JP2003124492A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JP2003124492A
JP2003124492A JP2001320428A JP2001320428A JP2003124492A JP 2003124492 A JP2003124492 A JP 2003124492A JP 2001320428 A JP2001320428 A JP 2001320428A JP 2001320428 A JP2001320428 A JP 2001320428A JP 2003124492 A JP2003124492 A JP 2003124492A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
converter
connected
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001320428A
Other languages
Japanese (ja)
Inventor
Takeshi Uematsu
武 上松
Original Assignee
Tdk Corp
ティーディーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp, ティーディーケイ株式会社 filed Critical Tdk Corp
Priority to JP2001320428A priority Critical patent/JP2003124492A/en
Publication of JP2003124492A publication Critical patent/JP2003124492A/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To achieve a compact designing and a higher production efficiency of a solar cell module without lowering the photovoltaic energy conversion efficiency thereof. SOLUTION: The solar cell module 1 has a plurality of solar cell elements 2 and a converter 3 formed on a photodetecting surface of a base plate. The solar cell elements 2 are arranged in a matrix to be connected in series and parallel on the photodetecting surface of the base plate. The converter 3 with a circuit structure comprising semiconductor elements directly formed using the semiconductor production technology has the maximum power follow-up function of performing control for always obtaining the maximum generating current by flexibly responding to changes in the quantity of solar radiation and in the temperature or the like of the solar cell elements 2. Thus, the DC voltage which is outputted from the solar cell elements 2 connected in series and parallel is produced dropped down to a certain level.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、太陽電池モジュールに関し、特に、太陽電池モジュールの小型化および低コスト化に関するものである。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a solar cell module, in particular, to a size and cost of the solar cell module. 【0002】 【従来の技術】太陽光を受けて太陽電池が発電した直流出力を交流に変換し、電器製品などに供給する太陽電池システムとして、いわゆる系統連系システムが広く知られている。 [0002] Solar cells undergoing BACKGROUND ART sunlight and converts direct current into alternating current output having been generated, as a solar cell system for supplying such an electrician products, so-called system interconnection system is widely known. 【0003】この系統連系システムは、ガラス板などに複数の太陽電池素子が直列、または並列接続された構成の太陽電池モジュールと、連系インバータとから構成されている。 [0003] The grid interconnection system is composed of a plurality of solar cell elements such as a glass plate in series, or a solar cell module of the parallel-connected configuration, the interactive inverter. 【0004】連系インバータは、太陽電池モジュールによって発電された直流電圧を昇圧するDC/DCコンバータと、このDC/DCコンバータによって昇圧された直流電圧を交流に変換するDC/ACインバータとからなり、該DC/ACインバータの出力を商用電力系統と連携させている。 [0004] interconnection inverter is composed of a DC / DC converter for boosting the DC voltage generated by the solar cell module, a DC / AC inverter for converting the DC voltage boosted by the DC / DC converter to AC, the output of the DC / AC inverter is in cooperation with the commercial power system. 【0005】このような構成の統計連系システムを小型化する技術として、特開2001−189476号公報に示されるように、DC/DCコンバータとDC/AC As a technique for miniaturizing the statistical interconnection system having such a configuration, as shown in JP-A-2001-189476, DC / DC converter and DC / AC
インバータとを太陽電池モジュールの非受光面に側に配置したものが知られている。 Those disposed on the side on the non-light-receiving surface of the solar cell module and an inverter are known. 【0006】 【発明が解決しようとする課題】しかしながら、前述のような系統連系システムにおいては、DC/DCコンバータ、およびDC/ACインバータを、太陽電池モジュール毎に該太陽電池モジュールの非受光面に設けなければならず、製造工数が多くなり、生産効率が低下してしまうという問題がある。 [0006] The present invention is, however, in the system interconnection system, such as described above, DC / DC converter, and a DC / AC inverter, the non-light-receiving surface of the solar cell module for each solar cell module It must be provided to, the number of manufacturing steps, manufacturing efficiency is lowered. 【0007】そこで、本発明は、光/電気エネルギ変換効率を低下させることなく、コンパクトで、かつ製造効率を向上することのできる太陽電池モジュールを提供することを目的とする。 [0007] Therefore, the present invention is, without reducing the optical / electrical energy conversion efficiency, compact, and an object to provide a solar cell module capable of improving manufacturing efficiency. 【0008】 【課題を解決するための手段】上記課題を解決するため、本発明に係る太陽電池モジュールは、基板の素子搭載面に搭載され、直並列接続された複数の太陽電池素子と、該基板の素子搭載面に設けられ、複数の太陽電池素子が発電した直流電圧を降圧するコンバータとを備えたことを特徴とする。 [0008] [Means for Solving the Problems] To solve the above problems, a solar cell module according to the present invention is mounted on the element mounting surface of the substrate, and a plurality of solar cell elements connected in series-parallel, the provided on the element mounting surface of the substrate, characterized by comprising a converter that lowers the DC voltage in which a plurality of solar cell elements has power. 【0009】このような発明によれば、太陽電池モジュールを用いて連系系統システムを構成することにより、 According to this invention, by configuring the interconnection line system using a solar cell module,
電気エネルギの変換効率を落とすことなく、システムを大幅に小型化することができる。 Without reducing the conversion efficiency of electrical energy, it can be miniaturized greatly systems. 【0010】コンバータを太陽電池素子とを一体に製造できるので、該太陽電池モジュールの生産効率を大幅に向上することができ、コストダウンが可能となる。 [0010] Since the converter can be manufactured in one piece and the solar cell element, the production efficiency of the solar cell module can be significantly improved, and the cost can be reduced. 【0011】 【発明の実施の形態】以下、本発明の実施の形態を、図面を参照しつつさらに具体的に説明する。 DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the embodiments of the present invention will be described more specifically with reference to the accompanying drawings. ここで、添付図面において同一の部材には同一の符号を付しており、 Here, it is denoted by the same reference numerals to the same members in the accompanying drawings,
また、重複した説明は省略されている。 Further, duplicate description is omitted. なお、発明の実施の形態は、本発明が実施される特に有用な形態としてのものであり、本発明がその実施の形態に限定されるものではない。 Note that the embodiments of the invention are of a particularly useful embodiment of the present invention is implemented, the present invention is not limited to the embodiments. 【0012】図1は太陽電池モジュールの構成を示す説明図、図2は図1の太陽電池モジュールに設けられたコンバータの回路図、図3は図2のコンバータにおける各部の電圧/電流波形のタイミングチャート、図4は図1 [0012] Figure 1 is an explanatory view showing a configuration of a solar cell module, Fig. 2 is a circuit diagram of a converter provided in the solar cell module of FIG. 1, FIG. 3 is a timing of each part of the voltage / current waveforms in the converter of FIG. 2 chart, Figure 4 Fig. 1
の太陽電池モジュールを並列接続した際の一例を示す接続説明図、図5は図1の太陽電池モジュールを直列接続した場合の一例を示す接続説明図である。 Connection diagram showing an example when the solar cell modules are connected in parallel, and FIG. 5 is a connection diagram showing an example of a case where the series-connected solar cell module of FIG. 【0013】本実施の形態において、太陽電池モジュール1は、太陽光を受けて発電し、直流の電力を出力する。 [0013] In this embodiment, the solar cell module 1 generates power by receiving sunlight, and outputs the power of the direct current. この太陽電池モジュール1は、たとえば、商用電源と接続して運転する系統連系システムとして利用される。 The solar cell module 1, for example, is used as a system interconnection system to operate in connection with a commercial power supply. 【0014】太陽電池モジュール1には、図1に示すように、複数の太陽電池素子2が設けられている。 [0014] Solar cell module 1, as shown in FIG. 1, a plurality of solar cell elements 2 are provided. これら太陽電池素子2は、ガラス板などの透過性の基板の受光面(素子搭載面)にマトリクス状に配置されており、各々の太陽電池素子2は、それぞれ直並列接続されている。 These solar cell elements 2, the light receiving surface of the transparent substrate such as a glass plate (element mounting surface) are arranged in a matrix, each of the solar cell element 2 are respectively connected in series-parallel. 【0015】太陽電池素子2が配置された基板の受光面には、コンバータ3が形成されている。 [0015] The light-receiving surface of a substrate solar cell element 2 are arranged, the converter 3 is formed. コンバータ3 Converter 3
は、半導体製造技術を用いて半導体素子が直接形成された回路構成となっている。 A semiconductor device using a semiconductor manufacturing technology has become a formed circuit structure directly. 【0016】このコンバータ3は、太陽電池素子2の日射量変化や温度変化などに柔軟に対応し、常に最大発電電流を得るように制御する最大電力追従機能を有しており、直並列接続された太陽電池素子2から出力された直流電圧EPVを、ある電圧レベルまで降圧した直流電圧を出力する。 [0016] The converter 3 has a maximum power follow-up functions flexibly correspond to such solar radiation changes or temperature changes of the solar cell element 2, it is always controlled so as to obtain the maximum generated current is connected in series-parallel and the DC voltage EPV output from the solar cell element 2, and outputs a DC voltage obtained by stepping down to a certain voltage level. 【0017】また、コンバータ3の回路構成について説明する。 [0017] In addition, a description will be given of a circuit configuration of a converter 3. 【0018】コンバータ3は、図2に示すように、コンデンサ4、半導体スイッチ素子5,6、電圧検出手段7 The converter 3, as shown in FIG. 2, the capacitor 4, the semiconductor switching elements 5 and 6, the voltage detecting means 7
〜9、ダイオード10,11、制御回路12、ゲート生成回路13、ドライブ回路14、および電源回路15から構成されている。 To 9, diodes 10 and 11, the control circuit 12, the gate generating circuit 13, and a drive circuit 14 and the power supply circuit 15. 【0019】コンバータ3の入力部IN1,IN2には、直並列された太陽電池素子2の出力部がそれぞれ接続されており、該太陽電池素子2が発電した直流電圧E [0019] The input unit IN1, IN2 of the converter 3, the output of the solar cell element 2, which is series-parallel are connected respectively, a DC voltage E which the solar cell element 2 has power
PVが入力される。 PV is input. 【0020】コンバータ3の入力部IN1,IN2には、コンデンサ4、および電圧検出手段7の入力部がそれぞれ並列接続されている。 The input unit IN1, IN2 of the converter 3, an input portion of the capacitor 4, and the voltage detecting means 7 are connected in parallel, respectively. コンデンサ4は、直流電圧EPVの平滑用であり、電圧検出手段7は、該太陽電池素子2が発電した直流電圧EPVの電圧レベルを検出する。 Capacitor 4 is for smoothing the DC voltage EPV, the voltage detecting means 7 detects the voltage level of the DC voltage EPV said solar cell element 2 has power. 【0021】また、コンバータ3の入力部IN1には、 [0021] In addition, the input section IN1 of the converter 3,
半導体スイッチ素子5の一方の接続部が接続されており、該半導体スイッチ素子5の他方の接続部には、半導体スイッチ素子6の一方の接続部がそれぞれ接続されている。 It is connected to one connection of the semiconductor switching element 5, to the other coupling part of the semiconductor switching element 5, one connection portion of the semiconductor switching element 6 are connected. 【0022】半導体スイッチ素子5,6は、FET(F [0022] The semiconductor switch element 5 and 6, FET (F
ield Effect Transistor)などのトランジスタ素子から構成されている。 And a ield Effect Transistor) transistor device, such as. 半導体スイッチ素子5の一方の接続部には、電圧検出手段8の一方の入力部、ならびにダイオード10のカソードがそれぞれ接続されている。 The one connection portion of the semiconductor switching element 5, one input of the voltage detecting means 8, and the cathode of the diode 10 are connected. 半導体スイッチ素子5の他方の接続部には、電圧検出手段8の他方の入力部、ならびにダイオード10のアノードがそれぞれ接続されている。 The other connection portion of the semiconductor switching element 5, the other input of the voltage detecting means 8, and the anode of the diode 10 are connected. 【0023】同様に、半導体スイッチ素子6の一方の接続部には、電圧検出手段9の一方の入力部、ならびにダイオード11のカソードがそれぞれ接続されており、該半導体スイッチ素子6の他方の接続部には、電圧検出手段9の他方の入力部、およびダイオード11のアノードがそれぞれ接続されている。 [0023] Similarly, the one connection portion of the semiconductor switching element 6, one input of the voltage detection means 9, and has the cathode of the diode 11 is connected to the other connection portion of the semiconductor switching element 6 the other input of the voltage detection means 9, and the anode of the diode 11 are respectively connected. 【0024】そして、半導体スイッチ素子5の他方の接続部と半導体スイッチ素子6の他方の接続部とが、コンバータ3の出力部OUT1,OUT2となり、ある電圧レベルにコンバートされた直流電圧が出力される。 [0024] Then, the other connection portion and the other connecting portion of the semiconductor switching element 6 of the semiconductor switching element 5, the output section OUT1, OUT2 next to the converter 3, a DC voltage which is converted to a voltage level output . 【0025】電圧検出手段7〜9の出力部には、制御回路12が接続されている。 [0025] The output of the voltage detecting means 7-9, the control circuit 12 is connected. 制御回路12は、電圧検出手段7〜9が検出した電圧/電流から電力を算出して減少したか増加したかを測定し、その電力が最大発電電力に近づいたか遠ざかったかを判定する、いわゆる山登り法などによる制御によって最大電力を得るようにゲート生成回路13などを制御する。 The control circuit 12 measures whether the voltage detecting means 7-9 was increased or decreased by calculating the power from the voltage / current detected, determines whether the power is away or close to the maximum generated power, the so-called hill-climbing It controls the gate generating circuit 13 so as to obtain the maximum power and the like of the control law. 【0026】ゲート生成回路13には、ドライブ回路1 [0026] to the gate generating circuit 13, drive circuit 1
4が接続されている。 4 is connected. ゲート生成回路13は、制御回路12の制御信号に基づいてゲート信号を生成する。 The gate generation circuit 13 generates a gate signal based on the control signal of the control circuit 12. ゲート生成回路13が生成したゲート信号は、ドライブ回路14の入力部に入力されるように接続されており、該ドライブ回路14の出力部には、半導体スイッチ素子5, A gate signal gate generating circuit 13 has generated is connected as input to the input portion of the drive circuit 14, the output of the drive circuit 14, the semiconductor switching element 5,
6のON/OFFを制御する制御端子(ゲート)にそれぞれ接続されている。 It is connected to the control terminal for controlling 6 ON / OFF of the (gate). 【0027】ドライブ回路14は、ゲート生成回路13 [0027] The drive circuit 14, the gate generating circuit 13
が生成したゲート信号を、半導体スイッチ素子5,6をON/OFF制御できるように増幅する。 There the generated gate signal, amplifies the semiconductor switching elements 5 and 6 to allow the ON / OFF control. 電源回路15 The power supply circuit 15
は、制御回路12、ゲート生成回路13、およびドライブ回路14の動作電源電圧を供給する。 Supplies the control circuit 12, the gate generating circuit 13, and the operating power supply voltage of the drive circuit 14. 【0028】また、図3においては、上方から下方にかけて、コンバータ3から出力される出力電流iM1、ダイオード10のカソード−アノード間の電圧V1、ならびにダイオード11のカソード−アノード間の電圧V2 Further, in FIG. 3, from top to bottom, the output current iM1 output from the converter 3, the cathode of the diode 10 - cathode voltage V1, and a diode 11 between the anode - the voltage between the anode V2
の各部電流/電圧波形についてそれぞれ示している。 Respectively show the Components current / voltage waveforms. 【0029】図示するように、半導体スイッチ素子5, [0029] As shown in the figure, the semiconductor switch element 5,
6は、交互にON/OFFするように制御されており、 6 is controlled to be ON / OFF alternately,
該半導体スイッチ素子5,6のON時の電圧を合成することによって、出力電流iM1が検出される。 By combining the voltage during ON of the semiconductor switching elements 5 and 6, the output current iM1 is detected. 【0030】よって、制御回路12が、これら半導体スイッチ素子5,6のON/OFF時間を制御することによって、コンバータ3からは、最大電力の直流電圧が安定して出力される。 [0030] Thus, the control circuit 12, by controlling the ON / OFF time of the semiconductor switching elements 5 and 6, from the converter 3, a DC voltage of maximum power are stably output. 【0031】次に、本実施の形態による太陽電池モジュール1を用いた系統連系システムSSの構成例を図4〜 Next, FIG. 4 an example of a configuration of a system interconnection system SS using the solar cell module 1 according to this embodiment
図6に示す。 It is shown in Figure 6. 【0032】図4は、太陽電池モジュール1を並列接続して系統連系システムSSを構成したものである。 [0032] FIG. 4 is obtained by constituting the system interconnecting system SS in parallel connected solar cell module 1. 【0033】この場合、各々の太陽電池モジュール1に設けられたコンバータ3の出力部OUT1には、平滑用のコイルLがそれぞれ接続されている。 [0033] In this case, the output OUT1 of the converter 3 provided in each of the solar cell module 1, a coil L for smoothing are connected. これら太陽電池モジュール1は、それぞれのコイルLを介して、連系インバータIvの入力部に並列接続されている。 These solar cell module 1, through the respective coils L, are connected in parallel to the input of the interconnection inverter Iv. また、連系インバータIvの入力部には、平滑用のコンデンサC Further, the input portion of the interconnection inverter Iv, smoothing capacitor C
が接続されている。 There has been connected. 【0034】連系インバータIvは、コンバータ3によってある電圧レベルに降圧された太陽電池モジュール1 The interconnection inverter Iv is the solar cell module 1, which is stepped down to a certain voltage level by the converter 3
の直流電圧EMが一定電圧となるように制御を行うとともに、交流に変換して出力し、商用電力系統に連系させる。 With DC voltage EM is controlled to be a constant voltage, and outputs the converted alternating current, to interconnection to the commercial power system. 【0035】ここで、図4においては、太陽電池モジュール1の後段に連系インバータIvを接続した構成としたが、図5に示すように、並列接続された太陽電池モジュール1と連系インバータIvとの間に、太陽電池モジュール1から出力された直流電圧をある電圧レベルまで昇圧する昇圧コンバータCVを接続する構成としてもよい。 [0035] Here, in FIG. 4, a configuration of connecting the interactive inverter Iv downstream of the solar cell module 1, as shown in FIG. 5, the parallel-connected solar cell module 1 and the interconnection inverter Iv between, it may be connected to the boost converter CV which boosted to a certain voltage level DC voltage output from the solar cell module 1. 【0036】また、図6は、太陽電池モジュール1を直列接続して系統連系システムSSを構成したものである。 Further, FIG. 6 is obtained by constituting the system interconnecting system SS connected in series with the solar cell module 1. 【0037】この場合も、各々の太陽電池モジュール1 [0037] In this case, each of the solar cell module 1
に設けられたコンバータ3の出力部OUT1には平滑用のコイルLがそれぞれ接続されており、連系インバータIvの入力部には、平滑用のコンデンサCが接続されている。 Coil L for smoothing the output OUT1 of the converter 3 provided on are connected respectively, to the input of interactive inverter Iv, the capacitor C for smoothing is connected. 【0038】それにより、本実施の形態によれば、太陽電池素子2、およびコンバータ3を基板の受光面にそれぞれ設けたことにより、系統連系システムSSを小型化することができる。 [0038] Thus, according to this embodiment, by the solar cell element 2, and the converter 3 are provided respectively on the light receiving surface of the substrate, it is possible to reduce the size of the system interconnecting system SS. 【0039】また、コンバータ3を半導体製造技術によって基板の受光面に形成することによって、太陽電池素子2と一体に製造できるので、太陽電池モジュール1の生産効率を大幅に向上することができ、コストダウンが可能となる。 Further, by forming the light-receiving surface of the substrate by semiconductor manufacturing techniques converter 3, can be manufactured integrally with the solar cell element 2, it is possible to greatly improve the production efficiency of the solar cell module 1, cost down it is possible. 【0040】 【発明の効果】以上の説明から明らかなように、本発明によれば以下の効果を奏することができる。 [0040] As apparent from the above description, it is possible to achieve the following effects according to the present invention. (1).太陽電池素子、およびコンバータを基板の受光面にそれぞれ設けたことにより、系統連系システムを小型化することができる。 (1). Solar cell element, and the converter by the respectively provided on the light receiving surface of the substrate, it is possible to reduce the size of the system interconnecting system. (2).また、基板の受光面に半導体製造技術によってコンバータを直接形成するので、太陽電池モジュールの生産効率を大幅に向上することができる。 (2). Further, since the direct form converter by semiconductor fabrication techniques on the light receiving surface of the substrate, it is possible to greatly improve the production efficiency of the solar cell module.

【図面の簡単な説明】 【図1】本発明の一実施の形態による太陽電池モジュールの構成を示す説明図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a configuration of a solar cell module according to an embodiment of the present invention. 【図2】図1の太陽電池モジュールに設けられたコンバータの回路図である。 2 is a circuit diagram of a converter provided with the solar cell module of FIG. 【図3】図2のコンバータにおける各部の電圧/電流波形のタイミングチャートである。 3 is a timing chart of each part of the voltage / current waveforms in the converter of FIG. 【図4】図1の太陽電池モジュールを並列接続した際の一例を示す接続説明図である。 4 is a connection diagram showing an example when the solar cell modules are connected in parallel in FIG. 1. 【図5】図1の太陽電池モジュールを並列接続した際の他の例を示す接続説明図である。 5 is a connection diagram showing another example when the solar cell module of FIG. 1 are connected in parallel. 【図6】図1の太陽電池モジュールを直列接続した場合の一例を示す接続説明図である。 6 is a connection diagram showing an example in which a solar cell module of FIG. 1 are connected in series. 【符号の説明】 1 太陽電池モジュール2 太陽電池素子3 コンバータ4 コンデンサ5,6 半導体スイッチ素子7〜9 電圧検出手段10,11 ダイオード12 制御回路13 ゲート生成回路14 ドライブ回路15 電源回路IN1,IN2 入力部OUT1,OUT2 出力部SS 系統連系システムCV 昇圧コンバータL コイルIv 連系インバータC コンデンサ [EXPLANATION OF SYMBOLS] 1 solar cell module 2 solar cell element 3 converter 4 capacitors 5,6 semiconductor switching element 7-9 voltage detection means 10, 11 diode 12 control circuit 13 gate generating circuit 14 drive circuit 15 power source circuit IN1, IN2 input parts OUT1, OUT2 output unit SS system interconnecting system CV boost converter L coil Iv interconnection inverter C condenser

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 基板の素子搭載面に搭載され、直並列接続された複数の太陽電池素子と、 前記基板の素子搭載面に設けられ、前記複数の太陽電池素子が発電した直流電圧を降圧するコンバータとを備えたことを特徴とする太陽電池モジュール。 It mounted to the Claims 1] element mounting surface of the substrate, and a plurality of solar cell elements connected in series-parallel, arranged on the element mounting surface of said substrate, said plurality of solar cell elements is generating solar cell module characterized by comprising a converter that steps down a DC voltage. 【請求項2】 前記コンバータが、最大電力追従制御の機能を有することを特徴とする請求項1記載の太陽電池モジュール。 Wherein said converter is a solar cell module according to claim 1, characterized in that it has a function of the maximum power follow-up control. 【請求項3】 前記コンバータは半導体集積回路から構成され、半導体製造技術によって前記基板の素子搭載面上に前記半導体集積回路素子が直接形成されていることを特徴とする請求項1または2記載の太陽電池モジュール。 Wherein the converter consists of a semiconductor integrated circuit, a semiconductor according to the manufacturing technique according to claim 1 or 2, wherein said semiconductor integrated circuit device is formed directly on the element mounting surface of said substrate solar cell module.
JP2001320428A 2001-10-18 2001-10-18 Solar cell module Withdrawn JP2003124492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320428A JP2003124492A (en) 2001-10-18 2001-10-18 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320428A JP2003124492A (en) 2001-10-18 2001-10-18 Solar cell module

Publications (1)

Publication Number Publication Date
JP2003124492A true JP2003124492A (en) 2003-04-25

Family

ID=19137824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320428A Withdrawn JP2003124492A (en) 2001-10-18 2001-10-18 Solar cell module

Country Status (1)

Country Link
JP (1) JP2003124492A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250689A (en) * 2006-03-14 2007-09-27 Sansha Electric Mfg Co Ltd Sunlight inverter equipped with ipm and its manufacturing method
WO2010000108A1 (en) * 2008-07-01 2010-01-07 Yingtian Chen Concentrating photovoltaic cell system, wiring and aranging methods thereof
WO2010019374A2 (en) * 2008-08-10 2010-02-18 Advanced Energy Industries, Inc. Device, system and method for coupling multiple photovoltaic arrays
WO2010093702A2 (en) * 2009-02-13 2010-08-19 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency dc-dc converter
WO2008132553A3 (en) * 2006-12-06 2010-08-26 Solaredge Technologies Distributed power harvesting systems using dc power sources
US7964837B2 (en) 2007-12-31 2011-06-21 Advanced Energy Industries, Inc. Photovoltaic inverter interface device, system, and method
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8134812B2 (en) 2008-01-29 2012-03-13 Advanced Energy Industries, Inc. Energy conversion system with fault detection and interruption
US8203069B2 (en) 2007-08-03 2012-06-19 Advanced Energy Industries, Inc System, method, and apparatus for coupling photovoltaic arrays
WO2012093936A3 (en) * 2011-01-07 2012-09-20 Stiching Dienst Landbouwkundig Onderzoek Device for generating energy on the basis of sunlight
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8294296B2 (en) 2007-08-03 2012-10-23 Advanced Energy Industries, Inc. System, method, and apparatus for remotely coupling photovoltaic arrays
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8362644B2 (en) 2008-12-02 2013-01-29 Advanced Energy Industries, Inc. Device, system, and method for managing an application of power from photovoltaic arrays
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8461508B2 (en) 2008-08-10 2013-06-11 Advanced Energy Industries, Inc. Device, system, and method for sectioning and coupling multiple photovoltaic strings
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
JP2014215793A (en) * 2013-04-25 2014-11-17 独立行政法人産業技術総合研究所 Voltage adjustment circuit of solar cell string
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
JP2015050933A (en) * 2013-09-02 2015-03-16 エルエス産電株式会社Lsis Co.,Ltd. Solar inverter
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
JP2015141498A (en) * 2014-01-28 2015-08-03 株式会社デンソー Power conversion equipment
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9172296B2 (en) 2007-05-23 2015-10-27 Advanced Energy Industries, Inc. Common mode filter system and method for a solar power inverter
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105553391A (en) * 2016-01-22 2016-05-04 成都瑞顶特科技实业有限公司 Photovoltaic energy storage battery power generation system and control method
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10516336B2 (en) 2018-10-02 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250689A (en) * 2006-03-14 2007-09-27 Sansha Electric Mfg Co Ltd Sunlight inverter equipped with ipm and its manufacturing method
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
WO2008132553A3 (en) * 2006-12-06 2010-08-26 Solaredge Technologies Distributed power harvesting systems using dc power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9172296B2 (en) 2007-05-23 2015-10-27 Advanced Energy Industries, Inc. Common mode filter system and method for a solar power inverter
US8294296B2 (en) 2007-08-03 2012-10-23 Advanced Energy Industries, Inc. System, method, and apparatus for remotely coupling photovoltaic arrays
US8203069B2 (en) 2007-08-03 2012-06-19 Advanced Energy Industries, Inc System, method, and apparatus for coupling photovoltaic arrays
US8642879B2 (en) 2007-08-03 2014-02-04 Advanced Energy Industries, Inc. System for coupling photovoltaic arrays
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8773092B2 (en) 2007-08-06 2014-07-08 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US7964837B2 (en) 2007-12-31 2011-06-21 Advanced Energy Industries, Inc. Photovoltaic inverter interface device, system, and method
US8134812B2 (en) 2008-01-29 2012-03-13 Advanced Energy Industries, Inc. Energy conversion system with fault detection and interruption
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
WO2010000108A1 (en) * 2008-07-01 2010-01-07 Yingtian Chen Concentrating photovoltaic cell system, wiring and aranging methods thereof
CN102177404A (en) * 2008-08-10 2011-09-07 先进能源工业公司 Device, system and method for coupling multiple photovoltaic arrays
WO2010019374A2 (en) * 2008-08-10 2010-02-18 Advanced Energy Industries, Inc. Device, system and method for coupling multiple photovoltaic arrays
US8461508B2 (en) 2008-08-10 2013-06-11 Advanced Energy Industries, Inc. Device, system, and method for sectioning and coupling multiple photovoltaic strings
WO2010019374A3 (en) * 2008-08-10 2010-05-27 Advanced Energy Industries, Inc. Device, system and method for coupling multiple photovoltaic arrays
US8461507B2 (en) 2008-08-10 2013-06-11 Advanced Energy Industries, Inc Device system and method for coupling multiple photovoltaic arrays
KR101219119B1 (en) 2008-08-10 2013-01-11 어드밴스드 에너지 인더스트리즈 인코포레이티드 Device, system and method for coupling multiple photovolatic arrays
US8362644B2 (en) 2008-12-02 2013-01-29 Advanced Energy Industries, Inc. Device, system, and method for managing an application of power from photovoltaic arrays
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2010093702A2 (en) * 2009-02-13 2010-08-19 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency dc-dc converter
US9164525B2 (en) 2009-02-13 2015-10-20 Apollo Precision Fujian Limited Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
WO2010093702A3 (en) * 2009-02-13 2010-12-02 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency dc-dc converter
EP2396822A4 (en) * 2009-02-13 2018-01-24 Apollo Precision Fujian Limited Thin-film photovoltaic power element with integrated low-profile high-efficiency dc-dc converter
US8058752B2 (en) 2009-02-13 2011-11-15 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10411644B2 (en) 2009-05-22 2019-09-10 Solaredge Technologies, Ltd. Electrically isolated heat dissipating junction box
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
WO2012093936A3 (en) * 2011-01-07 2012-09-20 Stiching Dienst Landbouwkundig Onderzoek Device for generating energy on the basis of sunlight
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
JP2014215793A (en) * 2013-04-25 2014-11-17 独立行政法人産業技術総合研究所 Voltage adjustment circuit of solar cell string
CN104426165A (en) * 2013-09-02 2015-03-18 Ls产电株式会社 Photovoltaic inverter
US9882381B2 (en) 2013-09-02 2018-01-30 Lsis Co., Ltd. Photovoltaic inverter
JP2015050933A (en) * 2013-09-02 2015-03-16 エルエス産電株式会社Lsis Co.,Ltd. Solar inverter
JP2015141498A (en) * 2014-01-28 2015-08-03 株式会社デンソー Power conversion equipment
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105553391A (en) * 2016-01-22 2016-05-04 成都瑞顶特科技实业有限公司 Photovoltaic energy storage battery power generation system and control method
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10516336B2 (en) 2018-10-02 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter

Similar Documents

Publication Publication Date Title
Li et al. A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations
Liu et al. Photovoltaic DC-building-module-based BIPV system—Concept and design considerations
TWI230492B (en) Power generation system
Enslin et al. Integrated photovoltaic maximum power point tracking converter
US10141745B2 (en) Photovoltaic power conditioning units
KR101235990B1 (en) Distributed energy conversion systems
Kjaer et al. Power inverter topologies for photovoltaic modules-a review
Kjaer et al. A review of single-phase grid-connected inverters for photovoltaic modules
CA2737134C (en) Systems for highly efficient solar power
US8058752B2 (en) Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
US8144490B2 (en) Operation of a three level converter
US7064969B2 (en) Monopolar DC to bipolar to AC converter
USRE42039E1 (en) DC to AC inverter with single-switch bipolar boost circuit
EP1389829A1 (en) Power converter and electric power generator
Hu et al. A three-port flyback for PV microinverter applications with power pulsation decoupling capability
AU2009201940B2 (en) High efficiency, multi-source photovoltaic inverter
US20110056533A1 (en) Series solar system with current-matching function
KR100763135B1 (en) Photovoltaic power generation system and control method thereof
JP2011522505A (en) System and method for an array of multiple intelligent inverters
Chen et al. Design and implementation of three-phase two-stage grid-connected module integrated converter
KR20140119710A (en) Stacked voltage source inverter with separate dc sources
EP1771780B1 (en) 3-phase solar converter circuit and method
US10277165B2 (en) Photovoltaic module
US8093754B2 (en) High voltage array converter
US20130009700A1 (en) Power Converter Circuit with AC Output

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104