JP4915907B2 - IPM-mounted solar inverter and its manufacturing method - Google Patents

IPM-mounted solar inverter and its manufacturing method Download PDF

Info

Publication number
JP4915907B2
JP4915907B2 JP2006069930A JP2006069930A JP4915907B2 JP 4915907 B2 JP4915907 B2 JP 4915907B2 JP 2006069930 A JP2006069930 A JP 2006069930A JP 2006069930 A JP2006069930 A JP 2006069930A JP 4915907 B2 JP4915907 B2 JP 4915907B2
Authority
JP
Japan
Prior art keywords
ipm
terminal
heat sink
insulator
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006069930A
Other languages
Japanese (ja)
Other versions
JP2007250689A (en
Inventor
肇 勝嶋
茂 岡本
成治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2006069930A priority Critical patent/JP4915907B2/en
Publication of JP2007250689A publication Critical patent/JP2007250689A/en
Application granted granted Critical
Publication of JP4915907B2 publication Critical patent/JP4915907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は,太陽光インバータの構造に関し,取り付け配線工事が容易な構造で高信頼性を確保して提供できる太陽光インバータとその製造方法に関する。   The present invention relates to a structure of a solar inverter, and more particularly to a solar inverter that can be provided with high reliability with a structure that facilitates installation wiring work and a method for manufacturing the same.

従来,太陽電池セルを直列に接続した太陽電池モジュールを,所望の電圧を得るために直列接続し、さらにこの直流を交流に変換する太陽光インバータ設置工事現場において,工数を減らして工事時間が短縮でき,しかも信頼性が確保できる簡易な太陽光発電システムの具現化が望まれていた。
特許文献1の(段落0003)には次の記述がある。「従来の太陽光発電システムには構成機器が多く、設置に手間がかかり、小容量システムの場合にはコストも高くなる問題がある。太陽電池モジュールを増設する場合、インバータを出力の大きいものに交換する必要がある。このために、増設が容易に出来ない問題がある。」
Conventionally, solar battery modules connected in series with solar cells are connected in series to obtain the desired voltage, and the construction time is reduced by reducing the number of man-hours at the installation site of the solar inverter that converts this direct current to alternating current. In addition, the realization of a simple photovoltaic power generation system capable of ensuring reliability was desired.
Patent Document 1 (paragraph 0003) has the following description. “Conventional photovoltaic power generation systems have many components, requiring time and labor to install, and in the case of a small capacity system, there is a problem that the cost is high. It needs to be replaced. For this reason, there is a problem that expansion is not easy. "

このため、軽量小型のインバータが渇望されていた。小型のインバータを実現する根本技術となるIPM(インテリジェントパワーモジュール)技術に関して、従来の「インテリジェントパワーモジュール」についての技術を開示した特許文献2がある。
特許文献2の図1を各部の記号も替えず其のままに図8としてこの明細書に示して説明すると、(段落0006)に、「まず金属板にセラミック板を設けた従来例の場合、前記セラミック板上に設けた金属膜厚みが約300〜500μmと非常に厚く、金属膜で制御部の回路配線を形成する場合、配線の微細化が困難であった」と記述されていて、同一金属板にインバータ部のパワーデバイスチップと制御部を搭載していた。
For this reason, a light and small inverter has been craved. Regarding IPM (intelligent power module) technology, which is a fundamental technology for realizing a small inverter, there is Patent Document 2 that discloses a technology related to a conventional “intelligent power module”.
When FIG. 1 of Patent Document 2 is shown in this specification as FIG. 8 as it is without changing the symbols of the respective parts, it will be described in (paragraph 0006) as follows. The thickness of the metal film provided on the ceramic plate is very thick, about 300 to 500 μm, and it was difficult to make the wiring fine when the circuit wiring of the control unit was formed with the metal film. The power device chip of the inverter part and the control part were mounted on the metal plate.

特許文献2の(段落0013)に発明の内容として次の記載がある。「本実施例のインテリジェントパワーモジュールは、裏面に配線用の銅材よりなる金属膜3を300〜500μm厚で形成したセラミック板4が、銅板よりなる金属板1上の目的とする領域に、共晶半田などの低温半田2で固着され、前記セラミック板4上の目的とする領域に部分的に銅材よりなる金属膜5が300〜500μm厚で形成されている。金属膜3,5は微細配線を目的とせず、大電流対応を目的としているので、厚膜で形成されている。」さらに続けて「また、セラミック板4は600μm厚で形成されている。そして、金属膜5上にパワーデバイスチップ7a,7bが高温半田6で接合されている。パワーデバイスチップ7a,7bと他の金属膜5とがアルミニウムよりなる金属細線9で接続されている。セラミック板4上に搭載されたパワーデバイスチップ7a,7bにより、インバータ部10が形成されている。」の記載がある。
(段落0017)には、「なお、本実施例では、セラミック板4を形成している領域は、半分の領域としているが、領域はパワーデバイスチップ7a,7bの大きさ、数等により調整することが可能である。また、配線用の銅材よりなる金属膜3,5はセラミック板4に対してエポキシ系接着剤により接合されている。そして、金属細線9はアルミニウム線に限定するものではなく、金線でも適用できる。」と記述されている。
(段落0019)には、「本実施例のインテリジェントパワーモジュールのインバータ部10領域はセラミック板4を用いて厚膜の金属膜3,5を形成しているので、100A以上の大電流で動作しても対応でき、制御部11領域は樹脂基板14に金属膜を微細配線させているので、実装面積の縮小が図れる。」と記述されている。
以上の記載があるが、インバータ部10は、このセラミック板4が、金属板1上の目的とする領域に固着され、セラミック板4上の領域に金属膜5が300〜500μm厚で形成されてこの上にパワーデバイスチップが搭載されていて、インバータ部の電流が10アンペア級の場合はパワーデバイスチップの発熱量が大であるから,制御部11のデバイス8に悪影響を及ぼすので信頼性に欠ける危惧があった。セラミック板4は厚さ600μmと非常に厚く熱抵抗を引き下げる事が望まれていた。
Patent Document 2 (paragraph 0013) has the following description as the contents of the invention. “In the intelligent power module of this embodiment, the ceramic plate 4 formed with a metal film 3 made of copper for wiring with a thickness of 300 to 500 μm on the back surface is provided in the target area on the metal plate 1 made of copper plate. A metal film 5 made of a copper material is partially formed in a target region on the ceramic plate 4 with a thickness of 300 to 500 μm, which is fixed by a low-temperature solder 2 such as crystal solder, etc. The metal films 3 and 5 are fine. “The ceramic plate 4 is formed with a thickness of 600 μm because it is not intended for wiring but is intended for dealing with a large current and is formed.” Further, “The ceramic plate 4 is formed with a thickness of 600 μm. Device chips 7a and 7b are joined by high-temperature solder 6. Power device chips 7a and 7b and other metal film 5 are connected by a thin metal wire 9 made of aluminum. Mounting to power device chip 7a, by 7b, the inverter unit 10 is formed. "There are described.
According to (paragraph 0017), “in this embodiment, the region where the ceramic plate 4 is formed is a half region, but the region is adjusted by the size, number, etc. of the power device chips 7a, 7b. In addition, the metal films 3 and 5 made of copper material for wiring are bonded to the ceramic plate 4 with an epoxy adhesive, and the thin metal wires 9 are not limited to aluminum wires. It can also be applied to gold wires. "
(Paragraph 0019) states that “the inverter 10 region of the intelligent power module of the present embodiment is formed with the thick metal films 3 and 5 using the ceramic plate 4, and thus operates with a large current of 100 A or more. However, it is described that the area of the control unit 11 can be reduced because the metal film is finely wired on the resin substrate 14.
As described above, in the inverter unit 10, the ceramic plate 4 is fixed to a target region on the metal plate 1, and the metal film 5 is formed in the region on the ceramic plate 4 with a thickness of 300 to 500 μm. If the power device chip is mounted on the inverter and the current in the inverter section is 10 ampere, the power device chip generates a large amount of heat, which adversely affects the device 8 of the control section 11 and lacks reliability. There was a concern. The ceramic plate 4 is very thick as 600 μm, and it has been desired to reduce the thermal resistance.

「特開平9−201061」公報。「発明の名称:太陽光発電システム」Japanese Patent Laid-Open No. 9-201061. “Title of Invention: Solar Power Generation System” 「特開平7−86497」公報。「発明の名称:インテリジェントパワー モジュール」Japanese Patent Laid-Open No. 7-86497. “Title of Invention: Intelligent Power Module”

特開平9−201061号の公報に記載されている従来の太陽光発電システムは構成機器が多く、設置に手間がかり、小容量システムの場合にはコストも高くなる問題がある。また、太陽電池モジュールを増設する場合、太陽電池モジュールの出力合計がインバータ出力よりも大きくなるとインバータを増設又は出力の大きなものに交換する必要がある。このため従来の構成のものでは太陽電池モジュール増設が容易にできない問題もあった。   The conventional solar power generation system described in Japanese Patent Application Laid-Open No. 9-201061 has a large number of constituent devices, which is troublesome to install, and in the case of a small capacity system, there is a problem that the cost is increased. Moreover, when adding a solar cell module, when the output total of a solar cell module becomes larger than an inverter output, it is necessary to expand an inverter or to replace | exchange an inverter with a big output. For this reason, there was a problem that the solar cell module could not be easily increased with the conventional configuration.

信頼性の不安要素を払拭し,品質が保証できるプロセスで製造できることが重要である。この為,製造の工程と工程の間に品質チェックができる「工程の区切り」が設定できるような製品構造で実現でき,コンパクトな製品であり,取り付け結線工事が容易な構造のインバータを安価に提供できる構造とすることが課題であった。   It is important to be able to manufacture in a process that eliminates the elements of reliability and ensures quality. For this reason, it is possible to realize a product structure that can be set to a “process delimiter” that can check the quality between manufacturing processes, and to provide an inverter with a compact product and a structure that is easy to install and connect. It was a problem to make the structure possible.

請求項1に関しては,上記課題を解決するために,製造の工程と工程との間に品質チェックができる「工程の区切り」が設定できるような製品構造を実現して,リード線用端子ゾーン,パワーモジュール(IPM)ゾーンが隔壁で区切られた絶縁性のボックス枠体を形成,製造工程の区切り毎に特性試験で完成度をチェックできる製造方法とした。   With respect to claim 1, in order to solve the above-mentioned problem, a product structure is realized in which a “process delimiter” capable of quality check between manufacturing processes can be set, and a lead wire terminal zone, An insulating box frame body in which the power module (IPM) zone is partitioned by a partition wall is formed, and a manufacturing method in which completeness can be checked by a characteristic test for each partition of the manufacturing process.

放熱板に入出力接続手段を設ける工程,放熱板にパワー半導体素子を固着する工程,電気絶縁性のボックス枠体に対して,端子接続手段が形成された放熱板が絶縁間隔を保って固着またはインサート成型で取り付けられて放熱板を有する枠体を形成する工程,半導体素子素子間を接続する工程,放熱板のゾーンに絶縁物を充填して製品中間体Aを完成させる工程,該製品中間体Aの特性試験をする工程,太陽電池モジュールパネルに該製品中間体Aを固着する工程,太陽電池モジュール出力リード線を該放熱板のモジュールリード線用端子ゾーン内の端子接続手段に接続して,この製品中間体Bの段階で性能試験した後に,該接続部位を覆うように絶縁物を充填する工程を具備することを特徴とした,入出力端子付きIPM搭載の太陽光インバータの製造方法とした。   The step of providing input / output connection means on the heat sink, the step of fixing the power semiconductor element to the heat sink, the heat sink on which the terminal connection means is formed is fixed to the electrically insulating box frame with an insulation interval. A step of forming a frame having a heat sink attached by insert molding, a step of connecting between semiconductor element elements, a step of filling a zone of the heat sink with an insulator to complete product intermediate A, the product intermediate A step of performing a characteristic test of A, a step of fixing the product intermediate A to a solar cell module panel, connecting a solar cell module output lead wire to a terminal connection means in a module lead wire terminal zone of the heat sink, After performing a performance test at the stage of this product intermediate B, it is provided with a step of filling an insulating material so as to cover the connection part. And the manufacturing method of chromatography data.

請求項2に関しては、入出力端子接続手段を具備し,パワー半導体素子が固着された放熱板が,絶縁間隔を保って絶縁性ボックス枠体に固着され,放熱板および導電板に金属導帯で接続され,絶縁物が充填された絶縁性ボックス枠体と該放熱板とでパワーモジュールIPMを形成し、太陽電池モジュールパネルに固着され,太陽電池モジュールリード線が端子接続手段に接続され、該接続部位を覆う部位に絶縁物を充填されることを特徴とした、入出力端子付きIPM搭載の太陽光インバータとした。   With respect to claim 2, the heat sink having the input / output terminal connection means, to which the power semiconductor element is fixed, is fixed to the insulating box frame with an insulation interval, and the heat sink and the conductive plate are made of metal conductors. A power module IPM is formed by the insulating box frame that is connected and filled with the insulator and the heat radiating plate, and is fixed to the solar cell module panel, and the solar cell module lead wire is connected to the terminal connection means. A solar inverter equipped with an IPM equipped with an input / output terminal is characterized in that an insulating material is filled in a part covering the part.

請求項3に関しては、パワーモジュール(IPM)が、パワー半導体素子が固着され且つ、多層印刷配線板または制御ICで形成された制御部を設けた放熱板と,絶縁性ボックス枠体とによって構成されたパワーモジュール(IPM)であり、前記パワー素子が絶縁物を介しないで直に放熱板に固着された構造を有するパワーモジュール(IPM)ゾーンの放熱板は、絶縁間隔を保って固着またはインサート成型で絶縁性ボックス枠体に取り付けられていて、放熱板にセラミック絶縁板を介せずにパワー半導体素子を直接に固着して熱抵抗を改善したことを特徴とする請求項2記載の入出力端子付きIPM搭載の太陽光インバータとした。   With respect to claim 3, the power module (IPM) is composed of a heat radiating plate to which a power semiconductor element is fixed and a control unit formed of a multilayer printed wiring board or a control IC, and an insulating box frame. The power module (IPM) has a structure in which the power element is directly fixed to the heat radiating plate without using an insulator, and the heat radiating plate in the power module (IPM) zone is fixed or insert-molded while maintaining an insulation interval. 3. The input / output terminal according to claim 2, wherein the power semiconductor element is directly fixed to the heat radiating plate without using a ceramic insulating plate to improve thermal resistance. A solar inverter equipped with an IPM.

請求項4に関しては、太陽電池モジュールパネルの略中央部に熱伝導性の電気絶縁薄板を介して固着された構造である請求項2乃至3記載の入出力端子付きIPM搭載の太陽光インバータとした。   According to claim 4, the solar cell module panel has an IPM-mounted solar inverter with input / output terminals according to claims 2 to 3, wherein the solar cell module panel is fixed to a substantially central portion of the solar cell module panel via a heat conductive thin insulating plate. .

請求項5に関しては,リード線が半田付け可能なように端子接続手段が金属片で形成されたリセプタクル端子である,請求項2乃至4記載の入出力端子付きIPM搭載の太陽光インバータとした。   According to a fifth aspect of the present invention, there is provided an IPM-mounted solar inverter with input / output terminals according to the second to fourth aspects, wherein the terminal connecting means is a receptacle terminal formed so that the lead wire can be soldered.

請求項6に関しては,放熱板の端部近傍に形成される端子接続手段が,挿入接続できる端子構造を有するリセプタクル端子である請求項2乃至4記載の入出力端子付きIPM搭載の太陽光インバータとした。   With respect to claim 6, the terminal connecting means formed in the vicinity of the end portion of the heat sink is a receptacle terminal having a terminal structure that can be inserted and connected. did.

太陽電池モジュールパネルにこのIPM搭載インバータが固着され,太陽電池モジュールパネルがパワー半導体素子の放熱フィンとして作用するのでパワー半導体素子の温度上昇値を抑える効果がありIPMの信頼性が向上する。製作の中間製品段階で,品質チェックされやすい構造になっている。設置の際の外部接続端子へのケーブル接続工事が容易な構造になったので、工事完成度が向上し総合的な製品完成度が高まる,しかも据付工事費が格段に安くなる。   The inverter mounted with IPM is fixed to the solar cell module panel, and the solar cell module panel acts as a heat radiating fin of the power semiconductor element, so that the temperature rise value of the power semiconductor element is suppressed and the reliability of the IPM is improved. The structure is easy to check for quality at the intermediate product stage. Since the cable connection work to the external connection terminal at the time of installation has become easy, the work completeness is improved, the overall product completeness is increased, and the installation work cost is significantly reduced.

本発明による実施の形態を図1に構造図で示して説明する。図1は一実施形態の回路と構造関連づけ説明図、図2は一実施形態の構造説明の平面図である。図1,図2によって説明する。絶縁性ボックス枠体17は例えばエポキシ系樹脂など絶縁体で形成され,太陽電池モジュールリード線用端子ゾーンDC1は,パワー半導体素子Q1,Q2をコレクタ電極C1,C2側で固着した第3放熱板ゾーン29と同一場所に位置している。太陽電池出力ケーブル用の正極端子ゾーン29と各ゾーンとが隔壁12で区切られて,端子接続手段T3が形成された,例えば厚み3ミリメートル銅板である放熱板AC1,AC2および放熱板DC1がインサート成形又は接着剤で該隔壁12に固着される。これら放熱板と導電板DC2が,約2mmの絶縁間隔20を保って取り付けられて,第1放熱板AC1の略中央部にパワー半導体素子Q3のコレクタ電極C3が半田付けされてパワー半導体素子Q1がQ3と電気的に直列に接続され、この接続点がインバータ出力端子T1につながる。パワー半導体素子の放熱板ゾーン27,28,29と負側導電板ゾーン30にシリコンゴムやエポキシ樹脂などの絶縁物を充填した製品中間体が,電気特性試験や温度・湿度環境試験で品質・信頼性が確認される。製品中間体となって製造工程の区切りとなる。   An embodiment according to the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram for associating a circuit with a circuit according to one embodiment, and FIG. 2 is a plan view for explaining a structure according to one embodiment. This will be described with reference to FIGS. The insulating box frame 17 is formed of an insulator such as epoxy resin, and the solar cell module lead terminal zone DC1 is a third heat sink zone in which the power semiconductor elements Q1 and Q2 are fixed on the collector electrodes C1 and C2 side. 29 is located at the same place. The positive electrode terminal zone 29 for solar cell output cable and each zone are divided by the partition wall 12 to form the terminal connection means T3. For example, the heat radiation plates AC1, AC2 and the heat radiation plate DC1, which are copper plates having a thickness of 3 mm, are insert-molded. Or it adheres to this partition 12 with an adhesive agent. The heat radiating plate and the conductive plate DC2 are attached with an insulation interval 20 of about 2 mm, and the collector electrode C3 of the power semiconductor element Q3 is soldered to a substantially central portion of the first heat radiating plate AC1, so that the power semiconductor element Q1 is Q3 is electrically connected in series, and this connection point is connected to the inverter output terminal T1. Product intermediates with power semiconductor element heatsink zones 27, 28 and 29 and negative conductive plate zone 30 filled with insulators such as silicon rubber and epoxy resin are quality and reliable in electrical property tests and temperature / humidity environment tests. Sex is confirmed. It becomes a product intermediate and becomes a break of the manufacturing process.

図3は本発明による一実施形態,図2のC−C断面図であり放熱板DC1にパワー半導体素子Q1、Q2のコレクタ電極C1、C2が高温半田で固着されQ1とQ2が電気的に接続されている。ここで放熱板DC1に形成される端子接続手段T3は5アンペア以下の小電流用では,端子が挿入接続できるリセプタブル端子であり,これは電流が例えば6アンペアより大きい場合や接続箇所の接触抵抗を極端に小さくしたい場合は,入力・出力ケーブルの圧着端子がネジ止め可能なネジ穴構造を有するネジ端子台(図3のT3,T4)とすることが有効である。量産する場合には半田付け用の板金端子とすることが好適である。第2放熱板AC2の略中央部にパワー半導体素子Q4のコレクタ電極C4が半田付けされてパワー半導体素子Q2,Q4が電気的に直列に接続され、この接続点がインバータ出力端子T2につながる。   FIG. 3 is a cross-sectional view taken along the line CC in FIG. 2 according to an embodiment of the present invention. The collector electrodes C1 and C2 of the power semiconductor elements Q1 and Q2 are fixed to the heat sink DC1 with high-temperature solder, and Q1 and Q2 are electrically connected. Has been. Here, the terminal connection means T3 formed on the heat sink DC1 is a receptable terminal to which the terminal can be inserted and connected for a small current of 5 amperes or less. When it is desired to make it extremely small, it is effective to use a screw terminal block (T3, T4 in FIG. 3) having a screw hole structure in which the crimp terminal of the input / output cable can be screwed. In mass production, it is preferable to use a sheet metal terminal for soldering. The collector electrode C4 of the power semiconductor element Q4 is soldered to a substantially central portion of the second heat radiation plate AC2, and the power semiconductor elements Q2 and Q4 are electrically connected in series, and this connection point is connected to the inverter output terminal T2.

パワー半導体スイッチング素子は通電中に発熱するが,信頼性向上の為その温度上昇値を低く抑えるように放熱板ゾーン27,28,29の底部21(C−C断面図)は,(少なくとも放熱板DC1が接する部位だけは)熱抵抗が小さくなるように厚さを薄く,例えば1mm以下に薄板部位を形成するか,または放熱板DC1,AC1が接する底部21の部位をくり貫いた形状に形成して,熱伝導性に優れた熱伝導性絶縁シート(サーマルシート)を放熱板DC1,AC1,負側導電板DC2に接着して水の浸入を防ぎつつ太陽電池モジュールのパネル裏の略中央部に固着する,このように大きい熱伝導手段を確保しているので,セラミックを介してパワー半導体を固着した従来の場合よりも安価であり熱抵抗が小さくなった。   The power semiconductor switching element generates heat during energization, but the bottom 21 (C-C cross-sectional view) of the heatsink zones 27, 28, 29 is (at least a heatsink) so as to keep the temperature rise value low to improve reliability. The thickness is reduced so that the thermal resistance is small (for example, the portion where DC1 is in contact), for example, a thin plate portion is formed to be 1 mm or less, or the bottom portion 21 where the heat sinks DC1 and AC1 are in contact is formed. The thermal conductive insulating sheet (thermal sheet) with excellent thermal conductivity is bonded to the heat radiating plates DC1, AC1, and the negative conductive plate DC2 to prevent water intrusion and at the center of the back of the solar cell module panel. Since such a large heat conduction means is secured, it is cheaper and has a lower thermal resistance than the conventional case where the power semiconductor is fixed via ceramic.

本発明による実施例の製造方法を図7に示した工程図よって説明する。第1放熱板AC1(交流リード線端子ゾーン)、第2放熱板AC2(交流リード線端子ゾーン)、第3放熱板DC1(直流リード線正端子ゾーン放熱板)、導電板DC2にそれぞれ端子接続手段T3、T4、T1,T2を設ける工程Step1,次にパワー半導体素子のコレクタ電極が各放熱板に高温半田によって固着される工程Step2,パワー半導体素子のエミッタ電極が各放熱板(または導電板DC2)に半田によって接続される工程Step3、各放熱板および導電板DC2を接着材などによって固着された絶縁性ボックス枠体17を形成する工程Step4,前記枠体17の半導体素子が半田付けされた放熱板ゾーン27、28、29と導電板ゾーン30にエポキシ樹脂などの絶縁物を充填する工程Step5,以上の工程を経て製品中間体Aが完成する。   A manufacturing method of an embodiment according to the present invention will be described with reference to a process diagram shown in FIG. Terminal connection means for the first heat sink AC1 (AC lead wire terminal zone), the second heat sink AC2 (AC lead wire terminal zone), the third heat sink DC1 (DC lead wire positive terminal zone heat sink), and the conductive plate DC2, respectively. Step 3 for providing T3, T4, T1, and T2, and then Step 2 for fixing the collector electrode of the power semiconductor element to each heat sink by high-temperature soldering Step 2 The emitter electrode of the power semiconductor element is each heat sink (or conductive plate DC2) Step 3 to be connected to each other by solder, Step 4 to form an insulating box frame 17 in which each heat radiating plate and conductive plate DC2 are fixed by an adhesive or the like, Step 4, a heat radiating plate to which the semiconductor elements of the frame 17 are soldered Step 5 for filling the zones 27, 28, 29 and the conductive plate zone 30 with an insulating material such as epoxy resin Step 5, through the above steps Product intermediate A is completed.

以上のような製品中間体Aは,耐湿度・耐振動など信頼性試験が出来る状態にあるので,ここで「工程に区切り」が設定できる。製品中間体の特性試験工程Step6を経て長期の耐温度変化・耐湿環境に耐えることを保証することが出来る。   Since the product intermediate A as described above is in a state where a reliability test such as humidity resistance and vibration resistance can be performed, “separation into processes” can be set here. Through the product intermediate property test step Step 6, it can be assured that the product can withstand a long-term change in temperature resistance and moisture resistance.

次に太陽電池パネルの裏面または側面に上記の製品中間体を接着やネジ止めなどの方法で固着して後,端子ゾーン22、23の端子接続手段T3,T4,に太陽電池モジュールリード線を接続して(製品中間体Bの)特性試験を経て接続部位に防湿の絶縁物を充填する。   Next, after fixing the above product intermediate to the back or side of the solar cell panel by bonding or screwing, the solar cell module lead wires are connected to the terminal connection means T3, T4 of the terminal zones 22, 23. Then, after the characteristic test (of the product intermediate B), the connection portion is filled with a moisture-proof insulator.

交流端子ゾーン27,28の端子接続手段T1、T2に,インバータ出力ケーブルを接続して(製品中間体Bの)特性試験を経て接続部位に防湿の絶縁物を充填する。   An inverter output cable is connected to the terminal connection means T1 and T2 of the AC terminal zones 27 and 28, and a moisture-proof insulator is filled in the connection portion through a characteristic test (product intermediate B).

このようにして製品中間体を得る毎に工程の区切りが設けられて試験工程で品質の確認が出来るから,最終工程によって試験結果が不良になっていた従来に比べて工程のロスがなくなるから総合コストが安価になる。   In this way, every time a product intermediate is obtained, process delimiters are provided and quality can be confirmed in the test process. Therefore, there is no process loss compared to the conventional method in which the test result is poor in the final process. Cost is low.

図4は本発明による一実施形態の端子の引き出し方法と放熱板,DC1,AC1,AC2の絶縁配置の説明図であり,図1の回路図を実体配線図にしたもので図1のパワー半導体素子Q1,Q2,Q3,Q4を,それぞれ接続された側の電極がコレクタ側であるC1,C2とエミッタ側であるE3,E4に区別して図示してある。放熱板AC1,AC2,DC1や導電板DC2の先端部近傍にリセプタクル端子を固着したり該先端部近傍を穴加工して端子接続手段T1,T2,T3,T4を形成するのも有効である。   FIG. 4 is an explanatory diagram of a terminal drawing method and a heat sink, DC1, AC1, and AC2 insulation arrangement according to an embodiment of the present invention. The power semiconductor shown in FIG. The elements Q1, Q2, Q3, and Q4 are shown separately as C1, C2 on the collector side and E3, E4 on the emitter side, respectively. It is also effective to fix the receptacle terminal in the vicinity of the front end portion of the heat radiating plates AC1, AC2, DC1 and the conductive plate DC2 or to form the terminal connection means T1, T2, T3, T4 by drilling the vicinity of the front end portion.

第二の実施形態の構造図である図5,図6の場合は,端子T1乃至T4の端子形状として図のように放熱板を曲げた先端近傍をネジ穴式の端子とした,この方式は端子部分の投影下方に空間が出来るから,ここに制御部11を設ける空間が確保出来る利点がある。制御部11からパワー半導体素子の制御極G1,G3に金属細線9で接続する場合に配線が短く出来て輻射妨害が軽減できる効果がある。制御ICなどの制御部11を配置するには好適な空間が端子部分の投影下方空間である。   In the case of FIGS. 5 and 6 which are structural diagrams of the second embodiment, the terminal shape of the terminals T1 to T4 is a screw hole type terminal in the vicinity of the end where the heat sink is bent as shown in the figure. Since a space is formed below the projection of the terminal portion, there is an advantage that a space for providing the control unit 11 can be secured here. When the control unit 11 is connected to the control poles G1 and G3 of the power semiconductor element by the thin metal wire 9, the wiring can be shortened and radiation interference can be reduced. A suitable space for arranging the control unit 11 such as the control IC is a space below the projection of the terminal portion.

図5,図6は本発明による第二の実施形態の説明の為の構造図である。絶縁性ボックス枠体17は例えばエポキシ系樹脂など絶縁体で形成され,太陽電池モジュールリード線の正極用端子接続手段T3は第3放熱板を上方に屈曲して伸ばし更に略直角に屈曲し水平面に伸ばしてこの部位に正極側端子T3を設ける。正極側端子T3の下部投影面はパワー半導体素子Q1,Q2を固着した第3放熱板であるが空間ができるので、この部分に制御部11が多層基板で占有面積を小さくして形成される,例えば厚み3ミリメートル銅板である放熱板DC1およびAC1、AC2の略中央部にパワー半導体素子Q1、Q2、Q3、Q4のコレクタ電極が半田付けされてパワー半導が搭載された近傍には40mm×30mm程度の多層印刷配線板の層内に微細部品が配置されて形成される制御部11が絶縁層を介して搭載され半導体素子Q1、Q2、Q3、Q4の制御極(ゲート電極)と制御部11の駆動パルス出力端子とが金属細線9で接続される。底面積40mm×30mm程度の多層の印刷配線板には駆動パルス出力信号を制御する回路やインバータ異常検出制御回路も搭載できる。制御部11を内蔵したパワー半導体素子のブリッジ回路を放熱板DC1およびAC1、AC2に搭載してインバータIPMとし,この端子手段T1,T2からインバータ出力電流10A程度の交流が太陽電池モジュールから取り出せる。太陽電池モジュールのパネル下面の有効な空間がインバータ設置場所として利用できるので、従来の据付型インバータの筐体設置の空間が確保困難の場合に設備費・工事費総合のコストが削減できて小規模設備の場合に有効である。制御ICを上記制御部11とすることも有効である。   5 and 6 are structural diagrams for explaining the second embodiment according to the present invention. The insulating box frame 17 is formed of an insulating material such as an epoxy resin, and the positive electrode terminal connecting means T3 of the solar cell module lead wire is bent by extending the third heat radiating plate upward and further bent at a substantially right angle to be a horizontal plane. The positive terminal T3 is provided at this site. The lower projection surface of the positive terminal T3 is a third heat radiating plate to which the power semiconductor elements Q1 and Q2 are fixed. However, since a space is formed, the control unit 11 is formed in this portion with a multilayer substrate with a small occupation area. For example, the collector electrode of power semiconductor elements Q1, Q2, Q3, and Q4 is soldered to a substantially central portion of the heat radiating plates DC1, AC1, and AC2 that are copper plates having a thickness of 3 mm, and 40 mm × 30 mm in the vicinity where the power semiconductor is mounted. A control unit 11 formed by arranging fine components in a layer of a multilayer printed wiring board to the extent is mounted via an insulating layer, and the control electrodes (gate electrodes) of the semiconductor elements Q1, Q2, Q3, Q4 and the control unit 11 The drive pulse output terminal is connected by a thin metal wire 9. A circuit for controlling the drive pulse output signal and an inverter abnormality detection control circuit can be mounted on a multilayer printed wiring board having a bottom area of about 40 mm × 30 mm. A bridge circuit of a power semiconductor element incorporating the control unit 11 is mounted on the heat sinks DC1, AC1, and AC2 to form an inverter IPM, and an alternating current with an inverter output current of about 10A can be extracted from the solar cell module from the terminal means T1 and T2. Since the effective space on the lower surface of the panel of the solar cell module can be used as the inverter installation location, it is possible to reduce the total cost of equipment and construction costs when it is difficult to secure the installation space for the conventional installation type inverter. Effective for equipment. It is also effective to use the control IC as the control unit 11.

図6は本発明による第二の実施形態の説明の為の構造図である。絶縁性ボックス枠体17は絶縁体で形成され,太陽電池モジュールリード線の正極用端子接続手段T3は第3放熱板を上方に屈曲して伸ばし更に略直角に屈曲し水平面に伸ばしてこの部位に正極側端子T3を設ける。負極側端子T4は,金属導帯13aでエミッタ側から接続された負側導電板DC2を上方に屈曲し更に略直角に屈曲した水平面に設けたネジ穴端子とした構成の端子T4を形成した。負側導電板DC2の上面に制御部11を搭載しパワー半導体素子Q3,Q4の制御極G3,G4に制御部を金属細線)で配線した。パワー半導体素子Q1,Q2のエミッタ側と,パワー半導体素子Q3,Q4をコレクタ側で固着した放熱板AC1,AC2を夫々金属導帯13b,13cで接続しインバータ部10を形成した。隔壁12で放熱板DC1とAC1及びAC2とが絶縁された構造としたので,各放熱板にはパワー半導体素子が直付け可能となって熱抵抗が激減する効果が出た。図8の厚さ600μmのセラミック板の両面に金属膜を付ける高価な部材と工程が不要となった。   FIG. 6 is a structural diagram for explaining the second embodiment of the present invention. The insulating box frame 17 is formed of an insulator, and the positive electrode terminal connecting means T3 of the solar cell module lead wire is bent by extending the third heat radiating plate upward and further bent substantially at a right angle to extend to the horizontal plane. A positive terminal T3 is provided. The negative electrode side terminal T4 was formed as a terminal T4 having a screw hole terminal provided on a horizontal plane obtained by bending the negative side conductive plate DC2 connected from the emitter side with the metal conducting band 13a upward and further bending at a substantially right angle. The control unit 11 is mounted on the upper surface of the negative conductive plate DC2, and the control unit is wired to the control poles G3 and G4 of the power semiconductor elements Q3 and Q4 with a thin metal wire. The inverter part 10 was formed by connecting the emitters of the power semiconductor elements Q1 and Q2 and the heatsinks AC1 and AC2 with the power semiconductor elements Q3 and Q4 fixed on the collector side by metal conductive bands 13b and 13c, respectively. Since the heat sinks DC1 and AC1 and AC2 are insulated from each other by the partition wall 12, power semiconductor elements can be directly attached to the heat sinks, and the effect of drastically reducing the thermal resistance is obtained. The expensive member and process which attach a metal film on both surfaces of the 600-micrometer-thick ceramic board of FIG. 8 became unnecessary.

図2のインバータIPMの放熱板ゾーン27,28,29,30にシリコンゴムやエポキシ樹脂などの絶縁物を充填した製品中間体が,電気特性試験や温度・湿度環境試験で品質・信頼性が確認される。図7の工程図ステップ5の製品中間体Aとなって製造工程の区切りとなる。図3の端子ゾーン22の底部21には太陽電池モジュールのリード線や外部配線のケーブルが導入できる寸法の貫通孔を設けることも有効である。   The product intermediate in which the heat sink zones 27, 28, 29, and 30 of the inverter IPM in Fig. 2 are filled with an insulator such as silicon rubber or epoxy resin has been confirmed for quality and reliability through electrical property tests and temperature / humidity environment tests. Is done. It becomes the product intermediate A in the process diagram step 5 of FIG. It is also effective to provide a through-hole having a size capable of introducing a lead wire of a solar cell module and a cable for external wiring at the bottom 21 of the terminal zone 22 in FIG.

製造の工程と工程との間に品質チェックができる「工程の区切り」が設定できるような製品構造で実現し,取り付け配線工事が容易な構造で高信頼性を確保して安価に提供することが出来、太陽電池モジュールの増設が容易になったので,産業上の貢献度が高い。   Realized with a product structure that can set a “process separation” that allows quality checks between manufacturing processes, ensuring high reliability with a structure that facilitates installation and wiring work, and providing it at low cost As a result, the expansion of solar cell modules has become easier, and the contribution to the industry is high.

本発明による一実施形態の回路と構造関連づけ説明図FIG. 1 is an explanatory diagram of a circuit and structure association according to an embodiment of the present invention. 本発明による一実施形態の構造図Structure diagram of one embodiment according to the present invention 本発明による一実施形態の断面図Sectional view of one embodiment according to the present invention 本発明による一実施形態の端子引き出し説明図Terminal drawing explanatory drawing of one embodiment by the present invention 本発明による第二の実施形態の構造図Structure diagram of second embodiment according to the present invention 本発明による第二の実施形態の構造図Structure diagram of second embodiment according to the present invention 本発明による一実施形態の工程図Process drawing of one Embodiment by this invention 従来のインバータ用IPMの構造図Structure of conventional inverter IPM

符号の説明Explanation of symbols

1 金属板
2 低温半田
3 金属膜
4 セラミック板
5 金属膜
6 高温半田
7a,7b パワー半導体(スイッチング)素子
8a,8b 制御用デバイス
9 金属細線
10 インバータ部
11 制御部
12 隔壁
13,13a ,13b 13c ,13d 金属導帯
14 樹脂基板
16 外部接続端子
17 絶縁性ボックス枠体
18 第1の充填用絶縁物
19 第2の充填用絶縁物
20 絶縁間隔
21 底部
22,23 端子ゾーン
27 第1放熱板ゾーン(交流端子ゾーン)
28 第2放熱板ゾーン(交流端子ゾーン)
29 第3放熱板ゾーン(正極端子ゾーン)
30 負側導電板ゾーン(負端子ゾーン)
AC1 第1放熱板
AC2 第2放熱板
DC1 第3放熱板
DC2 負側導電板
T1 端子接続手段(インバータ出力、交流側)
T2 端子接続手段(インバータ出力、交流側)
T3 端子接続手段(太陽光パネル出力、直流正極側)
T4 端子接続手段(太陽光パネル出力、直流負極側)
C1〜C4 パワー半導体(スイッチング)素子のコレクタ
G1〜G4 信号端子(制御リード線用端子)
P 制御用デバイス
Q1〜Q4 パワー半導体(スイッチング)素子
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Low temperature solder 3 Metal film 4 Ceramic plate 5 Metal film 6 High temperature solder 7a, 7b Power semiconductor (switching) element 8a, 8b Control device 9 Metal thin wire 10 Inverter part 11 Control part 12 Bulkheads 13, 13a, 13b 13c , 13d Metal conductive band 14 Resin substrate 16 External connection terminal 17 Insulating box frame 18 First filling insulator 19 Second filling insulator 20 Insulation interval 21 Bottom 22, 23 Terminal zone 27 First heat radiation zone (AC terminal zone)
28 Second heat sink zone (AC terminal zone)
29 Third heat sink zone (positive terminal zone)
30 Negative conductive plate zone (negative terminal zone)
AC1 1st heat sink AC2 2nd heat sink DC1 3rd heat sink DC2 Negative side conductive plate T1 Terminal connection means (inverter output, AC side)
T2 terminal connection means (inverter output, AC side)
T3 terminal connection means (solar panel output, DC positive side)
T4 terminal connection means (solar panel output, DC negative side)
C1 to C4 Power semiconductor (switching) element collectors G1 to G4 Signal terminals (terminals for control leads)
P Control devices Q1-Q4 Power semiconductor (switching) elements

Claims (6)

放熱板に入出力端子を設ける工程,パワーモジュール(IPM)を構成するパワー半導体素子を放熱板に固定する工程,半田付け接続する工程、隔壁で区切られたゾーンを有する絶縁性ボックス枠体に,端子接続手段が形成された放熱板または導電板が放熱板と絶縁間隔を保って固着されてパワー半導体素子間を接続する工程,各ゾーンに絶縁物を充填して製品中間体を完成させる工程、該製品中間体の特性試験をする工程,太陽電池モジュールパネルに該製品中間体を固着する工程、太陽電池モジュールリード線を端子接続手段に接続して試験する工程,該接続部位を覆う絶縁物を充填する工程を有することを特徴とした、入出力端子付きIPM搭載の太陽光インバータの製造方法。   A process of providing input / output terminals on a heat sink, a process of fixing a power semiconductor element constituting a power module (IPM) to a heat sink, a process of soldering connection, an insulating box frame having zones separated by partition walls, A step in which the heat sink or conductive plate on which the terminal connection means is formed is fixed to the heat sink with an insulation interval to connect the power semiconductor elements; a step in which each zone is filled with an insulator to complete a product intermediate; A step of performing a characteristic test of the product intermediate, a step of fixing the product intermediate to a solar cell module panel, a step of connecting and testing a solar cell module lead wire to a terminal connection means, and an insulator covering the connection portion The manufacturing method of the solar inverter mounted with IPM with an input / output terminal characterized by having the process to fill. 入出力端子接続手段を具備し、パワー半導体素子が固着された放熱板が、絶縁間隔を保って絶縁物に固着された放熱板及び導電板に金属導電帯で接続され、絶縁物が充填された絶縁性ボックス枠体とによってパワーモジュール(IPM)が構成され、太陽電池モジュールパネルに固着され,太陽電池モジュール出力線が端子接続手段に接続され、該接続部位を覆う部位に絶縁物が充填されることを特徴とした、入出力端子付きIPM搭載の太陽光インバータ。   The heat sink having the input / output terminal connection means, to which the power semiconductor element is fixed, is connected to the heat sink and the conductive plate fixed to the insulator with an insulation interval, and is filled with the insulator. A power module (IPM) is constituted by the insulating box frame, is fixed to the solar cell module panel, the solar cell module output line is connected to the terminal connection means, and a portion covering the connection portion is filled with an insulator. A solar inverter equipped with an IPM with input / output terminals. パワーモジュール(IPM)が、パワー素半導体子が固着され且つ、制御部が形成された放熱板及び絶縁物が充填された絶縁性ボックス枠体とによって構成されたパワーモジュール(IPM)であり、前記パワー半導体素子が絶縁物を介しないで直に放熱板に固着され熱抵抗が改善された構造を有することを特徴とした、請求項2記載の入出力端子付きIPM搭載の太陽光インバータ。   The power module (IPM) is a power module (IPM) configured by a heat sink with a power element semiconductor element fixed thereto and an insulating box frame filled with an insulator and a control unit formed thereon, 3. The solar inverter equipped with an IPM and having an input / output terminal according to claim 2, wherein the power semiconductor element has a structure in which the heat resistance is improved by directly adhering to the heat sink without passing through an insulator. 太陽電池モジュールパネルの略中央部に熱伝導性の電気絶縁薄板を介して固着された構造である請求項2乃至3記載の入出力端子付きIPM搭載の太陽光インバータ。   4. An IPM-mounted solar inverter with input / output terminals according to claim 2, wherein the solar cell module panel has a structure fixed to a substantially central portion of the solar cell module panel via a heat conductive thin insulating plate. 放熱板に形成される端子接続手段が,半田付け可能な金属片で形成されたリセプタクル端子である請求項2乃至4記載の入出力端子付きIPM搭載の太陽光インバータ。   5. An IPM-mounted solar inverter with input / output terminals according to claim 2, wherein the terminal connecting means formed on the heat sink is a receptacle terminal formed of a solderable metal piece. 放熱板に形成される端子接続手段が,挿入接続できる端子構造を有するリセプタクル端子である請求項2乃至4記載の入出力端子付きIPM搭載の太陽光インバータ。   5. An IPM-mounted solar inverter with input / output terminals according to claim 2, wherein the terminal connecting means formed on the heat sink is a receptacle terminal having a terminal structure that can be inserted and connected.
JP2006069930A 2006-03-14 2006-03-14 IPM-mounted solar inverter and its manufacturing method Expired - Fee Related JP4915907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069930A JP4915907B2 (en) 2006-03-14 2006-03-14 IPM-mounted solar inverter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069930A JP4915907B2 (en) 2006-03-14 2006-03-14 IPM-mounted solar inverter and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007250689A JP2007250689A (en) 2007-09-27
JP4915907B2 true JP4915907B2 (en) 2012-04-11

Family

ID=38594685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069930A Expired - Fee Related JP4915907B2 (en) 2006-03-14 2006-03-14 IPM-mounted solar inverter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4915907B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781624A1 (en) * 2013-03-19 2014-09-24 Siemens Aktiengesellschaft Electrolysis stack and electrolysing device
KR102193871B1 (en) * 2014-01-28 2020-12-22 엘지전자 주식회사 Integral inverter and solar cell module including the same
JP2017139380A (en) * 2016-02-04 2017-08-10 矢崎総業株式会社 Switching controller

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357808B2 (en) * 1996-01-29 2002-12-16 三洋電機株式会社 Solar cell device
JP2002112459A (en) * 2000-09-29 2002-04-12 Canon Inc Solar battery module and power generation device
JP2002141540A (en) * 2000-10-31 2002-05-17 Canon Inc Solar cell module integrated with power converter
JP2002139527A (en) * 2000-10-31 2002-05-17 Canon Inc Photovoltaic power generating system and its control method
JP2003052185A (en) * 2001-05-30 2003-02-21 Canon Inc Power converter, and photovoltaic element module using the same and power generator
JP2002373993A (en) * 2001-06-13 2002-12-26 Kyocera Corp Solar cell device and solar cell array using it
JP2003124492A (en) * 2001-10-18 2003-04-25 Tdk Corp Solar cell module

Also Published As

Publication number Publication date
JP2007250689A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
CN104170086B (en) The manufacture method of semiconductor device and semiconductor device
US9035453B2 (en) Semiconductor device
US6703703B2 (en) Low cost power semiconductor module without substrate
JP4515817B2 (en) Solar cell module connector
US7859079B2 (en) Power semiconductor device
KR900000206B1 (en) Semiconductor device
JP5212417B2 (en) Power semiconductor module
JPWO2016031462A1 (en) Power semiconductor module
US20130286618A1 (en) Circuit device
WO2005119896A1 (en) Inverter device
JP2012004543A (en) Semiconductor unit, and semiconductor device using the same
US11232994B2 (en) Power semiconductor device having a distance regulation portion and power conversion apparatus including the same
JP2005340639A (en) Semiconductor device and three-phase inverter device
US11056415B2 (en) Semiconductor device
JP2000164780A (en) Power electronic component
CN111587528B (en) Power semiconductor device
JP4915907B2 (en) IPM-mounted solar inverter and its manufacturing method
WO2019189450A1 (en) Power conversion device
JP4357972B2 (en) Solar cell bypass diode module with input / output terminals and manufacturing method thereof
CN219677253U (en) Semiconductor device with double-sided heat dissipation and package
JP4715283B2 (en) Power converter and manufacturing method thereof
JP7286007B2 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
TWI831247B (en) Power module and method for manufacturing the same
CN219591680U (en) Novel electric vehicle controller structure
CN214756105U (en) Inverter module and inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees