WO2018014361A1 - 基于数字微镜阵列的紫外曝光机及其控制方法 - Google Patents

基于数字微镜阵列的紫外曝光机及其控制方法 Download PDF

Info

Publication number
WO2018014361A1
WO2018014361A1 PCT/CN2016/091514 CN2016091514W WO2018014361A1 WO 2018014361 A1 WO2018014361 A1 WO 2018014361A1 CN 2016091514 W CN2016091514 W CN 2016091514W WO 2018014361 A1 WO2018014361 A1 WO 2018014361A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital micromirror
exposure machine
micromirror array
digital
micro
Prior art date
Application number
PCT/CN2016/091514
Other languages
English (en)
French (fr)
Inventor
马颖鏖
Original Assignee
马颖鏖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马颖鏖 filed Critical 马颖鏖
Publication of WO2018014361A1 publication Critical patent/WO2018014361A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2057Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using an addressed light valve, e.g. a liquid crystal device
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets

Definitions

  • the invention relates to an ultraviolet exposure machine and a control method thereof, in particular to an ultraviolet exposure machine based on a digital micro mirror array and a control method thereof.
  • Lithography is the core technology of large-scale integrated circuits and micro-machining. With the continuous expansion of the application range of large-scale integrated circuits, the integration level is increasing and the processing area is increasing. Therefore, UV exposure is required to further develop on the basis of high resolution. Improve the efficiency of processing.
  • a lithographic effect is achieved by controlling a digital micromirror to copy a designed pattern onto a substrate.
  • the Digital Micromirror Device is a type of optical switch that uses a rotating mirror to open and close the optical switch. The opening and closing time is slightly longer, on the order of microseconds. The action process is very simple.
  • the light comes out of the light source and is directed to the reflective lens of the DMD.
  • the DMD When the DMD is turned on, the light can enter the fiber at the other end through the symmetrical optical path; when the DMD is turned off, the mirror of the DMD produces a small rotation. After the light is reflected, it cannot enter the other end of the symmetry, and the effect of closing the optical switch is achieved.
  • the lithography machine uses a scanning method to realize large-area exposure, and the scanning method here includes continuous scanning or step scanning.
  • the aspect ratio of the digital micromirror array is basically 4:3 or 16:9.
  • the width direction does not need to be so wide, so in the actual use, only a part of the array is used in the width direction, which is not fully obtained. Use.
  • the technical problem to be solved by the present invention is to provide an ultraviolet exposure machine based on a digital micromirror array and a control method thereof, which can image a portion of a digital micromirror array which is not used in the direction of translation in a direction intersecting with a scanning direction.
  • the lithography width is increased, and a large-area scanning exposure is realized to improve work efficiency.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide an ultraviolet exposure machine based on a digital micro mirror array, comprising a digital micro mirror array and a light source, and an illumination optical device is disposed between the digital micro mirror array and the light source.
  • the digital micromirror array and the imaging surface are provided with a front group optical device and a portrait segmentation device, and the light emitted by the light source passes through the illumination optical system and reaches the digital micromirror array, and the reflected light passes through
  • the image splitting device is divided into a plurality of sets of light beams of different directions, and then through the respective optical systems, an image having a certain displacement is formed on the image forming surface.
  • the image segmentation device is an optical device including at least one reflective surface.
  • the present invention further provides a control method for the above-mentioned ultraviolet micro-exposure machine based on a digital micro-mirror array, which comprises the following steps: a) using light reflected by the digital micro-mirror array as a generation source of the lithographic pattern; b) The image generated by the digital micromirror array is segmented in the image segmentation device, and two or more divided images arranged in the sub-scanning direction are formed on the imaging surface; c) the segmented image is seamless in the sub-scanning direction X direction Engaging, while being spaced apart from each other in the main scanning direction Y, and the length of the pattern crossing remains unchanged in the main scanning direction;
  • step c) is to control the optical path lengths of the digital micro-mirror array to the imaging planes of the respective divided patterns to be equal, so that the divided image is in the sub-scanning direction X direction Seamless connection.
  • step c) controls the mirror translation by setting an angle-adjustable optical plate under the digital micro-mirror array, so that the divided image is in the sub-scanning direction X Seamlessly connected in the direction.
  • the above method for controlling an ultraviolet exposure machine based on a digital micromirror array wherein the step c) will arrange a plurality of ultraviolet exposure machines in a sub-scanning direction and realize a large-area one-time scanning exposure.
  • the present invention has the following beneficial effects: the ultraviolet micro-mirror based on the digital micro-mirror array and the control method thereof are provided, and the digital micro-mirror array is used as the generation source of the lithography pattern, and the digital micro-image device is used to divide the digital micro-image The pattern generated by the mirror array is divided, and two or more patterns arranged along the sub-scanning direction are formed on the imaging surface, and the portion of the digital micro-mirror array that is not used may be translated and imaged in a direction intersecting the scanning direction.
  • the lithography width is increased to improve the working efficiency; at the same time, the exposure machine is also suitable for the combined arrangement of a plurality of optical systems, and at the same time, there is no gap between the plurality of optical systems and the direction intersecting the scanning direction, thereby realizing a large area.
  • FIG. 1 is a schematic structural view of an ultraviolet exposure machine based on a digital micromirror array of the present invention
  • FIG. 2 is a schematic view showing optical imaging of an exposure machine of the present invention
  • FIG. 3 is a schematic diagram of a digital micromirror array of the present invention and a position on an imaging surface;
  • FIG. 4 is a schematic view showing the position of the two optical imaging systems formed on the imaging surface after being arranged in the present invention
  • Figure 5 is a schematic view of a lithography machine of the closely arranged optical system of the present invention.
  • FIG. 6 is a schematic diagram of a scanning process in a main scanning direction according to the present invention.
  • FIG. 7 is a schematic view showing the structure of an ultraviolet exposure machine with an image-plane-shifting optical fine-tuning device according to the present invention.
  • FIG. 1 is a schematic view showing the structure of an ultraviolet exposure machine based on a digital micromirror array according to the present invention
  • FIG. 2 is a schematic view showing optical imaging of the exposure machine of the present invention.
  • the digital micromirror array-based ultraviolet exposure machine comprises a digital micromirror array 1 and a light source 3, and an illumination optical device 4 is disposed between the digital micromirror array 1 and the light source 3.
  • the front micro-mirror array 1 and the image-forming surface 2 are disposed between the digital micro-mirror array 1 and the image-forming surface 2, and the light emitted by the light source 3 passes through the illumination optical system 4 and reaches the digital micro-mirror array 1 for reflection.
  • the invention provides a digital micromirror array-based ultraviolet exposure machine, wherein the image segmentation device 6 is an optical device including at least one reflective surface; as shown in FIG. 3, the light emitted from the light source passes through the illumination optical system.
  • the digital micro-mirror array after the reflected light passes through the front group optical device, is divided into three sets of light in different directions in the image segmentation system, and then forms a certain displacement image through the respective optical systems.
  • the pattern on the digital micromirror array 1 forms a main scanning direction on the imaging surface 2 with a certain interval d, in the sub-scan Patterns having no gaps in the direction are arranged to form a larger lithographic width w.
  • Figure 3 shows the division into 3 parts, but in the same way, it can be divided into 2 parts, or more.
  • the invention also provides a control method of the above ultraviolet micro-exposure machine based on digital micro-mirror array, comprising the following steps:
  • the digital micromirror array 1 as a source of lithography pattern; the digital micromirror array 1 aspect ratio of 4:3 or 16:9;
  • the image generated by the digital micromirror array 1 is divided in the image segmentation device 6, and two or more divided images 8 arranged in the sub-scanning direction are formed on the imaging surface 2;
  • the divided images 8 are seamlessly joined in the sub-scanning direction X direction while being spaced apart from each other in the main scanning direction Y, and the length of the pattern crossing remains unchanged in the main scanning direction; for example, by controlling the digital micromirror
  • the optical path lengths of the array 1 to the respective segmentation pattern imaging faces are equal, or the mirror translation is controlled by providing an angle-adjustable dimming plate 10 under the digital micromirror array 1, so that the segmented image 8 is seamless in the sub-scanning direction X direction.
  • the digital micromirror array 1 is used as a source of the lithographic pattern, and the pattern generated by the digital micromirror array 1 is divided by the image dividing device 6, and two or more patterns arranged in the sub-scanning direction are formed on the image forming surface.
  • This pattern has no gap in the X-direction in the sub-scanning direction, and has an arrangement in the main scanning direction Y.
  • the pattern formed by the optical imaging system is spaced in the main scanning direction, a larger lithographic width can be formed by arranging the two or more optical imaging systems along the sub-scanning direction, and the pattern is crossed in the main scanning direction. The length remains the same.
  • the portion of the digital micromirror array that was not used can be imaged after being translated in the direction intersecting the scanning direction, so that the lithography width is increased, and the working efficiency is improved.
  • the structure of the optical system is also suitable for the combined arrangement of a plurality of optical systems, and at the same time, there is no gap between the plurality of optical systems in the direction intersecting the scanning direction, and a large-area one-time scanning exposure is realized.
  • Figures 5 and 6 show the larger lithographic width without gaps formed by the close alignment of the two optical systems.
  • the actual scanning length is B + 2XA, so that the smaller the A, the higher the processing efficiency.
  • the present invention has the same pattern span length as a single optical system because the pattern is on the main scan. Processing efficiency will be further improved.
  • the image plane can be added under the lens. Translational optical fine-tuning system for easy alignment. As shown in FIG. 7, an angle-adjustable dimming plate 10 is disposed under the digital micromirror array 1, and the image plane is translated by adjusting the angle of the optical plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种基于数字微镜阵列的紫外曝光机及其控制方法,紫外曝光机包括数字微镜阵列(1)和光源(3),所述数字微镜阵列(1)和光源(3)之间设置有照明光学装置(4),其中,所述数字微镜阵列(1)和成像面(2)之间设置有前组光学装置(5)和画像分割装置(6),所述光源(3)发出的光经过照明光学装置(4)后到达数字微镜阵列(1),反射后的光线经过前组光学装置(5)后,在画像分割装置(6)中被分割成多组不同方向的光线后经各自的光学系统后在成像面(2)上形成有一定位移的图像,因此能够将原来不被利用的数字微镜阵列(1)的部分,在和扫描方向相交的方向上平移后成像,使光刻宽度变大,实现大面积的一次扫描曝光,提高工作效率。

Description

基于数字微镜阵列的紫外曝光机及其控制方法 技术领域
本发明涉及一种紫外曝光机及其控制方法,尤其涉及一种基于数字微镜阵列的紫外曝光机及其控制方法。
背景技术
光刻技术是大规模集成电路和微细加工的核心技术,随着大规模集成电路应用范围的不断扩大,集成度不断提高,加工面积不断变大,因此要求紫外曝光在高分辨率的基础上进一步提高加工的效率。对于数字微镜阵列作为光刻图案发生源的光刻机,通过控制数字微镜来实现将设计的图案复制到基板上,从而达到光刻的效果。数字微镜器件(Digital Micromirror Device,DMD)是光开关的一种,利用旋转反射镜实现光开关的开合,开闭时间稍长,为微秒量级。作用过程十分简单,光从光源中出来,射向DMD的反射镜片,DMD打开的时候,光可经过对称光路进入到另一端光纤;当DMD关闭的时候,即DMD的反射镜产生一个小的旋转,光经过反射后,无法进入对称的另一端,也就达到了光开关关闭的效果。
因为现有的数字微镜阵列作为光刻图案发生源的光刻机都是使用扫描方式实现大面积曝光,这里的扫描方式包括连续扫描或分步扫描。而数字微镜阵列的长宽比基本为4:3或16:9等,对于扫描方式而言,宽度方向并不需要这么宽,所以在实际使用时宽度方向只使用了一部分阵列,没有得到充分的利用。
发明内容
本发明所要解决的技术问题是提供一种基于数字微镜阵列的紫外曝光机及其控制方法,能够将原来不被利用的数字微镜阵列的部分,在和扫描方向相交的方向上平移后成像,使光刻宽度变大,实现大面积的一次扫描曝光,提高工作效率。
本发明为解决上述技术问题而采用的技术方案是提供一种基于数字微镜阵列的紫外曝光机,包括数字微镜阵列和光源,所述数字微镜阵列和光源之间设置有照明光学装置,其中,所述数字微镜阵列和成像面之间设置有前组光学装置和画像分割装置,所述光源发出的光经过照明光学系统后到达数字微镜阵列,反射后的光线经 过前组光学装置后,在画像分割装置中被分割成多组不同方向的光线后经各自的光学系统后在成像面上形成有一定位移的图像。
上述的基于数字微镜阵列的紫外曝光机,其中,所述画像分割装置为至少包含一个反射面的光学器件。
上述的基于数字微镜阵列的紫外曝光机,其中,所述数字微镜阵列的下方设置有角度可调的光学平板。
本发明为解决上述技术问题还提供一种上述基于数字微镜阵列的紫外曝光机的控制方法,包括如下步骤:a)用数字微镜阵列反射后的光线作为光刻图案的发生源;b)将数字微镜阵列产生的图像在画像分割装置中进行分割,在成像面上形成两个以上沿次扫描方向排列的分割后图像;c)所述分割后图像在次扫描方向X方向上无缝衔接,同时在主扫描方向Y上相互间隔排列,且在主扫描方向上图案跨越的长度保持不变;
上述的基于数字微镜阵列的紫外曝光机的控制方法,其中,所述数字微镜阵列的长宽比为4:3或16:9。
上述的基于数字微镜阵列的紫外曝光机的控制方法,其中,所述步骤c)通过控制数字微镜阵列到各个分割图案成像面的光路长相等,使得分割后图像在次扫描方向X方向上无缝衔接。
上述的基于数字微镜阵列的紫外曝光机的控制方法,其中,所述步骤c)通过在数字微镜阵列的下方设置角度可调的光学平板控制镜面平移,使得分割后图像在次扫描方向X方向上无缝衔接。
上述的基于数字微镜阵列的紫外曝光机的控制方法,其中,所述步骤c)将将多个紫外曝光机在次扫描方向上排列,并实现大面积的一次扫描曝光。
本发明对比现有技术有如下的有益效果:本发明提供的基于数字微镜阵列的紫外曝光机及其控制方法,用数字微镜阵列作为光刻图案的发生源,通过画像分割装置将数字微镜阵列产生的图案进行分割,在成像面上形成两个以上沿次扫描方向排列的图案,可以将原来不被利用的数字微镜阵列的部分,在和扫描方向相交的方向上平移后成像,使光刻宽度变大,从而提高工作效率;同时该曝光机也适合于多个光学系的组合排列,同时在多个光学系之间的和扫描方向相交的方向上没有空隙,实现大面积的一次扫描曝光。
附图说明
图1为本发明的基于数字微镜阵列的紫外曝光机结构示意图;
图2为本发明的曝光机光学成像示意图;
图3为本发明的数字微镜阵列和在成像面上形成位置示意图;
图4为本发明的2个光学成像系统排列后在成像面上形成的位置示意图;
图5为本发明紧密排列的光学系统的光刻机示意图;
图6为本发明主扫描方向上扫描过程示意图;
图7为本发明带像面平移的光学微调器件的紫外曝光机结构示意图。
图中:
1数字微镜阵列             2成像面                3光源
4照明光学装置             5前组光学装置          6画像分割装置
7分割前图像               8分割后图像            9分割图像结合处
10调光平板
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
图1为本发明基于数字微镜阵列的紫外曝光机结构示意图;图2为本发明的曝光机光学成像示意图。
请参见图1和图2,本发明提供的基于数字微镜阵列的紫外曝光机,包括数字微镜阵列1和光源3,所述数字微镜阵列1和光源3之间设置有照明光学装置4,其中,所述数字微镜阵列1和成像面2之间设置有前组光学装置5和画像分割装置6,所述光源3发出的光经过照明光学系统4后到达数字微镜阵列1,反射后的光线经过前组光学装置5后,在画像分割装置6中被分割成多组不同方向的光线后经各自的光学系统后在成像面2上形成有一定位移的图像。
本发明提供的基于数字微镜阵列的紫外曝光机,其中,所述画像分割装置6为至少包含一个反射面的光学器件;如图3所示,从光源发出的光,经过照明光学系统后到达数字微镜阵列,反射后的光线经过前组光学装置后,在画像分割系统中被分割成3组不同方向的光线后经各自的光学系统后再成像面上形成有一定位移的图像。数字微镜阵列1上的图案在成像面2上形成主扫描方向有一定间隔d,在次扫描 方向上没有间隙的图案排列,形成更大光刻宽度w。图3所示为分割成3份,但用同样方法可以分割成2份,或更多的分割。
本发明还提供一种上述基于数字微镜阵列的紫外曝光机的控制方法,包括如下步骤:
a)用数字微镜阵列1反射后的光线作为光刻图案的发生源;所述数字微镜阵列1的长宽比为4:3或16:9;
b)将数字微镜阵列1产生的图像在画像分割装置6中进行分割,在成像面2上形成两个以上沿次扫描方向排列的分割后图像8;
c)所述分割后图像8在次扫描方向X方向上无缝衔接,同时在主扫描方向Y上相互间隔排列,且在主扫描方向上图案跨越的长度保持不变;比如通过控制数字微镜阵列1到各个分割图案成像面的光路长相等,或者通过在数字微镜阵列1的下方设置角度可调的调光平板10控制镜面平移,使得分割后图像8在次扫描方向X方向上无缝衔接,如图4中的分割图像结合处9所示。
本发明用数字微镜阵列1作为光刻图案的发生源,通过画像分割装置6将数字微镜阵列1产生的图案进行分割,在成像面上形成两个以上沿次扫描方向排列的图案。该图案在次扫描方向X方向上没有间隙,在主扫描方向Y上有间隔的排列。同时由于该光学成像系统形成的图案在主扫描方向上有间隔,故可以通过两个以上该光学成像系统沿次扫描方向上的排列,形成更大光刻宽度,同时在主扫描方向上图案跨越的长度保持不变。从而可以将原来不被利用的数字微镜阵列的部分,在和扫描方向相交的方向上平移后成像,使光刻宽度变大,提高工作效率。同时该光学系的结构也适合于多个光学系的组合排列,同时在多个光学系之间的和扫描方向相交的方向上没有空隙,实现大面积的一次扫描曝光。
图5和图6显示了两个光学系统紧密排列后,形成的更大的没有间隙的光刻宽度。由图7所示,要得到加工长度B,实际扫描长度为B+2XA,这样A越小加工效率越高。本发明因为图案在主扫描上,图案跨越的长度和单个光学系统相同。加工效率将得到进一步提升。
当采用多分割方式时,因为位置微镜整列的单元像素尺寸较小,为了保证分割后的各个图像在次扫描方向上没有间隙,且以像素为单位对准,可以在镜头下方,增加像面平移的光学微调系统,以方便对准。如图7所示,所述数字微镜阵列1的下方设置有角度可调的调光平板10,通过调整光学平板的角度,来使像面平移。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (8)

  1. 一种基于数字微镜阵列的紫外曝光机,包括数字微镜阵列(1)和光源(3),所述数字微镜阵列(1)和光源(3)之间设置有照明光学装置(4),其特征在于,所述数字微镜阵列(1)和成像面(2)之间设置有前组光学装置(5)和画像分割装置(6),所述光源(3)发出的光经过照明光学系统(4)后到达数字微镜阵列(1),反射后的光线经过前组光学装置(5)后,在画像分割装置(6)中被分割成多组不同方向的光线后经各自的光学系统后在成像面(2)上形成有一定位移的图像。
  2. 如权利要求1所述的基于数字微镜阵列的紫外曝光机,其特征在于,所述画像分割装置(6)为至少包含一个反射面的光学器件。
  3. 如权利要求1所述的基于数字微镜阵列的紫外曝光机,其特征在于,所述数字微镜阵列(1)的下方设置有角度可调的光学平板。
  4. 一种基于数字微镜阵列的紫外曝光机的控制方法,采用如权利要求1所述的基于数字微镜阵列的紫外曝光机,其特征在于,包括如下步骤:
    a)用数字微镜阵列(1)反射后的光线作为光刻图案的发生源;
    b)将数字微镜阵列(1)产生的图像在画像分割装置(6)中进行分割,在成像面(2)上形成两个以上沿次扫描方向排列的分割后图像(8);
    c)所述分割后图像(8)在次扫描方向X方向上无缝衔接,同时在主扫描方向Y上相互间隔排列,且在主扫描方向上图案跨越的长度保持不变;
  5. 如权利要求4所述的基于数字微镜阵列的紫外曝光机的控制方法,其特征在于,所述数字微镜阵列(1)的长宽比为4:3或16:9。
  6. 如权利要求4所述的基于数字微镜阵列的紫外曝光机的控制方法,其特征在于,所述步骤c)通过控制数字微镜阵列(1)到各个分割图案成像面的光路长相等,使得分割后图像(8)在次扫描方向X方向上无缝衔接。
  7. 如权利要求4所述的基于数字微镜阵列的紫外曝光机的控制方法,其特征在于,所述步骤c)通过在数字微镜阵列(1)的下方设置角度可调的光学平板控制镜面平移,使得分割后图像(8)在次扫描方向X方向上无缝衔接。
  8. 如权利要求4所述的基于数字微镜阵列的紫外曝光机的控制方法,其特征在于,所述步骤c)将多个紫外曝光机在次扫描方向上排列,并实现大面积的一次扫描曝光。
PCT/CN2016/091514 2016-07-20 2016-07-25 基于数字微镜阵列的紫外曝光机及其控制方法 WO2018014361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610571229.X 2016-07-20
CN201610571229.XA CN105954980A (zh) 2016-07-20 2016-07-20 基于数字微镜阵列的紫外曝光机及其控制方法

Publications (1)

Publication Number Publication Date
WO2018014361A1 true WO2018014361A1 (zh) 2018-01-25

Family

ID=56900264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091514 WO2018014361A1 (zh) 2016-07-20 2016-07-25 基于数字微镜阵列的紫外曝光机及其控制方法

Country Status (2)

Country Link
CN (1) CN105954980A (zh)
WO (1) WO2018014361A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062008A (zh) * 2016-11-07 2018-05-22 俞庆平 一种不带有步进轴的激光直写曝光机
CN108073045A (zh) * 2016-11-07 2018-05-25 俞庆平 一种双分镜头直写式曝光机系统
CN110456612A (zh) * 2019-07-02 2019-11-15 苏州源卓光电科技有限公司 一种高效率投影光刻成像系统及曝光方法
CN112327578B (zh) * 2019-08-05 2023-11-21 源卓微纳科技(苏州)股份有限公司 一种直写光刻机的光刻系统
CN110501868A (zh) * 2019-08-16 2019-11-26 银月光学(苏州)有限公司 投影系统、曝光设备
CN111025858A (zh) * 2019-12-27 2020-04-17 合肥众群光电科技有限公司 一种实现超高速曝光的设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321676A (ja) * 2004-05-11 2005-11-17 Pentax Corp 描画装置
CN101144984A (zh) * 2006-09-15 2008-03-19 株式会社Orc制作所 曝光装置
CN101364050A (zh) * 2007-08-10 2009-02-11 株式会社Orc制作所 光刻系统
JP2009087995A (ja) * 2007-09-27 2009-04-23 Hitachi Via Mechanics Ltd マスクレス露光装置
US20100208222A1 (en) * 2009-02-17 2010-08-19 Samsung Electronics Co., Ltd., Exposure apparatus and method to measure beam position and assign address using the same
JP2014092707A (ja) * 2012-11-05 2014-05-19 Orc Manufacturing Co Ltd 露光装置
JP5881313B2 (ja) * 2011-05-30 2016-03-09 株式会社オーク製作所 露光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304517A (ja) * 2006-05-15 2007-11-22 Shinko Electric Ind Co Ltd 直描方式の露光方法及び装置
JP5505685B2 (ja) * 2009-01-29 2014-05-28 株式会社ニコン 投影光学系、並びに露光方法及び装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321676A (ja) * 2004-05-11 2005-11-17 Pentax Corp 描画装置
CN101144984A (zh) * 2006-09-15 2008-03-19 株式会社Orc制作所 曝光装置
CN101364050A (zh) * 2007-08-10 2009-02-11 株式会社Orc制作所 光刻系统
JP2009087995A (ja) * 2007-09-27 2009-04-23 Hitachi Via Mechanics Ltd マスクレス露光装置
US20100208222A1 (en) * 2009-02-17 2010-08-19 Samsung Electronics Co., Ltd., Exposure apparatus and method to measure beam position and assign address using the same
JP5881313B2 (ja) * 2011-05-30 2016-03-09 株式会社オーク製作所 露光装置
JP2014092707A (ja) * 2012-11-05 2014-05-19 Orc Manufacturing Co Ltd 露光装置

Also Published As

Publication number Publication date
CN105954980A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2018014361A1 (zh) 基于数字微镜阵列的紫外曝光机及其控制方法
JP6493584B2 (ja) Euv投影リソグラフィのための照明光学ユニット
JPH07161617A (ja) 走査型露光装置
EP2950145B1 (en) Illumination system for lithography
CN110456612A (zh) 一种高效率投影光刻成像系统及曝光方法
TW201106110A (en) Optical imaging system
CN109031899A (zh) 一种高分辨率高效率投影光刻成像系统及曝光方法
TW200949459A (en) Spatial light modulating unit, illumination optical system, aligner, and device manufacturing method
JP2006065118A (ja) 照明光学装置
KR102439363B1 (ko) 노광 장치용 노광 헤드 및 노광 장치용 투영 광학계
US20100321659A1 (en) Illumination Arrangement
CN106647045B (zh) 一种液晶选区光控取向装置及其方法
KR101388406B1 (ko) Euv 투영 리소그래피용 조명 광학 유닛에 대한 조명 기하구조 설정 방법
JP5397748B2 (ja) 露光装置、走査露光方法、およびデバイス製造方法
CN207833219U (zh) 采用mla技术的超高精度3d打印的光路系统
JP5360379B2 (ja) 投影光学系、露光装置、およびデバイス製造方法
CN208752391U (zh) 一种高分辨率高效率投影光刻成像系统
JP2010197628A5 (zh)
TW201433826A (zh) 照明光學系統、曝光裝置、以及裝置之製造方法
TWI524132B (zh) 投影系統
TWI247137B (en) Illumination system for projector and illumination method thereof
JP7169480B1 (ja) 露光装置用露光ヘッドおよび露光装置
JP5515323B2 (ja) 投影光学装置、露光装置、およびデバイス製造方法
JP6694508B2 (ja) マイクロリソグラフィ投影デバイスの照明系及びそのような系を作動させる方法
JPH11231549A (ja) 走査型露光装置および露光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909288

Country of ref document: EP

Kind code of ref document: A1