基(b)は、炭素数が2~17であることが好ましい。炭素数が多過ぎると、上記フッ素化飽和環状カーボネートの粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点から上記エーテル結合を有するフッ素化アルキル基(b)の炭素数は2~10がより好ましく、2~7が更に好ましい。
上記エーテル結合を有するフッ素化アルキル基(b)のエーテル部分を構成するアルキレン基は直鎖状又は分岐鎖状のアルキレン基でよい。そうした直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000087
アルキレン基は、これらの最小構造単位単独で構成されてもよく、直鎖状(i)同士、分岐鎖状(ii)同士、又は、直鎖状(i)と分岐鎖状(ii)との組み合わせにより構成されてもよい。好ましい具体例は、後述する。
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
更に好ましいエーテル結合を有するフッ素化アルキル基(b)としては、一般式(b-1):
-(ORn1-       (b-1)
(式中、Rはフッ素原子を有していてもよい、好ましくは炭素数1~6のアルキル基;Rはフッ素原子を有していてもよい、好ましくは炭素数1~4のアルキレン基;n1は1~3の整数;ただし、R及びRの少なくとも1つはフッ素原子を有している)で示されるものが挙げられる。
及びRとしては以下のものが例示でき、これらを適宜組み合わせて、上記一般式(b-1)で表されるエーテル結合を有するフッ素化アルキル基(b)を構成することができるが、これらのみに限定されるものではない。
(1)Rとしては、一般式:X C-(Rn2-(3つのXは同じか又は異なりいずれもH又はF;Rは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n2は0又は1)で表されるアルキル基が好ましい。
n2が0の場合、Rとしては、CH-、CF-、HCF-及びHCF-が挙げられる。
n2が1の場合の具体例としては、Rが直鎖状のものとして、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCHCH-、FCHCF-、FCHCFCH-、CHCF-、CHCH-、CHCFCH-、CHCFCF-、CHCHCH-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCHCHCH-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCHCFCFCHCH-、CHCFCHCFCHCH-等が例示できる。
n2が1であり、かつRが分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000088
等が挙げられる。
ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、Rが直鎖状のものがより好ましい。
(2)上記一般式(b-1)の-(ORn1-において、n1は1~3の整数であり、好ましくは1又は2である。なお、n1=2又は3のとき、Rは同じでも異なっていてもよい。
の好ましい具体例としては、次の直鎖状又は分岐鎖状のものが例示できる。
直鎖状のものとしては、-CH-、-CHF-、-CF-、-CHCH-、-CFCH-、-CFCF-、-CHCF-、-CHCHCH-、-CHCHCF-、-CHCFCH-、-CHCFCF-、-CFCHCH-、-CFCFCH-、-CFCHCF-、-CFCFCF-等が例示できる。
分岐鎖状のものとしては、
Figure JPOXMLDOC01-appb-C000089
等が挙げられる。
上記フッ素化アルコキシ基(c)は、アルコキシ基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。上記フッ素化アルコキシ基(c)は、炭素数が1~17であることが好ましい。より好ましくは、炭素数1~6である。
上記フッ素化アルコキシ基(c)としては、一般式:X C-(Rn3-O-(3つのXは同じか又は異なりいずれもH又はF;Rは好ましくは炭素数1~5のフッ素原子を有していてもよいアルキレン基;n3は0又は1;ただし3つのXのいずれかはフッ素原子を含んでいる)で表されるフッ素化アルコキシ基が特に好ましい。
上記フッ素化アルコキシ基(c)の具体例としては、上記一般式(a-1)におけるRとして例示したアルキル基の末端に酸素原子が結合したフッ素化アルコキシ基が挙げられる。
上記フッ素化飽和環状カーボネートにおけるフッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は10質量%以上が好ましい。フッ素含有率が低過ぎると、低温での粘性低下効果や引火点の上昇効果が充分に得られないおそれがある。この観点から上記フッ素含有率は12質量%以上がより好ましく、15質量%以上が更に好ましい。上限は通常76質量%である。
フッ素化アルキル基(a)、エーテル結合を有するフッ素化アルキル基(b)、及び、フッ素化アルコキシ基(c)のフッ素含有率は、各基の構造式に基づいて、{(フッ素原子の個数×19)/各基の式量}×100(%)により算出した値である。
また、誘電率、耐酸化性が良好な点からは、上記フッ素化飽和環状カーボネート全体のフッ素含有率は10質量%以上が好ましく、15質量%以上がより好ましい。上限は通常76質量%である。
なお、上記フッ素化飽和環状カーボネートのフッ素含有率は、フッ素化飽和環状カーボネートの構造式に基づいて、{(フッ素原子の個数×19)/フッ素化飽和環状カーボネートの分子量}×100(%)により算出した値である。
上記フッ素化飽和環状カーボネートとしては、具体的には、例えば、以下が挙げられる。
~Xの少なくとも1つが-Fであるフッ素化飽和環状カーボネートの具体例として、
Figure JPOXMLDOC01-appb-C000090
等が挙げられる。これらの化合物は、耐電圧が高く、電解質塩の溶解性も良好である。
他に、
Figure JPOXMLDOC01-appb-C000091
等も使用できる。
~Xの少なくとも1つがフッ素化アルキル基(a)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
等が挙げられる。
~Xの少なくとも1つが、エーテル結合を有するフッ素化アルキル基(b)、又は、フッ素化アルコキシ基(c)であり、かつ残りが全て-Hであるフッ素化飽和環状カーボネートの具体例としては、
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
等が挙げられる。
なかでも、上記フッ素化飽和環状カーボネートとしては、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
上記フッ素化飽和環状カーボネートとしては、なかでも、フルオロエチレンカーボネート、ジフルオロエチレンカーボネートがより好ましい。
なお、上記フッ素化飽和環状カーボネートは、上述した具体例のみに限定されるものではない。また、上記フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。例えば、フルオロエチレンカーボネートとトリフルオロエチレンカーボネートとの組み合わせが使用できる。
上記フッ素化飽和環状カーボネートの含有量は、溶媒中0~99体積%であることが好ましく、1体積%以上がより好ましく、5体積%以上が更に好ましく、95体積%以下がより好ましく、90体積%以下が更に好ましい。
上記フッ素化鎖状カーボネートとしては、一般式(B):
RfOCOOR     (B)
(式中、Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
本発明の電解液は、高電圧下でも好適に使用できる点で、上記フッ素化鎖状カーボネートを含むことが好ましい。
Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。
上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。Rがフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
Rf及びRは、低粘性である点で、炭素数が2~7であることが好ましく、2~4であることがより好ましい。
炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりするおそれがあり、炭素数が少な過ぎると、電解質塩の溶解性の低下、放電効率の低下、更には粘性の増大等がみられることがある。
炭素数が1のフッ素化アルキル基としては、CFH-、CFH-及びCF-が挙げられる。
炭素数が2以上のフッ素化アルキル基としては、下記一般式(d-1):
-R- (d-1)
(式中、Rはフッ素原子を有していてもよい炭素数1以上のアルキル基;Rはフッ素原子を有していてもよい炭素数1~3のアルキレン基;ただし、R及びRの少なくとも一方はフッ素原子を有している)で示されるフッ素化アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
なお、R及びRは、更に、炭素原子、水素原子及びフッ素原子以外の、その他の原子を有していてもよい。
は、フッ素原子を有していてもよい炭素数1以上のアルキル基である。Rとしては、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましい。Rの炭素数としては、1~4がより好ましく、1~3が更に好ましい。
として、具体的には、直鎖状又は分岐鎖状のアルキル基として、CH-、CHCH-、CHCHCH-、CHCHCHCH-、
Figure JPOXMLDOC01-appb-C000103
等が挙げられる。
また、Rがフッ素原子を有する直鎖状のアルキル基である場合、CF-、CFCH-、CFCF-、CFCHCH-、CFCFCH-、CFCFCF-、CFCHCF-、CFCHCHCH-、CFCFCHCH-、CFCHCFCH-、CFCFCFCH-、CFCFCFCF-、CFCFCHCF-、CFCHCHCHCH-、CFCFCHCHCH-、CFCHCFCHCH-、CFCFCFCHCH-、CFCFCFCFCH-、CFCFCHCFCH-、CFCFCHCHCHCH-、CFCFCFCFCHCH-、CFCFCHCFCHCH-、HCF-、HCFCH-、HCFCF-、HCFCHCH-、HCFCFCH-、HCFCHCF-、HCFCFCHCH-、HCFCHCFCH-、HCFCFCFCF-、HCFCFCHCHCH-、HCFCHCFCHCH-、HCFCFCFCFCH-、HCFCFCFCFCHCH-、FCH-、FCHCH-、FCHCF-、FCHCFCH-、FCHCFCF-、CHCFCH-、CHCFCF-、CHCFCHCF-、CHCFCFCF-、CHCHCFCF-、CHCFCHCFCH-、CHCFCFCFCH-、CHCFCFCHCH-、CHCHCFCFCH-、CHCFCHCFCHCH-、CHCFCHCFCHCH-、HCFClCFCH-、HCFCFClCH-、HCFCFClCFCFClCH-、HCFClCFCFClCFCH-等が挙げられる。
また、Rがフッ素原子を有する分岐鎖状のアルキル基である場合、
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
等が好ましく挙げられる。ただし、CH-やCF-という分岐を有していると粘性が高くなりやすいため、その数は少ない(1個)かゼロであることがより好ましい。
はフッ素原子を有していてもよい炭素数1~3のアルキレン基である。Rは、直鎖状であってもよく、分岐鎖状であってもよい。このような直鎖状又は分岐鎖状のアルキレン基を構成する最小構造単位の一例を下記に示す。Rはこれらの単独又は組合せで構成される。
(i)直鎖状の最小構造単位:
-CH-、-CHF-、-CF-、-CHCl-、-CFCl-、-CCl
(ii)分岐鎖状の最小構造単位:
Figure JPOXMLDOC01-appb-C000106
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。
は、直鎖状である場合には、上述した直鎖状の最小構造単位のみからなるものであり、なかでも-CH-、-CHCH-又は-CF-が好ましい。電解質塩の溶解性をより一層向上させることができる点から、-CH-又は-CHCH-がより好ましい。
は、分岐鎖状である場合には、上述した分岐鎖状の最小構造単位を少なくとも1つ含んでなるものであり、一般式-(CX)-(XはH、F、CH又はCF;XはCH又はCF。ただし、XがCFの場合、XはH又はCHである)で表されるものが好ましく例示できる。これらは特に電解質塩の溶解性をより一層向上させることができる。
好ましいフッ素化アルキル基としては、具体的には、例えば、CFCF-、HCFCF-、HCFCF-、CHCF-、CFCH-、CFCFCF-、HCFCFCF-、HCFCFCF-、CHCFCF-、
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
等が挙げられる。
なかでも、RfとRのフッ素化アルキル基としては、CF-、CFCF-、(CFCH-、CFCH-、CCH-、HCFCFCH-、CFCFHCFCH-が好ましく、難燃性が高く、レート特性や耐酸化性が良好な点から、CFCH-、CFCFCH-、HCFCFCH-がより好ましい。
がフッ素原子を含まないアルキル基の場合は炭素数1~7のアルキル基である。Rは、低粘性である点で、炭素数が1~4であることが好ましく、1~3であることがより好ましい。
上記フッ素原子を含まないアルキル基としては、例えば、CH-、CHCH-、(CHCH-、C-等が挙げられる。なかでも、粘度が低く、レート特性が良好な点から、CH-、CHCH-が好ましい。
上記フッ素化鎖状カーボネートは、フッ素含有率が20~70質量%であることが好ましい。フッ素含有率が上述の範囲であると、溶剤との相溶性、塩の溶解性を維持することができる。上記フッ素含有率は、30質量%以上がより好ましく、35質量%以上が更に好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。
なお、本発明においてフッ素含有率は、上記フッ素化鎖状カーボネートの構造式に基づいて、
{(フッ素原子の個数×19)/フッ素化鎖状カーボネートの分子量}×100(%)
により算出した値である。
上記フッ素化鎖状カーボネートとしては、低粘性である点で、以下の化合物のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000109
上記フッ素化鎖状カーボネートの含有量は、溶媒中1~90体積%であることが好ましい。上記含有量が上述の範囲内であると、相溶性を維持することができる。
上記フッ素化鎖状カーボネートの含有量は、塩の溶解性を維持することができる点で、電解液中30体積%以上がより好ましく、40体積%以上が更に好ましく、85体積%以下がより好ましく、80体積%以下が更に好ましい。
上記非フッ素化鎖状カーボネートとしては、例えば、CHOCOOCH(ジメチルカーボネート:DMC)、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
上記非フッ素化鎖状カーボネートの含有量は、溶媒中0~99体積%であることが好ましく、1体積%以上がより好ましく、90体積%以下がより好ましい。
上記溶媒として、フッ素化飽和環状カーボネート及びフッ素化鎖状カーボネートを含む場合、フッ素化飽和環状カーボネートの下限値は0.1質量%が好ましく、0.2質量%がより好ましい。フッ素化飽和環状カーボネートの上限値は60質量%が好ましく、40質量%がより好ましい。フッ素化鎖状カーボネートの下限値は30質量%が好ましく、40質量%がより好ましい。フッ素化鎖状カーボネートの上限値は90質量%が好ましく、80質量%がより好ましい。
上記溶媒は、鎖状エーテルを含むことが好ましい。上記鎖状エーテルは、非フッ素化鎖状エーテルであってもよいし、フッ素化鎖状エーテルであってもよい。上記溶媒は、フッ素化鎖状エーテルを含むことがより好ましい。
上記非フッ素化鎖状エーテルとしては、炭素数3~10のものが好ましい。
上記非フッ素化鎖状エーテルとしては、ジエチルエーテル、ジ-n-ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、ジエトキシメタン、ジメトキシエタン、メトキシエトキシエタン、ジエトキシエタン、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
上記フッ素化鎖状エーテルとしては、下記一般式(K):
Rf-O-Rf       (K)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフッ素化アルキル基である。ただし、Rf及びRfの少なくとも一方は、フッ素化アルキル基である。)で表されるフッ素化鎖状エーテル(K)が挙げられる。フッ素化鎖状エーテル(K)を含有させることにより、電解液の難燃性が向上するとともに、高温高電圧での安定性、安全性が向上する。
上記一般式(K)においては、Rf及びRfの少なくとも一方が炭素数1~10のフッ素化アルキル基であればよいが、電解液の難燃性及び高温高電圧での安定性、安全性を一層向上させる観点から、Rf及びRfが、ともに炭素数1~10のフッ素化アルキル基であることが好ましい。この場合、Rf及びRfは同じであってもよく、互いに異なっていてもよい。
なかでも、Rf及びRfが、同じか又は異なり、Rfが炭素数3~6のフッ素化アルキル基であり、かつ、Rfが炭素数2~6のフッ素化アルキル基であることが好ましい。
RfおよびRfの合計炭素数が少な過ぎるとフッ素化鎖状エーテルの沸点が低くなりすぎ、また、Rf又はRfの炭素数が多過ぎると、電解質塩の溶解性が低下し、他の溶媒との相溶性にも悪影響が出始め、また粘度が上昇するためレート特性が低減する。Rfの炭素数が3又は4、Rfの炭素数が2又は3のとき、沸点およびレート特性に優れる点で有利である。
上記フッ素化鎖状エーテル(K)は、フッ素含有率が40~75質量%であることが好ましい。この範囲のフッ素含有率を有するとき、不燃性と相溶性のバランスに特に優れたものになる。また、耐酸化性、安全性が良好な点からも好ましい。
上記フッ素含有率の下限は、45質量%がより好ましく、50質量%が更に好ましく、55質量%が特に好ましい。上限は70質量%がより好ましく、66質量%が更に好ましい。
なお、フッ素化鎖状エーテル(K)のフッ素含有率は、フッ素化鎖状エーテル(K)の構造式に基づいて、{(フッ素原子の個数×19)/フッ素化鎖状エーテル(K)の分子量}×100(%)により算出した値である。
Rfとしては、例えば、CFCFCH-、CFCFHCF-、HCFCFCF-、HCFCFCH-、CFCFCHCH-、CFCFHCFCH-、HCFCFCFCF-、HCFCFCFCH-、HCFCFCHCH-、HCFCF(CF)CH-等が挙げられる。
また、Rfとしては、例えば、CFCFCH-、CFCFHCF-、CFHCFCF-、CFHCFCH-、CFCFCHCH-、CFCFHCFCH-、CFHCFCFCF-、CFHCFCFCH-、CFHCFCHCH-、CFHCF(CF)CH-、CFHCF-、CFHCH-、CHCF-等が挙げられる。
上記フッ素化鎖状エーテル(K)の具体例としては、例えばHCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CH等が挙げられる。
なかでも、片末端又は両末端にHCF-又はCFCFH-を含むものが分極性に優れ、沸点の高いフッ素化鎖状エーテル(K)を与えることができる。フッ素化鎖状エーテル(K)の沸点は、67~120℃であることが好ましい。より好ましくは80℃以上、更に好ましくは90℃以上である。
このようなフッ素化鎖状エーテル(K)としては、例えば、CFCHOCFCFHCF、CFCFCHOCFCFHCF、HCFCFCHOCFCFHCF、HCFCFCHOCHCFCFH、CFCFHCFCHOCFCFHCF、HCFCFCHOCFCFH、CFCFCHOCFCFH等の1種又は2種以上が挙げられる。
なかでも、高沸点、他の溶媒との相溶性や電解質塩の溶解性が良好な点で有利なことから、HCFCFCHOCFCFHCF(沸点106℃)、CFCFCHOCFCFHCF(沸点82℃)、HCFCFCHOCFCFH(沸点92℃)及びCFCFCHOCFCFH(沸点68℃)からなる群より選択される少なくとも1種であることが好ましく、HCFCFCHOCFCFHCF(沸点106℃)、HCFCFCHOCFCFH(沸点92℃)及びCFCFCHOCFCFH(沸点68℃)からなる群より選択される少なくとも1種であることがより好ましい。
上記鎖状エーテルの含有量は、上記溶媒に対して、0~99.9体積%が好ましく、0.1体積%以上がより好ましく、90体積%以下がより好ましい。
上記フッ素化鎖状エーテルの含有量は、上記溶媒に対して、0~99.9体積%が好ましく、0.1体積%以上がより好ましく、90体積%以下がより好ましい。
上記溶媒は、上記フッ素化飽和環状カーボネート及び上記フッ素化鎖状カーボネートからなる群より選択される少なくとも1種と、上記フッ素化鎖状エーテルとを含むこともできる。
上記溶媒として、上記フッ素化飽和環状カーボネート及び上記フッ素化鎖状カーボネートからなる群より選択される少なくとも1種のフッ素化カーボネートと、上記フッ素化鎖状エーテルとを含む場合、上記フッ素化カーボネートの下限値は40質量%が好ましく、50質量%がより好ましい。上記フッ素化カーボネートの上限値は90質量%が好ましく、80質量%がより好ましい。上記フッ素化鎖状エーテルの下限値は0.1質量%が好ましく、0.2質量%がより好ましい。上記フッ素化鎖状エーテルの上限値は70質量%が好ましく、60質量%がより好ましい。
また、上記溶媒は、上記フッ素化飽和環状カーボネート、上記フッ素化鎖状カーボネート、及び、上記フッ素化鎖状エーテルを含むこともできる。
上記溶媒として、フッ素化飽和環状カーボネート、フッ素化鎖状カーボネート、及び、上記フッ素化鎖状エーテルを含む場合、フッ素化飽和環状カーボネートの下限値は0.1質量%が好ましく、0.2質量%がより好ましい。フッ素化飽和環状カーボネートの上限値は60質量%が好ましく、40質量%がより好ましい。フッ素化鎖状カーボネートの下限値は30質量%が好ましく、40質量%がより好ましい。フッ素化鎖状カーボネートの上限値は90質量%が好ましく、80質量%がより好ましい。フッ素化鎖状エーテルの下限値は0.1質量%が好ましく、0.2質量%がより好ましい。フッ素化鎖状エーテルの上限値は60質量%が好ましく、40質量%がより好ましい。
本発明の電解液は、電解質塩(ただし、リチウム塩(X)及び化合物(7)を除く)を含有することが好ましい。
上記電解質塩としては、リチウム塩、アンモニウム塩、金属塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩等、電解液に使用することができる任意のものを用いることができる。
リチウムイオン二次電池用電解液の電解質塩としては、リチウム塩(ただし、リチウム塩(X)及び化合物(7)を除く)が好ましい。
上記リチウム塩としては、例えば、LiClO、LiPF及びLiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO、及び、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩等の含フッ素有機酸リチウム塩等が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
なかでも、上記リチウム塩は、電解液を高温保存した後の劣化を抑制することができる点で、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、及び、式:LiPF(C2n+16-a(式中、aは0~5の整数であり、nは1~6の整数である)で表される塩からなる群より選択される少なくとも1種であることが好ましい。
式:LiPF(C2n+16-aで表される塩としては、例えば、LiPF(CF、LiPF(C、LiPF(C、LiPF(C、LiPF(CF、LiPF(C、LiPF(C、LiPF(C(ただし、式中のC、Cで表されるアルキル基は、直鎖、分岐構造のいずれであってもよい。)等が挙げられる。
電解液中の上記リチウム塩の濃度は、0.5~3モル/リットルが好ましい。この範囲外では、電解液の電気伝導率が低くなり、電池性能が低下してしまう傾向がある。
上記電解質塩の濃度は、0.9モル/リットル以上がより好ましく、1.5モル/リットル以下がより好ましい。
電気二重層キャパシタ用電解液の電解質塩としては、アンモニウム塩が好ましい。
上記アンモニウム塩としては、以下(IIa)~(IIe)が挙げられる。
(IIa)テトラアルキル4級アンモニウム塩
一般式(IIa):
Figure JPOXMLDOC01-appb-C000110
(式中、R1a、R2a、R3a及びR4aは同じか又は異なり、いずれも炭素数1~6のエーテル結合を含んでいてもよいアルキル基;Xはアニオン)で示されるテトラアルキル4級アンモニウム塩が好ましく例示できる。また、このアンモニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
具体例としては、一般式(IIa-1):
Figure JPOXMLDOC01-appb-C000111
(式中、R1a、R2a及びXは前記と同じ;x及びyは同じか又は異なり0~4の整数で、かつx+y=4)で示されるテトラアルキル4級アンモニウム塩、一般式(IIa-2):
Figure JPOXMLDOC01-appb-C000112
(式中、R5aは炭素数1~6のアルキル基;R6aは炭素数1~6の2価の炭化水素基;R7aは炭素数1~4のアルキル基;zは1又は2;Xはアニオン)で示されるアルキルエーテル基含有トリアルキルアンモニウム塩、
などがあげられる。アルキルエーテル基を導入することにより、粘性の低下が図ることができる。
アニオンXは、無機アニオンでも有機アニオンでもよい。無機アニオンとしては、例えばAlCl 、BF 、PF 、AsF 、TaF 、I、SbF が挙げられる。有機アニオンとしては、例えばCFCOO、CFSO 、(CFSO、(CSOなどが挙げられる。
これらのうち、耐酸化性やイオン解離性が良好な点から、BF 、PF 、AsF 、SbF が好ましい。
テトラアルキル4級アンモニウム塩の好適な具体例としては、EtNBF、EtNClO、EtNPF、EtNAsF、EtNSbF、EtNCFSO、EtN(CFSON、EtNCSO、EtMeNBF、EtMeNClO、EtMeNPF、EtMeNAsF、EtMeNSbF、EtMeNCFSO、EtMeN(CFSON、EtMeNCSOを用いればよく、特に、EtNBF、EtNPF、EtNSbF、EtNAsF、EtMeNBF、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム塩などが挙げられる。
(IIb)スピロ環ビピロリジニウム塩
一般式(IIb-1):
Figure JPOXMLDOC01-appb-C000113
(式中、R8a及びR9aは同じか又は異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n1は0~5の整数;n2は0~5の整数)で示されるスピロ環ビピロリジニウム塩、一般式(IIb-2):
Figure JPOXMLDOC01-appb-C000114
(式中、R10a及びR11aは同じか又は異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n3は0~5の整数;n4は0~5の整数)で示されるスピロ環ビピロリジニウム塩、又は、一般式(IIb-3):
Figure JPOXMLDOC01-appb-C000115
(式中、R12aおよびR13aは同じかまたは異なり、いずれも炭素数1~4のアルキル基;Xはアニオン;n5は0~5の整数;n6は0~5の整数)で示されるスピロ環ビピロリジニウム塩が好ましく挙げられる。また、このスピロ環ビピロリジニウム塩の水素原子の一部または全部がフッ素原子および/または炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)の場合と同じである。なかでも、解離性が高く、高電圧下での内部抵抗が低い点から、BF 、PF 、(CFSOまたは(CSOが好ましい。
スピロ環ビピロリジニウム塩の好ましい具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000116
などが挙げられる。
このスピロ環ビピロリジニウム塩は溶媒への溶解性、耐酸化性、イオン伝導性の点で優れている。
(IIc)イミダゾリウム塩
一般式(IIc):
Figure JPOXMLDOC01-appb-C000117
(式中、R14a及びR15aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)
で示されるイミダゾリウム塩が好ましく例示できる。また、このイミダゾリウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000118
等が挙げられる。
このイミダゾリウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IId):N-アルキルピリジニウム塩
一般式(IId):
Figure JPOXMLDOC01-appb-C000119
(式中、R16aは炭素数1~6のアルキル基;Xはアニオン)
で示されるN-アルキルピリジニウム塩が好ましく例示できる。また、このN-アルキルピリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000120
などが挙げられる。
このN-アルキルピリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
(IIe)N,N-ジアルキルピロリジニウム塩
一般式(IIe):
Figure JPOXMLDOC01-appb-C000121
(式中、R17a及びR18aは同じか又は異なり、いずれも炭素数1~6のアルキル基;Xはアニオン)
で示されるN,N-ジアルキルピロリジニウム塩が好ましく例示できる。また、このN,N-ジアルキルピロリジニウム塩の水素原子の一部又は全部がフッ素原子及び/又は炭素数1~4のフッ素化アルキル基で置換されているものも、耐酸化性が向上する点から好ましい。
アニオンXの好ましい具体例は、(IIa)と同じである。
好ましい具体例としては、例えば
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
などが挙げられる。
このN,N-ジアルキルピロリジニウム塩は粘性が低く、また溶解性が良好な点で優れている。
これらのアンモニウム塩のうち、(IIa)、(IIb)及び(IIc)が溶解性、耐酸化性、イオン伝導性が良好な点で好ましく、さらには
Figure JPOXMLDOC01-appb-C000124
(式中、Meはメチル基;Etはエチル基;X、x、yは式(IIa-1)と同じ)が好ましい。
また、電気二重層キャパシタ用電解質塩として、リチウム塩を用いてもよい。リチウム塩としては、例えば、LiPF、LiBF、LiAsF、LiSbF、LiN(SOが好ましい。
更に容量を向上させるために、マグネシウム塩を用いてもよい。マグネシウム塩としては、例えば、Mg(ClO、Mg(OOC等が好ましい。
電解質塩が上記アンモニウム塩である場合、濃度は、1.1モル/リットル以上であることが好ましい。1.1モル/リットル未満であると、低温特性が悪くなるだけでなく、初期内部抵抗が高くなってしまう。上記電解質塩の濃度は、1.25モル/リットル以上であることがより好ましい。
上記濃度は、低温特性の点で、1.7モル/リットル以下であることが好ましく、1.5モル/リットル以下であることがより好ましい。
上記アンモニウム塩が、4フッ化ホウ酸トリエチルメチルアンモニウム(TEMABF)の場合、その濃度は、低温特性に優れる点で、1.1~1.4モル/リットルであることが好ましい。
また、4フッ化ホウ酸スピロビピロリジニウム(SBPBF)の場合は、1.3~1.7モル/リットルであることが好ましい。
本発明の電解液は、更に、重量平均分子量が2000~4000であり、末端に-OH、-OCOOH、又は、-COOHを有するポリエチレンオキシドを含有することが好ましい。
このような化合物を含有することにより、電極界面の安定性が向上し、電池特性を向上させることができる。
上記ポリエチレンオキシドとしては、例えば、ポリエチレンオキシドモノオール、ポリエチレンオキシドカルボン酸、ポリエチレンオキシドジオール、ポリエチレンオキシドジカルボン酸、ポリエチレンオキシドトリオール、ポリエチレンオキシドトリカルボン酸等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。
なかでも、電池特性がより良好となる点で、ポリエチレンオキシドモノオールとポリエチレンオキシドジオールの混合物、及び、ポリエチレンカルボン酸とポリエチレンジカルボン酸の混合物であることが好ましい。
上記ポリエチレンオキシドの重量平均分子量が小さすぎると、酸化分解されやすくなるおそれがある。上記重量平均分子量は、3000~4000がより好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により測定することができる。
上記ポリエチレンオキシドの含有量は、電解液中1×10-6~1×10-2mol/kgであることが好ましい。上記ポリエチレンオキシドの含有量が多すぎると、電池特性を損なうおそれがある。
上記ポリエチレンオキシドの含有量は、5×10-6mol/kg以上であることがより好ましい。
本発明の電解液は、更に、添加剤として、不飽和環状カーボネートを含有していてもよい。これらの化合物を含有することにより、電池特性の低下を抑制することができる。
上記不飽和環状カーボネートは、不飽和結合を含む環状カーボネート、すなわち、環状カーボネートであって、分子内に炭素-炭素不飽和結合を少なくとも1つ有するものである。具体的には、例えば、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート(VEC)、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニルエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物等が挙げられる。このうち、ビニレンカーボネート、4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート又は4,5-ジビニルエチレンカーボネートが好ましく、ビニレンカーボネート又は4-ビニルエチレンカーボネートが特に好ましい。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。この範囲であれば、電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現されやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上であり、また、より好ましくは150以下である。
また、不飽和環状カーボネートとしては、フッ素化不飽和環状カーボネートも好適に用いることができる。
フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4-フルオロビニレンカーボネート、4-フルオ-5-メチルビニレンカーボネート、4-フルオロ-5-フェニルビニレンカーボネート、4-アリル-5-フルオロビニレンカーボネート、4-フルオロ-5-ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素-炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4-フルオロ-4-ビニルエチレンカーボネート、4-フルオロ-4-アリルエチレンカーボネート、4-フルオロ-5-ビニルエチレンカーボネート、4-フルオロ-5-アリルエチレンカーボネート、4,4-ジフルオロ-4-ビニルエチレンカーボネート、4,4-ジフルオロ-4-アリルエチレンカーボネート、4,5-ジフルオロ-4-ビニルエチレンカーボネート、4,5-ジフルオロ-4-アリルエチレンカーボネート、4-フルオロ-4,5-ジビニルエチレンカーボネート、4-フルオロ-4,5-ジアリルエチレンカーボネート、4,5-ジフルオロ-4,5-ジビニルエチレンカーボネート、4,5-ジフルオロ-4,5-ジアリルエチレンカーボネート、4-フルオロ-4-フェニルエチレンカーボネート、4-フルオロ-5-フェニルエチレンカーボネート、4,4-ジフルオロ-5-フェニルエチレンカーボネート、4,5-ジフルオロ-4-フェニルエチレンカーボネート等が挙げられる。
フッ素化不飽和環状カーボネートの分子量は特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、500以下である。この範囲であれば、電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現されやすい。
上記不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記不飽和環状カーボネートを添加剤として用いる場合、その含有量は、電解液中0.1~10質量%であることが好ましく、1質量%以上がより好ましく、5質量%以下がより好ましい。
本発明の電解液は、本発明の効果を損なわない範囲で、環状及び鎖状カルボン酸エステル、環状エーテル、窒素含有化合物、ホウ素含有化合物、有機ケイ素含有化合物、不燃(難燃)化剤、界面活性剤、高誘電化添加剤、サイクル特性及びレート特性改善剤、又は、過充電防止剤等の他の溶媒又は添加剤を更に含有してもよい。
上記環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3~12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルの配合量は、通常、溶媒100質量%中、好ましくは0.1質量%以上、より好ましくは1質量%以上である。この範囲であると、電解液の電気伝導率を改善し、電解液電池の大電流放電特性を向上させやすくなる。また、環状カルボン酸エステルの配合量は、好ましくは10質量%以下、より好ましくは5質量%以下である。このように上限を設定することにより、電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、電解液電池の大電流放電特性を良好な範囲としやすくする。
また、上記環状カルボン酸エステルとしては、フッ素化環状カルボン酸エステル(含フッ素ラクトン)も好適に用いることができる。含フッ素ラクトンとしては、例えば、下記式(E):
Figure JPOXMLDOC01-appb-C000125
(式中、X15~X20は同じか又は異なり、いずれも-H、-F、-Cl、-CH又はフッ素化アルキル基;ただし、X15~X20の少なくとも1つはフッ素化アルキル基である)で示される含フッ素ラクトンが挙げられる。
15~X20におけるフッ素化アルキル基としては、例えば、-CFH、-CFH、-CF、-CHCF、-CFCF、-CHCFCF、-CF(CF等が挙げられ、耐酸化性が高く、安全性向上効果がある点から-CHCF、-CHCFCFが好ましい。
15~X20の少なくとも1つがフッ素化アルキル基であれば、-H、-F、-Cl、-CH又はフッ素化アルキル基は、X15~X20の1箇所のみに置換していてもよいし、複数の箇所に置換していてもよい。好ましくは、電解質塩の溶解性が良好な点から1~3箇所、更には1~2箇所である。
フッ素化アルキル基の置換位置は特に限定されないが、合成収率が良好なことから、X17及び/又はX18が、特にX17又はX18がフッ素化アルキル基、なかでも-CHCF、-CHCFCFであることが好ましい。フッ素化アルキル基以外のX15~X20は、-H、-F、-Cl又はCHであり、特に電解質塩の溶解性が良好な点から-Hが好ましい。
含フッ素ラクトンとしては、上記式で示されるもの以外にも、例えば、下記式(F):
Figure JPOXMLDOC01-appb-C000126
(式中、A及びBはいずれか一方がCX2627(X26及びX27は同じか又は異なり、いずれも-H、-F、-Cl、-CF、-CH又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキレン基)であり、他方は酸素原子;Rf12はエーテル結合を有していてもよいフッ素化アルキル基又はフッ素化アルコキシ基;X21及びX22は同じか又は異なり、いずれも-H、-F、-Cl、-CF又はCH;X23~X25は同じか又は異なり、いずれも-H、-F、-Cl又は水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0又は1)で示される含フッ素ラクトン等も挙げられる。
式(F)で示される含フッ素ラクトンとしては、下記式(G):
Figure JPOXMLDOC01-appb-C000127
(式中、A、B、Rf12、X21、X22及びX23は式(F)と同じである)で示される5員環構造が、合成が容易である点、化学的安定性が良好な点から好ましく挙げられ、更には、AとBの組合せにより、下記式(H):
Figure JPOXMLDOC01-appb-C000128
(式中、Rf12、X21、X22、X23、X26及びX27は式(F)と同じである)で示される含フッ素ラクトンと、下記式(I):
Figure JPOXMLDOC01-appb-C000129
(式中、Rf12、X21、X22、X23、X26及びX27は式(F)と同じである)で示される含フッ素ラクトンがある。
これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、
Figure JPOXMLDOC01-appb-C000130
等が挙げられる。
フッ素化環状カルボン酸エステルを含有させることにより、イオン伝導度の向上、安全性の向上、高温時の安定性向上といった効果が得られる。
上記鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3~7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸イソブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、プロピオン酸-n-ブチル、プロピオン酸イソブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル、酪酸-n-プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸-n-プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-n-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が粘度低下によるイオン伝導度の向上の点から好ましい。
また、フッ素化鎖状カルボン酸エステルも好適に用いることができる。含フッ素エステルとしては、下記式(J):
Rf10COORf11     (J)
(式中、Rf10は炭素数1~2のフッ素化アルキル基、Rf11は炭素数1~4のフッ素化アルキル基)で示されるフッ素化鎖状カルボン酸エステルが、難燃性が高く、かつ他溶媒との相溶性や耐酸化性が良好な点から好ましい。
Rf10としては、例えばCF-、CFCF-、HCFCF-、HCF-、CHCF-、CFCH-等が例示でき、なかでもCF-、CFCF-が、レート特性が良好な点から特に好ましい。
Rf11としては、例えば、CF-、CFCF-、(CFCH-、CFCH-、CFCHCH-、CFCFHCFCH-、CCH-、CFHCFCH-、CCHCH-、CFCFCH-、CFCFCFCH-等が例示でき、なかでもCFCH-、(CFCH-、CCH-、CFHCFCH-が、他溶媒との相溶性が良好な点から特に好ましい。
フッ素化鎖状カルボン酸エステルの具体例としては、例えばCFC(=O)OCHCF、CFC(=O)OCHCHCF、CFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCH(CF等の1種又は2種以上が例示でき、なかでもCFC(=O)OCH、CFC(=O)OCHCFCFH、CFC(=O)OCHCF、CFC(=O)OCH(CFが、他溶媒との相溶性及びレート特性が良好な点から特に好ましい。
上記環状エーテルとしては、炭素数3~6の環状エーテルが好ましい。
炭素数3~6の環状エーテルとしては、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、1,4-ジオキサン等、及びこれらのフッ素化化合物が挙げられる。中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコール-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離度を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
上記窒素含有化合物としては、カルボン酸アミド、含フッ素カルボン酸アミド、スルホン酸アミド及び含フッ素スルホン酸アミド等が挙げられる。また、1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサジリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシンイミド等も使用できる。
上記ホウ素含有化合物としては、例えば、トリメチルボレート、トリエチルボレート等のホウ酸エステル、ホウ酸エーテル、及び、ホウ酸アルキル等が挙げられる。
上記有機ケイ素含有化合物としては、例えば、(CH-Si、(CH-Si-Si(CH等が挙げられる。
上記不燃(難燃)化剤としては、リン酸エステルやホスファゼン系化合物が挙げられる。上記リン酸エステルとしては、例えば、含フッ素アルキルリン酸エステル、非フッ素系アルキルリン酸エステル、アリールリン酸エステル等が挙げられる。なかでも、少量で不燃効果を発揮できる点で、含フッ素アルキルリン酸エステルであることが好ましい。
上記含フッ素アルキルリン酸エステルとしては、具体的には、特開平11-233141号公報に記載された含フッ素ジアルキルリン酸エステル、特開平11-283669号公報に記載された環状のアルキルリン酸エステル、又は、含フッ素トリアルキルリン酸エステル等が挙げられる。
上記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、サイクル特性、レート特性が良好となる点から、フッ素原子を含むものであることが好ましい。
このようなフッ素原子を含む界面活性剤としては、例えば、下記式:
RfCOO
(式中、Rfは炭素数3~10のエーテル結合を含んでいてもよいフッ素化アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもH又は炭素数が1~3のアルキル基)である)で表される含フッ素カルボン酸塩や、下記式:
RfSO
(式中、Rfは炭素数3~10のエーテル結合を含んでいてもよいフッ素化アルキル基;MはLi、Na、K又はNHR’ (R’は同じか又は異なり、いずれもHまたは炭素数が1~3のアルキル基)である)で表される含フッ素スルホン酸塩等が好ましい。
上記界面活性剤の含有量は、充放電サイクル特性を低下させずに電解液の表面張力を低下させることができる点から、電解液中0.01~2質量%であることが好ましい。
上記高誘電化添加剤としては、例えば、スルホラン、メチルスルホラン、γ-ブチロラクトン、γ-バレロラクトン、アセトニトリル、プロピオニトリル等が挙げられる。
上記サイクル特性及びレート特性改善剤としては、例えば、酢酸メチル、酢酸エチル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
上記過充電防止剤としては、過充電等のときに電池の破裂・発火を抑制することができる点で、芳香環を有する過充電防止剤であることが好ましい。上記芳香環を有する過充電防止剤としては、例えば、シクロヘキシルベンゼン、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ベンゾフラン、ジベンゾフラン、ジクロロアニリン、トルエン等の芳香族化合物;ヘキサフルオロベンゼン、フルオロベンゼン、2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の芳香族化合物のフッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt-ブチルベンゼン又はt-アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
上記過充電防止剤の含有量は、過充電等の場合に電池の破裂や発火を防止できる点で、電解液中0.1~5質量%であることが好ましい。
本発明の電解液は、本発明の効果を損なわない範囲で、公知のその他の助剤を更に含有してもよい。上記公知のその他の助剤としては、例えば、エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート、メトキシエチル-メチルカーボネート等のカーボネート化合物;2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,9-ジビニル-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等のスピロ化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。これらの助剤を添加することにより、高温保存後の容量維持特性やサイクル特性を向上させることができる。
また、本発明の電解液は、更に高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8-222270号公報、特開2002-100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等のフッ素樹脂(特表平4-506726号公報、特表平8-507407号公報、特開平10-294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11-35765号公報、特開平11-86630号公報)等が挙げられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。
そのほか、本発明の電解液は、特願2004-301934号明細書に記載されているイオン伝導性化合物も含んでいてもよい。
このイオン伝導性化合物は、式(1-1):
A-(D)-B (1-1)
[式中、Dは式(2-1):
-(D1)-(FAE)-(AE)-(Y)- (2-1)
(式中、D1は、式(2a):
Figure JPOXMLDOC01-appb-C000131
(式中、Rfは架橋性官能基を有していてもよい含フッ素エーテル基;R10はRfと主鎖を結合する基又は結合手)で示される側鎖に含フッ素エーテル基を有するエーテル単位;
FAEは、式(2b):
Figure JPOXMLDOC01-appb-C000132
(式中、Rfaは水素原子、架橋性官能基を有していてもよいフッ素化アルキル基;R11はRfaと主鎖を結合する基又は結合手)で示される側鎖にフッ素化アルキル基を有するエーテル単位;
AEは、式(2c):
Figure JPOXMLDOC01-appb-C000133
(式中、R13は水素原子、架橋性官能基を有していてもよいアルキル基、架橋性官能基を有していてもよい脂肪族環式炭化水素基又は架橋性官能基を有していてもよい芳香族炭化水素基;R12はR13と主鎖を結合する基又は結合手)で示されるエーテル単位;
Yは、式(2d-1)~(2d-3):
Figure JPOXMLDOC01-appb-C000134
の少なくとも1種を含む単位;
nは0~200の整数;mは0~200の整数;pは0~10000の整数;qは1~100の整数;ただしn+mは0ではなく、D1、FAE、AE及びYの結合順序は特定されない);
A及びBは同じか又は異なり、水素原子、フッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基、フッ素原子及び/又は架橋性官能基を含んでいてもよいフェニル基、-COOH基、-OR(Rは水素原子又はフッ素原子及び/又は架橋性官能基を含んでいてもよいアルキル基)、エステル基又はカーボネート基(ただし、Dの末端が酸素原子の場合は-COOH基、-OR、エステル基及びカーボネート基ではない)]で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
本発明の電解液には必要に応じて、さらに他の添加剤を配合してもよい。他の添加剤としては、例えば、金属酸化物、ガラス等が挙げられる。
本発明の電解液は、HFを0.5~70ppm含有することが好ましい。HFを含有することにより、添加剤の被膜形成を促進させることができる。HFの含有量が少なすぎると、負極上での添加剤の被膜形成能力が下がり、電池特性が低下する傾向がある。また、HF含有量が多すぎると、HFの影響により電解液の耐酸化性が低下する傾向がある。本発明の電解液は、上記範囲のHFを含有しても、電池の高温保存性回復容量率を低下させることがない。
HFの含有量は、1ppm以上がより好ましく、2.5ppm以上が更に好ましい。HFの含有量はまた、60ppm以下がより好ましく、50ppm以下が更に好ましく、30ppm以下が特に好ましい。
HFの含有量は、中和滴定法により測定することができる。
本発明の電解液は、上述した成分を用いて、任意の方法で調製するとよい。
本発明の電解液は、例えば、リチウムイオン二次電池や電気二重層キャパシタ等の電気化学デバイスに好適に適用することができる。このような本発明の電解液を備えた電気化学デバイスもまた、本発明の一つである。
電気化学デバイスとしては、リチウムイオン二次電池、キャパシタ(電気二重層キャパシタ)、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ等が挙げられ、リチウムイオン二次電池、電気二重層キャパシタが好適である。
上記リチウムイオン二次電池は、正極、負極、及び、上述の電解液を備えていてよい。
<正極>
正極は、正極の材料である正極活物質を含む正極合剤と、集電体とから構成される。
上記正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム含有遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。なかでも、正極活物質としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましい。
上記リチウム含有遷移金属複合酸化物としては、例えば、
式:LiMn2-b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、
式:LiNi1-c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、又は、
式:LiCo1-d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が挙げられる。
なかでも、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、またはLiNi1/3Co1/3Mn1/3が好ましい。
その他の上記正極活物質として、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiV等が挙げられる。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、さらに好ましくは3.5g/cm以下である。
なお、本発明では、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、さらに好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、さらに好ましくは0.3m/g以上であり、上限は好ましくは50m/g以下、より好ましくは40m/g以下、さらに好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本発明では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
本発明のリチウムイオン二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33などのLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤の50~99質量%が好ましく、80~99質量%がより好ましい。また、正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
上記正極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができ、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、エチレン-プロピレンゴム、スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物、シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体、フッ素化ポリフッ化ビニリデン、テトラフルオロエチレン・エチレン共重合体、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
結着剤の含有量は、正極活物質層中の結着剤の割合として、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは1.5質量%以上であり、また、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
上記増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
活物質に対する増粘剤の割合は、通常0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上であり、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
上記導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系溶媒としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系溶媒としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記正極活物質に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状の正極合剤とし、これを集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
上記高密度化は、ハンドプレス、ローラープレス等により行うことができる。正極活物質層の密度は、好ましくは1.5g/cm以上、より好ましくは2g/cm以上、さらに好ましくは2.2g/cm以上であり、また、好ましくは5g/cm以下、より好ましくは4.5g/cm以下、さらに好ましくは4g/cm以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
本発明の電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
<負極>
負極は、負極活物質を含む負極合剤と、集電体とから構成される。
上記負極活物質としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化ケイ素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金;リチウム含有金属複合酸化物材料等を挙げることができる。これらの負極活物質は、2種以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛もしくは精製天然黒鉛、又は、これらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましく、天然黒鉛、人造黒鉛、人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料、負極活物質層が少なくとも2種類以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、負極活物質層が少なくとも2種以上の異なる配向性の炭素質が接する界面を有している炭素質材料、から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよくより好ましい。また、これらの炭素材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記の人造炭素質物質並びに人造黒鉛質物質を400~3200℃の範囲で1回以上熱処理した炭素質材料としては、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素剤、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-ヘキサン等の低分子有機溶剤に溶解させた溶液及びこれらの炭化物等が挙げられる。
上記負極活物質として用いられる金属材料(但し、リチウムチタン複合酸化物を除く)としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。
また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として作動しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
具体的には、Si単体、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiOv(0<v≦2)、LiSiOあるいはスズ単体、SnSiO、LiSnO、MgSn、SnOw(0<w≦2)が挙げられる。
また、SiまたはSnを第一の構成元素とし、それに加えて第2、第3の構成元素を含む複合材料が挙げられる。第2の構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム及びジルコニウムのうち少なくとも1種である。第3の構成元素は、例えば、ホウ素、炭素、アルミニウム及びリンのうち少なくとも1種である。
特に、高い電池容量および優れた電池特性が得られることから、上記金属材料として、ケイ素またはスズの単体(微量の不純物を含んでよい)、SiOv(0<v≦2)、SnOw(0≦w≦2)、Si-Co-C複合材料、Si-Ni-C複合材料、Sn-Co-C複合材料、Sn-Ni-C複合材料が好ましい。
負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が好ましく、さらにリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記)が好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、電解液電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。
上記リチウムチタン複合酸化物としては、一般式:
LiTi
[式中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
で表される化合物であることが好ましい。
上記組成の中でも、
(i)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(ii)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(iii)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(i)ではLi4/3Ti5/3、(ii)ではLiTi、(iii)ではLi4/5Ti11/5である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
上記負極合剤は、更に、結着剤、増粘剤、導電材を含むことが好ましい。
上記結着剤としては、上述した、正極に用いることができる結着剤と同様のものが挙げられる。負極活物質に対する結着剤の割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対する結着剤の割合が、上記範囲を上回ると、結着剤量が電池容量に寄与しない結着剤割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対する結着剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
上記増粘剤としては、上述した、正極に用いることができる増粘剤と同様のものが挙げられる。負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲を下回ると、著しく塗布性が低下する場合がある。また、上記範囲を上回ると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する場合がある。
負極の導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料等が挙げられる。
スラリーを形成するための溶媒としては、負極活物質、結着剤、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
負極用集電体の材質としては、銅、ニッケルまたはステンレス等が挙げられる。なかでも、薄膜に加工しやすいという点、及び、コストの点から銅箔が好ましい。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚すぎると、電池全体の容量が低下し過ぎることがあり、逆に薄すぎると取扱いが困難になることがある。
負極の製造は、常法によればよい。例えば、上記負極材料に、上述した結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。また、合金材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がさらに好ましく、1.3g・cm-3以上が特に好ましく、また、2.2g・cm-3以下が好ましく、2.1g・cm-3以下がより好ましく、2.0g・cm-3以下がさらに好ましく、1.9g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲を上回ると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への電解液の浸透性低下による高電流密度充放電特性悪化を招く場合がある。また、上記範囲を下回ると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する場合がある。
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
<セパレータ>
本発明のリチウムイオン二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本発明の電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
<電池設計>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、本発明の電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の電解液を使用した効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
本発明のリチウムイオン二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
また、本発明のリチウムイオン二次電池を備えたモジュールも本発明の一つである。
上記電気二重層キャパシタは、正極、負極、及び、上述の電解液を備えていてよい。
上記電気二重層キャパシタでは、正極及び負極の少なくとも一方は分極性電極であり、分極性電極及び非分極性電極としては特開平9-7896号公報に詳しく記載されている以下の電極が使用できる。
本発明で用いる活性炭を主体とする分極性電極は、好ましくは大比表面積の不活性炭と電子伝導性を付与するカーボンブラック等の導電剤とを含むものである。分極性電極は種々の方法で形成することができる。例えば、活性炭粉末とカーボンブラックとフェノール系樹脂を混合し、プレス成形後不活性ガス雰囲気中及び水蒸気雰囲気中で焼成、賦活することにより、活性炭とカーボンブラックからなる分極性電極を形成できる。好ましくは、この分極性電極は集電体と導電性接着剤などで接合する。
また、活性炭粉末、カーボンブラック及び結合剤をアルコールの存在下で混練してシート状に成形し、乾燥して分極性電極とすることもできる。この結合剤には、例えばポリテトラフルオロエチレンが用いられる。また、活性炭粉末、カーボンブラック、結合剤及び溶媒を混合してスラリーとし、このスラリーを集電体の金属箔にコートし、乾燥して集電体と一体化された分極性電極とすることもできる。
活性炭を主体とする分極性電極を両極に用いて電気二重層キャパシタとしてもよいが、片側に非分極性電極を用いる構成、例えば、金属酸化物等の電池活物質を主体とする正極と、活性炭を主体とする分極性電極の負極とを組合せた構成、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする負極、又はリチウム金属やリチウム合金の負極と、活性炭を主体とする分極性の正極とを組合せた構成も可能である。
また、活性炭に代えて又は併用して、カーボンブラック、グラファイト、膨張黒鉛、ポーラスカーボン、カーボンナノチューブ、カーボンナノホーン、ケッチェンブラックなどの炭素質材料を用いてもよい。
非分極性電極としては、好ましくはリチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とするものとし、この炭素材料にリチウムイオンを吸蔵させたものを電極に使用する。この場合、電解質にはリチウム塩が使用される。この構成の電気二重層キャパシタによれば、さらに高い4Vを超える耐電圧が得られる。
電極の作製におけるスラリーの調製に用いる溶媒は結合剤を溶解するものが好ましく、結合剤の種類に合わせ、N-メチルピロリドン、ジメチルホルムアミド、トルエン、キシレン、イソホロン、メチルエチルケトン、酢酸エチル、酢酸メチル、フタル酸ジメチル、エタノール、メタノール、ブタノール又は水が適宜選択される。
分極性電極に用いる活性炭としては、フェノール樹脂系活性炭、やしがら系活性炭、石油コークス系活性炭などがある。これらのうち大きい容量を得られる点で石油コークス系活性炭又はフェノール樹脂系活性炭を使用するのが好ましい。また、活性炭の賦活処理法には、水蒸気賦活処理法、溶融KOH賦活処理法などがあり、より大きな容量が得られる点で溶融KOH賦活処理法による活性炭を使用するのが好ましい。
分極性電極に用いる好ましい導電剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、天然黒鉛、人造黒鉛、金属ファイバ、導電性酸化チタン、酸化ルテニウムがあげられる。分極性電極に使用するカーボンブラック等の導電剤の混合量は、良好な導電性(低い内部抵抗)を得るように、また多すぎると製品の容量が減るため、活性炭との合計量中1~50質量%とするのが好ましい。
また、分極性電極に用いる活性炭としては、大容量で低内部抵抗の電気二重層キャパシタが得られるように、平均粒径が20μm以下で比表面積が1500~3000m/gの活性炭を使用するのが好ましい。また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極を構成するための好ましい炭素材料としては、天然黒鉛、人造黒鉛、黒鉛化メソカーボン小球体、黒鉛化ウィスカ、気層成長炭素繊維、フルフリルアルコール樹脂の焼成品又はノボラック樹脂の焼成品があげられる。
集電体は化学的、電気化学的に耐食性のあるものであればよい。活性炭を主体とする分極性電極の集電体としては、ステンレス、アルミニウム、チタン又はタンタルが好ましく使用できる。これらのうち、ステンレス又はアルミニウムが、得られる電気二重層キャパシタの特性と価格の両面において特に好ましい材料である。リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料を主体とする電極の集電体としては、好ましくはステンレス、銅又はニッケルが使用される。
また、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料にあらかじめリチウムイオンを吸蔵させるには、(1)粉末状のリチウムを、リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料に混ぜておく方法、(2)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極上にリチウム箔を載せ、電極と電気的に接触させた状態で、この電極をリチウム塩を溶かした電解液中に浸漬することによりリチウムをイオン化させ、リチウムイオンを炭素材料中に取り込ませる方法、(3)リチウムイオンを可逆的に吸蔵、離脱しうる炭素材料と結合剤により形成された電極をマイナス側に置き、リチウム金属をプラス側に置いてリチウム塩を電解質とする非水系電解液中に浸漬し、電流を流して電気化学的に炭素材料中にリチウムをイオン化した状態で取り込ませる方法がある。
電気二重層キャパシタとしては、巻回型電気二重層キャパシタ、ラミネート型電気二重層キャパシタ、コイン型電気二重層キャパシタなどが一般に知られており、上記電気二重層キャパシタもこれらの形式とすることができる。
例えば巻回型電気二重層キャパシタは、集電体と電極層の積層体(電極)からなる正極及び負極を、セパレータを介して巻回して巻回素子を作製し、この巻回素子をアルミニウム製などのケースに入れ、電解液、好ましくは非水系電解液を満たしたのち、ゴム製の封口体で封止して密封することにより組み立てられる。
セパレータとしては、従来公知の材料と構成のものが使用できる。例えば、ポリエチレン多孔質膜、ポリプロピレン繊維やガラス繊維、セルロース繊維の不織布などがあげられる。
また、公知の方法により、電解液とセパレータを介してシート状の正極及び負極を積層したラミネート型電気二重層キャパシタや、ガスケットで固定して電解液とセパレータを介して正極及び負極をコイン型に構成したコイン型電気二重層キャパシタとすることもできる。
本発明の電解液は、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池用や、電気二重層キャパシタ用の電解液として有用である。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
(電解液の調製)
表に記載の組成になるように各成分を混合し、これに、LiPFを1.0モル/リットルの濃度となるように添加して、電解液を得た。
なお、表中の化合物は以下の通りである。
溶媒
Figure JPOXMLDOC01-appb-C000135
化合物A
Figure JPOXMLDOC01-appb-C000136
化合物B
Figure JPOXMLDOC01-appb-C000137
得られた電解液を用いて、下記の方法でリチウムイオン二次電池を作製した。
(正極の作製)
正極活物質としてLiNi0.5Mn1.5、導電材としてアセチレンブラック、結着剤としてポリフッ化ビニリデン(PVdF)のN-メチル-2-ピロリドンディスパージョンを用い、活物質、導電材、結着剤の固形分比が92/3/5(質量%比)になるよう混合した正極合剤スラリーを準備した。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。
(負極の作製)
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)、結着剤としてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)を用い、活物質、増粘剤、結着剤の固形分比が97.6/1.2/1.2(質量%比)にて水溶媒中で、混合してスラリー状とした負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥した後、プレス機により圧縮成形して、負極とした。
(リチウムイオン二次電池の作製)
上記のとおり製造した負極、正極及びポリエチレン製セパレータを負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウムシート(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、電解液をそれぞれ袋内に注入し、真空封止をおこない、シート状のリチウムイオン二次電池を作製した。
<高温保存前後ガス量評価>
所定の充放電条件(0.5Cで所定の電圧にて充電電流が0.1Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、3サイクル目の放電容量から初期放電容量を求めた後、再度4.75VまでCC/CV充電(0.1Cカット)をおこなった後のガス量を測定した。ガス量測定後、製造した二次電池を85℃24時間の条件で高温保存した。保存終了後、二次電池の高温保存試験後のガス量を測定した。ガス量の測定温度は25℃とした。下記式に基づき、ガス量を求めた。
発生ガス量(ml)=高温保存後のガス量(ml)-高温保存前のガス量(ml)
<高温保存特性評価試験>
上記で製造した二次電池を、板で挟み加圧した状態で、25℃において、0.2Cに相当する電流で4.35Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.2Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.2Cとはその1/5の電流値を表わす。再度4.35VまでCC/CV充電(0.1Cカット)をおこなった後、60℃3日間の条件で高温保存を行った。次に、25℃において0.2Cで3Vまで放電させ、高温保存後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを保存容量維持率(%)とした。
(残存容量)÷(初期放電容量)×100=保存容量維持率(%)
結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140

Claims (12)

  1. 一般式(1)で示される化合物(1)及び一般式(2)で示される化合物(2)からなる群より選択される少なくとも1種の化合物(X)を含むことを特徴とする電解液。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R11~R14は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、X11及びX12は、同一又は異なってもよく、16属元素)
    一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R21及びR22は、同一又は異なってもよく、H、アルキル基又はハロゲン化アルキル基、Y21及びY22は、同一又は異なってもよく、-OR23又はハロゲン原子、R23は、H、アルキル基又はハロゲン化アルキル基)
  2. 化合物(X)の含有量が電解液に対して0.001~10000質量ppmである請求項1記載の電解液。
  3. 更に、溶媒を含み、前記溶媒はカーボネートを含む請求項1又は2記載の電解液。
  4. 更に、溶媒を含み、前記溶媒は鎖状エーテルを含む請求項1、2又は3記載の電解液。
  5. 更に、一般式(3)で示される化合物(3)、一般式(4)で示される化合物(4)、一般式(5)で示される化合物(5)、及び、一般式(6)で示される化合物(6)からなる群より選択される少なくとも1種のリチウム塩(X)を含む請求項1、2、3又は4記載の電解液。
    一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、X31及びX32は同じ又は異なり、それぞれ-H、-F、-O、-OCN、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基、X31及びX32はお互いに結合して環を形成してもよい、aは1~3の整数)
    一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、X41は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)
    一般式(5):
    Figure JPOXMLDOC01-appb-C000005
    (式中、X51は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)
    一般式(6):
    Figure JPOXMLDOC01-appb-C000006
    (式中、X61は、-H、-F、-Cl、エーテル結合を有してもよいアルキル基、エーテル結合を有してもよいフッ素化アルキル基、エーテル結合を有してもよいアルコキシ基、又は、エーテル結合を有してもよいフッ素化アルコキシ基)
  6. 更に、一般式(7)で示される化合物(7)及び一般式(8)で示される化合物(8)からなる群より選択される少なくとも1種の環状ジカルボニル化合物を含む請求項1、2、3、4又は5記載の電解液。
    一般式(7):
    Figure JPOXMLDOC01-appb-C000007
    (Aa+は金属イオン、水素イオン又はオニウムイオン。aは1~3の整数、bは1~3の整数、pはb/a、n73は1~4の整数、n71は0~8の整数、n72は0又は1、Z71は遷移金属、周期律表のIII族、IV族又はV族の元素。
    71は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn72が1でn73が2~4のときにはn73個のX71はそれぞれが結合していてもよい)
    71は、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよく、またn71が2~8のときにはn71個のL71はそれぞれが結合して環を形成してもよい)又は-Z7373
    71、Y72及びZ73は、それぞれ独立でO、S、NY74、炭化水素基又はフッ素化炭化水素基。Y73及びY74は、それぞれ独立でH、F、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基又は炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y73又はY74が複数個存在する場合にはそれぞれが結合して環を形成してもよい))
    一般式(8):
    Figure JPOXMLDOC01-appb-C000008
    (式中、n81は0又は1、n82は0又は1、Z81は遷移金属、周期律表のIII族、IV族又はV族の元素。
    81は、O、S、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基(アルキレン基、ハロゲン化アルキレン基、アリーレン基、及び、ハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を持っていてもよい)。
    81及びY82は、それぞれ独立でO、S、NY84、炭化水素基又はフッ素化炭化水素基。Y84はH、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(アルキル基、ハロゲン化アルキル基、アリール基及びハロゲン化アリール基はその構造中に置換基、ヘテロ原子を持っていてもよく、Y84が複数個存在する場合にはそれぞれが結合して環を形成してもよい))
  7. 更に、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む化合物(9)を含み、化合物(9)は、一般式(9-1)~一般式(9-3)で示される化合物からなる群より選択される少なくとも1種である請求項1、2、3、4、5又は6記載の電解液。
    一般式(9-1):
    Figure JPOXMLDOC01-appb-C000009
    一般式(9-2):
    Figure JPOXMLDOC01-appb-C000010
    一般式(9-3):
    Figure JPOXMLDOC01-appb-C000011
    (式(9-1)、(9-2)及び(9-3)において、X91はO又はN、M91はC、P、S又はN、Z91はN又は存在していなくてよい、但しL91-C=O(Nなし、M91がC、X91がOの場合)は除く、
    91はハロゲン原子、酸素原子、ハロゲン原子を含んでもよいR、OR、ORR’、ORR’O、SR、NR、SiR、OSiR、で表され、
    ここでRとR’は、各々炭素数1~10のアルキル基、アルキレン基、アルケン基、アルキン基、炭素数1~10のハロアルキル基、ハロアルキレン基、ハロアルケン基、ハロアルキン基、炭素数1~10のシクロアルキル基、上記RとR’は共に環を形成することもできる、n91は1~3の整数、m91は1又は2)
  8. 更に、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む化合物(9)を含み、化合物(9)は、-C≡N、-N=C=O、
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    のいずれかで表される構造を有する請求項1、2、3、4、5又は6記載の電解液。
  9. 更に、分子内にヘテロ原子(但し、酸素原子を除く)と隣接原子との多重結合を含む化合物(9)を含み、化合物(9)は、一般式(10):
    NC-R101-(CN)n101
    (式中、R101は1~3価の炭化水素基又は1~3価のハロゲン化炭化水素基、n101は0~2の整数)で示される化合物(10)、一般式(11):
    OCN-R111-(NCO)n111
    (式中、R111は1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、n111は0又は1)で示される化合物(11)、一般式(12):
    Figure JPOXMLDOC01-appb-C000016
    (式中、R121及びR122は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R121及びR122はお互いに結合して環を形成していてもよい)で示される化合物(12)、一般式(13):
    Figure JPOXMLDOC01-appb-C000017
    (式中、R131及びR132は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R131及びR132はお互いに結合して環を形成していてもよい)で示される化合物(13)、一般式(14):
    Figure JPOXMLDOC01-appb-C000018
    (式中、R141及びR142は、同一又は異なってもよく、ハロゲン原子、1価若しくは2価の炭化水素基又は1価若しくは2価のハロゲン化炭化水素基、R141及びR142はお互いに結合して環を形成していてもよい、Zは酸素原子又は炭素数1~10のアルキレン基)で示される化合物(14)、一般式(15):
    Figure JPOXMLDOC01-appb-C000019
    (式中、R151~R153は、同一又は異なってもよく、有機基)で示される化合物(15)、一般式(16):
    Figure JPOXMLDOC01-appb-C000020
    (式中、R161~R166は、同一又は異なってもよく、ハロゲン原子又は有機基)で示される化合物(16)、及び、一般式(17):
    Figure JPOXMLDOC01-appb-C000021
    (式中、R171~R178は、同一又は異なってもよく、ハロゲン原子又は有機基)で示される化合物(17)からなる群より選択される少なくとも1種である請求項1、2、3、4、5又は6記載の電解液。
  10. 請求項1、2、3、4、5、6、7、8又は9記載の電解液を備えることを特徴とする電気化学デバイス。
  11. 請求項1、2、3、4、5、6、7、8又は9記載の電解液を備えることを特徴とするリチウムイオン二次電池。
  12. 請求項10記載の電気化学デバイス、又は、請求項11記載のリチウムイオン二次電池を備えることを特徴とするモジュール。
PCT/JP2016/080552 2015-10-22 2016-10-14 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール WO2017069058A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16857373T PL3352283T3 (pl) 2015-10-22 2016-10-14 Roztwór elektrolityczny, urządzenie elektrochemiczne, litowo-jonowe ogniwo wtórne oraz moduł
CN201680061537.6A CN108352570B (zh) 2015-10-22 2016-10-14 电解液、电化学器件、锂离子二次电池和组件
JP2017546528A JP6583422B2 (ja) 2015-10-22 2016-10-14 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
EP16857373.1A EP3352283B1 (en) 2015-10-22 2016-10-14 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
US15/768,137 US10756384B2 (en) 2015-10-22 2016-10-14 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-208234 2015-10-22
JP2015208234 2015-10-22

Publications (1)

Publication Number Publication Date
WO2017069058A1 true WO2017069058A1 (ja) 2017-04-27

Family

ID=58557378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080552 WO2017069058A1 (ja) 2015-10-22 2016-10-14 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール

Country Status (7)

Country Link
US (1) US10756384B2 (ja)
EP (1) EP3352283B1 (ja)
JP (1) JP6583422B2 (ja)
CN (1) CN108352570B (ja)
HU (1) HUE053993T2 (ja)
PL (1) PL3352283T3 (ja)
WO (1) WO2017069058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038499A1 (fr) * 2017-08-22 2019-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Supercondensateur comprenant une composition electrolytique comprenant un additif de la famille des phosphazenes fluorés
WO2024043043A1 (ja) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 電解液、および、それを用いた蓄電素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244545A (zh) * 2018-11-28 2019-01-18 宝鸡智乾信息科技有限公司 新型锂离子电池电解液及锂离子电池
CN113258135A (zh) * 2021-04-16 2021-08-13 惠州市豪鹏科技有限公司 一种电解液及锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027837A (ja) * 2006-07-25 2008-02-07 Sony Corp 電解質および電池
JP2008230970A (ja) * 2007-03-16 2008-10-02 Daikin Ind Ltd 含フッ素ジオール化合物の製造方法
WO2009035085A1 (ja) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. 電解液
JP2010073367A (ja) * 2008-09-16 2010-04-02 Sony Corp 非水電解質および非水電解質電池
WO2012029625A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP2012216388A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd 電気化学デバイス及び電気化学デバイス用非水電解液
JP2013033663A (ja) * 2011-08-02 2013-02-14 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
JP2015159120A (ja) * 2013-04-01 2015-09-03 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837024A (ja) * 1994-07-26 1996-02-06 Asahi Chem Ind Co Ltd 非水電解液二次電池
CN1161036A (zh) * 1995-06-09 1997-10-01 三井石油化学工业株式会社 氟取代的环状碳酸酯以及含有该氟取代环状碳酸酯的电解液和电池
US6010806A (en) * 1995-06-09 2000-01-04 Mitsui Chemicals, Inc. Fluorine-substituted cyclic carbonate electrolytic solution and battery containing the same
JP3439085B2 (ja) 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
JP3722685B2 (ja) * 2000-10-03 2005-11-30 セントラル硝子株式会社 電気化学ディバイス用電解質及びそれを用いた電池
WO2007126068A1 (ja) * 2006-04-27 2007-11-08 Mitsubishi Chemical Corporation 非水系電解液及び非水系電解液二次電池
KR101165887B1 (ko) * 2007-02-06 2012-07-13 다이킨 고교 가부시키가이샤 비수계 전해액
JP2008258013A (ja) * 2007-04-05 2008-10-23 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
EP2418723B1 (en) 2007-04-05 2018-09-19 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
KR101930558B1 (ko) * 2010-05-12 2018-12-18 미쯔비시 케미컬 주식회사 비수계 전해액 및 비수계 전해액 2차 전지
WO2012053644A1 (ja) * 2010-10-22 2012-04-26 三井化学株式会社 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
CN102479977A (zh) * 2010-11-29 2012-05-30 张家港市国泰华荣化工新材料有限公司 一种非水电解质溶液及其用途
EP2675010B1 (en) 2011-02-10 2019-03-27 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution for secondary battery, and non-aqueous electrolyte secondary battery using same
KR101702191B1 (ko) 2011-02-10 2017-02-03 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 용액 및 그것을 적용한 비수계 전해액 이차 전지
AU2013214742B2 (en) * 2012-02-02 2017-08-31 Engineered Plastics Inc. Frost resistant surface
US9178509B2 (en) * 2012-09-28 2015-11-03 Apple Inc. Ultra low travel keyboard
JP6337777B2 (ja) * 2012-12-12 2018-06-06 日本電気株式会社 セパレータ、電極素子、蓄電デバイスおよび前記セパレータの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027837A (ja) * 2006-07-25 2008-02-07 Sony Corp 電解質および電池
JP2008230970A (ja) * 2007-03-16 2008-10-02 Daikin Ind Ltd 含フッ素ジオール化合物の製造方法
WO2009035085A1 (ja) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. 電解液
JP2010073367A (ja) * 2008-09-16 2010-04-02 Sony Corp 非水電解質および非水電解質電池
WO2012029625A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP2012216388A (ja) * 2011-03-31 2012-11-08 Daikin Ind Ltd 電気化学デバイス及び電気化学デバイス用非水電解液
JP2013033663A (ja) * 2011-08-02 2013-02-14 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
JP2015159120A (ja) * 2013-04-01 2015-09-03 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038499A1 (fr) * 2017-08-22 2019-02-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Supercondensateur comprenant une composition electrolytique comprenant un additif de la famille des phosphazenes fluorés
US11139119B2 (en) 2017-08-22 2021-10-05 Commissariat à l'énergie atomique et aux énergies alternatives Supercapacitor comprising an electrolyte composition comprising an additive from the family of fluorinated phosphazenes
WO2024043043A1 (ja) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 電解液、および、それを用いた蓄電素子

Also Published As

Publication number Publication date
EP3352283A1 (en) 2018-07-25
US20180294515A1 (en) 2018-10-11
EP3352283B1 (en) 2021-02-17
CN108352570B (zh) 2021-04-27
JP6583422B2 (ja) 2019-10-02
EP3352283A4 (en) 2019-05-08
CN108352570A (zh) 2018-07-31
HUE053993T2 (hu) 2021-08-30
US10756384B2 (en) 2020-08-25
PL3352283T3 (pl) 2021-07-26
JPWO2017069058A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
JP6724894B2 (ja) 電解液
JP6024745B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6024746B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP5757374B1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6197943B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6123912B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6269817B2 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
JP6696591B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2018016245A1 (ja) 電解液、電気化学デバイス、二次電池、及び、モジュール
WO2018123259A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2018186068A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP2017004692A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2016039118A1 (ja) 電解液及び新規なフッ素化リン酸エステル
JP6696590B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JP6583422B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP6737333B2 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JPWO2019003776A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP2017004691A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JPWO2019003780A1 (ja) 電解液、電気化学デバイス、二次電池及びモジュール
JP2017004690A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2018116652A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2018101535A (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール
JPWO2018179767A1 (ja) 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546528

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15768137

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016857373

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE