WO2018016162A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2018016162A1
WO2018016162A1 PCT/JP2017/018437 JP2017018437W WO2018016162A1 WO 2018016162 A1 WO2018016162 A1 WO 2018016162A1 JP 2017018437 W JP2017018437 W JP 2017018437W WO 2018016162 A1 WO2018016162 A1 WO 2018016162A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature detection
semiconductor
wiring
elements
Prior art date
Application number
PCT/JP2017/018437
Other languages
French (fr)
Japanese (ja)
Inventor
湯河 潤一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780042024.5A priority Critical patent/CN109478540A/en
Publication of WO2018016162A1 publication Critical patent/WO2018016162A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • G01K1/18Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a semiconductor device.
  • Patent Document 1 discloses a semiconductor device including a semiconductor element mounted on a substrate and a temperature detection element that is disposed between the substrate and the semiconductor element and detects the temperature of the semiconductor element.
  • an inverter circuit semiconductor element
  • an inverter circuit semiconductor element
  • an inverter circuit portion main body portion
  • the plurality of terminals of the inverter circuit are formed by soldering the substrate. It is electrically connected to the wiring pattern.
  • the temperature detection element is mounted in the board
  • This disclosure is intended to provide a semiconductor device capable of accurately detecting the temperature of a semiconductor element in a temperature detection element.
  • a semiconductor device includes a first substrate, a second substrate facing the first substrate at a predetermined interval, and at least one semiconductor element mounted on a surface of the first substrate facing the second substrate. And at least one temperature detecting element mounted on a surface of the second substrate facing the first substrate and in thermal contact with at least one semiconductor element.
  • the temperature of the semiconductor element can be accurately detected by the temperature detection element.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of the semiconductor device according to the embodiment.
  • FIG. 10 is a circuit diagram for describing a specific example of a semiconductor device.
  • FIG. 6 is a schematic plan view for explaining a specific example of the semiconductor device.
  • FIG. 9 is a schematic cross-sectional view showing Modification 1 of the semiconductor device according to the embodiment.
  • FIG. 9 is a schematic cross-sectional view showing Modification Example 2 of the semiconductor device according to the embodiment.
  • FIG. 1 shows a configuration example of a semiconductor device 10 according to the embodiment.
  • the semiconductor device 10 includes a housing 11, a control board 15, a first board 20, and a second board 30.
  • the first substrate 20 is provided with a plurality of semiconductor elements 40
  • the second substrate 30 is provided with a plurality of temperature detection elements 50
  • a plurality of heat conductors 60 are provided.
  • the semiconductor device 10 constitutes a switching power supply device as shown in FIG. A specific example (switching power supply device) of the semiconductor device 10 will be described in detail later.
  • the housing 11 houses the control board 15, the first board 20, and the second board 30.
  • the casing 11 is made of a metal material (for example, aluminum) and is formed in a hollow rectangular parallelepiped shape, and a support column 12 is provided therein.
  • the support column 12 is erected on the bottom of the housing 11 and supports the control board 15.
  • the control board 15 is formed in a flat plate shape.
  • a control circuit 16 is mounted on one surface of the control board 15 (the upper surface in FIG. 1).
  • the control board 15 is made of an insulating material (for example, epoxy resin) and formed in a flat plate shape, and a control board 15 is made of a conductive material (for example, copper) and is one of the insulating base materials.
  • a wiring pattern (conductive layer, not shown) provided in the direction is provided, and the control circuit 16 is electrically connected to the wiring pattern.
  • control board 15 is supported by the support column 12 and faces the bottom of the housing 11 with a predetermined interval.
  • a connector 17 is mounted on the other surface (the lower surface in FIG. 1) of the control board 15.
  • a wiring pattern (conductive layer, not shown) is also provided on the other surface of the insulating base of the control board 15, and the connector 17 is electrically connected to the wiring pattern.
  • the wiring pattern provided on the other surface of the control board 15 is electrically connected to the wiring pattern provided on the one surface of the control board 15 via vias (not shown) provided on the insulating base material. ing. That is, the connector 17 is electrically connected to the control circuit 16 via the wiring pattern on the other side of the control board 15 and the wiring pattern on the one side.
  • the first substrate 20 is formed in a flat plate shape.
  • the first substrate 20 is a power substrate on which a power element such as a field effect transistor (FET) is mounted, and the rigidity of the first substrate 20 is higher than the rigidity of the control substrate 15.
  • the first substrate 20 includes an insulating layer 21, a conductive layer 22, and a heat dissipation layer 23.
  • the insulating layer 21 is made of an insulating material (for example, epoxy resin) and is formed in a flat plate shape.
  • the conductive layer 22 is made of a conductive material (for example, copper or the like), is provided on one surface (the upper surface in FIG. 1) of the insulating layer 21, and is formed in a foil shape.
  • a wiring pattern is formed on the conductive layer 22.
  • the wiring pattern includes one or more power supply wirings WP, one or more grounding wirings WG (not shown), and one or more output wirings WO.
  • the power supply wiring WP, the ground wiring WG, and the output wiring WO are separated so as not to short-circuit each other.
  • the power supply wiring WP, the ground wiring WG, and the output wiring WO will be described in detail later.
  • the heat dissipation layer 23 is made of a heat conductive material (for example, aluminum) and is provided on the other surface (the lower surface in FIG. 1) of the insulating layer 21.
  • a cooling member (not shown) configured to be cooled by water cooling (cooling with cooling water) or oil cooling (cooling with cooling oil) may be connected to the heat radiation layer 23.
  • the thickness of the insulating layer 21 is thinner than the thickness of each of the conductive layer 22 and the heat dissipation layer 23.
  • the thickness of the heat dissipation layer 23 is greater than the thickness of the conductive layer 22.
  • the thickness of the insulating layer 21 may be set to about 100 ⁇ m
  • the thickness of the conductive layer 22 may be set to about 200 ⁇ m
  • the thickness of the heat dissipation layer 23 may be set to about 1 to 3 mm.
  • the thermal conductivity of the insulating layer 21 is lower than that of each of the conductive layer 22 and the heat dissipation layer 23.
  • the thermal conductivity of the conductive layer 22 is higher than the thermal conductivity of the heat dissipation layer 23.
  • the first substrate 20 is placed on the bottom of the housing 11, and the heat dissipation layer 23 is in contact with the bottom of the housing 11.
  • the first substrate 20 faces the control substrate 15 supported by the support column 12 with a predetermined interval.
  • the second substrate 30 is an independent substrate different from the first substrate 20 and is formed in a flat plate shape.
  • the second substrate 30 is provided to face the first substrate 20 with a predetermined interval.
  • the rigidity of the second substrate 30 is lower than the rigidity of the first substrate 20.
  • the second substrate 30 is composed of a flexible substrate 31 having flexibility.
  • the flexible substrate 31 is a substrate different from the control substrate 15 and is formed in a flat plate shape. And the flexible substrate 31 is arrange
  • the part (one end in this example) is a control board. It is connected and fixed to the other surface of 15 (the lower surface in FIG. 1).
  • the rigidity of the flexible substrate 31 is lower than the rigidity of the control substrate 15.
  • the flexible substrate 31 is made of an insulating material (for example, polyimide resin) and formed into a flat plate shape (a flexible insulating base material), and a conductive material (for example, copper).
  • a wiring pattern (conductive layer, not shown) provided on one surface (the lower surface in FIG. 1) of the flexible substrate.
  • One end of the flexible board 31 is fitted into the connector 17 and fixed, and the wiring pattern of the flexible board 31 is electrically connected to the wiring pattern provided on the other surface of the control board 15 via the connector 17.
  • the plurality of semiconductor elements 40 are mounted on the surface of the first substrate 20 facing the second substrate 30 (upper surface in FIG. 1). Specifically, the semiconductor element 40 is electrically connected to a wiring pattern (conductive layer 22) provided on one surface (the upper surface in FIG. 1) of the first substrate 20.
  • the semiconductor element 40 is composed of a surface mount type field effect transistor (FET).
  • the semiconductor element 40 may be constituted by other parts (for example, a diode) that are not surface mount type field effect transistors (FETs).
  • the plurality of temperature detection elements 50 are mounted on the surface (the lower surface in FIG. 1) of the second substrate 30 that faces the first substrate 20. Specifically, the plurality of temperature detecting elements 50 are electrically connected to a wiring pattern (not shown) provided on one surface (the lower surface in FIG. 1) of the second substrate 30 (in this example, the flexible substrate 31). ing. The wiring pattern on one side of the flexible substrate 31 is electrically connected to a wiring pattern (not shown) provided on the other surface (the lower surface in FIG. 1) of the control board 15 via the connector 17. Then, the wiring pattern on the other surface side (the lower surface side in FIG. 1) of the control board 15 is electrically connected to the wiring pattern (not shown) on the one surface side (the upper surface side in FIG.
  • a control circuit 16 is electrically connected to the wiring pattern on one side of the substrate 15. Accordingly, the plurality of temperature detection elements 50 are electrically connected to the control circuit 16 via the wiring pattern of the flexible substrate 31, the connector 17, the wiring pattern on the other surface side of the control substrate 15, and the wiring pattern on the one surface side of the control substrate 15. Connected.
  • the plurality of temperature detection elements 50 are in thermal contact with the plurality of semiconductor elements 40.
  • the number of temperature detection elements 50 is the same as the number of semiconductor elements 40, and the plurality of temperature detection elements 50 are in thermal contact with the plurality of semiconductor elements 40 on a one-to-one basis.
  • the temperature detecting element 50 is opposed to the semiconductor element 40 so that part or all of the temperature detecting element 50 overlaps part or all of the semiconductor element 40 (the semiconductor element 40 corresponding to the temperature detecting element 50) in plan view. Yes.
  • the temperature detecting element 50 is configured to detect the temperature of the semiconductor element 40 that is in thermal contact. Specifically, the temperature detection element 50 is configured to output an electrical signal corresponding to the temperature of the installation location. The electrical signal output from the temperature detection element 50 (the electrical signal corresponding to the temperature detected by the temperature detection element 50) is controlled by the wiring pattern on the flexible substrate 31, the wiring pattern on the other surface side of the connector 17 and the control substrate 15, and the control. The signal is transmitted to the control circuit 16 via the wiring pattern on one side of the substrate 15.
  • the temperature detection element 50 is configured by a thermistor. Note that the temperature detection element 50 may be composed of other parts (for example, a thermocouple) different from the thermistor.
  • the heat conductor 60 is interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50.
  • the number of thermal conductors 60 is the same as the number of temperature detection elements 50. That is, in this example, the number of the semiconductor elements 40, the number of the temperature detecting elements 50, and the number of the heat conductors 60 are the same.
  • the plurality of thermal conductors 60 are interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50, respectively.
  • the heat conductor 60 is composed of heat conductive grease or a heat conductive adhesive.
  • the heat conductor 60 may be comprised by other members (for example, heat conductive rubber etc.) different from heat conductive grease or a heat conductive adhesive.
  • the semiconductor device 10 constitutes a switching power supply device as shown in FIG.
  • the switching power supply device (semiconductor device 10) converts the power supplied from the power supply (DC power supply P in this example) into output power by a switching operation, and supplies the output power to the drive target (motor M in this example). It is configured.
  • the switching power supply device (semiconductor device 10) constitutes an inverter that converts DC power into three-phase AC power.
  • the switching power supply device includes a power supply line LP, a ground line LG, one or more output lines LO, one or more switching units SW, and a capacitor unit CP. And.
  • the power supply line LP is connected to one end (positive electrode) of the DC power supply P, and the ground line LG is connected to the other end (negative electrode) of the DC power supply P.
  • the switching power supply device is provided with three output lines LO and three switching units SW, and the three switching units SW pass through the three output lines LO and the three phases (U, V, W).
  • the switching unit SW is connected between the power supply line LP and the ground line LG.
  • the intermediate node of the switching unit SW is connected to the motor M via the output line LO.
  • the switching unit SW includes a first switching element 71 and a second switching element 72. Note that the free-wheeling diode connected in parallel to the first switching element 71 (or the second switching element 72) in the drawing corresponds to a parasitic diode parasitic on the first switching element 71 (or the second switching element 72).
  • the first switching element 71 is composed of one or more (three in this example) semiconductor elements 40, and the second switching element 72 is composed of one or more (three in this example) semiconductor elements 40. Has been. The configuration of the first and second switching elements 71 and 72 will be described in detail later.
  • the capacitor part CP is connected between the power supply line LP and the ground line LG.
  • the capacitor part CP has a capacitor 80.
  • the capacitor portion CP is provided with a connection line LC that connects the capacitor 80 and the power supply line LP.
  • FIG. 3 is a schematic plan view of the first substrate 20 viewed from the second substrate 30 side.
  • the conductive layer 22 has three power supply wirings WP, three grounding wirings WG, and three output wirings WO, and one power supply wiring WP, one grounding wiring WG, and one output wiring WO are one.
  • One wiring set is configured, and the three wiring sets are arranged in the first direction (left-right direction in FIG. 3).
  • the switching power supply device semiconductor device 10
  • the switching power supply device includes three first switching elements 71 and three second switching elements 72, and one first switching element 71 and one second switching element. 72 constitutes one switching unit SW.
  • the three switching units SW correspond to the three wiring sets, respectively.
  • the power supply wiring WP constitutes a part of the power supply line LP shown in FIG. 2
  • the ground wiring WG constitutes a part of the ground line LG shown in FIG. 2
  • the output wiring WO is shown in FIG. It constitutes a part of the output line LO.
  • each of the power supply wiring WP, the ground wiring WG, and the output wiring WO is formed in a plate shape extending in a second direction (vertical direction in FIG. 3) orthogonal to the first direction.
  • the first switching element 71 is configured by the three semiconductor elements 40.
  • the three semiconductor elements 40 constituting the first switching element 71 are arranged along the extending direction of the power supply wiring WP, and each is surface-mounted on the power supply wiring WP and connected to the output wiring WO.
  • the semiconductor element 40 constituting the first switching element 71 is placed on the power supply wiring WP, one end (drain / heat radiation surface) thereof is joined to the surface of the power supply wiring WP by soldering, and the other end (source) ) Is connected to the output wiring WO by a wiring member such as a bonding wire, and its gate is connected to the first gate wiring (not shown) by the wiring member.
  • the second switching element 72 is configured by the three semiconductor elements 40.
  • the three semiconductor elements 40 constituting the second switching element 72 are arranged along the extending direction of the output wiring WO, and each is surface-mounted on the output wiring WO and connected to the ground wiring WG.
  • the semiconductor element 40 constituting the second switching element 72 is placed on the output wiring WO, one end (drain / heat radiation surface) thereof is joined to the surface of the output wiring WO by soldering, and the other end (source) ) Is connected to the ground wiring WG by a wiring material such as a bonding wire, and its gate is connected to a second gate wiring (not shown) by a wiring member.
  • the switching power supply device includes a capacitor 80 and a connection wiring 85.
  • Capacitor 80 is mounted on ground wiring WG and electrically connected to power supply wiring WP.
  • the connection wiring 85 constitutes the connection line LC shown in FIG. 2 and electrically connects the capacitor 80 and the power supply wiring WP.
  • the capacitor 80 is placed on the ground wiring WG, one end (negative electrode) thereof is joined to the ground wiring WG by solder, and the other end (positive electrode) is electrically connected to the power supply wiring WP by the connection wiring 85. Has been.
  • the capacitor 80 is configured by nine divided capacitors 81. Further, the connection wiring 85 is configured by nine divided wirings 86. Three divided capacitors 81 and three divided wires 86 are arranged in each of the three ground wires WG.
  • the three divided capacitors 81 arranged in one ground wiring WG are arranged along the extending direction of the ground wiring WG, are surface-mounted on the ground wiring WG, and are connected to the power supply wiring WP (specifically, the ground wiring WG).
  • the power supply wiring WP belonging to the same wiring set as the wiring WG) is electrically connected.
  • the divided capacitor 81 is disposed inside the outer edge of the ground wiring WG in a plan view. That is, in this example, the divided capacitor 81 does not protrude from the ground wiring WG in plan view.
  • the split capacitor 81 may be constituted by, for example, a surface mount type electrolytic capacitor, or may be constituted by a surface mount type film capacitor.
  • Three divided wirings 86 arranged in one ground wiring WG include three divided capacitors 81 arranged in the ground wiring WG and a power supply wiring WP (specifically, power supply wirings belonging to the same wiring set as the ground wiring WG). WP) are electrically connected to each other.
  • the divided wiring 86 is formed in an elongated plate shape extending along the first direction (the left-right direction in FIG. 3). Note that the divided wiring 86 may be configured by, for example, a bus bar, may be configured by a jumper, or may be configured by another wiring member.
  • one of the three semiconductor elements 40 constituting the first switching element 71, one of the three semiconductor elements 40 constituting the second switching element 72, and the split capacitor 81 are in the first direction (FIG. 3). 3 are arranged in a straight line.
  • the 18 semiconductor elements 40 are arranged in a matrix of 3 rows and 6 columns in plan view.
  • 18 temperature detection elements 50 and 18 heat conductors 60 are arranged in a matrix of 3 rows and 6 columns in plan view and face 18 semiconductor elements 40, respectively. ing.
  • the temperature detection element 50 and the heat conductor 60 are arranged so as to be positioned at the center of the semiconductor element 40 in plan view.
  • the rigidity of the second substrate 30 (in this example, the flexible substrate 31) is lower than the rigidity of the first substrate 20, the flexibility of the second substrate 30 can be improved compared to the first substrate 20. Therefore, the opposing distance between the semiconductor element 40 mounted on the first substrate 20 and the temperature detection element 50 mounted on the second substrate 30 can be adjusted by deforming the second substrate 30. As a result, the facing distance between the semiconductor element 40 and the temperature detection element 50 can be shortened and heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted. The temperature can be detected more accurately. In addition, variation in the facing distance between the temperature detecting element 50 and the semiconductor element 40 (the facing distance between the semiconductor element 40 varies among the plurality of temperature detecting elements 50) can be suppressed.
  • the second substrate 30 can be flexibly deformed, so that the variation in the facing distance between the temperature detecting element 50 and the semiconductor element 40 is varied. Can be suppressed. As a result, variations in the detection value of the temperature detection element 50 due to variations in the facing distance between the temperature detection element 50 and the semiconductor element 40 (the detection values corresponding to the temperature vary among the plurality of temperature detection elements 50). ) Can be suppressed.
  • the first substrate 20 on which the plurality of semiconductor elements 40 are mounted and the plurality of temperature detection elements 50 are mounted. It is possible to arbitrarily adjust the facing distance from the substrate (second substrate 30) on which is mounted. Thereby, since the facing distance between the temperature detection element 50 and the semiconductor element 40 can be easily adjusted, the shortening of the facing distance between the semiconductor element 40 and the temperature detection element 50 or the temperature detection element 50 and the semiconductor can be performed. It is possible to easily suppress variations in the facing distance from the element 40.
  • the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 are brought into thermal contact with each other in a one-to-one manner, so that the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 are brought into thermal contact with each other in one to one.
  • the temperature of the plurality of semiconductor elements 40 can be individually detected more accurately than when there is no (for example, when one temperature detection element 50 is in thermal contact with the plurality of semiconductor elements 40).
  • the semiconductor is more effective than the case where the thermal conductor 60 is not interposed between the semiconductor element 40 and the temperature detecting element 50.
  • Heat transfer from the element 40 to the temperature detection element 50 can be promoted.
  • the temperature of the semiconductor element 40 can be detected more accurately in the temperature detection element 50.
  • variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 easiness of heat transfer to the temperature detection element 50 varies among a plurality of semiconductor elements
  • Variation in the detection value of the temperature detection element 50 due to variation in heat transfer from 40 to the temperature detection element 50 can be suppressed.
  • the facing distance between the semiconductor element 40 and the temperature detecting element 50 is greater than when the heat conductor 60 is formed with heat conductive rubber. Can be shortened. Thereby, since heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted, the temperature of the semiconductor element 40 can be detected more accurately in the temperature detection element 50.
  • the sensitivity of the temperature detection element 50 can be improved as compared with the case where the temperature detection element 50 is configured with a thermocouple.
  • the temperature abnormality of the semiconductor element 40 can be detected accurately.
  • the abnormality of the semiconductor device 10 can be accurately detected based on the temperature abnormality of the semiconductor element 40.
  • the three semiconductor elements 40 cannot be driven ( It can be determined whether or not there is a semiconductor element 40 that is in a conduction failure state.
  • the second substrate 30 may be configured by a sensor substrate 32.
  • the sensor substrate 32 is a substrate different from the control substrate 15 and is formed in a flat plate shape.
  • the sensor substrate 32 is provided between the first substrate 20 and the control substrate 15 so as to face the first substrate 20 with a predetermined interval.
  • the rigidity of the sensor substrate 32 is lower than that of the first substrate 20 and is equal to the rigidity of the control substrate 15.
  • the sensor substrate 32 is made of an insulating material (for example, epoxy resin) and formed in a flat plate shape, and is formed of a conductive material (for example, copper) and is one side of the insulating substrate.
  • the sensor substrate 32 has the same configuration as the control substrate 15.
  • a wiring pattern provided on one surface of the sensor substrate 32 is electrically connected to a wiring pattern (not shown) on one surface side (the upper surface side in FIG. 4) of the control substrate 15 via one or a plurality of lead wires 18. Connected.
  • the plurality of temperature detection elements 50 are mounted on one surface of the sensor substrate 32 (the surface facing the first substrate 20). Specifically, the plurality of temperature detection elements 50 are electrically connected to a wiring pattern provided on one surface of the sensor substrate 32. The plurality of temperature detection elements 50 are electrically connected to the control circuit 16 via the wiring pattern on one side of the sensor substrate 32, the lead wire 18, and the wiring pattern on the one surface side of the control board 15. .
  • the temperature detection element 50 is mounted on the sensor substrate 32 different from the first substrate 20 on which the semiconductor element 40 is mounted, thermal crosstalk is suppressed in the temperature detection element 50.
  • the temperature of the semiconductor element 40 can be accurately detected by the temperature detecting element 50.
  • the rigidity of the sensor substrate 32 is lower than the rigidity of the first substrate 20, the flexibility of the sensor substrate 32 can be improved compared to the first substrate 20. Therefore, the opposing distance between the semiconductor element 40 mounted on the first substrate 20 and the temperature detection element 50 mounted on the sensor substrate 32 can be adjusted by bending the sensor substrate 32. As a result, the facing distance between the semiconductor element 40 and the temperature detection element 50 can be shortened and heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted. The temperature can be detected more accurately. In addition, variation in the detection value of the temperature detection element 50 due to variation in the facing distance between the temperature detection element 50 and the semiconductor element 40 can be suppressed.
  • the first substrate 20 on which the plurality of semiconductor elements 40 are mounted and the plurality of temperature detection elements 50 are mounted. It is possible to arbitrarily adjust the facing distance from the substrate (second substrate 30) on which is mounted. Thereby, since the facing distance between the temperature detection element 50 and the semiconductor element 40 can be easily adjusted, the shortening of the facing distance between the semiconductor element 40 and the temperature detection element 50 or the temperature detection element 50 and the semiconductor can be performed. It is possible to easily suppress variations in the facing distance from the element 40.
  • the heat conductor 60 when the 2nd board
  • the heat conduction grease or the heat conduction adhesion is achieved.
  • the thermal contact between the semiconductor element 40 and the temperature detection element 50 can be ensured by the adhesiveness of the agent. Thereby, variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be suppressed.
  • detection of the temperature detection element 50 due to variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be performed. Variation in values can be suppressed.
  • the second substrate 30 may be configured by a control substrate 15.
  • the control board 15 is provided to face the first board 20 with a predetermined interval.
  • the rigidity of the control board 15 is lower than that of the first board 20.
  • the plurality of temperature detection elements 50 are mounted on the other surface of the control substrate 15 (the surface facing the first substrate 20). Specifically, the plurality of temperature detection elements 50 are electrically connected to a wiring pattern (not shown) on the other surface side (the lower surface side in FIG. 5) of the control board 15. The plurality of temperature detection elements 50 are connected to the control circuit 16 via a wiring pattern on the other side of the control board 15 and a wiring pattern (not shown) on one side (the upper surface side in FIG. 5) of the control board 15. Electrically connected.
  • the temperature detection element 50 is mounted on the control substrate 15 different from the first substrate 20 on which the semiconductor element 40 is mounted, thermal crosstalk is suppressed in the temperature detection element 50.
  • the temperature of the semiconductor element 40 can be accurately detected by the temperature detecting element 50.
  • the rigidity of the control board 15 is lower than the rigidity of the first board 20, the flexibility of the control board 15 can be improved as compared with the first board 20. Therefore, the facing distance between the semiconductor element 40 mounted on the first substrate 20 and the temperature detection element 50 mounted on the control board 15 can be adjusted by bending the control board 15. As a result, the facing distance between the semiconductor element 40 and the temperature detection element 50 can be shortened and heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted. The temperature can be detected more accurately. In addition, variation in the detection value of the temperature detection element 50 due to variation in the facing distance between the temperature detection element 50 and the semiconductor element 40 can be suppressed.
  • the plurality of temperature detection elements 50 are mounted on the other surface of the control board 15 (the surface facing the first substrate 20), the plurality of temperature detection elements 50 are mounted on another board different from the control board 15.
  • the electrical connection between the plurality of temperature detection elements 50 and the control circuit 16 can be made easier than in the case.
  • the heat conductor 60 when the 2nd board
  • the heat conduction grease or the heat conduction adhesion is achieved.
  • the thermal contact between the semiconductor element 40 and the temperature detection element 50 can be ensured by the adhesiveness of the agent. Thereby, variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be suppressed.
  • detection of the temperature detection element 50 due to variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be performed. Variation in values can be suppressed.
  • the case where the number of the temperature detection elements 50 is the same as the number of the semiconductor elements 40 is taken as an example, but the number of the temperature detection elements 50 is different from the number of the semiconductor elements 40. Also good.
  • the number of thermal conductors 60 may be the same as or different from the number of temperature detection elements 50 and the number of semiconductor elements 40.
  • three semiconductor elements 40 and three temperature detecting elements 50 constituting one first switching element 71 (or second switching element 72) have a one-to-one correspondence, and the three semiconductor elements 40 and the three switching elements One thermal conductor 60 formed in a flat plate shape may be interposed between the temperature detection element.
  • three semiconductor elements 40 constituting one first switching element 71 (or second switching element 72) correspond to one temperature detection element, and the three semiconductor elements 40 and one temperature detection element Between them, one heat conductor 60 formed in a flat plate shape may be interposed.
  • the case where the plurality of thermal conductors 60 are interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 is described as an example.
  • One thermal conductor 60 formed in a flat plate shape may be interposed between the temperature detecting elements 50.
  • the case where one or a plurality of thermal conductors 60 are interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 is described as an example.
  • the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 may be in direct contact with each other without interposing the heat conductor 60 between the plurality of temperature detection elements 50.
  • the number of semiconductor elements 40 constituting the first switching element 71 is not limited to three, but may be two or less, or may be four or more. Similarly, the same applies to the number of semiconductor elements 40 constituting the second switching element 72, the number of divided capacitors 81 constituting the capacitor 80, and the number of divided wirings 86 constituting the connection wiring 85. Further, the number of semiconductor elements 40 constituting the first switching element 71 may be the same as or different from the number of semiconductor elements 40 constituting the second switching element 72. Further, the number of the divided wirings 86 constituting the connection wiring 85 may be the same as the number of the divided capacitors 81 constituting the capacitor 80 or may be increased.
  • the capacitor 80 is configured by a plurality of divided capacitors 81 has been described as an example, but the capacitor 80 may be configured by one divided capacitor 81.
  • the capacitor 80 may be composed of one surface-mount electrolytic capacitor (or one surface-mount film capacitor or the like).
  • connection wiring 85 is configured by a plurality of connection wirings 85 is described as an example, but the connection wiring 85 may be configured by one divided wiring 86.
  • connection wiring 85 may be configured by one bus bar (or one jumper, one wiring member, or the like).
  • the capacitor 80 is electrically connected to the power supply wiring WP by the connection wiring 85 as an example.
  • the capacitor 80 is electrically connected to the output wiring WO by the connection wiring 85. It may be. Specific examples will be described later in detail.
  • the switching power supply device may constitute an inverter that converts DC power (or AC power) into AC power by switching operation, and DC power (or AC power) is switched by switching operation. You may comprise the converter which converts into direct-current power.
  • the switching power supply device may constitute a DC / DC converter (a converter that converts input DC power into output DC power having a voltage value different from the input DC power by a switching operation).
  • the DC / DC converter includes a step-down converter, a step-up converter, and a bidirectional DC / DC converter.
  • the capacitor 80 has one end connected to the ground wiring WG and the other end electrically connected to the output wiring WO via an inductor. .
  • the capacitor 80 has one end connected to the ground wiring WG and the other end connected to the power supply wiring WP.
  • the output wiring WO is on the power supply side and the power supply wiring WP is on the output side in consideration of the direction of current flow.
  • the wiring WO is referred to as “output wiring WO even if the wiring WO is on the power supply side.
  • the wiring WP is defined as “power supply wiring WP” even if the wiring WP is on the output side.
  • the switching power supply (semiconductor device 10) constitutes a bidirectional DC / DC converter
  • the switching power supply (semiconductor device 10) is provided with two capacitors 80.
  • One capacitor 80 has one end connected to the ground wiring WG and the other end connected to the output wiring WO.
  • the other capacitor 80 has one end connected to the ground wiring WG and the other end connected to the power supply wiring WP.
  • the capacitor 80 is surface-mounted on the ground wiring WG and electrically connected to the power supply wiring WP or the output wiring WO. Further, when the capacitor 80 is constituted by a plurality of divided capacitors 81, a connection wiring 85 for electrically connecting the capacitor 80 and the power supply wiring WP or the output wiring WO is provided as a plurality of divided capacitors 81 and the power supply wiring WP or the output. You may comprise by the some division
  • the semiconductor device described above is useful as a switching power supply device or the like.

Abstract

This semiconductor device which accurately detects the temperature of a semiconductor element is provided with first and second substrates. The first and second substrates are facing each other by having a predetermined gap therebetween. A plurality of semiconductor elements are mounted on a first substrate surface facing the second substrate. A plurality of temperature detection elements are mounted on a second substrate surface facing the first substrate, and are thermally in contact with the semiconductor elements.

Description

半導体装置Semiconductor device
 この開示は、半導体装置に関する。 This disclosure relates to a semiconductor device.
 従来、半導体素子を備えた半導体装置が知られている。例えば、特許文献1には、基板上に実装される半導体素子と、基板と半導体素子との間に配置されて半導体素子の温度を検出する温度検出素子とを備えた半導体装置が開示されている。具体的には、特許文献1の半導体装置では、略矩形状のインバータ回路部(本体部)と複数の端子とからインバータ回路(半導体素子)が構成され、インバータ回路の複数の端子が半田により基板の配線パターンに電気的に接続されている。そして、インバータ回路部と基板との間に位置するように温度検出素子が基板(インバータ回路が実装された基板)に実装されている。 Conventionally, a semiconductor device including a semiconductor element is known. For example, Patent Document 1 discloses a semiconductor device including a semiconductor element mounted on a substrate and a temperature detection element that is disposed between the substrate and the semiconductor element and detects the temperature of the semiconductor element. . Specifically, in the semiconductor device of Patent Document 1, an inverter circuit (semiconductor element) is configured by a substantially rectangular inverter circuit portion (main body portion) and a plurality of terminals, and the plurality of terminals of the inverter circuit are formed by soldering the substrate. It is electrically connected to the wiring pattern. And the temperature detection element is mounted in the board | substrate (board | substrate with which the inverter circuit was mounted) so that it may be located between an inverter circuit part and a board | substrate.
特開2006-135167号公報JP 2006-135167 A
 この開示は、温度検出素子において半導体素子の温度を正確に検出することが可能な半導体装置を提供することを目的とする。 This disclosure is intended to provide a semiconductor device capable of accurately detecting the temperature of a semiconductor element in a temperature detection element.
 この開示における半導体装置は、第1基板と、第1基板と所定の間隔をおいて対向する第2基板と、第1基板の第2基板に対向する面に実装される少なくとも1つの半導体素子と、第2基板の第1基板に対向する面に実装されて少なくとも1つの半導体素子と熱的に接触する少なくとも1つの温度検出素子とを備えている。 A semiconductor device according to the present disclosure includes a first substrate, a second substrate facing the first substrate at a predetermined interval, and at least one semiconductor element mounted on a surface of the first substrate facing the second substrate. And at least one temperature detecting element mounted on a surface of the second substrate facing the first substrate and in thermal contact with at least one semiconductor element.
 この開示によれば、温度検出素子において半導体素子の温度を正確に検出することができる。 According to this disclosure, the temperature of the semiconductor element can be accurately detected by the temperature detection element.
実施形態による半導体装置の構成例を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing a configuration example of the semiconductor device according to the embodiment. 半導体装置の具体例について説明するための回路図。FIG. 10 is a circuit diagram for describing a specific example of a semiconductor device. 半導体装置の具体例について説明するための概略平面図。FIG. 6 is a schematic plan view for explaining a specific example of the semiconductor device. 実施形態による半導体装置の変形例1を示す概略断面図。FIG. 9 is a schematic cross-sectional view showing Modification 1 of the semiconductor device according to the embodiment. 実施形態による半導体装置の変形例2を示す概略断面図。FIG. 9 is a schematic cross-sectional view showing Modification Example 2 of the semiconductor device according to the embodiment.
 本開示の実施の形態の説明に先立ち、従来の半導体装置における問題点を簡単に説明する。特許文献1の半導体装置では、半導体素子の本体部の熱が半導体素子の端子を経由して温度検出素子が実装された基板に伝達されることになる。すなわち、特許文献1の半導体装置では、半導体素子の本体部から温度検出素子に至る本来の熱伝達経路(具体的には、半導体素子の端子を経由しない熱伝達経路)だけでなく、半導体素子の本体部から半導体素子の端子を経由して温度検出素子に至る別の熱伝達経路も形成されている。そのため、温度検出素子において熱クロストーク(ここでは、本来の熱伝達経路を経由して伝達された熱に別の熱伝達経路を経由して伝達された熱が混ざり込む現象と定義する。)が発生してしまうので、温度検出素子において半導体素子の温度を正確に検出することが困難である。 Prior to the description of the embodiment of the present disclosure, problems in the conventional semiconductor device will be briefly described. In the semiconductor device of Patent Document 1, the heat of the main body of the semiconductor element is transmitted to the substrate on which the temperature detection element is mounted via the terminal of the semiconductor element. That is, in the semiconductor device of Patent Document 1, not only the original heat transfer path from the main body of the semiconductor element to the temperature detection element (specifically, the heat transfer path not passing through the terminal of the semiconductor element), Another heat transfer path from the main body portion to the temperature detection element via the terminal of the semiconductor element is also formed. For this reason, thermal crosstalk in the temperature detection element (here, defined as a phenomenon in which heat transferred via another heat transfer path is mixed with heat transferred via another heat transfer path). Therefore, it is difficult for the temperature detecting element to accurately detect the temperature of the semiconductor element.
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (半導体装置)
 図1は、実施形態による半導体装置10の構成例を示している。半導体装置10は、筐体11と、制御基板15と、第1基板20と、第2基板30とを備えている。第1基板20には、複数の半導体素子40が設けられ、第2基板30には、複数の温度検出素子50が設けられ、複数の半導体素子40と複数の温度検出素子50との間には、複数の熱伝導体60が設けられている。なお、この例では、半導体装置10は、図2に示すようなスイッチング電源装置を構成している。半導体装置10の具体例(スイッチング電源装置)については、後で詳しく説明する。
(Semiconductor device)
FIG. 1 shows a configuration example of a semiconductor device 10 according to the embodiment. The semiconductor device 10 includes a housing 11, a control board 15, a first board 20, and a second board 30. The first substrate 20 is provided with a plurality of semiconductor elements 40, the second substrate 30 is provided with a plurality of temperature detection elements 50, and between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50. A plurality of heat conductors 60 are provided. In this example, the semiconductor device 10 constitutes a switching power supply device as shown in FIG. A specific example (switching power supply device) of the semiconductor device 10 will be described in detail later.
  〈筐体〉
 筐体11は、制御基板15と第1基板20と第2基板30とを収納している。この例では、筐体11は、金属材料(例えばアルミニウム)により構成されて中空の直方体状に形成され、その内部に支柱12が設けられている。支柱12は、筐体11の底部に立設されて制御基板15を支持している。
<Case>
The housing 11 houses the control board 15, the first board 20, and the second board 30. In this example, the casing 11 is made of a metal material (for example, aluminum) and is formed in a hollow rectangular parallelepiped shape, and a support column 12 is provided therein. The support column 12 is erected on the bottom of the housing 11 and supports the control board 15.
  〈制御基板〉
 制御基板15は、平板状に形成されている。また、制御基板15の一方面(図1における上面)には、制御回路16が実装されている。具体的には、制御基板15は、絶縁材料(例えばエポキシ樹脂など)により構成されて平板状に形成された絶縁基材と、導電性材料(例えば銅など)により構成されて絶縁基材の一方面に設けられた配線パターン(導電層、図示省略)とを有し、その配線パターンに制御回路16が電気的に接続されている。
<Control board>
The control board 15 is formed in a flat plate shape. A control circuit 16 is mounted on one surface of the control board 15 (the upper surface in FIG. 1). Specifically, the control board 15 is made of an insulating material (for example, epoxy resin) and formed in a flat plate shape, and a control board 15 is made of a conductive material (for example, copper) and is one of the insulating base materials. A wiring pattern (conductive layer, not shown) provided in the direction is provided, and the control circuit 16 is electrically connected to the wiring pattern.
 この例では、制御基板15は、支柱12により支持されて筐体11の底部と所定の間隔をおいて対向している。また、制御基板15の他方面(図1における下面)には、コネクタ17が実装されている。具体的には、制御基板15の絶縁基材の他方面にも配線パターン(導電層、図示省略)が設けられ、その配線パターンにコネクタ17が電気的に接続されている。なお、制御基板15の他方面に設けられた配線パターンは、絶縁基材に設けられたビア(図示省略)などを介して制御基板15の一方面に設けられた配線パターンと電気的に接続されている。すなわち、コネクタ17は、制御基板15の他方面側の配線パターンと一方面側の配線パターンとを介して制御回路16と電気的に接続されている。 In this example, the control board 15 is supported by the support column 12 and faces the bottom of the housing 11 with a predetermined interval. A connector 17 is mounted on the other surface (the lower surface in FIG. 1) of the control board 15. Specifically, a wiring pattern (conductive layer, not shown) is also provided on the other surface of the insulating base of the control board 15, and the connector 17 is electrically connected to the wiring pattern. The wiring pattern provided on the other surface of the control board 15 is electrically connected to the wiring pattern provided on the one surface of the control board 15 via vias (not shown) provided on the insulating base material. ing. That is, the connector 17 is electrically connected to the control circuit 16 via the wiring pattern on the other side of the control board 15 and the wiring pattern on the one side.
  〈第1基板〉
 第1基板20は、平板状に形成されている。この例では、第1基板20は、電界効果トランジスタ(FET)などのパワー素子が実装されるパワー基板であり、第1基板20の剛性は、制御基板15の剛性よりも高くなっている。具体的には、第1基板20は、絶縁層21と導電層22と放熱層23とを有している。
<First substrate>
The first substrate 20 is formed in a flat plate shape. In this example, the first substrate 20 is a power substrate on which a power element such as a field effect transistor (FET) is mounted, and the rigidity of the first substrate 20 is higher than the rigidity of the control substrate 15. Specifically, the first substrate 20 includes an insulating layer 21, a conductive layer 22, and a heat dissipation layer 23.
 絶縁層21は、絶縁材料(例えばエポキシ樹脂など)により構成され、平板状に形成されている。 The insulating layer 21 is made of an insulating material (for example, epoxy resin) and is formed in a flat plate shape.
 導電層22は、導電材料(例えば銅など)により構成され、絶縁層21の一方面(図1における上面)に設けられ、箔状に形成されている。導電層22には、配線パターンが形成されている。図1の例では、配線パターンは、1つまたは複数の電源配線WPと、1つまたは複数の接地配線WG(図示省略)と、1つまたは複数の出力配線WOとを含んでいる。導電層22において、電源配線WPと接地配線WGと出力配線WOは、互いに短絡しないように分断されている。なお、電源配線WPと接地配線WGと出力配線WOについては、後で詳しく説明する。 The conductive layer 22 is made of a conductive material (for example, copper or the like), is provided on one surface (the upper surface in FIG. 1) of the insulating layer 21, and is formed in a foil shape. A wiring pattern is formed on the conductive layer 22. In the example of FIG. 1, the wiring pattern includes one or more power supply wirings WP, one or more grounding wirings WG (not shown), and one or more output wirings WO. In the conductive layer 22, the power supply wiring WP, the ground wiring WG, and the output wiring WO are separated so as not to short-circuit each other. The power supply wiring WP, the ground wiring WG, and the output wiring WO will be described in detail later.
 放熱層23は、熱伝導材料(例えばアルミニウムなど)により構成され、絶縁層21の他方面(図1における下面)に設けられている。放熱層23には、水冷(冷却水による冷却)や油冷(冷却油による冷却)により冷却されるように構成された冷却部材(図示省略)が接続されていてもよい。 The heat dissipation layer 23 is made of a heat conductive material (for example, aluminum) and is provided on the other surface (the lower surface in FIG. 1) of the insulating layer 21. A cooling member (not shown) configured to be cooled by water cooling (cooling with cooling water) or oil cooling (cooling with cooling oil) may be connected to the heat radiation layer 23.
 この例では、絶縁層21の厚みは、導電層22および放熱層23の各々の厚みよりも薄くなっている。放熱層23の厚みは、導電層22の厚みよりも厚くなっている。例えば、絶縁層21の厚みは、100μm程度に設定され、導電層22の厚みは、200μm程度に設定され、放熱層23の厚みは1~3mm程度に設定されていてもよい。そして、絶縁層21の熱伝導率は、導電層22および放熱層23の各々の熱伝導率よりも低くなっている。導電層22の熱伝導率は、放熱層23の熱伝導率よりも高くなっている。 In this example, the thickness of the insulating layer 21 is thinner than the thickness of each of the conductive layer 22 and the heat dissipation layer 23. The thickness of the heat dissipation layer 23 is greater than the thickness of the conductive layer 22. For example, the thickness of the insulating layer 21 may be set to about 100 μm, the thickness of the conductive layer 22 may be set to about 200 μm, and the thickness of the heat dissipation layer 23 may be set to about 1 to 3 mm. The thermal conductivity of the insulating layer 21 is lower than that of each of the conductive layer 22 and the heat dissipation layer 23. The thermal conductivity of the conductive layer 22 is higher than the thermal conductivity of the heat dissipation layer 23.
 また、この例では、第1基板20は、筐体11の底部に載置されて放熱層23が筐体11の底部と接触している。そして、第1基板20は、支柱12に支持された制御基板15と所定の間隔をおいて対向している。 In this example, the first substrate 20 is placed on the bottom of the housing 11, and the heat dissipation layer 23 is in contact with the bottom of the housing 11. The first substrate 20 faces the control substrate 15 supported by the support column 12 with a predetermined interval.
  〈第2基板〉
 第2基板30は、第1基板20とは異なる独立した基板であり、平板状に形成されている。そして、第2基板30は、第1基板20と所定の間隔をおいて対向するように設けられている。この例では、第2基板30の剛性は、第1基板20の剛性よりも低くなっている。具体的には、第2基板30は、可撓性を有するフレキシブル基板31により構成されている。
<Second substrate>
The second substrate 30 is an independent substrate different from the first substrate 20 and is formed in a flat plate shape. The second substrate 30 is provided to face the first substrate 20 with a predetermined interval. In this example, the rigidity of the second substrate 30 is lower than the rigidity of the first substrate 20. Specifically, the second substrate 30 is composed of a flexible substrate 31 having flexibility.
 フレキシブル基板31は、制御基板15とは異なる基板であり、平板状に形成されている。そして、フレキシブル基板31は、第1基板20と所定の間隔をおいて対向するように、第1基板20と制御基板15との間に配置され、その一部(この例では一端)が制御基板15の他方面(図1における下面)に接続されて固定されている。なお、フレキシブル基板31の剛性は、制御基板15の剛性よりも低くなっている。具体的には、フレキシブル基板31は、絶縁材料(例えばポリイミド樹脂)により構成されて平板状に形成されたフレキシブル基材(可撓性を有する絶縁基材)と、導電性材料(例えば銅など)により構成されてフレキシブル基材の一方面(図1における下面)に設けられた配線パターン(導電層、図示省略)とを有している。そして、フレキシブル基板31の一端がコネクタ17に嵌め込まれて固定され、フレキシブル基板31の配線パターンがコネクタ17を介して制御基板15の他方面に設けられた配線パターンと電気的に接続されている。 The flexible substrate 31 is a substrate different from the control substrate 15 and is formed in a flat plate shape. And the flexible substrate 31 is arrange | positioned between the 1st board | substrate 20 and the control board 15 so that the 1st board | substrate 20 may be opposed with a predetermined space | interval, The part (one end in this example) is a control board. It is connected and fixed to the other surface of 15 (the lower surface in FIG. 1). The rigidity of the flexible substrate 31 is lower than the rigidity of the control substrate 15. Specifically, the flexible substrate 31 is made of an insulating material (for example, polyimide resin) and formed into a flat plate shape (a flexible insulating base material), and a conductive material (for example, copper). And a wiring pattern (conductive layer, not shown) provided on one surface (the lower surface in FIG. 1) of the flexible substrate. One end of the flexible board 31 is fitted into the connector 17 and fixed, and the wiring pattern of the flexible board 31 is electrically connected to the wiring pattern provided on the other surface of the control board 15 via the connector 17.
  〈半導体素子〉
 複数の半導体素子40は、第1基板20の第2基板30に対向する面(図1における上面)に実装されている。具体的には、半導体素子40は、第1基板20の一方面(図1にける上面)に設けられた配線パターン(導電層22)と電気的に接続されている。
<Semiconductor element>
The plurality of semiconductor elements 40 are mounted on the surface of the first substrate 20 facing the second substrate 30 (upper surface in FIG. 1). Specifically, the semiconductor element 40 is electrically connected to a wiring pattern (conductive layer 22) provided on one surface (the upper surface in FIG. 1) of the first substrate 20.
 この例では、半導体素子40は、面実装型の電界効果トランジスタ(FET)により構成されている。なお、半導体素子40は、面実装型の電界効果トランジスタ(FET)ではない他の部品(例えばダイオードなど)により構成されていてもよい。 In this example, the semiconductor element 40 is composed of a surface mount type field effect transistor (FET). The semiconductor element 40 may be constituted by other parts (for example, a diode) that are not surface mount type field effect transistors (FETs).
  〈温度検出素子〉
 複数の温度検出素子50は、第2基板30の第1基板20に対向する面(図1における下面)に実装されている。具体的には、複数の温度検出素子50は、第2基板30(この例ではフレキシブル基板31)の一方面(図1における下面)に設けられた配線パターン(図示省略)と電気的に接続されている。なお、フレキシブル基板31の一方面側の配線パターンは、コネクタ17を介して制御基板15の他方面(図1における下面)に設けられた配線パターン(図示省略)と電気的に接続されている。そして、制御基板15の他方面側(図1における下面側)の配線パターンは、制御基板15の一方面側(図1における上面側)の配線パターン(図示省略)と電気的に接続され、制御基板15の一方面側の配線パターンには、制御回路16が電気的に接続されている。したがって、複数の温度検出素子50は、フレキシブル基板31の配線パターンとコネクタ17と制御基板15の他方面側の配線パターンと制御基板15の一方面側の配線パターンとを介して制御回路16と電気的に接続されている。
<Temperature detection element>
The plurality of temperature detection elements 50 are mounted on the surface (the lower surface in FIG. 1) of the second substrate 30 that faces the first substrate 20. Specifically, the plurality of temperature detecting elements 50 are electrically connected to a wiring pattern (not shown) provided on one surface (the lower surface in FIG. 1) of the second substrate 30 (in this example, the flexible substrate 31). ing. The wiring pattern on one side of the flexible substrate 31 is electrically connected to a wiring pattern (not shown) provided on the other surface (the lower surface in FIG. 1) of the control board 15 via the connector 17. Then, the wiring pattern on the other surface side (the lower surface side in FIG. 1) of the control board 15 is electrically connected to the wiring pattern (not shown) on the one surface side (the upper surface side in FIG. 1) of the control board 15, and is controlled. A control circuit 16 is electrically connected to the wiring pattern on one side of the substrate 15. Accordingly, the plurality of temperature detection elements 50 are electrically connected to the control circuit 16 via the wiring pattern of the flexible substrate 31, the connector 17, the wiring pattern on the other surface side of the control substrate 15, and the wiring pattern on the one surface side of the control substrate 15. Connected.
 また、複数の温度検出素子50は、複数の半導体素子40と熱的に接触している。この例では、温度検出素子50の個数は、半導体素子40の個数と同数となっており、複数の温度検出素子50は、複数の半導体素子40と一対一で熱的に接触している。そして、温度検出素子50は、その一部または全部が平面視において半導体素子40(その温度検出素子50に対応する半導体素子40)の一部または全部と重複するように半導体素子40と対向している。 Further, the plurality of temperature detection elements 50 are in thermal contact with the plurality of semiconductor elements 40. In this example, the number of temperature detection elements 50 is the same as the number of semiconductor elements 40, and the plurality of temperature detection elements 50 are in thermal contact with the plurality of semiconductor elements 40 on a one-to-one basis. The temperature detecting element 50 is opposed to the semiconductor element 40 so that part or all of the temperature detecting element 50 overlaps part or all of the semiconductor element 40 (the semiconductor element 40 corresponding to the temperature detecting element 50) in plan view. Yes.
 また、温度検出素子50は、熱的に接触している半導体素子40の温度を検出するように構成されている。具体的には、温度検出素子50は、設置場所の温度に応じた電気信号を出力するように構成されている。温度検出素子50から出力された電気信号(温度検出素子50において検出された温度に応じた電気信号)は、フレキシブル基板31の配線パターンとコネクタ17と制御基板15の他方面側の配線パターンと制御基板15の一方面側の配線パターンとを介して制御回路16に伝送される。この例では、温度検出素子50は、サーミスタにより構成されている。なお、温度検出素子50は、サーミスタとは異なる他の部品(例えば熱電対など)により構成されていてもよい。 Further, the temperature detecting element 50 is configured to detect the temperature of the semiconductor element 40 that is in thermal contact. Specifically, the temperature detection element 50 is configured to output an electrical signal corresponding to the temperature of the installation location. The electrical signal output from the temperature detection element 50 (the electrical signal corresponding to the temperature detected by the temperature detection element 50) is controlled by the wiring pattern on the flexible substrate 31, the wiring pattern on the other surface side of the connector 17 and the control substrate 15, and the control. The signal is transmitted to the control circuit 16 via the wiring pattern on one side of the substrate 15. In this example, the temperature detection element 50 is configured by a thermistor. Note that the temperature detection element 50 may be composed of other parts (for example, a thermocouple) different from the thermistor.
  〈熱伝導体〉
 熱伝導体60は、複数の半導体素子40と複数の温度検出素子50との間に介在している。この例では、熱伝導体60の個数は、温度検出素子50の個数と同数となっている。すなわち、この例では、半導体素子40の個数と温度検出素子50の個数と熱伝導体60の個数とが同数となっている。そして、複数の熱伝導体60は、複数の半導体素子40と複数の温度検出素子50の間にそれぞれ介在している。また、この例では、熱伝導体60は、熱伝導グリスまたは熱伝導接着剤により構成されている。なお、熱伝導体60は、熱伝導グリスまたは熱伝導接着剤とは異なる他の部材(例えば熱伝導ゴムなど)により構成されていてもよい。
<Heat conductor>
The heat conductor 60 is interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50. In this example, the number of thermal conductors 60 is the same as the number of temperature detection elements 50. That is, in this example, the number of the semiconductor elements 40, the number of the temperature detecting elements 50, and the number of the heat conductors 60 are the same. The plurality of thermal conductors 60 are interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50, respectively. In this example, the heat conductor 60 is composed of heat conductive grease or a heat conductive adhesive. In addition, the heat conductor 60 may be comprised by other members (for example, heat conductive rubber etc.) different from heat conductive grease or a heat conductive adhesive.
  〈半導体装置の具体例:スイッチング電源装置〉
 上述のとおり、この例では、半導体装置10は、図2に示すようなスイッチング電源装置を構成している。スイッチング電源装置(半導体装置10)は、電源(この例では直流電源P)から供給された電力をスイッチング動作により出力電力に変換して出力電力を駆動対象(この例ではモータM)に供給するように構成されている。図2の例では、スイッチング電源装置(半導体装置10)は、直流電力を三相交流電力に変換するインバータを構成している。
<Specific examples of semiconductor devices: switching power supply devices>
As described above, in this example, the semiconductor device 10 constitutes a switching power supply device as shown in FIG. The switching power supply device (semiconductor device 10) converts the power supplied from the power supply (DC power supply P in this example) into output power by a switching operation, and supplies the output power to the drive target (motor M in this example). It is configured. In the example of FIG. 2, the switching power supply device (semiconductor device 10) constitutes an inverter that converts DC power into three-phase AC power.
 図2に示すように、スイッチング電源装置(半導体装置10)は、電源ラインLPと、接地ラインLGと、1つまたは複数の出力ラインLOと、1つまたは複数のスイッチング部SWと、容量部CPとを備えている。この例では、電源ラインLPが直流電源Pの一端(正極)に接続され、接地ラインLGが直流電源Pの他端(負極)に接続されている。また、スイッチング電源装置(半導体装置10)に3つの出力ラインLOと3つのスイッチング部SWが設けられ、3つのスイッチング部SWが3つの出力ラインLOを経由してモータMの3つの相(U,V,W)にそれぞれ接続されている。 As shown in FIG. 2, the switching power supply device (semiconductor device 10) includes a power supply line LP, a ground line LG, one or more output lines LO, one or more switching units SW, and a capacitor unit CP. And. In this example, the power supply line LP is connected to one end (positive electrode) of the DC power supply P, and the ground line LG is connected to the other end (negative electrode) of the DC power supply P. Further, the switching power supply device (semiconductor device 10) is provided with three output lines LO and three switching units SW, and the three switching units SW pass through the three output lines LO and the three phases (U, V, W).
 スイッチング部SWは、電源ラインLPと接地ラインLGとの間に接続されている。そして、スイッチング部SWの中間ノードは、出力ラインLOを経由してモータMに接続されている。スイッチング部SWは、第1スイッチング素子71と、第2スイッチング素子72とを有している。なお、図中の第1スイッチング素子71(または第2スイッチング素子72)に並列に接続された還流ダイオードは、第1スイッチング素子71(または第2スイッチング素子72)に寄生する寄生ダイオードに該当する。第1スイッチング素子71は、1つまたは複数(この例では3つ)の半導体素子40により構成され、第2スイッチング素子72は、1つまたは複数(この例では3つ)の半導体素子40により構成されている。第1および第2スイッチング素子71,72の構成については、後で詳しく説明する。 The switching unit SW is connected between the power supply line LP and the ground line LG. The intermediate node of the switching unit SW is connected to the motor M via the output line LO. The switching unit SW includes a first switching element 71 and a second switching element 72. Note that the free-wheeling diode connected in parallel to the first switching element 71 (or the second switching element 72) in the drawing corresponds to a parasitic diode parasitic on the first switching element 71 (or the second switching element 72). The first switching element 71 is composed of one or more (three in this example) semiconductor elements 40, and the second switching element 72 is composed of one or more (three in this example) semiconductor elements 40. Has been. The configuration of the first and second switching elements 71 and 72 will be described in detail later.
 容量部CPは、電源ラインLPと接地ラインLGとの間に接続されている。容量部CPは、キャパシタ80を有している。また、容量部CPには、キャパシタ80と電源ラインLPとを接続する接続ラインLCが設けられている。 The capacitor part CP is connected between the power supply line LP and the ground line LG. The capacitor part CP has a capacitor 80. The capacitor portion CP is provided with a connection line LC that connects the capacitor 80 and the power supply line LP.
  〈スイッチング電源装置の構造〉
 次に、図3を参照して、スイッチング電源装置(半導体装置10)の構造について説明する。図3は、第2基板30側から見た第1基板20の概略平面図である。
<Structure of switching power supply>
Next, the structure of the switching power supply device (semiconductor device 10) will be described with reference to FIG. FIG. 3 is a schematic plan view of the first substrate 20 viewed from the second substrate 30 side.
 図3の例では、導電層22が3つの電源配線WPと3つの接地配線WGと3つの出力配線WOを有し、1つの電源配線WPと1つの接地配線WGと1つの出力配線WOが1つの配線セットを構成し、3つの配線セットが第1方向(図3における左右方向)に配列されている。また、図2に示すように、スイッチング電源装置(半導体装置10)が3つの第1スイッチング素子71と3つの第2スイッチング素子72を備え、1つの第1スイッチング素子71と1つの第2スイッチング素子72が1つのスイッチング部SWを構成している。そして、図3に示すように、3つのスイッチング部SWが3つの配線セットにそれぞれ対応している。なお、図3の例では、3つの半導体素子40が並列に接続されて1つの第1スイッチング素子71を構成し、3つの半導体素子40が並列に接続されて1つの第2スイッチング素子72を構成している。ゆえに、図3の例では、18個の半導体素子40が存在している。以下では、1つの配線セットと1つのスイッチング部SWとに着目してスイッチング電源装置(半導体装置10)の各部の説明を行う。 In the example of FIG. 3, the conductive layer 22 has three power supply wirings WP, three grounding wirings WG, and three output wirings WO, and one power supply wiring WP, one grounding wiring WG, and one output wiring WO are one. One wiring set is configured, and the three wiring sets are arranged in the first direction (left-right direction in FIG. 3). As shown in FIG. 2, the switching power supply device (semiconductor device 10) includes three first switching elements 71 and three second switching elements 72, and one first switching element 71 and one second switching element. 72 constitutes one switching unit SW. As shown in FIG. 3, the three switching units SW correspond to the three wiring sets, respectively. In the example of FIG. 3, three semiconductor elements 40 are connected in parallel to form one first switching element 71, and three semiconductor elements 40 are connected in parallel to form one second switching element 72. is doing. Therefore, there are 18 semiconductor elements 40 in the example of FIG. Hereinafter, each part of the switching power supply device (semiconductor device 10) will be described focusing on one wiring set and one switching unit SW.
  〈電源配線と接地配線と出力配線〉
 電源配線WPは、図2に示した電源ラインLPの一部を構成し、接地配線WGは、図2に示した接地ラインLGの一部を構成し、出力配線WOは、図2に示した出力ラインLOの一部を構成している。
<Power supply wiring, ground wiring, and output wiring>
The power supply wiring WP constitutes a part of the power supply line LP shown in FIG. 2, the ground wiring WG constitutes a part of the ground line LG shown in FIG. 2, and the output wiring WO is shown in FIG. It constitutes a part of the output line LO.
 また、電源配線WPと接地配線WGと出力配線WOは、互いに並行するように形成されている。出力配線WOは、電源配線WPと接地配線WGとの間に配置されている。図3の例では、電源配線WPと接地配線WGと出力配線WOの各々は、第1方向と直交する第2方向(図3における上下方向)に延びる板状に形成されている。 Further, the power supply wiring WP, the ground wiring WG, and the output wiring WO are formed in parallel to each other. The output wiring WO is disposed between the power supply wiring WP and the ground wiring WG. In the example of FIG. 3, each of the power supply wiring WP, the ground wiring WG, and the output wiring WO is formed in a plate shape extending in a second direction (vertical direction in FIG. 3) orthogonal to the first direction.
  〈第1スイッチング素子〉
 上述のとおり、図3の例では、第1スイッチング素子71は、3つの半導体素子40により構成されている。第1スイッチング素子71を構成する3つの半導体素子40は、電源配線WPの延伸方向に沿うように配列され、それぞれが電源配線WPに面実装されて出力配線WOと接続されている。具体的には、第1スイッチング素子71を構成する半導体素子40は、電源配線WPに載置され、その一端(ドレイン/放熱面)が半田により電源配線WPの表面と接合され、その他端(ソース)がボンディングワイヤなどの配線用部材により出力配線WOと接続され、そのゲートが配線用部材により第1ゲート配線(図示省略)と接続されている。
<First switching element>
As described above, in the example of FIG. 3, the first switching element 71 is configured by the three semiconductor elements 40. The three semiconductor elements 40 constituting the first switching element 71 are arranged along the extending direction of the power supply wiring WP, and each is surface-mounted on the power supply wiring WP and connected to the output wiring WO. Specifically, the semiconductor element 40 constituting the first switching element 71 is placed on the power supply wiring WP, one end (drain / heat radiation surface) thereof is joined to the surface of the power supply wiring WP by soldering, and the other end (source) ) Is connected to the output wiring WO by a wiring member such as a bonding wire, and its gate is connected to the first gate wiring (not shown) by the wiring member.
  〈第2スイッチング素子〉
 上述のとおり、図3の例では、第2スイッチング素子72は、3つの半導体素子40により構成されている。第2スイッチング素子72を構成する3つの半導体素子40は、出力配線WOの延伸方向に沿うように配列され、それぞれが出力配線WOに面実装されて接地配線WGと接続されている。具体的には、第2スイッチング素子72を構成する半導体素子40は、出力配線WOに載置され、その一端(ドレイン/放熱面)が半田により出力配線WOの表面と接合され、その他端(ソース)がボンディングワイヤなどの配線用材料により接地配線WGと接続され、そのゲートが配線用部材により第2ゲート配線(図示省略)と接続されている。
<Second switching element>
As described above, in the example of FIG. 3, the second switching element 72 is configured by the three semiconductor elements 40. The three semiconductor elements 40 constituting the second switching element 72 are arranged along the extending direction of the output wiring WO, and each is surface-mounted on the output wiring WO and connected to the ground wiring WG. Specifically, the semiconductor element 40 constituting the second switching element 72 is placed on the output wiring WO, one end (drain / heat radiation surface) thereof is joined to the surface of the output wiring WO by soldering, and the other end (source) ) Is connected to the ground wiring WG by a wiring material such as a bonding wire, and its gate is connected to a second gate wiring (not shown) by a wiring member.
  〈キャパシタと接続配線〉
 また、スイッチング電源装置(半導体装置10)は、キャパシタ80と接続配線85とを備えている。キャパシタ80は、接地配線WGに実装されて電源配線WPと電気的に接続されている。接続配線85は、図2に示した接続ラインLCを構成し、キャパシタ80と電源配線WPとを電気的に接続している。具体的には、キャパシタ80は、接地配線WGに載置され、その一端(負極)が半田により接地配線WGと接合され、その他端(正極)が接続配線85により電源配線WPと電気的に接続されている。
<Capacitor and connection wiring>
Further, the switching power supply device (semiconductor device 10) includes a capacitor 80 and a connection wiring 85. Capacitor 80 is mounted on ground wiring WG and electrically connected to power supply wiring WP. The connection wiring 85 constitutes the connection line LC shown in FIG. 2 and electrically connects the capacitor 80 and the power supply wiring WP. Specifically, the capacitor 80 is placed on the ground wiring WG, one end (negative electrode) thereof is joined to the ground wiring WG by solder, and the other end (positive electrode) is electrically connected to the power supply wiring WP by the connection wiring 85. Has been.
 図3の例では、キャパシタ80は、9つの分割キャパシタ81により構成されている。また、接続配線85は、9つの分割配線86により構成されている。そして、3つの接地配線WGの各々に3つの分割キャパシタ81と3つの分割配線86が配置されている。 In the example of FIG. 3, the capacitor 80 is configured by nine divided capacitors 81. Further, the connection wiring 85 is configured by nine divided wirings 86. Three divided capacitors 81 and three divided wires 86 are arranged in each of the three ground wires WG.
 1つの接地配線WGに配置された3つの分割キャパシタ81は、その接地配線WGの延伸方向に沿うように配列され、その接地配線WGに面実装されて電源配線WP(具体的には、その接地配線WGと同一の配線セットに属する電源配線WP)と電気的に接続されている。図3の例では、分割キャパシタ81は、平面視において接地配線WGの外縁よりも内側に配置されている。すなわち、この例では、分割キャパシタ81は、平面視において接地配線WGからはみ出していない。なお、分割キャパシタ81は、例えば、面実装型の電解コンデンサにより構成されていてもよいし、面実装型のフィルムコンデンサにより構成されていてもよい。 The three divided capacitors 81 arranged in one ground wiring WG are arranged along the extending direction of the ground wiring WG, are surface-mounted on the ground wiring WG, and are connected to the power supply wiring WP (specifically, the ground wiring WG). The power supply wiring WP belonging to the same wiring set as the wiring WG) is electrically connected. In the example of FIG. 3, the divided capacitor 81 is disposed inside the outer edge of the ground wiring WG in a plan view. That is, in this example, the divided capacitor 81 does not protrude from the ground wiring WG in plan view. The split capacitor 81 may be constituted by, for example, a surface mount type electrolytic capacitor, or may be constituted by a surface mount type film capacitor.
 1つの接地配線WGに配置された3つの分割配線86は、その接地配線WGに配置された3つの分割キャパシタ81と電源配線WP(詳しくは、その接地配線WGと同一の配線セットに属する電源配線WP)とをそれぞれ電気的に接続している。図3の例では、分割配線86は、第1方向(図3における左右方向)に沿うように延びる細長い板状に形成されている。なお、分割配線86は、例えば、バスバーにより構成されていてもよいし、ジャンパーにより構成されていてもよいし、その他の配線用部材により構成されてもよい。 Three divided wirings 86 arranged in one ground wiring WG include three divided capacitors 81 arranged in the ground wiring WG and a power supply wiring WP (specifically, power supply wirings belonging to the same wiring set as the ground wiring WG). WP) are electrically connected to each other. In the example of FIG. 3, the divided wiring 86 is formed in an elongated plate shape extending along the first direction (the left-right direction in FIG. 3). Note that the divided wiring 86 may be configured by, for example, a bus bar, may be configured by a jumper, or may be configured by another wiring member.
 また、図3の例では、第1スイッチング素子71を構成する3つの半導体素子40の1つと第2スイッチング素子72を構成する3つの半導体素子40の1つと分割キャパシタ81とが第1方向(図3における左右方向)に一直線に並ぶように配置されている。 In the example of FIG. 3, one of the three semiconductor elements 40 constituting the first switching element 71, one of the three semiconductor elements 40 constituting the second switching element 72, and the split capacitor 81 are in the first direction (FIG. 3). 3 are arranged in a straight line.
  〈平面視における各部の配置〉
 図3の例では、18個の半導体素子40は、平面視において3行6列の行列状に配列されている。これと同様に、18個の温度検出素子50および18個の熱伝導体60(図示省略)も、平面視において3行6列の行列状に配列されて18個の半導体素子40とそれぞれ対向している。また、図3の例では、温度検出素子50および熱伝導体60(図示省略)は、平面視において半導体素子40の中心部に位置するように配置されている。
<Arrangement of each part in plan view>
In the example of FIG. 3, the 18 semiconductor elements 40 are arranged in a matrix of 3 rows and 6 columns in plan view. Similarly, 18 temperature detection elements 50 and 18 heat conductors 60 (not shown) are arranged in a matrix of 3 rows and 6 columns in plan view and face 18 semiconductor elements 40, respectively. ing. In the example of FIG. 3, the temperature detection element 50 and the heat conductor 60 (not shown) are arranged so as to be positioned at the center of the semiconductor element 40 in plan view.
  〈実施形態による効果〉
 以上のように、半導体素子40が実装された第1基板20とは異なる第2基板30に温度検出素子50を実装することにより、半導体素子40の熱が本来の熱伝達経路(この例では、半導体素子40から熱伝導体60を経由して温度検出素子50に至る熱伝達経路)とは異なる別の熱伝達経路を経由して温度検出素子50に伝達されることを阻止(または抑制)することができる。これにより、温度検出素子50において熱クロストークを抑制することができ、温度検出素子50において半導体素子40の温度を正確に検出することができる。
<Effects of the embodiment>
As described above, by mounting the temperature detection element 50 on the second substrate 30 different from the first substrate 20 on which the semiconductor element 40 is mounted, the heat of the semiconductor element 40 is transferred to the original heat transfer path (in this example, It is prevented (or suppressed) from being transmitted to the temperature detection element 50 via a different heat transfer path from the semiconductor element 40 via the heat conductor 60 to the temperature detection element 50). be able to. Thereby, thermal crosstalk can be suppressed in the temperature detection element 50, and the temperature of the semiconductor element 40 can be accurately detected in the temperature detection element 50.
 また、第2基板30(この例ではフレキシブル基板31)の剛性は、第1基板20の剛性よりも低いので、第2基板30の柔軟性を第1基板20に比べて向上させることができる。そのため、第2基板30を変形させて第1基板20に実装された半導体素子40と第2基板30に実装された温度検出素子50との間の対向距離を調節することができる。これにより、半導体素子40と温度検出素子50との間の対向距離を短縮して半導体素子40から温度検出素子50への熱伝達を促進させることができるので、温度検出素子50において半導体素子40の温度をさらに正確に検出することができる。また、温度検出素子50と半導体素子40との間の対向距離のばらつき(半導体素子40との間の対向距離が複数の温度検出素子50の間でばらつくこと)を抑制することができる。例えば、複数の半導体素子40の間で実装高さがばらついていたとしても、第2基板30が柔軟に変形することができるので、温度検出素子50と半導体素子40との間の対向距離のばらつきを抑制することができる。これにより、温度検出素子50と半導体素子40との間の対向距離のばらつきに起因する温度検出素子50の検出値のばらつき(複数の温度検出素子50の間で温度に応じた検出値がばらつくこと)を抑制することができる。 Further, since the rigidity of the second substrate 30 (in this example, the flexible substrate 31) is lower than the rigidity of the first substrate 20, the flexibility of the second substrate 30 can be improved compared to the first substrate 20. Therefore, the opposing distance between the semiconductor element 40 mounted on the first substrate 20 and the temperature detection element 50 mounted on the second substrate 30 can be adjusted by deforming the second substrate 30. As a result, the facing distance between the semiconductor element 40 and the temperature detection element 50 can be shortened and heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted. The temperature can be detected more accurately. In addition, variation in the facing distance between the temperature detecting element 50 and the semiconductor element 40 (the facing distance between the semiconductor element 40 varies among the plurality of temperature detecting elements 50) can be suppressed. For example, even if the mounting height varies among the plurality of semiconductor elements 40, the second substrate 30 can be flexibly deformed, so that the variation in the facing distance between the temperature detecting element 50 and the semiconductor element 40 is varied. Can be suppressed. As a result, variations in the detection value of the temperature detection element 50 due to variations in the facing distance between the temperature detection element 50 and the semiconductor element 40 (the detection values corresponding to the temperature vary among the plurality of temperature detection elements 50). ) Can be suppressed.
 また、制御基板15とは異なる基板(この例ではフレキシブル基板31)に複数の温度検出素子50を実装することにより、複数の半導体素子40が実装される第1基板20と複数の温度検出素子50が実装される基板(第2基板30)との間の対向距離を任意に調節することができる。これにより、温度検出素子50と半導体素子40との間の対向距離を容易に調節することができるので、半導体素子40と温度検出素子50との間の対向距離の短縮や温度検出素子50と半導体素子40との間の対向距離のばらつきの抑制を容易に行うことができる。 Further, by mounting a plurality of temperature detection elements 50 on a substrate (in this example, flexible substrate 31) different from the control substrate 15, the first substrate 20 on which the plurality of semiconductor elements 40 are mounted and the plurality of temperature detection elements 50 are mounted. It is possible to arbitrarily adjust the facing distance from the substrate (second substrate 30) on which is mounted. Thereby, since the facing distance between the temperature detection element 50 and the semiconductor element 40 can be easily adjusted, the shortening of the facing distance between the semiconductor element 40 and the temperature detection element 50 or the temperature detection element 50 and the semiconductor can be performed. It is possible to easily suppress variations in the facing distance from the element 40.
 また、複数の半導体素子40と複数の温度検出素子50とを一対一で熱的に接触させることにより、複数の半導体素子40と複数の温度検出素子50とを一対一で熱的に接触させていない場合(例えば、複数の半導体素子40に1つの温度検出素子50を熱的に接触させている場合)よりも、複数の半導体素子40の温度を個別に正確に検出することができる。 Further, the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 are brought into thermal contact with each other in a one-to-one manner, so that the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 are brought into thermal contact with each other in one to one. The temperature of the plurality of semiconductor elements 40 can be individually detected more accurately than when there is no (for example, when one temperature detection element 50 is in thermal contact with the plurality of semiconductor elements 40).
 また、半導体素子40と温度検出素子50との間に熱伝導体60を介在させることにより、半導体素子40と温度検出素子50との間に熱伝導体60を介在させていない場合よりも、半導体素子40から温度検出素子50への熱伝達を促進させることができる。これにより、温度検出素子50において半導体素子40の温度をより正確に検出することができる。また、半導体素子40から温度検出素子50への熱伝達のばらつき(温度検出素子50への熱伝達のしやすさが複数の半導体素子の間でばらつくこと)を抑制することができるので、半導体素子40から温度検出素子50への熱伝達のばらつきに起因する温度検出素子50の検出値のばらつきを抑制することができる。 Further, by interposing the thermal conductor 60 between the semiconductor element 40 and the temperature detecting element 50, the semiconductor is more effective than the case where the thermal conductor 60 is not interposed between the semiconductor element 40 and the temperature detecting element 50. Heat transfer from the element 40 to the temperature detection element 50 can be promoted. Thereby, the temperature of the semiconductor element 40 can be detected more accurately in the temperature detection element 50. In addition, variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 (easiness of heat transfer to the temperature detection element 50 varies among a plurality of semiconductor elements) can be suppressed. Variation in the detection value of the temperature detection element 50 due to variation in heat transfer from 40 to the temperature detection element 50 can be suppressed.
 また、熱伝導体60を熱伝導グリスまたは熱伝導接着剤で構成することにより、熱伝導体60を熱伝導ゴムで構成する場合よりも、半導体素子40と温度検出素子50との間の対向距離を短縮することができる。これにより、半導体素子40から温度検出素子50への熱伝達を促進させることができるので、温度検出素子50において半導体素子40の温度をさらに正確に検出することができる。 Further, by configuring the heat conductor 60 with heat conductive grease or a heat conductive adhesive, the facing distance between the semiconductor element 40 and the temperature detecting element 50 is greater than when the heat conductor 60 is formed with heat conductive rubber. Can be shortened. Thereby, since heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted, the temperature of the semiconductor element 40 can be detected more accurately in the temperature detection element 50.
 また、温度検出素子50をサーミスタで構成することにより、温度検出素子50を熱電対で構成する場合よりも、温度検出素子50の感度を向上させることができる。 Further, by configuring the temperature detection element 50 with a thermistor, the sensitivity of the temperature detection element 50 can be improved as compared with the case where the temperature detection element 50 is configured with a thermocouple.
 また、温度検出素子50において半導体素子40の温度を正確に検出することにより、半導体素子40の温度異常を正確に検出することができる。これにより、半導体素子40の温度異常に基づいて半導体装置10の異常を的確に検出することができる。例えば、1つの第1スイッチング素子71(または第2スイッチング素子72)を構成する3つの半導体素子40(並列に接続された3つの半導体素子40)のうち1つ(または2つ)の半導体素子40が駆動不能(導通故障)となると、その駆動不能となった半導体素子40の負荷を残りの2つ(または1つ)の半導体素子40が負担することとなる。よって、その残りの2つ(または1つ)の半導体素子40に流れる電流が多くなり、その結果、その残りの2つ(または1つ)の半導体素子40の温度が高くなる傾向となる。したがって、1つの第1スイッチング素子71(または第2スイッチング素子72)を構成する3つの半導体素子40の温度を正確に検出して比較することにより、この3つの半導体素子40の中に駆動不能(導通故障)となっている半導体素子40が存在しているか否かを判定することができる。 Further, by detecting the temperature of the semiconductor element 40 accurately by the temperature detection element 50, the temperature abnormality of the semiconductor element 40 can be detected accurately. Thereby, the abnormality of the semiconductor device 10 can be accurately detected based on the temperature abnormality of the semiconductor element 40. For example, one (or two) semiconductor elements 40 out of three semiconductor elements 40 (three semiconductor elements 40 connected in parallel) constituting one first switching element 71 (or second switching element 72). Becomes impossible to drive (conducting failure), the remaining two (or one) semiconductor elements 40 will bear the load of the semiconductor element 40 that has become impossible to drive. Therefore, the current flowing through the remaining two (or one) semiconductor elements 40 increases, and as a result, the temperature of the remaining two (or one) semiconductor elements 40 tends to increase. Therefore, by accurately detecting and comparing the temperatures of the three semiconductor elements 40 constituting one first switching element 71 (or second switching element 72), the three semiconductor elements 40 cannot be driven ( It can be determined whether or not there is a semiconductor element 40 that is in a conduction failure state.
 (実施形態の変形例1)
 図4に示すように、半導体装置10において、第2基板30は、センサ基板32により構成されていてもよい。センサ基板32は、制御基板15とは異なる基板であり、平板状に形成されている。そして、センサ基板32は、第1基板20と所定の間隔をおいて対向するように、第1基板20と制御基板15との間に設けられている。なお、センサ基板32の剛性は、第1基板20の剛性よりも低く、制御基板15の剛性と同等となっている。具体的には、センサ基板32は、絶縁材料(例えばエポキシ樹脂)により構成されて平板状に形成された絶縁基材と、導電性材料(例えば銅など)により構成されて絶縁基材の一方面(図4における下面)に設けられた配線パターン(導電層、図示省略)とを有している。このように、センサ基板32は、制御基板15と同様の構成を有している。そして、センサ基板32の一方面に設けられた配線パターンは、1つまたは複数のリード線18を介して制御基板15の一方面側(図4における上面側)の配線パターン(図示省略)と電気的に接続されている。
(Modification 1 of embodiment)
As shown in FIG. 4, in the semiconductor device 10, the second substrate 30 may be configured by a sensor substrate 32. The sensor substrate 32 is a substrate different from the control substrate 15 and is formed in a flat plate shape. The sensor substrate 32 is provided between the first substrate 20 and the control substrate 15 so as to face the first substrate 20 with a predetermined interval. Note that the rigidity of the sensor substrate 32 is lower than that of the first substrate 20 and is equal to the rigidity of the control substrate 15. Specifically, the sensor substrate 32 is made of an insulating material (for example, epoxy resin) and formed in a flat plate shape, and is formed of a conductive material (for example, copper) and is one side of the insulating substrate. And a wiring pattern (conductive layer, not shown) provided on (the lower surface in FIG. 4). Thus, the sensor substrate 32 has the same configuration as the control substrate 15. A wiring pattern provided on one surface of the sensor substrate 32 is electrically connected to a wiring pattern (not shown) on one surface side (the upper surface side in FIG. 4) of the control substrate 15 via one or a plurality of lead wires 18. Connected.
 また、図4の例では、複数の温度検出素子50は、センサ基板32の一方面(第1基板20に対向する面)に実装されている。具体的には、複数の温度検出素子50は、センサ基板32の一方面に設けられた配線パターンと電気的に接続されている。そして、複数の温度検出素子50は、センサ基板32の一方面側の配線パターンとリード線18と制御基板15の一方面側の配線パターンとを介して制御回路16と電気的に接続されている。 In the example of FIG. 4, the plurality of temperature detection elements 50 are mounted on one surface of the sensor substrate 32 (the surface facing the first substrate 20). Specifically, the plurality of temperature detection elements 50 are electrically connected to a wiring pattern provided on one surface of the sensor substrate 32. The plurality of temperature detection elements 50 are electrically connected to the control circuit 16 via the wiring pattern on one side of the sensor substrate 32, the lead wire 18, and the wiring pattern on the one surface side of the control board 15. .
 以上のように構成した場合も、半導体素子40が実装された第1基板20とは異なるセンサ基板32に温度検出素子50が実装されているので、温度検出素子50において熱クロストークを抑制することができ、温度検出素子50において半導体素子40の温度を正確に検出することができる。 Even when configured as described above, since the temperature detection element 50 is mounted on the sensor substrate 32 different from the first substrate 20 on which the semiconductor element 40 is mounted, thermal crosstalk is suppressed in the temperature detection element 50. The temperature of the semiconductor element 40 can be accurately detected by the temperature detecting element 50.
 また、センサ基板32の剛性は、第1基板20の剛性よりも低いので、センサ基板32の柔軟性を第1基板20に比べて向上させることができる。そのため、センサ基板32を撓ませて第1基板20に実装された半導体素子40とセンサ基板32に実装された温度検出素子50との間の対向距離を調節することができる。これにより、半導体素子40と温度検出素子50との間の対向距離を短縮して半導体素子40から温度検出素子50への熱伝達を促進させることができるので、温度検出素子50において半導体素子40の温度をさらに正確に検出することができる。また、温度検出素子50と半導体素子40との間の対向距離のばらつきに起因する温度検出素子50の検出値のばらつきを抑制することができる。 Further, since the rigidity of the sensor substrate 32 is lower than the rigidity of the first substrate 20, the flexibility of the sensor substrate 32 can be improved compared to the first substrate 20. Therefore, the opposing distance between the semiconductor element 40 mounted on the first substrate 20 and the temperature detection element 50 mounted on the sensor substrate 32 can be adjusted by bending the sensor substrate 32. As a result, the facing distance between the semiconductor element 40 and the temperature detection element 50 can be shortened and heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted. The temperature can be detected more accurately. In addition, variation in the detection value of the temperature detection element 50 due to variation in the facing distance between the temperature detection element 50 and the semiconductor element 40 can be suppressed.
 また、制御基板15とは異なる基板(この例ではセンサ基板32)に複数の温度検出素子50を実装することにより、複数の半導体素子40が実装される第1基板20と複数の温度検出素子50が実装される基板(第2基板30)との間の対向距離を任意に調節することができる。これにより、温度検出素子50と半導体素子40との間の対向距離を容易に調節することができるので、半導体素子40と温度検出素子50との間の対向距離の短縮や温度検出素子50と半導体素子40との間の対向距離のばらつきの抑制を容易に行うことができる。 Further, by mounting a plurality of temperature detection elements 50 on a substrate different from the control substrate 15 (in this example, the sensor substrate 32), the first substrate 20 on which the plurality of semiconductor elements 40 are mounted and the plurality of temperature detection elements 50 are mounted. It is possible to arbitrarily adjust the facing distance from the substrate (second substrate 30) on which is mounted. Thereby, since the facing distance between the temperature detection element 50 and the semiconductor element 40 can be easily adjusted, the shortening of the facing distance between the semiconductor element 40 and the temperature detection element 50 or the temperature detection element 50 and the semiconductor can be performed. It is possible to easily suppress variations in the facing distance from the element 40.
 なお、第2基板30がセンサ基板32により構成されている場合、熱伝導体60を熱伝導グリスまたは熱伝導接着剤により構成することが好ましい。このように構成することにより、複数の半導体素子40の間で実装高さがばらついて半導体素子40と温度検出素子50との間の対向距離がばらついていたとしても、熱伝導グリスまたは熱伝導接着剤の粘着性により半導体素子40と温度検出素子50との間の熱的な接触を確保することができる。これにより、半導体素子40から温度検出素子50への熱伝達のばらつきを抑制することができ、その結果、半導体素子40から温度検出素子50への熱伝達のばらつきに起因する温度検出素子50の検出値のばらつきを抑制することができる。 In addition, when the 2nd board | substrate 30 is comprised with the sensor board | substrate 32, it is preferable to comprise the heat conductor 60 with heat conductive grease or a heat conductive adhesive. With this configuration, even when the mounting height varies among the plurality of semiconductor elements 40 and the opposing distance between the semiconductor element 40 and the temperature detecting element 50 varies, the heat conduction grease or the heat conduction adhesion is achieved. The thermal contact between the semiconductor element 40 and the temperature detection element 50 can be ensured by the adhesiveness of the agent. Thereby, variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be suppressed. As a result, detection of the temperature detection element 50 due to variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be performed. Variation in values can be suppressed.
 (実施形態の変形例2)
 図5に示すように、半導体装置10において、第2基板30は、制御基板15により構成されていてもよい。制御基板15は、第1基板20と所定の間隔をおいて対向するように設けられている。なお、制御基板15の剛性は、第1基板20の剛性よりも低くなっている。
(Modification 2 of embodiment)
As shown in FIG. 5, in the semiconductor device 10, the second substrate 30 may be configured by a control substrate 15. The control board 15 is provided to face the first board 20 with a predetermined interval. The rigidity of the control board 15 is lower than that of the first board 20.
 また、図5の例では、複数の温度検出素子50は、制御基板15の他方面(第1基板20に対向する面)に実装されている。具体的には、複数の温度検出素子50は、制御基板15の他方面側(図5における下面側)の配線パターン(図示省略)と電気的に接続されている。そして、複数の温度検出素子50は、制御基板15の他方面側の配線パターンと制御基板15の一方面側(図5における上面側)の配線パターン(図示省略)とを介して制御回路16と電気的に接続されている。 In the example of FIG. 5, the plurality of temperature detection elements 50 are mounted on the other surface of the control substrate 15 (the surface facing the first substrate 20). Specifically, the plurality of temperature detection elements 50 are electrically connected to a wiring pattern (not shown) on the other surface side (the lower surface side in FIG. 5) of the control board 15. The plurality of temperature detection elements 50 are connected to the control circuit 16 via a wiring pattern on the other side of the control board 15 and a wiring pattern (not shown) on one side (the upper surface side in FIG. 5) of the control board 15. Electrically connected.
 以上のように構成した場合も、半導体素子40が実装された第1基板20とは異なる制御基板15に温度検出素子50が実装されているので、温度検出素子50において熱クロストークを抑制することができ、温度検出素子50において半導体素子40の温度を正確に検出することができる。 Even when configured as described above, since the temperature detection element 50 is mounted on the control substrate 15 different from the first substrate 20 on which the semiconductor element 40 is mounted, thermal crosstalk is suppressed in the temperature detection element 50. The temperature of the semiconductor element 40 can be accurately detected by the temperature detecting element 50.
 また、制御基板15の剛性は、第1基板20の剛性よりも低いので、制御基板15の柔軟性を第1基板20に比べて向上させることができる。そのため、制御基板15を撓ませて第1基板20に実装された半導体素子40と制御基板15に実装された温度検出素子50との間の対向距離を調節することができる。これにより、半導体素子40と温度検出素子50との間の対向距離を短縮して半導体素子40から温度検出素子50への熱伝達を促進させることができるので、温度検出素子50において半導体素子40の温度をさらに正確に検出することができる。また、温度検出素子50と半導体素子40との間の対向距離のばらつきに起因する温度検出素子50の検出値のばらつきを抑制することができる。 Further, since the rigidity of the control board 15 is lower than the rigidity of the first board 20, the flexibility of the control board 15 can be improved as compared with the first board 20. Therefore, the facing distance between the semiconductor element 40 mounted on the first substrate 20 and the temperature detection element 50 mounted on the control board 15 can be adjusted by bending the control board 15. As a result, the facing distance between the semiconductor element 40 and the temperature detection element 50 can be shortened and heat transfer from the semiconductor element 40 to the temperature detection element 50 can be promoted. The temperature can be detected more accurately. In addition, variation in the detection value of the temperature detection element 50 due to variation in the facing distance between the temperature detection element 50 and the semiconductor element 40 can be suppressed.
 また、制御基板15の他方面(第1基板20に対向する面)に複数の温度検出素子50を実装することにより、制御基板15とは異なる他の基板に複数の温度検出素子50を実装する場合よりも、複数の温度検出素子50と制御回路16との電気的な接続を容易にすることができる。 In addition, by mounting the plurality of temperature detection elements 50 on the other surface of the control board 15 (the surface facing the first substrate 20), the plurality of temperature detection elements 50 are mounted on another board different from the control board 15. The electrical connection between the plurality of temperature detection elements 50 and the control circuit 16 can be made easier than in the case.
 なお、第2基板30が制御基板15により構成されている場合、熱伝導体60を熱伝導グリスまたは熱伝導接着剤により構成することが好ましい。このように構成することにより、複数の半導体素子40の間で実装高さがばらついて半導体素子40と温度検出素子50との間の対向距離がばらついていたとしても、熱伝導グリスまたは熱伝導接着剤の粘着性により半導体素子40と温度検出素子50との間の熱的な接触を確保することができる。これにより、半導体素子40から温度検出素子50への熱伝達のばらつきを抑制することができ、その結果、半導体素子40から温度検出素子50への熱伝達のばらつきに起因する温度検出素子50の検出値のばらつきを抑制することができる。 In addition, when the 2nd board | substrate 30 is comprised by the control board | substrate 15, it is preferable to comprise the heat conductor 60 with heat conductive grease or a heat conductive adhesive. With this configuration, even when the mounting height varies among the plurality of semiconductor elements 40 and the opposing distance between the semiconductor element 40 and the temperature detecting element 50 varies, the heat conduction grease or the heat conduction adhesion is achieved. The thermal contact between the semiconductor element 40 and the temperature detection element 50 can be ensured by the adhesiveness of the agent. Thereby, variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be suppressed. As a result, detection of the temperature detection element 50 due to variation in heat transfer from the semiconductor element 40 to the temperature detection element 50 can be performed. Variation in values can be suppressed.
 (その他の実施形態)
 以上の説明では、温度検出素子50の個数が半導体素子40の個数と同数となっている場合を例に挙げたが、温度検出素子50の個数は、半導体素子40の個数と異なる数であってもよい。これと同様に、熱伝導体60の個数は、温度検出素子50の個数や半導体素子40の個数と同数であってもよいし異なる数であってもよい。例えば、1つの第1スイッチング素子71(または第2スイッチング素子72)を構成する3つの半導体素子40と3つの温度検出素子50とが一対一で対応し、その3つの半導体素子40とその3つの温度検出素子との間に、平板状に形成された1つの熱伝導体60が介在していてもよい。または、1つの第1スイッチング素子71(または第2スイッチング素子72)を構成する3つの半導体素子40と1つの温度検出素子とが対応し、その3つの半導体素子40とその1つの温度検出素子との間に、平板状に形成された1つの熱伝導体60が介在していてもよい。
(Other embodiments)
In the above description, the case where the number of the temperature detection elements 50 is the same as the number of the semiconductor elements 40 is taken as an example, but the number of the temperature detection elements 50 is different from the number of the semiconductor elements 40. Also good. Similarly, the number of thermal conductors 60 may be the same as or different from the number of temperature detection elements 50 and the number of semiconductor elements 40. For example, three semiconductor elements 40 and three temperature detecting elements 50 constituting one first switching element 71 (or second switching element 72) have a one-to-one correspondence, and the three semiconductor elements 40 and the three switching elements One thermal conductor 60 formed in a flat plate shape may be interposed between the temperature detection element. Alternatively, three semiconductor elements 40 constituting one first switching element 71 (or second switching element 72) correspond to one temperature detection element, and the three semiconductor elements 40 and one temperature detection element Between them, one heat conductor 60 formed in a flat plate shape may be interposed.
 また、以上の説明では、複数の半導体素子40と複数の温度検出素子50との間に複数の熱伝導体60がそれぞれ介在している場合を例に挙げたが、複数の半導体素子40と複数の温度検出素子50との間に、平板状に形成された1つの熱伝導体60が介在していてもよい。 In the above description, the case where the plurality of thermal conductors 60 are interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 is described as an example. One thermal conductor 60 formed in a flat plate shape may be interposed between the temperature detecting elements 50.
 また、以上の説明では、複数の半導体素子40と複数の温度検出素子50との間に1つまたは複数の熱伝導体60が介在している場合を例に挙げたが、複数の半導体素子40と複数の温度検出素子50との間に熱伝導体60を介在させずに、複数の半導体素子40と複数の温度検出素子50とが互いに直接接触していてもよい。 In the above description, the case where one or a plurality of thermal conductors 60 are interposed between the plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 is described as an example. The plurality of semiconductor elements 40 and the plurality of temperature detection elements 50 may be in direct contact with each other without interposing the heat conductor 60 between the plurality of temperature detection elements 50.
 また、以上の説明において、第1スイッチング素子71を構成する半導体素子40の個数は、3つに限らず、2つ以下であってもよいし、4つ以上であってもよい。これと同様に、第2スイッチング素子72を構成する半導体素子40の個数,キャパシタ80を構成する分割キャパシタ81の個数,接続配線85を構成する分割配線86の個数についても同様である。また、第1スイッチング素子71を構成する半導体素子40の個数は、第2スイッチング素子72を構成する半導体素子40の個数と同じであってもよいし、異なっていてもよい。また、接続配線85を構成する分割配線86の個数は、キャパシタ80を構成する分割キャパシタ81の個数と同じであってもよいし、多くなっていてもよい。 In the above description, the number of semiconductor elements 40 constituting the first switching element 71 is not limited to three, but may be two or less, or may be four or more. Similarly, the same applies to the number of semiconductor elements 40 constituting the second switching element 72, the number of divided capacitors 81 constituting the capacitor 80, and the number of divided wirings 86 constituting the connection wiring 85. Further, the number of semiconductor elements 40 constituting the first switching element 71 may be the same as or different from the number of semiconductor elements 40 constituting the second switching element 72. Further, the number of the divided wirings 86 constituting the connection wiring 85 may be the same as the number of the divided capacitors 81 constituting the capacitor 80 or may be increased.
 また、以上の説明では、キャパシタ80が複数の分割キャパシタ81により構成されている場合を例に挙げたが、キャパシタ80は、1つの分割キャパシタ81により構成されていてもよい。例えば、キャパシタ80は、1つの面実装型の電解コンデンサ(または1つの面実装型のフィルムコンデンサなど)により構成されていてもよい。 In the above description, the case where the capacitor 80 is configured by a plurality of divided capacitors 81 has been described as an example, but the capacitor 80 may be configured by one divided capacitor 81. For example, the capacitor 80 may be composed of one surface-mount electrolytic capacitor (or one surface-mount film capacitor or the like).
 また、以上の説明では、接続配線85が複数の接続配線85により構成されている場合を例に挙げたが、接続配線85は、1つの分割配線86により構成されていてもよい。例えば、接続配線85は、1つのバスバー(または1つのジャンパーや1つの配線用部材など)により構成されていてもよい。 In the above description, the case where the connection wiring 85 is configured by a plurality of connection wirings 85 is described as an example, but the connection wiring 85 may be configured by one divided wiring 86. For example, the connection wiring 85 may be configured by one bus bar (or one jumper, one wiring member, or the like).
 また、以上の説明では、キャパシタ80が接続配線85により電源配線WPと電気的に接続されている場合を例に挙げたが、キャパシタ80は、接続配線85により出力配線WOと電気的に接続されていてもよい。なお、具体例については、後で詳しく説明する。 In the above description, the case where the capacitor 80 is electrically connected to the power supply wiring WP by the connection wiring 85 is described as an example. However, the capacitor 80 is electrically connected to the output wiring WO by the connection wiring 85. It may be. Specific examples will be described later in detail.
 また、スイッチング電源装置(半導体装置10)は、直流電力(または交流電力)をスイッチング動作により交流電力に変換するインバータを構成するものであってよいし、直流電力(または交流電力)をスイッチング動作により直流電力に変換するコンバータを構成するものであってもよい。例えば、スイッチング電源装置(半導体装置10)は、DC/DCコンバータ(入力直流電力をスイッチング動作により入力直流電力とは異なる電圧値を有する出力直流電力に変換するコンバータ)を構成していてもよい。なお、DC/DCコンバータには、降圧コンバータと、昇圧コンバータと、双方向DC/DCコンバータとが含まれる。 Further, the switching power supply device (semiconductor device 10) may constitute an inverter that converts DC power (or AC power) into AC power by switching operation, and DC power (or AC power) is switched by switching operation. You may comprise the converter which converts into direct-current power. For example, the switching power supply device (semiconductor device 10) may constitute a DC / DC converter (a converter that converts input DC power into output DC power having a voltage value different from the input DC power by a switching operation). The DC / DC converter includes a step-down converter, a step-up converter, and a bidirectional DC / DC converter.
 スイッチング電源装置(半導体装置10)が降圧コンバータを構成している場合、キャパシタ80は、その一端が接地配線WGと接続され、その他端がインダクタを介して出力配線WOと電気的に接続されている。 When the switching power supply device (semiconductor device 10) constitutes a step-down converter, the capacitor 80 has one end connected to the ground wiring WG and the other end electrically connected to the output wiring WO via an inductor. .
 スイッチング電源装置(半導体装置10)が昇圧コンバータを構成している場合、キャパシタ80は、その一端が接地配線WGと接続され、その他端が電源配線WPと接続されている。なお、昇圧コンバータでは、電流の流れる方向を考慮すると出力配線WOが電源側となり電源配線WPが出力側となるが、ここでは、配線WOが電源側となっていても配線WOを「出力配線WO」と呼び、配線WPが出力側となっていても配線WPを「電源配線WP」と呼ぶことと定義する。 When the switching power supply device (semiconductor device 10) forms a boost converter, the capacitor 80 has one end connected to the ground wiring WG and the other end connected to the power supply wiring WP. In the boost converter, the output wiring WO is on the power supply side and the power supply wiring WP is on the output side in consideration of the direction of current flow. Here, the wiring WO is referred to as “output wiring WO even if the wiring WO is on the power supply side. The wiring WP is defined as “power supply wiring WP” even if the wiring WP is on the output side.
 スイッチング電源装置(半導体装置10)が双方向DC/DCコンバータを構成している場合、スイッチング電源装置(半導体装置10)には2つのキャパシタ80が設けられている。そして、一方のキャパシタ80は、その一端が接地配線WGと接続され、その他端が出力配線WOと接続されている。他方のキャパシタ80は、その一端が接地配線WGと接続され、その他端が電源配線WPと接続されている。 When the switching power supply (semiconductor device 10) constitutes a bidirectional DC / DC converter, the switching power supply (semiconductor device 10) is provided with two capacitors 80. One capacitor 80 has one end connected to the ground wiring WG and the other end connected to the output wiring WO. The other capacitor 80 has one end connected to the ground wiring WG and the other end connected to the power supply wiring WP.
 以上のように、スイッチング電源装置(半導体装置10)では、キャパシタ80は、接地配線WGに面実装されて電源配線WPまたは出力配線WOと電気的に接続されている。また、キャパシタ80を複数の分割キャパシタ81により構成する場合、キャパシタ80と電源配線WPまたは出力配線WOとを電気的に接続するための接続配線85を、複数の分割キャパシタ81と電源配線WPまたは出力配線WOとをそれぞれ電気的に接続する複数の分割配線86により構成してもよい。 As described above, in the switching power supply device (semiconductor device 10), the capacitor 80 is surface-mounted on the ground wiring WG and electrically connected to the power supply wiring WP or the output wiring WO. Further, when the capacitor 80 is constituted by a plurality of divided capacitors 81, a connection wiring 85 for electrically connecting the capacitor 80 and the power supply wiring WP or the output wiring WO is provided as a plurality of divided capacitors 81 and the power supply wiring WP or the output. You may comprise by the some division | segmentation wiring 86 which each electrically connects with the wiring WO.
 また、以上の実施形態や変形例を適宜組み合わせて実施してもよい。以上の実施形態や変形例は、本質的に好ましい例示であって、この開示、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Also, the above embodiments and modifications may be combined as appropriate. The above embodiments and modifications are essentially preferable examples, and are not intended to limit the scope of this disclosure, its application, or its use.
 以上説明したように、上述の半導体装置は、スイッチング電源装置などとして有用である。 As described above, the semiconductor device described above is useful as a switching power supply device or the like.
10 半導体装置
11 筐体
12 支柱
15 制御基板
16 制御回路
17 コネクタ
18 リード線
20 第1基板
21 絶縁層
22 導電層
23 放熱層
30 第2基板
31 フレキシブル基板
32 センサ基板
40 半導体素子
50 温度検出素子
60 熱伝導体
71 第1スイッチング素子
72 第2スイッチング素子
80 キャパシタ
81 分割キャパシタ
85 接続配線
86 分割配線
WP 電源配線
WG 接地配線
WO 出力配線
SW スイッチング部
CP 容量部
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Housing | casing 12 Support | pillar 15 Control board 16 Control circuit 17 Connector 18 Lead wire 20 1st board | substrate 21 Insulating layer 22 Conductive layer 23 Heat dissipation layer 30 2nd board | substrate 31 Flexible board 32 Sensor board 40 Semiconductor element 50 Temperature detection element 60 Thermal conductor 71 First switching element 72 Second switching element 80 Capacitor 81 Split capacitor 85 Connection wiring 86 Split wiring WP Power supply wiring WG Ground wiring WO Output wiring SW Switching section CP Capacitance section

Claims (10)

  1.  第1基板と、
     前記第1基板と所定の間隔をおいて対向する第2基板と、
     前記第1基板の前記第2基板に対向する面に実装される少なくとも1つの半導体素子と、
     前記第2基板の前記第1基板に対向する面に実装されて前記少なくとも1つの半導体素子と熱的に接触する少なくとも1つの温度検出素子とを備えている半導体装置。
    A first substrate;
    A second substrate facing the first substrate at a predetermined interval;
    At least one semiconductor element mounted on a surface of the first substrate facing the second substrate;
    A semiconductor device comprising: at least one temperature detection element mounted on a surface of the second substrate facing the first substrate and in thermal contact with the at least one semiconductor element.
  2.  請求項1において、
     前記第2基板の剛性は、前記第1基板の剛性よりも低くなっている半導体装置。
    In claim 1,
    The semiconductor device wherein the rigidity of the second substrate is lower than the rigidity of the first substrate.
  3.  請求項2において、
     前記第2基板は、可撓性を有するフレキシブル基板により構成されている半導体装置。
    In claim 2,
    The second substrate is a semiconductor device configured by a flexible substrate having flexibility.
  4.  請求項2において、
     制御回路が実装される制御基板をさらに備え、
     前記制御基板は、前記第1基板および前記第2基板とは異なる基板により構成されている半導体装置。
    In claim 2,
    A control board on which the control circuit is mounted;
    The control substrate is a semiconductor device configured by a substrate different from the first substrate and the second substrate.
  5.  請求項2において、
     前記第2基板は、制御回路が実装される制御基板により構成されている半導体装置。
    In claim 2,
    The second substrate is a semiconductor device configured by a control substrate on which a control circuit is mounted.
  6.  請求項1において、
     前記温度検出素子の個数は、前記半導体素子の個数と同数となっており、
     前記温度検出素子は、前記半導体素子と一対一で熱的に接触している半導体装置。
    In claim 1,
    The number of the temperature detection elements is the same as the number of the semiconductor elements,
    The temperature detection element is a semiconductor device in one-to-one thermal contact with the semiconductor element.
  7.  請求項1において、
     前記少なくとも1つの半導体素子と前記少なくとも1つの温度検出素子との間に介在する少なくとも1つの熱伝導体をさらに備えている半導体装置。
    In claim 1,
    A semiconductor device further comprising at least one heat conductor interposed between the at least one semiconductor element and the at least one temperature detection element.
  8.  請求項6において、
     前記半導体素子と前記温度検出素子との間にそれぞれ介在する熱伝導体を備えている半導体装置。
    In claim 6,
    A semiconductor device comprising a heat conductor interposed between the semiconductor element and the temperature detection element.
  9.  請求項7または8において、
     前記熱伝導体は、熱伝導グリスまたは熱伝導接着剤により構成されている半導体装置。
    In claim 7 or 8,
    The said heat conductor is a semiconductor device comprised by the heat conductive grease or the heat conductive adhesive.
  10.  請求項1において、
     前記少なくとも1つの温度検出素子は、サーミスタにより構成されている半導体装置。
    In claim 1,
    The semiconductor device in which the at least one temperature detection element is configured by a thermistor.
PCT/JP2017/018437 2016-07-19 2017-05-17 Semiconductor device WO2018016162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780042024.5A CN109478540A (en) 2016-07-19 2017-05-17 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141534 2016-07-19
JP2016141534A JP2018014356A (en) 2016-07-19 2016-07-19 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2018016162A1 true WO2018016162A1 (en) 2018-01-25

Family

ID=60992424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018437 WO2018016162A1 (en) 2016-07-19 2017-05-17 Semiconductor device

Country Status (3)

Country Link
JP (1) JP2018014356A (en)
CN (1) CN109478540A (en)
WO (1) WO2018016162A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050954A (en) * 2019-06-05 2020-12-08 志圣工业股份有限公司 Temperature measuring device
EP4224127A1 (en) * 2022-02-04 2023-08-09 ZF Friedrichshafen AG Temperature sensor for an inverter for operating an electric drive in an electric vehicle or a hybrid vehicle, inverter having such a temperature sensor
EP4257943A1 (en) * 2022-04-06 2023-10-11 Infineon Technologies AG Temperature sensor arrangement in semiconductor module
EP4354104A1 (en) * 2022-10-13 2024-04-17 Hitachi Energy Ltd Electronic device and method for producing an electronic device
EP4354103A1 (en) * 2022-10-13 2024-04-17 Hitachi Energy Ltd Sensor unit for an electronic device and method for mounting a sensor element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008241B2 (en) * 2018-02-23 2022-01-25 パナソニックIpマネジメント株式会社 Switching power supply
JP7322654B2 (en) 2019-10-15 2023-08-08 富士電機株式会社 semiconductor module
JP2022160154A (en) * 2021-04-06 2022-10-19 三菱重工業株式会社 Semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873145A (en) * 1981-10-27 1983-05-02 Mitsubishi Electric Corp Semiconductor package
JPH10303582A (en) * 1997-04-22 1998-11-13 Toshiba Corp Cooing device of circuit module and portable information equipment mounting circuit module
JP2002124618A (en) * 2000-10-18 2002-04-26 Unisia Jecs Corp Semiconductor device
JP2005065224A (en) * 2003-07-28 2005-03-10 Toyo Commun Equip Co Ltd Thin and highly stable piezoelectric oscillator, and thin and surface mounting type highly stable piezoelectric oscillator
JP2007234753A (en) * 2006-02-28 2007-09-13 Denso Corp Semiconductor module device
JP2013062277A (en) * 2011-09-12 2013-04-04 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2014011385A (en) * 2012-07-02 2014-01-20 Nec Access Technica Ltd Electronic device, electronic apparatus, and manufacturing method of electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293739A (en) * 1995-04-25 1996-11-05 Aruinko Kk Mounting structure for temperature detection element for power amplifier circuit
JP4048439B2 (en) * 2004-03-25 2008-02-20 株式会社デンソー Electronic circuit device having a heat sink
JP5625242B2 (en) * 2009-02-25 2014-11-19 日本精工株式会社 Electric power steering device, control unit and vehicle
US20120287587A1 (en) * 2011-05-09 2012-11-15 Research In Motion Limited Surface mountable navigation device with tactile response
JP2013118296A (en) * 2011-12-02 2013-06-13 Toshiba Corp Electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873145A (en) * 1981-10-27 1983-05-02 Mitsubishi Electric Corp Semiconductor package
JPH10303582A (en) * 1997-04-22 1998-11-13 Toshiba Corp Cooing device of circuit module and portable information equipment mounting circuit module
JP2002124618A (en) * 2000-10-18 2002-04-26 Unisia Jecs Corp Semiconductor device
JP2005065224A (en) * 2003-07-28 2005-03-10 Toyo Commun Equip Co Ltd Thin and highly stable piezoelectric oscillator, and thin and surface mounting type highly stable piezoelectric oscillator
JP2007234753A (en) * 2006-02-28 2007-09-13 Denso Corp Semiconductor module device
JP2013062277A (en) * 2011-09-12 2013-04-04 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2014011385A (en) * 2012-07-02 2014-01-20 Nec Access Technica Ltd Electronic device, electronic apparatus, and manufacturing method of electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050954A (en) * 2019-06-05 2020-12-08 志圣工业股份有限公司 Temperature measuring device
EP4224127A1 (en) * 2022-02-04 2023-08-09 ZF Friedrichshafen AG Temperature sensor for an inverter for operating an electric drive in an electric vehicle or a hybrid vehicle, inverter having such a temperature sensor
EP4257943A1 (en) * 2022-04-06 2023-10-11 Infineon Technologies AG Temperature sensor arrangement in semiconductor module
EP4354104A1 (en) * 2022-10-13 2024-04-17 Hitachi Energy Ltd Electronic device and method for producing an electronic device
EP4354103A1 (en) * 2022-10-13 2024-04-17 Hitachi Energy Ltd Sensor unit for an electronic device and method for mounting a sensor element

Also Published As

Publication number Publication date
JP2018014356A (en) 2018-01-25
CN109478540A (en) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2018016162A1 (en) Semiconductor device
JP5169353B2 (en) Power module
US9129931B2 (en) Power semiconductor module and power unit device
JP4973059B2 (en) Semiconductor device and power conversion device
JP5569555B2 (en) Wiring member and semiconductor module using the same
US20140334203A1 (en) Power converter and method for manufacturing power converter
JP2015149883A (en) Power conversion device
JP2012059759A (en) Electronic control unit
CN109995246B (en) Switching power supply device
JP6020379B2 (en) Semiconductor device
JP2009152505A (en) Semiconductor module mounting structure
JP4538474B2 (en) Inverter device
US7902464B2 (en) Heat sink arrangement for electrical apparatus
US8836113B2 (en) Electronic module
JP4461639B2 (en) Semiconductor device
JP3856799B2 (en) Power converter
JP4915907B2 (en) IPM-mounted solar inverter and its manufacturing method
JP6685020B2 (en) Switching power supply
JP2019030040A (en) Switching power supply device
JP2018125424A (en) Semiconductor module, control unit including the same, and electric power steering system
JP7008241B2 (en) Switching power supply
JP6646819B2 (en) Switching power supply
WO2023159656A1 (en) Power converter package with thermally enhanced interposers to cooling fins
JP6601776B2 (en) Switching power supply
JP2014236570A (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830682

Country of ref document: EP

Kind code of ref document: A1