WO2018012862A1 - 3차원 스캐너와 이를 이용한 인공물가공장치 - Google Patents
3차원 스캐너와 이를 이용한 인공물가공장치 Download PDFInfo
- Publication number
- WO2018012862A1 WO2018012862A1 PCT/KR2017/007436 KR2017007436W WO2018012862A1 WO 2018012862 A1 WO2018012862 A1 WO 2018012862A1 KR 2017007436 W KR2017007436 W KR 2017007436W WO 2018012862 A1 WO2018012862 A1 WO 2018012862A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- scanner
- lens
- light
- image
- subject
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
- A61C9/004—Means or methods for taking digitized impressions
- A61C9/0046—Data acquisition means or methods
- A61C9/0053—Optical means or methods, e.g. scanning the teeth by a laser or light beam
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00011—Operational features of endoscopes characterised by signal transmission
- A61B1/00016—Operational features of endoscopes characterised by signal transmission using wireless means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/24—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0019—Production methods using three dimensional printing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/01—Palates or other bases or supports for the artificial teeth; Making same
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C19/00—Dental auxiliary appliances
- A61C19/04—Measuring instruments specially adapted for dentistry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
- A61C9/004—Means or methods for taking digitized impressions
- A61C9/0046—Data acquisition means or methods
- A61C9/0053—Optical means or methods, e.g. scanning the teeth by a laser or light beam
- A61C9/006—Optical means or methods, e.g. scanning the teeth by a laser or light beam projecting one or more stripes or patterns on the teeth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/04—Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
Definitions
- the present invention relates to an artificial processing system composed of a three-dimensional scanner, a data conversion device, a processing device, a three-dimensional printing device, and more specifically, a scanner, a data conversion device, and an artificial object that can obtain a three-dimensional model of the oral cavity. It relates to a processing device / three-dimensional printing device for processing.
- Non-contact 3D scanners using lasers or light have a wide range of applications.
- the scope of application is so wide that there is no scope that does not apply to society such as engineering, film, animation, industrial design, medical, art, fancy, cultural reproduction and restoration, and entertainment.
- the three-dimensional scanner is used in the medical field to manufacture a customized device to match the shape of the patient for manufacturing orthodontic instruments, teeth and the like.
- the method of making a model using plaster dough is digitized through a 3D scanner.
- the designing tools for calibration tools, prosthetics, prosthetics, artificial teeth, etc. are designed and processed with CAM software.
- the orthodontic and restorative work is pre-determined with the casting of the gypsum cast, which is a positive shape that becomes a die for the restoration work after the impression of the negative shape of the patient's tooth to be treated.
- the 3D scanner can be largely classified into a laser method and a camera method, and the laser method can scan an object by a point projection and a beam projection measurement method, and the camera method can scan an object by a projection and an area measurement method. .
- 3D scanners are in the spotlight because they can measure objects at high speed, enable precise measurement of elastic products, work with CAD for various purposes, and realize accurate shapes.
- the 3D scanner has a problem that the measurement accuracy is significantly lower than that of a contact type or a 3D coordinate measuring machine, and requires post-processing of data in an overlapping shape between measuring areas. There is a problem that a large error occurs in the acquisition, and the processing speed is delayed.
- the most common method of measuring an object using a 3D scanner is to merge a plurality of scanned images by photographing an object from various angles and then using a mouse only to photograph matching points of each scan.
- this method there is a limit in acquiring a precise 3D image because a difference occurs between the combined images according to the user's skill level, and it takes a lot of time when merging.
- the present invention provides a three-dimensional scanner that can produce a three-dimensional model by photographing the natural physiological oral structure (dental shape and angle and position and size of the teeth, etc.) of the patient without distortion as it is and an artificial processing system using the same. Is in.
- the present invention is a three-dimensional model alignment error and data processing time delay problem for each region generated when generating a three-dimensional model by continuously photographing the subject by region and stitching them when generating a three-dimensional image of the conventional subject, etc.
- the present invention provides a three-dimensional scanner and an artifact processing system using the same.
- the three-dimensional scanner of the present invention has a specific angle of view according to the refractive index and at least one refractive surface and at least one reflective coating surface having a first lens for receiving the omnidirectional image and a pattern for irradiating the light pattern to the subject
- the image capturing apparatus may be configured to receive an omnidirectional image of the subject to which the light pattern is irradiated.
- the first lens of the three-dimensional scanner according to an embodiment of the present invention may be composed of an aspherical lens which is any one of an omnidirectional lens, a mirror-type lens and a fisheye lens.
- the image photographing apparatus of the 3D scanner of the present invention may further include a mirror unit for changing a path of light from the first lens and an image sensor for acquiring an image from the mirror unit.
- the 3D scanner of the present invention may obtain data for generating a 2D image and a 3D model of the subject.
- the image capturing apparatus and the pattern generating apparatus may be synchronized to extract depth information of the 2D image, and a 3D model may be generated therefrom.
- the pattern growth value of the three-dimensional scanner of the present invention can irradiate various light patterns omnidirectionally using the second lens.
- the second lens may be configured of any one of an omnidirectional lens, a mirror lens, and a fisheye lens.
- the pattern growth growth value may be composed of a light source modulator capable of generating various patterns by adjusting the light source and the irradiation time of the light source and a micromirror for irradiating the various patterns generated.
- the light source may consist of a single light emitting diode or laser, or may consist of a plurality of said elements of various colors to produce a color pattern.
- the micromirror may include a MEMS mirror, a digital mirror device (DMD), or the like.
- the pattern growth value is determined by the size of a cylindrical lens or micromirror capable of converting point light from the light source into line light or a pattern of various lattice shapes.
- a collimator lens may be additionally configured to adjust the size of the generated pattern.
- the three-dimensional scanner of the present invention is a display device capable of displaying a two-dimensional image photographing a subject, a two-dimensional image divided by region or generated three-dimensional model data through wired and / or wireless communication, It may be configured as a preview display device that can be configured in a portable display device or a three-dimensional scanner.
- the subject may be an object having a shape such as a general structure, an object, a flora and fauna, a human body, an oral cavity, and particularly, an intraoral tooth and an oral structure.
- the data conversion apparatus of the present invention generates a three-dimensional model from the two-dimensional image data and depth information received from the above-described three-dimensional scanner. From the generated three-dimensional model, you can design a prosthesis, implant, braces, or surgical guide and convert it to CAM (Computer Aided Manufacturing) data for your machine or three-dimensional printer.
- CAM Computer Aided Manufacturing
- the processing apparatus of the present invention is at least one artificial teeth, bridges, implants, surgical guides, braces, dentures from the CAM data received from the data conversion device described above Can be processed.
- the 3D printer may output at least one of at least one artificial tooth, an artificial gum, a plurality of teeth connected to the palate, an implant, a surgical guide, a brace, and a denture from the CAM data received from the data converter. .
- the three-dimensional scanner can generate a high-quality and highly accurate three-dimensional model by minimizing error occurrence and precision and resolution degradation due to the combination of images of the existing oral 3D scanner.
- the embodiment can be quickly photographed to generate a three-dimensional model without applying the powder for preventing light reflection to the oral cavity.
- the embodiment can shorten the photographing time of the tooth can significantly shorten the diagnosis and procedure planning and procedure time of teeth, bridges, dentures, orthodontics, implants and the like.
- the embodiment does not require the operator to precisely scan through minimizing the number of shots of the subject, fast scan speed, and three-dimensional model correction based on the rotation angle information, thereby improving the work efficiency of the operator. It is possible to solve the problem that the precision of the three-dimensional image is reduced due to the deviation between the plurality of captured images due to artificial vibration or mechanical vibration.
- the embodiment can greatly increase the satisfaction of the patient and the operator who is the subject of the subject to the medical service by minimizing the treatment and diagnosis time.
- FIG. 1 is a view showing a 3D scanner and a display device displaying a received image from a 3D scanner according to an embodiment of the present invention.
- FIG 2 is a cross-sectional view of a first lens according to an exemplary embodiment of the present invention.
- 3 and 4 are cross-sectional views of a first lens according to another embodiment of the present invention.
- Fig. 5 is a configuration diagram of each device for explaining the image processing relationship between the three-dimensional scanner and the data conversion device.
- FIG. 6 is a flowchart of image processing of a three-dimensional scanner and a data conversion apparatus.
- FIG. 7 is a diagram showing an example of the configuration of a pattern generator that can be applied to the three-dimensional scanner of the present invention.
- FIG 8 and 9 are views for explaining the form in which the line pattern reflected from the micromirror is irradiated to the subject.
- 10 is a view for explaining that the direction of the line pattern according to the 90-degree rotation of the micromirror.
- FIG. 11 is a diagram illustrating still another configuration example of the pattern generator in FIG. 7; FIG.
- FIG. 12 is a schematic diagram of a three-dimensional scanner according to another embodiment of the present invention.
- Fig. 13 is a schematic diagram showing the positional relationship between the first lens of the image photographing apparatus and the second lens of the pattern generating apparatus.
- FIG. 14 is an exemplary view of generating a line light pattern.
- 15 is a schematic view of a three-dimensional scanner having a projector unit according to another embodiment of the present invention.
- 16 is a block diagram of an artifact processing system using a three-dimensional scanner according to an embodiment of the present invention.
- 17 is a view of the mandibular arch form.
- Fig. 19 shows the image of the maxilla taken by the three-dimensional scanner.
- FIG. 20 shows an image of a mandible taken by a three-dimensional scanner.
- FIG. 1 is a diagram illustrating a display apparatus displaying a 3D scanner and a received image from a 3D scanner according to an exemplary embodiment of the present invention.
- the 3D scanner 10 may include an omnidirectional lens unit.
- the omnidirectional lens unit may acquire a 360 degree omnidirectional image.
- the omnidirectional lens unit may include an omnidirectional lens having a specific angle of view in a direction perpendicular to the omnidirectional photographing surface according to the refractive index.
- the omnidirectional lens may be any one of a mirror lens, a fisheye lens, and an aspherical lens, but is not limited thereto.
- the 360-degree omnidirectional image may be acquired, and in detail, a single shooting may be performed on the mandible (S1) or the maxilla (S2)
- the lens may be configured to acquire image information about the structure of the existing tooth.
- the 3D scanner 10 may be configured of a barrel portion 11, a grip portion 12, and a connection portion 13 connecting them.
- the connecting portion 13 may be configured to be integral with or coupled to the barrel portion to rotate the barrel portion 11 on the grip portion 12.
- the barrel part 11 may include a whole or a part of the image photographing apparatus (FIGS. 12 and 610) including the omnidirectional lens and the pattern generating apparatus (FIGS. 12 and 620).
- the grip unit 12 may include a wired or wireless communication module for communicating with an external device and an image processor 320 for processing an image signal from an image photographing apparatus; A driver for controlling the micromirror, a light source for generating a pattern, and a light source modulator 512;
- the electronic device may include a memory for storing image data before and after processing, a rotation angle information detector, an illumination controller for controlling illumination of the barrel, and a controller for controlling the components.
- the grip 12 has a shape such as a gun type with a handle, a handle type of a power grip type / grooming brush type, a handle type, a pen type, or the like. It is possible to have any, and any size and shape that the user can hold the grip 12.
- the connecting portion 13 may be automatically rotated or manually rotated at a specific rotation angle by the barrel driving portion 14 formed of an actuator such as a motor.
- the barrel driving unit 14 may be operated by an external power source or an internal battery.
- At least one region of the barrel part 11 may be close to the subject.
- the subject is the oral cavity
- at least one region of the barrel part 11 may be inserted into the oral cavity.
- the other angle between the maxilla and the mandible is set as the angle of view of the light receiving area 15 in the direction perpendicular to the omnidirectional photographing surface is set by the omnidirectional lens.
- shooting and 3D models can be generated.
- the integrated control device 20 of the present invention controls various functions between the 3D scanner 10 and the data conversion device 30, and is composed of a wired / wireless communication module that is responsible for communication between the power supply unit and both sides of the 3D scanner. do.
- the wired / wireless communication module of the integrated control device 20 may be composed of conventional devices such as wireless communication methods such as Wibro and Wi-Fi, wired communication methods such as USB and Serial, and short-range communication methods such as Bluetooth and RFID. . Therefore, the integrated control apparatus 20 may serve to transmit the image (depth information) information irradiated with the light pattern to the 2D and / or the subject photographed by the 3D scanner to the data conversion apparatus 30.
- the data conversion apparatus 30 may convert the distorted image into the planar image by correcting the distorted image according to the curvature of the omnidirectional lens (FIGS. 12 and 110a) of the 3D scanner.
- the planar image may be transmitted to the display apparatuses (FIGS. 5 and 31) and / or the preview display apparatus 16 to monitor the image of the subject.
- the display device of the data conversion device of the present invention may use a commercially available display device such as a liquid crystal display device (LCD), a field emission display device (FED), and a touch screen capable of input / output.
- a commercially available display device such as a liquid crystal display device (LCD), a field emission display device (FED), and a touch screen capable of input / output.
- LCD liquid crystal display device
- FED field emission display device
- touch screen capable of input / output.
- the three-dimensional scanner 10 may extract two-dimensional monitoring and depth information without distorting the entire subject regardless of the type of the subject, and in the dental field, a dental structure including defects such as caries, plaque, and tartar of the entire upper or lower jaw.
- depth information for generating a 2D image and a 3D image capable of detecting information such as a tooth shape and size and a tooth position may be provided.
- individual tooth information may be extracted and displayed from the entire image.
- the method of generating a whole jaw by stitching each individual tooth of the oral cavity 3D scanner according to the prior art generates a very large error in merge / registration when generating the whole jaw from each individual tooth. Therefore, the prior art is difficult to apply the resulting prosthesis to the patient.
- the three-dimensional scanner of the present invention can overcome the problems and limitations of the prior art, and can provide a high-definition / high resolution two-dimensional image and a three-dimensional model.
- FIGS. 3 and 4 are cross-sectional views of a first lens according to another embodiment of the present invention.
- the first lens 110a may include a plurality of refractive surfaces and a plurality of reflective coating surfaces, but is not limited thereto.
- the structure of the first lens 110a may include an outer refractive portion 111c that refracts an image of a subject at a desired angle of view, and an inner refractive portion having an inner reflection coating layer 117 that reflects the object image from the outer refractive portion 111c ( 116), the image reflected from the inner refraction portion 116 to the horizontal portion 113 having the outer reflection coating layer 114 and the inner recess 115 passing the image of the subject reflected from the horizontal portion 113. Is formed.
- the outer refractive portion 111c may have a refractive angle and a distortion rate in order to have a desired angle of view range, and the curvature of the outer refractive portion 111c may be an inner refractive portion based on the virtual central axis CL of the first lens 110a. It may be smaller than the curvature of the portion 116.
- the inner recess 115 may be formed in the central region of the inner refractive portion 116 to effectively transmit the omnidirectional image to the image sensor.
- the reflective coating layer 114 of the first lens 110a may be replaced by a reflective plate, and the reflective plate may be disposed in the outer refractive portion 111c of the first lens 110a instead of the outer reflective coating layer 114.
- the first lens 110a itself is formed as a spherical surface instead of an aspherical surface, it is possible to increase the ease of processing and reduce the manufacturing cost.
- the outer refraction portion 111c, the inner concave portion 115 and the inner refraction portion 116 is formed as a spherical surface can solve the problem that is difficult to process aspheric surface while enabling omnidirectional photographing.
- the angle of view may be at least a portion of the outer surface of the lens, in detail, from the boundary between the region where the reflective coating layer 114 is formed and the region except for the region to the edge end.
- the first lens 110a has a convex first incident surface 111d formed on one surface thereof, a first exit surface 111e formed on the other surface thereof, and a first lens 110a formed at the center of the first incident surface 111d.
- the second sub-lens 111y having the second emission surface 111i formed therein may be included, but is not limited thereto.
- the joining surfaces of the first exit surface 111e and the second incident surface 111g may correspond to each other, but may not be flat, and may be in close contact with each other.
- the subject image incident through the first incident surface 111d is reflected by the second reflecting surface 111h through the bonding surface of the first emitting surface 111e and the second incident surface 111g and is reflected by the second reflecting surface (
- the subject image reflected by 111h) is reflected by the first reflecting surface 111f via the bonding surface of the first emitting surface 111e and the second incident surface 111g and then the first emitting surface 111e and the second. It may be emitted through the second exit surface 111i via the bonding surface of the incident surface 111g.
- the first sub-lens 111x to which an external light source is incident and the second sub-lens 111y to be joined to the first sub-lens 111x are reflective refractive lenses using reflection and refraction of the light source. 360-degree omnidirectional image can be obtained.
- the first reflective surface 111f and the second reflective surface 111h may be formed in various shapes such as a flat shape, a convex shape, or a concave shape, and may be formed of a material such as aluminum or silver that may reflect a light source (image of a subject). It can be coated with.
- the light source (image of the subject) incident from the outside is refracted at a predetermined angle by configuring the diameter of the second sub-lens 111y smaller than the diameter of the first sub-lens 111x and forming the first incident surface 111d convex. Can be gathered.
- the structure of the exemplary first lens 110a is described with reference to FIGS. 2 to 4, but is not limited thereto.
- Refractive angles and distortion rates for each region of the outer and inner surfaces of the first lens 110a may be determined in consideration of the average measured values of the human arch, the upper and lower arches and the tooth size measured values, and the width competing values of the children's canine and the premolar.
- FIG. 5 is a diagram illustrating a detailed configuration and a data conversion apparatus of a 3D scanner according to an exemplary embodiment of the present invention
- FIG. 6 is a flowchart of image processing of the 3D scanner and the data conversion apparatus.
- the 3D scanner 10 may include an omnidirectional lens unit 100 and an image sensor 18 capable of sensing an image of a subject from the omnidirectional lens unit 100.
- the omnidirectional lens unit 100 may include an omnidirectional lens capable of detecting 360-degree omnidirectional and specific angles of view, and the image sensor 18 may have high resolution for correcting a distorted image by curvature of the omnidirectional lens. This is required, and may consist of RGB, RGB-IR, IR, time of flight (TOF), COMS, STACK, and the like.
- the 3D scanner 10 may include a mirror unit 19 to convert an optical path, and may include a specially coated planar mirror or prism.
- the special coating refers to a general coating for solving problems such as fog, moisture, and foreign matter contamination.
- the 3D scanner 10 may include a lens array unit 200 having at least one lens between the two materials in order to efficiently transmit an image from the omnidirectional lens unit 100 to the image sensor 18. have.
- the 3D scanner 10 may further include an image processor 320, a communication unit (not shown), and a controller 310.
- the image processor 320 may be configured with elements such as an analog to digital convertor (ADC), an amplifier, an image processor, and the like to signal-process an image signal output from the image sensor 18.
- the output of the image sensor may be It can be an analog or digital signal.
- the image processor 320 may be configured in the data conversion apparatus 30 in FIG. 5 or may be configured independently, but is not limited thereto.
- the image processor 320 transmits the generated 2D image information and the depth information to the data conversion apparatus 30 through the communication unit, and the data conversion apparatus 30 uses the 2D image information and the depth information to display the 3D of the subject. You can create a dimensional model.
- the communication unit may be configured as a wired / wireless communication module for transmitting the image and the information acquired by the 3D scanner 10 to the display device 31 and / or the data conversion device 30.
- the display device 31 may be independently configured as in the embodiment of FIG. 5 or may be configured in the data conversion device 30, but is not limited thereto.
- the 3D scanner 10 may further include a rotation angle information detector 330 which may be configured as a sensor capable of providing position information such as a gyro sensor 331 or an acceleration sensor 332.
- the rotation angle information detector 330 detects information such as the position, the tilt, and the rotation angle of the image acquired from the 3D scanner 10 on the 3D reference coordinates to provide information for effectively generating a 3D model. Can be.
- the controller 310 controls and controls the overall functions required to operate the 3D scanner 10. For example, the controller 310 illuminates an image sensor 18, an image processor 320, a pattern generator 17, and a subject. Driving of a communication unit (not shown) and a rotation angle information detecting unit 330 capable of wired / wireless communication with a light source (not shown), a data conversion device, and the like, and controlling the interworking between them.
- the data conversion device 30 of the present invention may be a computing device in which any one of CAD, CAM or CAD / CAM programs is installed. Accordingly, the data conversion apparatus 30 may generate and design a 3D model of the subject from the image and depth information provided from the 3D scanner 10, and may convert the 3D model to CAM data.
- the information means information such as the position, tilt, and rotation angle of the rotation angle information detector 330.
- the software pre-installed in the data conversion apparatus 30 rotates the position of the two-dimensional data based on the information of the rotation angle information detector 330. And move to align. Therefore, since the data conversion apparatus 30 generates three-dimensional data from the two-dimensional image data by using the origin information and the rotation angle information of the reference coordinate system, the overall data processing speed is improved by fast position alignment and reduced computation amount. In addition, since the data conversion apparatus 30 can generate 3D data that is robust to shake caused by factors such as hand shake when the user of the 3D scanner 10 is photographed, the image quality is greatly improved.
- FIG. 6 is a flowchart illustrating a process of generating a 2D monitoring image and a 3D model.
- the flowchart includes the steps of photographing a subject with a three-dimensional scanner; Creating a 2D monitoring image from the captured image; Shaking detection and correction of the captured two-dimensional image; Extracting depth information, position and rotation angle information from the captured image; Generating position-aligned three-dimensional data from the photographed two-dimensional image, depth, position, and rotation angle information; It consists of generating the final three-dimensional model of the subject from the three-dimensional data aligned.
- the three-dimensional model generation is not limited to the order of the flow chart.
- FIG. 7 is a diagram showing an example of the configuration of the pattern generation unit that can be applied to the three-dimensional scanner of the present invention.
- 8 and 9 are views for explaining a pattern in which line light reflected from a micromirror is formed on a subject.
- 10 is a view for explaining the change in the direction of the line light according to the 90-degree rotation of the micromirror.
- the pattern generator 500 may include a light generator 510, a lens unit 520, and a micromirror unit 530.
- the light generator 510 may include a light source modulator 512 or a driver and a light source 511.
- the light source 511 may be any one of various light sources such as a light emitting diode and a laser diode having a wavelength band such as visible light or infrared light. For example, it may be composed of a combination of red, green, and blue light source elements capable of irradiating linear laser light or alone.
- the light source can be applied to the three-dimensional scanner 10 of the present invention any light source that can generate and output light.
- the light source modulator 512 may control whether the light source 511 is driven or a driving time using a binary signal, that is, a pulse modulated signal, but is not limited thereto. For example, the light source modulator 512 may turn on the light source 511 while the pulse modulated signal maintains a high level, and may generate a light source while the pulse modulated signal maintains a low level. 511 is turned off.
- light from the light generating unit 510 may be directly irradiated to the micromirror 531, and a pattern may be irradiated to the subject.
- the micro The surface dimension of the mirror 531 can be large.
- the lens unit 520 is not limited to the above configuration, but may be configured in various forms corresponding to a person having ordinary knowledge in the art.
- the micromirror unit 530 may reflect the line light output from the lens unit 520 to irradiate pattern light onto the subject S, and to control driving of the micromirror 531 and the micromirror 531. It may include a control unit 532. However, the present invention is not limited thereto, and the mirror controller 532 may be configured separately from the micromirror unit 530 or together with the controller 310.
- the micromirror unit 530 may adjust the up, down, left, and right rotational movements of the micromirror 531 by simultaneously or independently controlling the rotation axis in the horizontal and / or vertical axis directions.
- the micromirror 531 may be manufactured by MEMS (Micro Electro Mechanical Systems) technology, but is not limited thereto.
- the light passing through the collimator lens 522 on the optical path from the light generating unit 510 is collected and reflected on the surface of the micromirror 531, and converted into a line light pattern according to the rotation angle of the micromirror 531.
- the subject S may be irradiated.
- the light source controlled by the light source modulator 512 outputs point light
- the incident point light is a cylindrical lens 521 of the lens unit 520.
- the thickness of the generated line light may vary according to, for example, the high level duration of the pulse modulated signal of the light source modulator 512.
- the line light output from the cylindrical lens 521 is converted into the mirror size of the micromirror 530 by the collimator lens 522 of the lens unit 520. Therefore, the pattern generator 500 may irradiate various types of patterns on the subject by adjusting the distance between the line light and the line light having various thicknesses.
- the image sensor 18 may receive a pattern image irradiated to the subject S sequentially.
- the irradiation time to the subject S of the pattern and the receiving time of the pattern image of the image sensor 18 may be synchronized with each other, and such synchronization may be performed by the controller 310.
- the pattern generated from the pattern generator 500 and irradiated onto the subject S may be distorted by the unevenness of the surface of the subject S, but the pattern image including the distortion information of the pattern may be obtained from the image sensor 18.
- the receiving data conversion apparatus 30 may generate an accurate three-dimensional model of the subject S by using the distortion information of the pattern.
- the data conversion apparatus 30 or the 3D scanner 10 may include a memory, and as the sequential patterns are irradiated onto the subject S, the image processor 320 sequentially receives the pattern images and stores them in the memory. Can be stored.
- the image processor 320 may extract data about three-dimensional coordinates based on the image information stored in the memory, configure a wire frame using the extracted three-dimensional coordinate data, and form a three-dimensional model.
- the present invention is not limited thereto, and the image information stored in the memory may be transmitted to an external device, and a three-dimensional model of the subject S may be formed by the external device.
- FIG. 11 is a diagram illustrating still another configuration example of the pattern generator of FIG. 7.
- the lens unit 520 of the pattern generator 500 receives light output from the light generator 510 and receives light having various shapes such as a cross or a radial structure. ) Can be output using the pattern lens 523.
- the lens unit 520 may output light having various structures from the structure light pattern lens 523 to irradiate the micromirror unit 530 with light having a corresponding shape.
- the lens unit 520 may include a cylindrical lens 521 or a structural light pattern lens 523, may include a cylindrical lens 521 and an additional optical system, and the structural light pattern lens 523. ) And an additional optical system.
- the structure of the light output from the lens unit 520 may vary depending on the depth measurement accuracy, resolution and focus according to the type of the subject S. FIG.
- a triangulation technique algorithm may be used to obtain three-dimensional data of the subject in the data conversion apparatus 30 of the three-dimensional scanner 10 of the present invention.
- the trigonometric algorithm may generate 3D data from an image of a subject to which various patterns are irradiated, distance information between the pattern generator 500 and the image sensor 18, and angle information therebetween.
- depth information for obtaining a 3D model of the subject may be acquired based on a triangle formed by a specific point of the subject to which the pattern light is irradiated, the image sensor 18, and the pattern generator 500.
- the 3D scanner 600 may include an image photographing apparatus 610 positioned at 11a and a pattern generating apparatus 620 positioned at 11b.
- the device and the pattern growth value are not limited to the above positions but may be disposed at any position of the barrel portion 11.
- the image capturing apparatus 610 of the 3D scanner may include a first lens 110a and an image sensor 18 having at least one refractive surface and a reflective surface, which may receive 360-degree images with a specific angle of view according to a refractive index. It may be provided.
- the first lens 110a may be an aspherical lens which is any one of an omnidirectional lens, a mirror lens, and a fisheye lens. The angle of view may be from the edge end of the outer surface of the lens to the boundary region between the reflective coating surface and other areas.
- the image capturing apparatus 610 may include an image processor 320 and a controller 310.
- the controller 310 is illustrated as being included on the pattern generator 620, this is for convenience of understanding and the controller 31 may manage both driving of the image photographing apparatus 610 and the pattern generator 620. Can be.
- the image capturing apparatus 610 may further include a lens array unit 200 to efficiently transmit the light passing through the first lens 110a to the image sensor 18.
- the image capturing apparatus 610 may further include a mirror unit 19 to change the path of light.
- the above-described configuration will be omitted as described above.
- 3D scanner 600 includes a pattern generating device 620, the pattern generating device 620 from the light source 511 and the light source 511 for providing pattern light to the subject
- the micromirror unit 530 may control the micromirror 531 to be tilted or rotated within a specific angle. At this time, the micromirror 531 has a high frequency and can operate very quickly.
- the second lens 110b may be an aspherical lens, which is any one of an omnidirectional lens, a mirror type lens, and a fisheye lens.
- the controller 310 may directly control the light source or the micromirror 531, and may synchronize the light pattern irradiation time of the pattern generating device 620 with the sensing time of the image sensor 18.
- the micromirror 531 may be any one of a microelectromechanical system (MEMS) scanning mirror, a single axis mirror, a two-axis MEMS scanning mirror, and a digital micromirror device (DMD).
- MEMS microelectromechanical system
- DMD digital micromirror device
- the DMD may be a device for projecting an image by the on / off state of reflection by the mirror element.
- the DMD is a semiconductor optical switch integrating a micro-drive mirror, and is a static random access. Memory), a reflector cell, a cell driving part, and a driving circuit part, each of which is an aluminum alloy micromirror having a size of several tens to several ⁇ m. Additionally, components such as a color wheel or an SCR color wheel (Sequential Color Recapture Color Wheel) may be included to implement a color pattern.
- the DMD type micromirror 531 has high color reproducibility and high contrast ratio according to the digital method, and is bright and clear, and no digital-to-analog conversion is required, which is resistant to noise and requires or minimizes additional signal correction. Its high light efficiency, complete silicon device is durable and fast.
- the laser light line LL is irradiated in the form of a laser light pattern to a subject in the omnidirectional region by the second lens 110b having a refractive index according to the tilting or rotation angle of the micromirror 531, and the image of the subject to which the pattern is irradiated is
- the image sensor 18 of the image capturing apparatus 610 is detected.
- the data conversion apparatus 30 may reconstruct the three-dimensional model of the subject from the subject image information to which various laser light patterns photographed by the image sensor 18 are irradiated.
- the virtual straight line passing through the central axis of the first lens 110a may be perpendicular to the plane
- the virtual straight line passing through the central axis of the second lens 110b may be perpendicular to the straight line perpendicular to the plane. It can be configured to form an angle.
- theta angle (0 to 90 °) is the structure and shape of the 3D scanner 600 and the predetermined distance d, focal length, etc. between the first lens 110a and the second lens 110b. Can be determined based on this.
- the pattern generator 620 may further configure the lens unit 520.
- the lens unit may include a cylindrical lens 521 and a collimator lens 522, and a lens for a special purpose may be added.
- the above-described configuration will be omitted as described above.
- the laser light is converted into the laser line LL by the lens unit 520, and the converted laser line LL may be incident / reflected by the micromirror 531 to form various types of laser light patterns.
- FIG. 14 shows an embodiment of the pattern generating apparatuses 620 and 630 of the present invention.
- the light source 511 may be configured of at least one light source among red, green, and blue light emitting diodes, and may emit various color lights by light of each of R, G, and B colors, or a combination thereof. You can also provide
- the laser light output from the laser light source by the lens unit 520 is converted into line light, and the line light is converted into a line light pattern LLP having various thicknesses by tilting or rotating the micromirror 531 to be mounted on the subject. Can be investigated.
- the lens unit 520 may include a structured light pattern lens, and in this case, may output light patterns having various structures.
- 15 is a schematic diagram of a three-dimensional scanner with a projector according to another embodiment of the present invention.
- the pattern generator 620 positioned in the region 11b of the 3D scanner 600 may be a projector unit 630 including a projector mirror 632, a projector 631, and a controller 310 for controlling them. .
- the projector unit 630 may include a second lens 110b, and the projector mirror 632 may change a path of light emitted from the projector 631.
- the projector 631 may be any one of a liquid crystal display (LCD) method, a liquid crystal on silicon (LCOS) method, and a digital light processing (DLP) method, but the present invention is not limited thereto, and a pattern image may be irradiated onto a subject. Any device can be used.
- LCD liquid crystal display
- LCOS liquid crystal on silicon
- DLP digital light processing
- the projector 631 may irradiate a subject with a pattern image including a gray pattern or a color pattern through the second lens 110b under the control of the controller 310.
- the image sensor 18 may detect an image of a subject irradiated with the pattern image by using the first lens 110a.
- the 2D image detected by the image sensor 18 may be converted into a 3D model by using a trigonometric algorithm in the data conversion apparatus 30.
- the trigonometric algorithm for generating a three-dimensional model in the data conversion apparatus 30 has a unique identifier for each line formed by each pattern, and uses an intersection of a predetermined plane equation of the corresponding identifier and an actual position formed on the subject. It is a method of generating a 3D model by generating 3D coordinates. In addition, a pattern reinforcement effect can be obtained by using an inverse pattern as a method for obtaining more accurate three-dimensional coordinates.
- the 3D scanner 600 may include a memory in which various patterns may be stored.
- the controller 310 may control the pattern stored in the memory to be irradiated with the pattern light of the projector 631, or may receive various patterns from an external device and store them in the memory.
- FIG. 16 is a 3D scanner 10 capable of scanning an omnidirectional image according to an embodiment of the present invention, and precisely generates a 3D model of the scanned subject, designs them in various forms, and processes the designed 3D model.
- Fig. 1 is a block diagram of the artifact processing system 1 composed of a data conversion device 30 that can be converted into CAM data that can be processed by the device / 3D printer 40 and a processing device / 3D printer 40.
- the lower device of the artifact processing system 1 may transmit and receive data by wire / wireless.
- the data conversion apparatus 30 may generate a 3D model from the image data and the depth information received from the 3D scanner 10.
- the generated 3D model may be designed in various forms and converted into CAM data to be provided to the processing apparatus / 3D printer 40. Therefore, the data conversion apparatus 30 may process a 2D image of an object by capturing an image, and may be a CAD and / or CAM based data conversion apparatus, but is not limited thereto. Any device capable of generating a three-dimensional model of a subject using data and converting it into CAM data can be used.
- the processing device / 3D printer 40 may generate artifacts used for dental beauty, diagnosis, treatment, and prevention, such as a prosthesis, an implant, a brace, or a surgical guide, using the received CAM data.
- FIG. 17 is a view of the mandibular arch form
- FIG. 18 is a diagram showing the angle of the mandibular arch form.
- the image processing unit 320 or the data conversion device 30 of the three-dimensional scanner 10 of the present invention is based on the generated three-dimensional model, as shown in Figs.
- Various information in the oral cavity such as the angle of the arch form and the individual tooth shape and size, and the distance between the teeth, can be provided, and can be displayed on the display device 31 or the preview display device 16.
- FIG. 19 is an example of a maxillary image which may be photographed by the 3D scanner of the present invention
- FIG. 20 is a diagram illustrating an example of a mandibular image.
- 19 and 20 are images captured by the omnidirectional lens, and may be displayed as a two-dimensional image or a panoramic image displayed by dividing the image by an arbitrary area by processing the image by the data conversion apparatus 30 or the image processor 320.
- the black area in the middle can be imaged or removed with the palate, tongue, etc.
- Conventional oral 3D scanners have a limited field of view (FOV). Therefore, the existing oral 3D scanner cannot photograph the entire upper or lower jaw at one time, but photographs a plurality of images as much as the measurement area in order to photograph the entire upper or lower jaw.
- the 3D scanner of the present invention can capture an image of the entire subject area from the omnidirectional lens at once. Therefore, the three-dimensional scanner of the present invention can generate a high-quality and highly accurate three-dimensional model by minimizing the occurrence of errors and degradation of precision and resolution due to the combination of the images of the conventional oral 3D scanner.
- a three-dimensional model may be generated by quickly photographing without applying a powder for preventing light reflection to the oral cavity. Therefore, the photographing time of the tooth can be shortened, thereby greatly reducing the diagnosis and procedure planning and procedure time of the teeth, bridges, dentures, corrections, and implants.
- the three-dimensional scanner of the present invention can be applied to fields other than the dental field.
- the equipment inspection field for inspection such as semiconductor equipment and mass production of PCB
- the medical field such as molding or prosthetic / prosthetics, facial recognition, endoscope, etc. It can also be applied to industries such as cultural property restoration.
- the three-dimensional scanner of the present invention can adopt a variety of scanning methods that can generate a three-dimensional model, such as stereo / video method or still image method, which is implemented in any one of the above-mentioned method in the data conversion apparatus Can be.
- the three-dimensional scanner of the present invention and the artificial processing system using the same are composed of a lens that outputs an optical pattern in 360 degrees and / or acquires an image in 360 degrees.
- 3D models can be implemented. Therefore, it is possible to solve the error problem caused by the combination of the partial images of the subject and the accumulation problem of the error caused by the increase in the number of partial images, and to minimize the time required for generating the 3D model of the entire subject.
- the three-dimensional scanner of the present invention and the artificial processing system using the same include an aspherical lens for acquiring an omnidirectional image and a pattern generator for irradiating pattern light onto the subject, thereby detecting the possibility of the surface area of the subject not measured by the image processor. Can be removed. Therefore, the angle of trigonometry can be increased as much as possible when generating the 3D image by the trigonometry, thereby greatly improving the accuracy and quality of the 3D image and the resolution of the 3D image.
- the present invention does not require the operator to precisely scan through minimizing the number of shots of the subject, fast scan speed, and three-dimensional model correction based on the rotation angle information, thereby improving the work efficiency of the operator, such as camera shake. It is possible to solve the problem that the precision of the 3D image is reduced due to the deviation between the plurality of captured images due to artificial vibration or mechanical vibration.
- the present invention can be used in the field of three-dimensionally scanning a subject and using the same to process artifacts for the subject.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Optics & Photonics (AREA)
- Dentistry (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Endoscopes (AREA)
Abstract
본 발명의 실시예에 따른 3차원 스캐너는 피사체에 광 패턴을 조사하는 패턴생성장치 및 상기 광 패턴이 조사된 상기 피사체의 전방위 영상을 수신하는 영상촬영장치를 포함하는 3차원 스캐너를 제공할 수 있다.
Description
본 발명은 3차원 스캐너와 데이터변환장치, 가공장치/3차원 프린팅장치 등으로 구성된 인공물가공시스템에 관한 것으로써 보다 상세하게는 구강의 3차원 모델을 획득할 수 있는 스캐너와 데이터변환장치 그리고 인공물을 가공하는 가공장치/3차원 프린팅장치에 관한 것이다.
레이저나 빛을 이용하는 비접촉식 3차원 스캐너는 그 활용 범위가 매우 다양하다. 엔지니어링, 영화, 애니메이션, 산업디자인, 의료, 미술품, 팬시, 문화재 복제재 및 복원, 엔터테이먼트 등 사회에서 적용이 되지 않는 범위가 없을 정도로 활용 범위가 매우 넓다.
특히 산업 분야에서 제품의 제조 시간을 단축시키기 위해 많은 투자와 연구를 하는데 3차원 스캐너가 제품의 개발에서부터 양산하는 동안 여러 단계에서 비용을 절감하기 위한 목적으로 활용되고 있다. 현실에 존재하는 것을 3차원 디지털 데이터로 다룰 수 있다는 것은 많은 장점이 있다. 위험한 현장에서 매번 작업하지 않아도 되고, 언제든 필요한 정보를 컴퓨터에서 다시 열어볼 수 있고, 정확한 실물의 3차원 치수 및 형상 정보는 시뮬레이션 및 복제의 과정으로 미래를 좀 더 정확하게 예측 가능하게 해준다.
또한, 3차원 스캐너는 의료분야에서 교정기구, 치아 등을 제작하기 위해 환자의 모양에 맞는 맞춤형 기구를 제작하기 위해 사용된다. 전통적으로 석고 반죽을 통한 모형 제작방법을 3차원 스캐너를 통해 디지털화하고 있다. 스캔된 3차원 데이터로부터 전용 소프트웨어를 통해 교정기구, 보철물, 인공기관, 인공치아 등을 디자인하고 CAM 소프트웨어를 통해 가공한다. 특히 치과 부분에서 전통적으로 치아교정 및 수복 작업은 치료 대상 환자 치아의 음형 형상인 임프레션 채득 후, 수복 작업용 다이가 되는 양형 형상인 석고 캐스팅 제작 작업이 선결된다. 그리고 의사 진단에 따라 개별 환자에 따른 맞춤형 인공 의치 및 식립 의치를 모델링하고 생산하는 전반적인 공정이 수작업으로 진행된다. 특히, 인공의치 및 식립 의치 가공 작업은 도재 적립 방식, 금형 몰드 기반 주조 성형 등 다양하고 복잡한 생산 공정을 거친다. 이러한 전반적인 가공 과정은 기공사의 숙련도 및 심리적인 결정에 전적으로 의존하게 된다. 인공 의치 및 매식 의치의 설계 및 생산 과정에 있어 정밀성, 적합성 향상을 위해 산업계의 생산 공정 기술을 차용하고자 하는 노력은 이미 27년 전 스위스의 NOBELBIO-CARE 및 CEREC 팀에 의해 시도되어 왔다. 이러한 기술도 치아 형상의 자유 곡면 설계가 용이하지 않았다. 또한, CAM/CNC/RP 등 가공용 생산 소재의 한계로 인해 인공치관 생산 및 성형에 난관을 겪었다. 이러한 난관을 극복하기 위해 꾸준히 기술 개발 및 임상실험을 지속하면서 기술적 도전을 지속해왔다. 근자에 디지털 기술과 인공 보철물 소재 기술의 진화가 가속화되면서 치과, 치기공 기술의 CAD/CAM 기술과의 조우는 시험의 기술을 넘어 융합 진화의 현실 기술로 변신하는 중이다. 현재 다양한 솔루션과 덴탈 전용 스캐너가 시장에서 활발하게 경쟁하고 있다.
한편 3차원 스캐너는 크게 레이저 방식과 카메라 방식으로 구분될 수 있고, 레이저 방식은 포인트 투영, 빔 투영 측정 방식으로 사물을 스캔할 수 있고, 카메라 방식은 투영, 영역 측정 방식으로 사물을 스캔할 수 있다.
이러한 3차원 스캐너는 고속으로 사물을 측정할 수 있고, 탄력성 있는 제품의 정밀한 측정이 가능하고, 다양한 용도의 CAD와 작업이 가능하며 정확한 형상 구현이 가능하다는 장점이 있어 각광 받고 있다. 그러나 3차원 스캐너는 측정 정밀도 면에서 접촉식이나 3차원 좌표 측정기(Coordinate Measuring Machine)에 비해 크게 떨어지는 문제가 있고, 측정 영역간 겹치는 형상으로 데이터 후처리가 필요하고, 다수의 영역 들을 결합하여 전체 영상을 획득할 때 오차가 크게 발생하고, 처리 속도가 지연되는 문제가 있다.
또한, 3차원 스캐너를 이용한 사물의 측정 방법 중 가장 일반적으로는 사물을 여러 각도에서 촬영한 다음 각 스캔의 매칭되는 포인트를 소프트웨어적으로 마우스만으로 찍어 줌으로써 복수의 스캔 영상을 결합(Merge)하는 것이다. 이러한 방식은 사용자의 숙련도에 따라서 결합된 영상들 간의 차이가 발생하여 정밀한 3차원 영상을 획득하는 데는 한계가 있고, Merge 작업 시 적지 않은 시간이 소요된다.
3차원 스캐너의 3차원 영상 처리 속도를 증가시키기 위한 많은 연구 개발 덕분에 최근에는 3차원 영상 처리 속도가 수 분 정도까지 당겨졌으나, 의료 행위에서 환자에게 진단 결과를 빠르게 피드백 할 필요가 있는 경우와 같이 빠른 결과를 획득할 필요가 있는 상황에서는 현 수준의 3차원 영상 획득 소요 시간이 만족할 만한 수준은 아닌 것으로 평가되고 있는 실정이다.
본 발명은 환자 개개인 본연의 생리학적 구강구조물(치열 모양과 각도 그리고 치아의 위치와 크기 등)을 있는 그대로 왜곡 없이 촬영하여 3차원 모델을 생성할 수 있는 3차원 스캐너 및 이를 이용한 인공물가공시스템을 제공함에 있다.
또한, 본 발명은 종래 피사체의 3차원 영상 생성 시 피사체를 영역 별로 연속 촬영하고 이를 이어 붙어 가면서(stitching) 3차원 모델을 생성할 때 발생하는 영역별 3차원 모델 정렬 오차와 데이터 처리 시간 지연 문제 등을 해결할 수 있는 3차원 스캐너 및 이를 이용한 인공물가공시스템을 제공함에 있다.
본 발명의 3차원 스캐너는 굴절률에 따라 특정 화각을 가지고 적어도 하나 이상의 굴절면과 적어도 하나 이상의 반사코팅면을 가지고 상기 전방위 영상을 수신하는 제1 렌즈를 포함한 영상촬영장치와 피사체에 광 패턴을 조사하는 패턴생성장치로 구성될 수 있으며, 상기 영상촬영장치는 상기 광 패턴이 조사된 상기 피사체의 전방위 영상을 수신하는 것을 특징으로 한다. 또한, 본 발명의 실시 예에 따른 3차원 스캐너의 상기 제1 렌즈는 전방위렌즈, 밀러형 렌즈 및 어안 렌즈 중 어느 하나인 비구면 렌즈로 구성될 수 있다.
다른 측면에서, 본 발명의 3차원 스캐너의 상기 영상촬영장치는 상기 제1 렌즈로부터의 광의 경로를 변경하는 미러부 및 상기 미러부로부터의 영상을 취득하는 이미지센서를 더 포함할 수 있다.
또 다른 측면에서, 본 발명의 3차원 스캐너는 상기 피사체의 2차원 영상과 3차원 모델을 생성하기 위한 데이터를 얻을 수 있다. 여기서, 영상촬영장치와 패턴생성장치를 동기화하여 2차원 영상의 심도정보를 추출하고, 이로부터 3차원 모델을 생성할 수 있다.
또 다른 측면에서, 본 발명의 3차원 스캐너의 패턴생성장치는 다양한 광패턴을 제2 렌즈를 이용하여 전방위로 조사할 수 있다. 제2 렌즈는 전방위렌즈, 밀러형 렌즈, 어안렌즈 중 어느 하나로 구성될 수 있다. 본 발명의 3차원 스캐너에 있어서, 상기 패턴생성장치는 광원과 광원의 조사시간을 조절하여 다양한 패턴을 생성할 수 있는 광원 모듈레이터와 생성된 다양한 패턴을 조사하는 마이크로미러로 구성될 수 있다. 광원은 단수의 발광다이오드 또는 레이저로 구성되거나 컬러 패턴을 생성하기 위해 다양한 컬러의 복수의 상기 소자로 구성될 수 있다. 마이크로미러는 MEMS 미러, 디지털 미러 디바이스(DMD: digital mirror device) 등으로 구성될 수 있다.
또 다른 측면에서, 상기 패턴생성장치는 상기 광원으로부터의 포인트 광을 라인 광으로 변환할 수 있는 실린더리컬 렌즈(cylindrical lens) 또는 다양한 격자 형상의 패턴으로 변환할 수 있는 특수 렌즈와 마이크로미러의 사이즈에 생성된 패턴의 사이즈를 조절하기 위해 콜리메이터 렌즈(collimator lens)를 추가적으로 구성할 수 있다.
또 다른 측면에서, 본 발명의 3차원 스캐너는 피사체를 촬영한 2차원 영상, 영역별로 분할된 2차원 영상 또는 생성된 3차원 모델 데이터를 유선 및/또는 무선 통신을 통해 디스플레이 할 수 있는 디스플레이장치, 휴대용 디스플레이장치 또는 3차원 스캐너에 구성될 수 있는 프리뷰디스플레이장치 등으로 구성될 수 있다. 본 발명에서 피사체는 일반구조물, 대상체, 동식물, 인체, 구강 등 형상을 갖는 대상체가 될 수 있으며, 특히 구강내 치아 및 구강 구조를 말한다.
또 다른 측면에서, 본 발명의 데이터변환장치는 전술한 3차원 스캐너로부터 수신한 2차원 영상 데이터와 심도정보로부터 3차원 모델을 생성한다. 생성된 3차원 모델에서 보철물, 임플란트, 교정기 또는 서지컬 가이드를 디자인하고 이를 가공장치 또는 3차원 프린터용 CAM(Computer Aided Manufacturing) 데이터로 변환할 수 있다.
또 다른 측면에서, 본 발명의 가공장치는 전술한 데이터변환장치로부터 수신한 CAM 데이터로부터 적어도 하나의 인공 치아와, 브릿지, 임플란트, 서지컬 가이드(Surgical guide), 교정기, 틀니(Denture) 중 적어도 하나를 가공할 수 있다. 또한, 3차원 프린터는 전술한 데이터변환장치로부터 수신한 CAM 데이터로부터 적어도 하나의 인공 치아와 인공 잇몸, 입천장으로 연결된 복수의 치아, 임플란트, 서지컬 가이드, 교정기, 틀니 중 적어도 하나를 출력할 수 있다.
실시예는 3차원 스캐너는 기존 구강 3D 스캐너의 영상들의 결합에 따른 오차 발생과 정밀도 및 분해능 저하를 최소화하여 고품질의 그리고 정밀도가 매우 우수한 3차원 모델을 생성할 수 있다.
또한, 실시예는 광 반사 방지를 위한 파우더를 구강에 도포하지 않고도 빠르게 촬영하여 3차원 모델을 생성할 수 있다.
또한, 실시예는 치아의 촬영 시간을 단축할 수 있어 치아, Bridge부터 틀니(denture), 교정, 임플란트 등의 진단 및 시술 계획 및 시술 시간을 크게 단축시킬 수 있다.
또한, 실시예는 피사체의 촬영 횟수의 최소화와 빠른 스캔 속도, 그리고 회전각 정보에 의한 3차원 모델 보정작업을 통해서 작업자에게 정밀한 스캔 작업을 요구하지 않아 작업자의 작업 능률을 향상시킬 수 있고, 손 떨림 등의 인공적인 진동이나 기계적인 진동에 따른 복수의 촬영 영상 간의 편차에 따른 3차원 영상의 정밀도가 떨어지는 문제를 해결할 수 있다.
또한, 실시예는 진료 및 진단 시간을 최소화하여 의료 서비스에 대한 피시체의 대상인 환자와 시술자의 만족감을 크게 증대 시킬 수 있다.
도 1은 본 발명의 실시예에 따른 3차원 스캐너와 3차원 스캐너로부터의 수신한 영상을 디스플레이 하는 디스플레이 장치를 나타낸 도면.
도 2는 본 발명의 실시예에 따른 제 1렌즈를 나타낸 단면도
도 3 및 도 4는 본 발명의 다른 실시예에 따른 제1 렌즈의 단면도.
도 5는 3차원 스캐너와 데이터변환장치의 영상 처리 관계를 설명하기 위한 각 장치의 구성도.
도 6은 3차원 스캐너와 데이터변환장치의 영상 처리의 흐름도.
도 7은 본 발명의 3차원 스캐너에 적용될 수 있는 패턴생성부의 구성 예들을 도시하는 도면.
도 8 및 도 9는 마이크로미러로부터 반사된 라인 패턴이 피사체에 조사되는 형태를 설명하기 위한 도면.
도 10은 마이크로미러의 90도 회전에 따른 라인 패턴의 방향을 달리한 것을 설명하기 위한 도면.
도 11은 도 7에서의 패턴생성부의 또 다른 구성 예를 나타낸 도면.
도 12는 본 발명의 다른 실시예에 따른 3차원 스캐너를 개략도.
도 13은 영상촬영장치의 제1 렌즈와 패턴생성장치의 제2 렌즈의 위치 관계를 개략도.
도 14는 라인 광 패턴의 생성 예시도.
도 15는 본 발명의 또 다른 실시예에 따른 프로젝터부를 구비한 3차원 스캐너의 개략도.
도 16은 본 발명의 실시예에 따른 3차원 스캐너를 이용한 인공물 가공 시스템의 블록도.
도 17는 하악 치열궁에 관한 도면.
도 18은 하악 치열궁의 각을 나타낸 도면.
도 19는 3차원 스캐너에 의해 촬영된 상악의 영상을 나타낸 도면.
도 20은 3차원 스캐너에 의해 촬영된 하악의 영상을 나타낸 도면.
이하, 본 발명의 실시예에 의한 3차원 스캐너와 이를 이용한 인공물 가공 시스템의 도면을 참고하여 상세하게 설명한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 장치의 크기 및 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장될 수 있다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 따라서 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다 (comprise)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/ 또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
<3차원 스캐너와 디스플레이 장치>
도 1은 본 발명의 실시예에 따른 3차원 스캐너와 3차원 스캐너로부터의 수신한 영상을 디스플레이 하는 디스플레이 장치를 나타낸 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 3차원 스캐너(10)는 전방위 렌즈부를 구비할 수 있다. 전방위 렌즈부는 360도 전방위 영상을 취득할 수 있다. 전방위 렌즈부는 굴절률에 따라 전방위 촬영면과 수직한 방향에서 특정 화각을 가진 전방위 렌즈를 구비할 수 있다. 전방위 렌즈는 미러형 렌즈, 어안 렌즈 또는 비구면 렌즈 중 어느 하나가 될 수 있으나 이에 한정하는 것은 아니고, 360도 전방위 영상을 취득, 상세하게는, 일 회의 촬영만으로도 하악(S1) 또는 상악(S2)에 존재하는 치아의 구조에 대한 영상 정보를 획득할 수 있도록 구성된 렌즈가 될 수 있다.
3차원 스캐너(10)는 경통부(11)와 그립부(12) 그리고 이들을 연결하는 연결부(13)로 구성될 수 있다. 연결부(13)은 경통부와 일체형 또는 결합형으로 구성되어 그립부(12) 상에서 경통부(11)를 회전시킬 수 있다.
경통부(11)는 전방위 렌즈를 포함하는 영상촬영장치(도12,610)와 패턴생성장치(도12,620)의 전체 또는 일부가 내장될 수 있다.
그립부(12)는 외부 디바이스와 통신을 담당하는 유선 또는 무선 통신모듈, 영상촬영장치로부터 영상신호를 처리하는 영상처리부(320); 마이크로미러를 제어하는 드라이버, 패턴을 생성하기 위한 광원 및 광원 모듈레이터(512); 처리 전/후의 영상데이터를 저장하는 메모리, 회전각정보검출부, 경통부의 조명을 제어하는 조명 제어부 그리고 상기 구성요소를 제어하는 제어부 등의 전자장치로 구성될 수 있다.
그립부(12)의 구조는 손잡이가 달린 총 타입(Gun type), 파워 그립 타입(Power grip type)/그루밍 브러쉬(Grooming brush type)의 핸들 타입(Handle type), 펜 타입(Pen type) 등의 형상을 가질 수 있고, 사용자가 그립부(12)를 잡을 수 있는 사이즈와 형상이라면 어떤 것도 가능하다.
연결부(13)는 모터 등의 엑츄에이터 등으로 구성된 경통구동부(14)에 의해 특정회전각으로 자동 회전되거나 수동으로 회전할 수 있다. 경통구동부(14)는 외부전원 또는 내부 배터리로 동작될 수 있다.
피사체를 촬영하는 경우, 경통부(11)의 적어도 일 영역은 피사체에 근접할 수 있다. 피사체가 구강인 경우, 경통부(11)의 적어도 일 영역은 구강에 삽입될 수 있다.
또한, 3차원 스캐너(10)의 경통부(11)의 회전에 따라서 일 예의 피사체(S)인 구강에 경통부(11)의 일부 영역이 삽입되는 경우, 구강의 모든 영역을 촬영할 수 있다. 광수신영역(15)이 향하는 방향에 무관하게 상악 및 하악을 동시에 촬영하고 3차원 모델을 생성할 수 있다. 상세히 설명하면, 구강에 삽입된 3차원 스캐너(10)의 광수신영역(15)이 상악 및 하악 중 어느 하나와 마주하는 경우 상악 및 하악 중 어느 하나를 촬영하고 적어도 하나의 치아와 치열, 잇몸 그리고 구강의 상악 및 하악 영역에 위치하는 각종 구강 구조를 촬영하여 3차원 모델을 생성할 수 있다. 이 경우, 광수신영역(15)이 상악 및 하악 중 어느 하나와 마주하여도 전방위 촬영 면과 수직 방향에서의 광수신영역(15)의 화각이 전방위렌즈에 의하여 설정되는 만큼 상악과 하악 중 다른 하나도 동시에 촬영 및 3차원 모델을 생성 할 수 있다.
본 발명의 통합제어장치(20)는 3차원 스캐너(10)와 데이터변환장치(30)간 다양한 기능을 제어하며, 3차원 스캐너의 전원공급부 및 쌍방간의 통신을 담당하는 유/무선 통신모듈로 구성된다. 통합제어장치(20)의 유무선 통신모듈은 Wibro, Wi-Fi 등의 무선통신방식과, USB, Serial 등의 유선통신방식, Bluetooth, RFID 등의 근거리통신방식 등 상용화된 기존 장치로 구성될 수 있다. 따라서, 통합제어장치(20)는 3차원 스캐너에서 촬영된 2차원 및/또는 피사체에 광 패턴이 조사된 영상(심도정보) 정보를 데이터변환장치(30)에 전송하는 기능을 담당할 수 있다.
데이터변환장치(30)는 3차원 스캐너의 전방위렌즈(도12,110a)의 곡률에 따라 왜곡된 영상을 전방위렌즈의 곡률값으로 보정하여 평면영상으로 변환할 수 있다. 그리고 피사체의 영상을 모니터링 할 수 있도록 평면영상은 디스플레이장치(도5,31) 및/또는 프리뷰디스플레이장치(16)에 전송될 수 있다.
본 발명의 데이터변환장치의 디스플레이장치는 LCD(liquid crystal display device), FED(field emission display device), 입출력이 가능한 Touch screen 등 상용화된 기존 기술의 디스플레이장치를 이용할 수 있다.
3차원 스캐너(10)는 피사체의 종류에 상관없이 피사체 전체를 왜곡 없이 2차원 모니터링 및 심도정보를 추출할 수 있으며, 치과분야에서는 상악 또는 하악 전체의 충치, 프라그, 치석 등의 결함을 포함한 치열구조, 치아 모양 및 크기, 치아 위치 등 정보를 검출할 수 있는 2차원 영상 및 3차원 영상을 생성할 수 있는 깊이 정보를 제공할 수 있다. 또한, 치아들을 개별적으로 촬영하는 것이 아닌 치열 전체적인 영상을 얻게 되므로, 전체 영상에서 개별적인 치아 정보를 추출하여 표시할 수 있다.
종래 기술인 구강3D 스캐너의 각 개별치아 스캔 후 합성하여(stitching) 전악을 생성하는 방식은 각 개별치아로부터 전악 생성시 merge/registration에 있어 매우 큰 오차가 발생된다. 따라서 종래 기술은 최종적으로 생성된 보철물을 환자에게 적용하기 어렵다.
그러므로, 본 발명의 3차원 스캐너는 종래 기술의 문제점 및 한계점을 극복할 수 있으며, 고정밀/고해상도의 2차원 영상 및 3차원 모델을 제공할 수 있다.
<전방위 렌즈>
도 2는 본 발명의 전방위 영상을 수신하는 제1 렌즈의 단면도이고, 도 3 및 도 4는 본 발명의 다른 실시예에 따른 제1 렌즈의 단면도이다.
제1 렌즈(110a)는 복수의 굴절면과 복수의 반사코팅면을 포함할 수 있으나 이에 한정하는 것은 아니다.
제1 렌즈(110a)의 구조는 피사체의 영상을 원하는 화각으로 굴절시키는 외측굴절부(111c), 외측굴절부(111c)로부터 피사체 영상을 반사시키는 내측반사코팅층(117)을 구비한 내측굴절부(116), 내측굴절부(116)로부터 반사된 영상을 외측반사코팅층(114)을 구비한 수평부(113), 수평부(113)로부터 반사된 피사체의 영상을 통과시키는 내측오목부(115)로 형성된다. 여기서, 외측굴절부(111c)는 원하는 화각 범위를 갖기 위해 굴절각과 왜곡률을 가질 수 있으며, 외측굴절부(111c)의 곡률은 제1 렌즈(110a)의 가상 중앙축(CL)을 기준으로 내측굴절부(116)의 곡률보다 작을 수 있다. 또한, 내측오목부(115)는 전방위 영상을 효과적으로 이미지센서에 전달하기 위하여 내측굴절부(116)의 중심영역에 형성될 수 있다.
제1 렌즈(110a)의 반사코팅층(114)은 반사판으로 대치될 수도 있으며, 제1 렌즈(110a)의 외측굴절부(111c)에는 외측반사코팅층(114) 대신에 반사판이 배치될 수도 있다.
또한, 제1 렌즈(110a) 자체는 비구면이 아닌 구면으로 형성함으로써 가공의 용이성을 높이고, 제조 원가를 절감시킬 수 있다. 또한, 외측굴절부(111c)와 내측오목부(115) 및 내측굴절부(116)가 구면으로 형성되어 비구면으로 가공하기 어려운 문제를 해결하면서도 전방위 촬영이 가능하도록 할 수 있다.
한편 일 예로 화각은 렌즈의 외면의 적어도 일부 영역, 상세하게는, 반사코팅층(114)이 형성된 영역과 해당 영역을 제외한 영역 사이의 경계에서부터 가장자리 끝 단 까지가 될 수 있다.
도 3 및 도 4 참조하면, 제1 렌즈(110a)는 일면에 볼록한 제1 입사면(111d)이 형성되고 타면에 제1 출사면(111e)이 형성되며 제1 입사면(111d) 중앙에 제1 반사면(111f)이 형성되는 제1 서브 렌즈(111x)와 일면에 제2 입사면(111g)이 형성되고 타면에 볼록한 제2 반사면(111h)이 형성되며 제2 반사면(111h) 중앙에 제2 출사면(111i)이 형성되는 제2 서브 렌즈(111y)를 포함하여 구성될 수 있으나 이에 한정하는 것은 아니다.
제1 출사면(111e)과 제2 입사면(111g)의 접합면은 서로 대응하되 평평하지 않게 형성된 후 서로 밀착하여 접합될 수 있다.
제1 입사면(111d)을 통해 입사한 피사체 영상은 제1 출사면(111e) 및 제2 입사면(111g)의 접합면을 거쳐 제2 반사면(111h)에서 반사되고, 제2 반사면(111h)에서 반사된 피사체 영상은 제1 출사면(111e) 및 제2 입사면(111g)의 접합면을 거쳐 제1 반사면(111f)에서 반사된 후, 제1 출사면(111e) 및 제2 입사면(111g)의 접합면을 거쳐 제2 출사면(111i)을 통해 출사 될 수 있다.
외부의 광원이 입사하는 제1 서브 렌즈(111x) 및 제1 서브 렌즈(111x)와 접합하는 제2 서브 렌즈(111y)는 광원의 반사와 굴절을 이용한 반사굴절식 렌즈로서, 상기 두 렌즈를 통해 360도 전방위 영상을 획득할 수 있다.
제1 반사면(111f) 및 제2 반사면(111h)은 평평한 모양, 볼록한 모양 또는 오목한 모양 등 다양한 모양으로 형성될 수 있고, 광원(피사체의 영상)을 반사 시킬 수 있는 알루미늄, 은 등의 물질로 코팅될 수 있다.
외부로부터 입사하는 광원(피사체의 영상)은 제2 서브 렌즈(111y)의 직경을 제1 서브 렌즈(111x)의 직경보다 작게 구성하고 제1 입사면(111d)을 볼록하게 형성함으로써 소정 각도로 굴절되어 모이게 할 수 있다.
도 2 내지 도 4에서 예시적인 제1 렌즈(110a)의 구조를 설명하였으나, 이에 한정하는 것은 아니다.
제1 렌즈(110a)의 외면 및 내면 각각의 영역별 굴절각 및 왜곡률은 사람의 악궁의 평균적인 계측치, 상하악 아치 및 치아 크기 계측치, 아동 견치 및 소구치의 폭경합치를 모두 고려하여 결정할 수 있다.
<3차원 스캐너와 데이터변환장치>
도 5는 본 발명의 실시예에 따른 3차원 스캐너의 상세한 구성과 데이터변환장치를 설명하기 위한 도면이고, 도 6은 3차원 스캐너와 데이터변환장치의 영상 처리의 흐름도이다.
도 5를 참조하면, 3차원 스캐너(10)는 전방위 렌즈부(100)와 전방위 렌즈부(100)로부터 피사체의 영상을 센싱 할 수 있는 이미지센서 (18)를 포함할 수 있다.
전방위 렌즈부(100)는 360도 전방위 및 특정화각의 영상을 검출할 수 있는 전방위렌즈를 포함할 수 있다, 이미지센서(18)는 전방위렌즈의 곡률에 의한 왜곡된 영상의 보정을 위해 고분해능의 성능이 요구되며, RGB, RGB-IR, IR, TOF(time of flight), COMS, STACK 등으로 구성될 수 있다.
3차원 스캐너(10)는 광경로를 변환하기 위하여 미러부(19)를 포함할 수 있으며, 특수코팅된 평면미러, 프리즘 등으로 구성될 수 있다. 여기서 특수코팅은 김서림, 습기, 이물질 오염 등의 문제를 해결하기 위한 일반적인 코팅을 의미한다.
3차원 스캐너(10)는 전방위 렌즈부(100)로부터 영상을 효율적으로 이미지센서(18)에 전달하기 위하여, 이 두 소재 사이에 적어도 하나 이상의 렌즈를 구비한 렌즈어레이부(200)를 포함할 수 있다.
3차원 스캐너(10)는 영상처리부(320), 통신부(미도시), 제어부(310)를 더 포함할 수 있다.
영상처리부(320)는 이미지센서(18)로부터 출력된 영상신호를 신호처리하기 위해 ADC(analog to digital convertor), 증폭기(amplifier)와 이미지 프로세서 등의 소자로 구성될 수 있으며, 이미지센서의 출력은 아날로그 또는 디지털 신호가 될 수 있다. 영상처리부(320)는 도면 5에서 데이터변환장치(30)내에 구성될 수 있거나, 독립적으로 구성될 수 있으나 이에 한정하는 것은 아니다. 그리고 영상처리부(320)는 생성된 2차원 영상 정보와 심도정보를 통신부를 통해 데이터변환장치(30)로 전송하고, 데이터변환장치(30)는 2차원 영상정보와 심도정보를 이용하여 피사체의 3차원 모델을 생성할 수 있다.
통신부는 3차원 스캐너(10)에서 취득한 영상과 정보를 디스플레이장치(31) 및/또는 데이터변환장치(30)에 전송하기 위한 유/무선 통신모듈로 구성할 수 있다. 디스플레이장치(31)는 도 5의 실시 예처럼 독립적으로 구성될 수 있거나 데이터변환장치(30)내에 구성될 수 있으나 이에 한정하는 것은 아니다.
또한, 3차원 스캐너(10)는 자이로센서(331) 또는 가속도센서(332) 등의 위치정보를 제공할 수 있는 센서로 구성될 수 있는 회전각정보검출부(330)를 더 포함할 수 있다.
회전각정보검출부(330)는 3차원의 기준 좌표 상에서 3차원 스캐너(10)로부터 취득한 영상의 위치, 기울기, 그리고 회전각 등의 정보를 검출하여 3차원 모델을 효과적으로 생성할 수 있는 정보를 제공할 수 있다.
제어부(310)는 3차원 스캐너(10)를 동작하는데 필요한 전반적인 기능을 관장하며 제어하는 것으로써, 일 예로 이미지센서(18)와 영상처리부(320), 패턴생성장치(17), 피사체를 조명하는 광원(미도시), 데이터변환장치 등과 유/무선통신을 할 수 있는 통신부(미도시) 그리고 회전각정보검출부(330) 등의 구동 및 이들 간의 연동을 제어할 수 있다.
본 발명의 데이터변환장치(30)는 CAD, CAM 또는 CAD/CAM 프로그램 중 어느 하나가 설치된 컴퓨팅 장치가 될 수 있다. 따라서 데이터변환장치(30)는 3차원 스캐너(10)로부터 제공된 영상 및 심도정보로부터 피사체의 3차원 모델을 생성, 디자인할 수 있으며, 이를 CAM 데이터로 변환할 수 있다. 상기 정보는 회전각정보검출부(330)의 위치, 기울기, 회전각 등의 정보를 의미한다.
보다 상세하게는 3차원 스캐너(10)를 이용하여 피사체를 복수 회 촬영할 때, 각 촬영 시점마다 3차원 스캐너(10)의 위치가 달라지게 되면 복수의 2차원 영상 데이터 각각의 좌표 정보는 서로 불일치하게 된다. 따라서 기준 좌표를 기준으로 복수의 2차원 영상 데이터 각각의 좌표 정보를 서로 일치시키는 것이 바람직하다.
복수의 2차원 영상 데이터 각각의 좌표 정보를 서로 일치시키기 위한 예시적인 방법으로써, 데이터변환장치(30)에 미리 설치된 소프트웨어는 회전각정보검출부(330)의 정보에 기초하여 2차원 데이터의 위치를 회전 및 이동하여 정렬할 수 있다. 따라서 데이터변환장치(30)는 기준 좌표계의 원점 정보와 회전각 정보를 이용하여 2차원 영상데이터로부터 3차원 데이터를 생성하기 때문에 빠른 위치 정렬과 연산량 감소로 전반적인 데이터 처리 속도가 향상된다. 또한, 데이터변환장치(30)는 3차원 스캐너(10)의 사용자가 촬영 시 손 떨림 등과 같은 요인에 의해 발생하는 흔들림에 강건한 3차원 데이터 생성이 가능하므로 영상의 품질은 크게 향상된다.
도 6은 2차원 모니터링 영상 및 3차원 모델 생성 과정을 나타낸 흐름도이다. 상기 흐름도는 3차원 스캐너로 피사체를 촬영하는 단계; 촬영된 영상으로부터 2차원 모니터링 영상을 만드는 단계; 촬영된 2차원 영상의 흔들림 검출 및 보정 단계; 촬영된 영상으로부터 심도정보, 위치 및 회전각 정보를 추출하는 단계; 촬영된 2차원 영상, 깊이, 위치 및 회전각 정보로부터 위치 정렬된 3차원 데이터를 생성하는 단계; 위치 정렬된 3차원 데이터로부터 피사체의 최종 3차원 모델 생성단계로 구성된다. 단, 3차원 모델 생성은 상기 흐름도의 순서로만 한정되는 것이 아니다.
<패턴생성부를 구비한 3차원 스캐너>
도 7은 본 발명의 3차원 스캐너에 적용될 수 있는 패턴생성부의 구성 예들을 도시하는 도면들이다. 그리고 도 8 및 도 9는 마이크로미러로부터 반사된 라인 광이 피사체에 형성되는 패턴을 설명하기 위한 도면이다. 그리고 도 10은 마이크로미러의 90도 회전에 따른 라인 광의 방향을 달리한 것을 설명하기 위한 도면이다.
도 5 및 도 7 내지 도 10을 참조하면, 본 발명의 실시 예에 따른 3차원 스캐너(10)는 패턴생성부(500)를 더 포함할 수 있다.
패턴생성부(500)는 광생성부(510), 렌즈부(520), 마이크로미러부(530)를 포함할 수 있다.
광생성부(510)는 광원 모듈레이터(512) 또는 드라이버와 광원(511)으로 구성될 수 있다. 상기 광원(511)은 가시광선 또는 적외선 등의 파장대역을 갖는 발광다이오드, 레이저 다이오드(laser diode) 등 다양한 광원 중 어느 하나가 될 수 있다. 예를 들어, 선형 레이저 광을 조사할 수 있는 적색(red), 녹색(green) 및 청색(blue) 광원소자들의 조합 또는 단독으로 구성될 수 있다. 따라서, 광원은 광을 생성하여 출력할 수 있는 어떠한 광원이라도 본 발명의 3차원 스캐너(10)에 적용될 수 있다.
광원 모듈레이터(512)는 2진 신호 즉, 펄스변조신호를 이용하여 광원(511)의 구동 여부 및 구동 시간을 제어할 수 있으나 이에 한정하는 것은 아니다. 일 예로 광원 모듈레이터(512)는 펄스변조신호가 하이레벨(High level)을 유지하는 동안에 광원(511)은 온(on)이 되고, 펄스변조신호가 로우레벨(Low level)을 유지하는 동안에 광원(511)이 오프(off)된다.
81렌즈부(520)는 실린더리컬 렌즈와 같이 라인 광을 출력할 수 있는 종축과 횡축의 반지름이 상이한 렌즈(521)와 콜리메이터 렌즈(522) 등을 포함할 수 있다. 실린더리컬 렌즈(521)는 반원통(Semi-Cylinder) 형상으로 광을 수신하는 입사면은 비곡면이고, 수신한 광을 출사하는 출사면은 곡면이 될 수 있다.
콜리메이터 렌즈(522)는 마이크로미러(531)의 사이즈에 맞게 라인 광의 길이를 조절하여 마이크로미러(531)에 조사할 수 있다. 즉, 콜리메이터 렌즈(522)는 마이크로미러(531)의 사이즈에 매칭하여 수신한 광을 마이크로미러(531)에 포커싱(Focusing)하여 조사 할 수 있다.
본 발명의 또 다른 실시예로, 광생성부(510)로부터의 광이 마이크로미러 (531)에 직접 조사될 수도 있으며, 피사체에 패턴을 조사할 수 있다.
이 경우, 마이크로미러(531)로부터 출력된 광을 실질적으로 반사 시키기 위하여, 광생성부(510)로부터의 광 경로의 각도 및 광생성부(510)와 마이크로미러(531)와의 거리에 비례하여 마이크로미러(531)의 표면 치수가 커질 수 있다.
또한, 렌즈부(520)는 상기 구성에 한정되는 것이 아니라 이 기술분야에서 평균적 지식을 가진 자가 통상의 창작발휘에 해당되는 다양한 형태로 구성될 수 있다.
마이크로미러부(530)는 렌즈부(520)로부터 출력된 라인 광을 반사하여 피사체(S)에 패턴 광을 조사할 수 있으며, 마이크로미러(531)와 마이크로미러(531)의 구동을 제어하는 미러제어부(532)를 포함할 수 있다. 다만 이에 한정하는 것은 아니고 미러제어부(532)는 마이크로미러부(530)와 별도로 구성되거나 제어부(310)와 함께 구성될 수도 있다.
마이크로미러부(530)는 횡축 및/또는 종축 방향의 회전축을 동시에 또는 서로 독립적으로 제어하여 마이크로미러(531)의 상하좌우 회전 운동을 조절할 수 있다.
마이크로미러(531)는 MEMS(Micro Electro Mechanical Systems)기술에 의하여 제작될 수 있으나 이에 한정하는 것은 아니다.
광생성부(510)로부터의 광 경로 상의 콜리메이터 렌즈(522)를 통과한 광은 마이크로미러(531)의 표면에 집광되어 반사되고, 마이크로미러(531)의 회전각도에 따라서 라인 광패턴으로 변환되어 피사체(S)에 조사될 수 있다.
보다 상세하게는 미러제어부(532)는 마이크로미러(531)의 종축 및 /또는 횡축지지대를 중심으로 회전각을 결정할 수 있다. 결정된 종축 및/또는 횡축지지대의 회전각 범위 내에서 각각 1초에 N 또는 M번 상하좌우 회전시키는 경우, 피사체(S)에 2N개의 라인/2M개의 프레임 레이트를 조사할 수 있다.
본 발명의 3차원 스캐너의 패턴생성부(500)에서, 광원 모듈레이터(512)에 의해 제어되는 광원은 점광(point light)을 출력하고, 입사되는 점광은 렌즈부(520)의 실린더리컬 렌즈(521)에 의해 라인 광(line light)으로 변환되어 출력된다. 이때 생성되는 라인 광의 두께는 일 예로 광원 모듈레이터(512)의 펄스변조신호의 하이 레벨 지속기간에 따라 가변 될 수 있다. 실린더리컬 렌즈(521)로부터 출력된 라인 광은 렌즈부(520)의 콜리메이터 렌즈(522)에 의해 마이크로미러부(530)의 미러 크기로 변환된다. 그러므로, 패턴생성부(500)는 다양한 두께의 라인 광과 라인 광사이의 간격을 조절하여 피사체에 다양한 형태의 패턴을 조사할 수 있다.
또한, 전술한 렌즈부(520)는 실린더리컬 렌즈(521) 및 콜리메이터 렌즈(522)를 포함하는 것으로 설명하였으나, 이에 한정하는 것은 아니다. 즉, 렌즈부(520)는 점광을 라인 광으로 변환하여 마이크로미러부(530)로 조사할 수 있도록 구성된 적어도 하나의 렌즈로 이루어질 수도 있다.
이미지센서(18)는 피사체(S)에 순차적으로 조사된 패턴 영상을 수신할 수 있다.
또한, 패턴의 피사체(S)에 조사 시점과 이미지센서(18)의 패턴 영상 수신 시점은 서로 동기화될 수 있고, 이러한 동기화는 제어부(310)에 의하여 수행될 수 있다.
이 경우 패턴생성부(500)로부터 생성되어 피사체(S)에 조사된 패턴은 피사체(S) 표면의 요철에 의해서 왜곡될 수 있으나, 이미지센서(18)로부터 패턴의 왜곡 정보를 포함하는 패턴 영상을 수신하는 데이터변환장치(30)는 패턴의 왜곡정보를 이용하여 피사체(S)의 정확한 3차원 모델을 생성할 수 있다.
또한, 데이터변환장치(30) 또는 3차원 스캐너(10)는 메모리를 구비할 수 있고, 순차적인 패턴이 피사체(S)에 조사됨에 따라 영상처리부(320)는 패턴 영상을 순차적으로 수신하여 메모리에 저장할 수 있다. 그리고 영상처리부(320)는 메모리에 기억된 영상 정보에 기초하여 3차원 좌표에 대한 데이터를 추출하고 추출된 3차원 좌표 데이터를 이용하여 와이어프레임을 구성하고 3차원 모델을 형성할 수 있다. 다만 이에 한정하는 것은 아니고, 메모리에 기억된 영상 정보는 외부 기기에 전달되고, 외부 기기에 의하여 피사체(S)의 3차원 모델이 형성될 수도 있다.
도 11은 도 7의 패턴생성부의 또 다른 구성 예를 나타낸 도면이다.
도 11를 참조하면, 패턴생성부(500)의 렌즈부(520)는 광생성부(510)로부터의 출력된 광을 수신하여 십자 또는 방사형 등 다양한 구조의 형상을 가진 광을 구조 광(structured illumination) 패턴 렌즈(523)을 이용하여 출력할 수 있다.
렌즈부(520)는 구조 광 패턴 렌즈(523)로부터 다양한 구조를 가진 광을 출력하여 해당 형상의 광이 마이크로미러부(530)에 조사되도록 할 수 있다.
렌즈부(520)는 실린더리컬 렌즈(521)로 구성되거나, 구조 광 패턴 렌즈(523)로 구성될 수 있고, 실린더리컬 렌즈(521)와 추가적인 광학계를 포함할 수 있으며, 구조 광 패턴 렌즈(523)와 추가적인 광학계를 포함하여 구성될 수도 있다. 또한, 렌즈부(520)로부터의 출력되는 광의 구조는 피사체(S)의 종류에 따른 심도 측정 정도, 분해능과 초점 등에 따라 달라 질 수 있다.
한편 본 발명의 3차원 스캐너(10)의 데이터변환장치(30)에서 피사체의 3차원 데이터를 얻기 위해 삼각법(triangulation technique) 알고리즘을 이용할 수 있다. 삼각법 알고리즘은 다양한 패턴이 조사된 피사체의 영상, 패턴생성부(500)와 이미지센서(18) 간의 거리정보 및 이들 간의 각도 정보로부터 3차원 데이터를 생성할 수 있다. 부연 설명하면, 패턴광이 조사된 피사체의 특정 지점, 이미지센서(18) 그리고 패턴생성부(500)로 형성되는 삼각형을 기반으로 피사체의 3차원 모델을 얻을 수 있는 심도정보를 획득할 수 있다.
도 12는 본 발명의 다른 실시예에 따른 3차원 스캐너를 개략적으로 도시한 것이다. 그리고 도 13은 영상촬영장치의 제1 렌즈와 패턴생성장치의 제2 렌즈의 위치 관계를 개략적으로 도시한 것이다. 또한, 도 14는 라인 광 패턴의 생성 예시도이다.
도 12를 참조하면, 다른 실시예에 따른 3차원 스캐너(600)는 도면부호 11a에 위치한 영상촬영장치(610)와 도면부호 11b에 위치한 패턴생성장치(620)를 포함할 수 있으며, 상기 영상촬영장치와 패턴생성장치는 상기 위치에 한정되는 것이 아니라 경통부(11)의 어느 위치라도 배치될 수 있다.
3차원 스캐너의 영상촬영장치(610)는 굴절률에 따라 특정 화각을 가지고 360도 전방위의 영상을 수신할 수 있는, 적어도 하나 이상의 굴절면과 반사면을 가진 제1 렌즈(110a)와 이미지센서(18)를 구비할 수 있다. 그리고 여기서의 제1 렌즈(110a)는 전방위렌즈, 밀러형 렌즈 및 어안 렌즈 중 어느 하나인 비구면 렌즈가 될 수 있다. 여기서 화각은 렌즈의 외면의 가장자리 끝단에서부터 반사코팅면과 그 외의 영역 간의 경계 영역까지 될 수 있다. 또한, 영상촬영장치(610)는 영상처리부(320)와 제어부(310)를 구비할 수 있다. 그리고 제어부(310)는 패턴생성장치(620) 상에 포함된 것으로 도시하였으나 이는 이해의 편의를 위한 것이고 제어부(31)는 영상촬영장치(610)와 패턴생성장치(620)의 구동을 모두 관장할 수 있다. 또한, 영상촬영장치(610)는 제1 렌즈(110a)를 통과한 광을 이미지센서(18)에 효율적으로 전달 시키기 위해 렌즈어레이부(200)를 더 포함할 수 있다. 영상촬영장치(610)는 광의 경로의 변경을 위하여 미러부(19)를 더 포함할 수 있다. 또한, 전술한 구성들에 대해서는 이미 상술한 바 보다 자세한 설명은 생략한다.
본 발명의 다른 실시예에 따른 3차원 스캐너(600)는 패턴생성장치(620)를 포함하고, 패턴생성장치(620)는 피사체에 패턴 광을 제공하는 광원(511) 그리고 광원(511)으로부터의 광을 반사하는 마이크로미러(531)를 포함하는 마이크로미러부(530)와 마이크로미러(531)로부터의 광을 전방위로 출력하는 제2 렌즈(110b)를 포함할 수 있다. 마이크로미러부(530)는 마이크로미러(531)를 특정 각도내의 틸팅 또는 회전 동작할 수 있도록 제어할 수 있다. 이때 마이크로미러(531)는 고속 주파수를 가지고 있어 매우 빠르게 동작할 수 있다. 제2 렌즈(110b)는 전방위렌즈, 밀러형 렌즈 및 어안 렌즈 중 어느 하나인 비구면 렌즈가 될 수 있다. 그리고 제어부(310)는 직접적으로 광원을 제어하거나 마이크로미러(531)를 제어할 수도 있으며, 패턴생성장치(620)의 광 패턴 조사 시점과 이미지센서(18)의 센싱 시점을 서로 동기화할 수 있다.
마이크로미러(531)는 마이크로 전자기계적 시스템(MEMS) 스캐닝 미러, 단축 미러, 2축 MEMS 스캐닝 미러, 디지털 마이크로미러 디바이스(Digital Micromirror Device: DMD) 중 어느 하나가 될 수 있다.
여기서 DMD는 미러소자에 의한 반사의 온(On)/오프(Off) 상태에 의해서 영상을 투사하는 장치가 될 수도 있으며, 이러한 DMD는 미세구동거울을 집적한 반도체 광스위치로써, SRAM(Static Random Access Memory)의 메모리셀들에 대응하게 형성된 수십 내지 수 ㎛크기의 각 알루미늄합금 미세거울인 반사경셀과 셀구동부 그리고 구동회로부로 구성될 수 있다. 추가적으로 컬러 패턴을 구현하기 위해 컬러휠(Color Wheel) 또는 SCR Color Wheel (Sequential Color Recapture Color Wheel) 등의 구성요소를 포함할 수 있다.
이러한 DMD 방식의 마이크로미러(531)는 디지털 방식에 따라 색 재현성이 높고, 조도비(Contras ratio)가 높아 밝고 선명하고, 디지털 아날로그 변환이 불필요하여 노이즈에 강하고 부가적인 신호의 보정이 필요 없거나 최소화되고, 광 효율이 높고, 완전한 실리콘 디바이스로써 내구성이 뛰어나며 동작속도가 빠른 이점이 있다.
레이저 광 라인 LL은 마이크로미러(531)의 틸팅 또는 회전각에 따라 굴절률을 가진 제2 렌즈(110b)에 의해 전방위 영역 내의 피사체에 레이저 광 패턴 형태로 조사되고, 상기 패턴이 조사된 피사체의 영상은 영상촬영장치(610)의 이미지센서(18)에 의해 검출된다. 그리고 데이터변환장치(30)는 이미지센서(18)로부터 촬영된 다양한 레이저 광 패턴이 조사된 피사체 영상정보로부터 피사체의 3차원 모델을 재구성할 수 있다.
이때 제1 렌즈(110a)의 중심축을 지나는 가상의 직선은 평면(Plane)과 수직할 수 있고, 제2 렌즈(110b)의 중심축을 지나는 가상의 직선은 평면(Plane)과 수직한 직선과 임의의 각(theta)을 형성할 수 있도록 구성될 수 있다. 여기서, 세타(theta) 각도(0~90°)는 3차원 스캐너(600)의 구조, 형상 그리고 제1 렌즈(110a)와 제2 렌즈(110b) 사이의 소정의 거리(d), 초점 거리 등에 기초하여 결정될 수 있다.
패턴생성장치(620)는 렌즈부(520)를 더 추가 구성할 수 있다. 레이저 광의 효율적인 전달을 위해 렌즈부는 실린더리컬 렌즈(521)와 콜리메이터 렌즈(522) 등으로 구성될 수 있으며 특수 목적에 따른 렌즈가 추가될 수 있다. 또한, 전술한 구성들에 대해서는 이미 상술한 바 보다 자세한 설명은 생략한다.
레이저 광은 렌즈부(520)에 의해 레이저라인 LL으로 변환되고, 변환된 레이저라인 LL은 마이크로미러(531)로 입사/반사되어 다양한 형태의 레이저 광 패턴을 형성할 수 있다.
도 14는 본 발명의 패턴생성장치(620,630)의 실시예이다.
광원(511)은 레드(Red), 그린(Green) 및 블루(Blue) 발광다이오드 중 적어도 하나의 광원으로 구성될 수 있고, R, G, B 컬러 각각의 광 또는 이들 조합에 의한 다양한 컬러 광을 제공할 수도 있다.
렌즈부(520)에 의하여 레이저 광원으로부터 출력된 레이저 광은 라인 광으로 변환되고, 라인 광은 마이크로미러(531)의 틸팅 또는 회전에 의해 다양한 두께의 라인 광 패턴(LLP)으로 변환되어 피사체 상에 조사될 수 있다.
렌즈부(520)는 구조 광 패턴 렌즈를 구비할 수 있고 그 경우 다양한 구조를 가진 광 패턴을 출력할 수도 있다.
도 15는 본 발명의 또 다른 실시예에 따른 프로젝터부를 구비한 3차원 스캐너의 개략도이다.
3차원 스캐너(600)의 도면부호 11b의 영역에 위치한 패턴생성장치(620)는 프로젝터미러(632), 프로젝터(631) 그리고 이들을 제어하는 제어부(310)로 구성된 프로젝터부(630)가 될 수 있다.
프로젝터부(630)는 제2 렌즈(110b)를 포함할 수 있고, 프로젝터미러(632)는 프로젝터(631)로부터 조사되는 광의 경로를 변경할 수 있다.
프로젝터(631)는 LCD(Liquid crystal display) 방식, LCOS(Liquid crystal on silicon) 방식, DLP(Digital light processing) 방식 중 어느 하나가 될 수 있으나 이에 한정하는 것은 아니고, 피사체에 패턴 영상을 조사할 수 있는 장치라면 어떤 것이든 가능하다.
프로젝터(631)는 제어부(310)의 제어에 따라 그레이(Grey) 패턴 또는 컬러(Color) 패턴 등으로 구성된 패턴 영상을 제2 렌즈(110b)를 통해 피사체에 조사할 수 있다. 이미지센서(18)는 패턴 영상이 조사된 피사체의 영상을 제1 렌즈(110a)를 이용하여 검출할 수 있다. 그리고 이미지센서(18)에서 검출된 2차원 이미지는 데이터변환장치(30)에서 삼각법 알고리즘을 이용하여 3차원 모델로 변환될 수 있다.
데이터변환장치(30)에서 3차원 모델을 생성하기 위한 삼각법 알고리즘은 각 패턴이 만드는 라인마다 고유 식별기호가 존재하고, 미리 정해진 해당 식별기호의 평면 방정식과 피사체에 맺힌 실제 위치와의 교점을 이용하여 3차원 좌표를 생성하여 3차원 모델을 생성하는 방법이다. 또한, 더 정확한 3차원 좌표를 얻기 위한 방안으로 역패턴을 사용하여 패턴 강화 효과를 얻을 수 있다.
3차원 스캐너(600)는 다양한 패턴이 저장될 수 있는 메모리를 구비할 수 있다. 제어부(310)은 메모리에 저장된 패턴을 프로젝터(631)의 패턴 광으로 조사하도록 제어하거나 다양한 패턴을 외부장치로부터 전송 받아 메모리에 저장할 수 있다.
<인공물 가공 시스템>
도 16은 본 발명의 실시예에 따른 전방위 영상을 스캔할 수 있는 3차원 스캐너(10)와 스캔된 피사체를 정밀하게 3차원 모델을 생성하고 이를 다양한 형태로 디자인하고, 디자인된 3차원 모델을 가공장치/3차원 프린터(40)로 가공할 수 있는 CAM 데이터로 변환할 수 있는 데이터변환장치(30) 및 가공장치/3차원 프린터(40)로 구성된 인공물가공시스템(1)의 블록도이다. 인공물가공시스템(1)의 하부 장치는 유선/무선으로 데이터를 송수신할 수 있다.
데이터변환장치(30)는 3차원 스캐너(10)로부터 수신한 영상데이터와 심도정보로부터 3차원 모델을 생성할 수 있다. 그리고, 생성된 3차원 모델을 다양한 형태로 디자인하고 이를 CAM 데이터로 변환하여 가공장치/3차원 프린터(40)로 제공할 수 있다. 그러므로 데이터변환장치(30)은 피사체의 2차원 이미지를 촬영하여 이미지 처리할 수 있으며, CAD 및/또는 CAM 기반의 데이터 변환장치가 될 수 있으나 이에 한정하는 것은 아니고, 3차원 스캐너로부터의 촬영된 영상 데이터를 이용하여 피사체의 3차원 모델 생성하고 이를 CAM 데이터로 변환 할 수 있는 장치라면 어떤 것이라도 가능하다.
가공장치/3차원 프린터(40)는 수신한 CAM 데이터를 이용하여 보철물, 임플란트, 교정기 또는 서지컬 가이드 등의 치아 미용, 진단, 치료 및 예방에 사용되는 인공물을 생성할 수 있다.
도 17은 하악 치열궁에 관한 도면이고, 도 18은 하악 치열궁의 각을 나타낸 도면이다.
본 발명의 3차원 스캐너(10)의 영상처리부(320) 또는 데이터변환장치(30)는 생성된 3차원 모델에 기초하여 도 17 및 도 18에서 제시된 바와 같이 상악 및 하악의 치열궁 형태, 크기 및 치열궁의 각 그리고 개별 치아 형태와 크기, 그리고 치아들 간의 거리 등 정밀한 구강내 다양한 정보를 제공할 수 있으며, 디스플레이장치(31) 또는 프리뷰디스플레이장치(16)에 표시할 수 있다.
<상악/하악의 촬영 영상>
도 19는 본 발명의 3차원 스캐너에 의해 촬영될 수 있는 상악 영상의 예이고 도 20은 하악 영상의 예를 나타낸 도면이다.
도 19 및 도 20은 전방위 렌즈로 촬영된 영상으로, 데이터변환장치(30) 또는 영상처리부(320)에서 이미지 처리하여 임의의 영역별로 분할하여 표시되는 2차원 이미지 또는 파노라마 이미지로 나타낼 수 있으며, 영상의 가운데 검은 영역은 입천장, 혀 등으로 이미지 처리되거나 제거 될 수 있다.
기존 구강 3D 스캐너는 측정영역(FOV: field of view)이 한정되어 있다. 따라서, 기존 구강 3D 스캐너는 상악 또는 하악 전체를 한번에 촬영할 수 없고 상악 또는 하악 전체를 촬영하기 위해서 측정영역만큼 복수의 영상을 촬영한다. 그러나 본 발명의 3차원 스캐너는 전방위렌즈로부터 피사체 전체 영역에 대한 영상을 한번에 촬영할 수 있다. 따라서, 본 발명의 3차원 스캐너는 기존 구강 3D 스캐너의 영상들의 결합에 따른 오차 발생과 정밀도 및 분해능 저하를 최소화하여 고품질의 그리고 정밀도가 매우 우수한 3차원 모델을 생성할 수 있다. 아울러, 광 반사 방지를 위한 파우더를 구강에 도포하지 않고도 빠르게 촬영하여 3차원 모델을 생성할 수 있다. 그러므로 치아의 촬영 시간을 단축할 수 있어 치아, Bridge부터 틀니(denture), 교정, 임플란트 등의 진단 및 시술 계획 및 시술 시간을 크게 단축시킬 수 있다.
본 발명의 3차원 스캐너는 치과분야 이외의 분야에도 적용될 수 있다. 일 예로 반도체 장비 및 PCB 대량생산 등 검사를 위한 장비검사 분야와 성형 또는 의족/의수, 안면인식, 내시경에 의한 3차원 모델 등 의료분야, 육안으로 확인하기 어려운 임의의 공간내 구조를 정밀하게 스캔하거나 문화재 복원 등의 산업 분야 등에도 적용될 수 있다.
본 발명의 3차원 스캐너는 스테레오/동영상 방식 또는 스틸 이미지방식 등 3차원 모델을 생성할 수 있는 다양한 스캔 방식을 채택할 수 있으며, 이는 데이터변환장치에서 상기에서 언급한 방식 중 어느 하나의 방식으로 구현될 수 있다.
상술한 바와 같이, 본 발명의 3차원 스캐너와 이를 이용한 인공물가공시스템은 360도 전방위로 광패턴을 출력 및/또는 360도 전방위로 영상을 취득하는 렌즈로 구성함에 따라 피사체의 전체 영역을 한번에 촬영하여 3차원 모델을 구현할 수 있다. 따라서 피사체의 부분 영상들의 결합에 따른 오차 문제와 부분 영상들의 수의 증가에 따른 오차의 누적 문제 해결하고 전체 피사체의 3차원 모델 생성에 필요한 시간을 최소화 할 수 있다.
또한, 본 발명의 3차원 스캐너와 이를 이용한 인공물가공시스템은 전방위 영상을 취득하는 비구면 렌즈와 피사체에 패턴 광을 조사하는 패턴생성장치를 구비하여 영상처리부에서 측정되지 않은 피사체의 표면 영역의 존재 가능성을 제거 할 수 있다. 따라서 삼각법에 따른 3차원 영상 생성 시 삼각법의 각도를 최대한 증가시킬 수 있어 3차원 영상의 정확도와 품질 및 3차원 영상의 분해능을 크게 향상시킬 수 있다.
본 발명은 피사체의 촬영 횟수의 최소화와 빠른 스캔 속도, 그리고 회전각 정보에 의한 3차원 모델 보정작업을 통해서 작업자에게 정밀한 스캔 작업을 요구하지 않아 작업자의 작업 능률을 향상시킬 수 있고, 손 떨림 등의 인공적인 진동이나 기계적인 진동에 따른 복수의 촬영 영상 간의 편차에 따른 3차원 영상의 정밀도가 떨어지는 문제를 해결할 수 있다.
본 발명의 실시예가 의료용으로 사용하는 경우, 진료 및 진단 시간을 최소화하여 의료 서비스에 대한 피시체의 대상인 환자와 시술자의 만족감을 크게 증대 시킬 수 있다.
이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.
본 발명은 피사체를 3차원적으로 스캔하고 이를 이용하여 피사체에 대한 인공물을 가공하는 분야에서 이용할 수 있다.
Claims (19)
- 피사체에 광 패턴을 조사하는 패턴생성장치; 및상기 광 패턴이 조사된 상기 피사체의 전방위 영상을 수신하는 영상촬영장치;를 포함하고,상기 영상촬영장치는,굴절률에 따라 특정 화각을 가지고, 적어도 하나의 이상의 굴절면과 적어도 하나 이상의 반사코팅면을 가지고 상기 전방위 영상을 수신하는 제1 렌즈;를 포함하는3차원 스캐너.
- 제1 항에 있어서,상기 영상촬영장치는,상기 제1 렌즈로부터의 광의 경로를 변경하는 미러부; 및상기 미러부로부터의 광을 센싱하는 이미지센서;를 더 포함하는3차원 스캐너.
- 제1 항에 있어서,상기 영상촬영장치는,상기 제1 렌즈는 전방위렌즈, 밀러형 렌즈 및 어안 렌즈 중 어느 하나인 비구면 렌즈인3차원 스캐너.
- 제2 항에 있어서,상기 이미지센서의 판독에 기초하여 상기 피사체의 2차원 영상 또는 상기 피사체의 3차원 모델 생성을 위한 데이터를 생성하는3차원 스캐너.
- 제2 항에 있어서,상기 영상촬영장치는,상기 패턴생성장치의 상기 광 패턴의 조사 시점과 상기 이미지센서의 센싱 시점을 서로 동기화하는3차원 스캐너.
- 제1 항에 있어서,상기 패턴생성장치는 상기 피사체에 전방위로 상기 광 패턴을 조사하는3차원 스캐너.
- 제1 항에 있어서,상기 패턴생성장치는,상기 피사체에 전방위로 상기 광 패턴을 조사하는 제2 렌즈를 포함하는3차원 스캐너.
- 제7 항에 있어서,상기 제2 렌즈는 전방위렌즈, 밀러형 렌즈 및 어안 렌즈 중 어느 하나인 것을 특징으로 하는3차원 스캐너.
- 제7 항에 있어서,상기 피사체의 3차원 모델 생성 또는 보정을 위한 3차원 스캐너의 회전각 정보를 검출하는 회전각정보검출부;를 더 포함하는3차원 스캐너.
- 제9 항에 있어서,상기 회전각정보검출부는,자이로센서 및 가속도센서를 포함하는3차원 스캐너.
- 제9 항에 있어서,상기 패턴생성장치는,상기 피사체로 상기 광 패턴을 형성하는 마이크로미러; 및상기 마이크로미러로 광을 조사하는 광원;을 더 포함하는3차원 스캐너.
- 제11 항에 있어서,상기 광원은,적어도 하나의 발광 다이오드 또는 레이저를 포함하는3차원 스캐너.
- 제11 항에 있어서,상기 패턴생성장치는,상기 광원으로부터의 광을 라인 광으로 변환하여 상기 마이크로미러로 조사하는 종축과 횡축의 반지름이 상이한 렌즈; 또는상기 광원으로부터 광을 미리 결정된 구조의 광 패턴으로 변환하여 상기 마이크로미러로 조사하는 구조 광 패턴 렌즈; 와상기 라인 광 또는 상기 구조의 광 패턴을 상기 마이크로미러로 포커싱하여 조사할 수 있는 콜리메이터 렌즈;를 더 포함하는3차원 스캐너.
- 제11 항에 있어서,상기 패턴생성장치는,상기 광원의 구동 시간 및 구동 주기 중 적어도 하나를 제어하는 광원 모듈레이터;를 포함하고상기 피사체에 조사되는 광 라인 간의 간격 및 각각의 굵기를 조절하고,컬러 또는 단색의 복수로 다양한 형태의 패턴을 생성할 수 있는3차원 스캐너.
- 제11 항에 있어서,상기 피사체는 구강인3차원 스캐너.
- 제1 항에 있어서,상기 피사체를 촬영한 2차원 영상, 상기 2차원 영상을 임의의 영역으로 분할한 영상 또는 상기 피사체의 3차원 모델을 유선 및/또는 무선 통신을 통해 디스플레이장치, 휴대용 디스플레이장치 및 3차원 스캐너에 설치된 프리뷰디스플레이장치 중 적어도 하나에 전송하는3차원 스캐너.
- 제1 항의 3차원 스캐너로부터 수신한 영상 데이터를 3차원 모델로 변환하여 디자인 데이터를 생성하고 이를 가공장치 또는 3차원 프린터로 가공할 수 있는 CAM 데이터 중 어느 하나로 변환하는데이터변환장치.
- 제17 항의 데이터변환장치로부터 수신한 상기 CAM 데이터에 기초하여 적어도 하나의 인공 치아와 인공물의 잇몸, 입천장으로 연결된 복수의 치아, 임플란트, 서지컬 가이드(Surgical guide), 교정기, 덴쳐(Denture) 중 적어도 하나를 생성하는가공장치.
- 제17 항의 데이터변환장치로부터 수신한 상기 CAM 데이터에 기초하여 적어도 하나의 인공 치아와 인공물의 잇몸, 입천장으로 연결된 복수의 치아, 임플란트, 서지컬 가이드(Surgical guide), 교정기, 덴쳐(Denture) 중 적어도 하나를 생성하는 3차원 프린터.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/316,063 US10792133B2 (en) | 2016-07-13 | 2017-07-12 | 3D scanner and artificial object processing device using the same |
CN201780043479.9A CN109475394B (zh) | 2016-07-13 | 2017-07-12 | 三维扫描仪及利用上述三维扫描仪的人工制品加工装置 |
JP2019501534A JP6735899B2 (ja) | 2016-07-13 | 2017-07-12 | 3次元スキャナとこれを利用した人工物加工装置 |
EP17827932.9A EP3485841B1 (en) | 2016-07-13 | 2017-07-12 | Three-dimensional scanner and apparatus for processing artificial object using same |
ES17827932T ES2876155T3 (es) | 2016-07-13 | 2017-07-12 | Escáner tridimensional y aparato para el procesamiento de objetos artificiales mediante el uso del mismo |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0088926 | 2016-07-13 | ||
KR1020160088930A KR101782740B1 (ko) | 2016-07-13 | 2016-07-13 | 3d 구강스캐너 및 이를 포함한 인공 치아 가공 장치 |
KR10-2016-0088930 | 2016-07-13 | ||
KR1020160088926 | 2016-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018012862A1 true WO2018012862A1 (ko) | 2018-01-18 |
Family
ID=60952628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/007436 WO2018012862A1 (ko) | 2016-07-13 | 2017-07-12 | 3차원 스캐너와 이를 이용한 인공물가공장치 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10792133B2 (ko) |
EP (1) | EP3485841B1 (ko) |
JP (1) | JP6735899B2 (ko) |
CN (1) | CN109475394B (ko) |
ES (1) | ES2876155T3 (ko) |
WO (1) | WO2018012862A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109218707A (zh) * | 2018-08-15 | 2019-01-15 | 苏州佳世达电通有限公司 | 口扫系统及口扫方法 |
WO2020206800A1 (zh) * | 2019-04-08 | 2020-10-15 | 北京大学口腔医学院 | 一种内置光学元件和防污染的激光手术或加工设备 |
WO2022197016A1 (ko) * | 2021-03-16 | 2022-09-22 | 주식회사 메디트 | 데이터 처리 방법 |
US11864727B2 (en) | 2016-01-26 | 2024-01-09 | Cyberdontics (Usa), Inc. | Automated dental treatment system |
US12029619B2 (en) | 2020-09-03 | 2024-07-09 | Perceptive Technologies, Inc. | Method and apparatus for CNA analysis of tooth anatomy |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3459438B1 (en) * | 2017-09-26 | 2020-12-09 | The Procter & Gamble Company | Device and method for determing dental plaque |
JP2022502183A (ja) * | 2018-09-27 | 2022-01-11 | 3シェイプ アー/エス | 電力適合自在な、人体内腔の走査用装置 |
US11367192B2 (en) | 2019-03-08 | 2022-06-21 | Align Technology, Inc. | Foreign object filtering for intraoral scanning |
CN114364336A (zh) * | 2019-09-10 | 2022-04-15 | 阿莱恩技术有限公司 | 牙科全景视图 |
CN110584943A (zh) * | 2019-09-29 | 2019-12-20 | 中国人民解放军陆军军医大学第一附属医院 | 具有激光辅助测距定深功能的牙科综合治疗椅 |
JP7298025B2 (ja) | 2019-10-24 | 2023-06-26 | 先臨三維科技股▲ふん▼有限公司 | 三次元スキャナー及び三次元走査方法 |
CN110827975B (zh) * | 2019-11-11 | 2022-10-14 | 延边修恩生物科技有限公司 | 一种口腔扫描装置及其使用方法 |
US20210177266A1 (en) * | 2019-12-17 | 2021-06-17 | Clayton Adams Teufel | Intraoral scanning with raw depth data |
JP7309628B2 (ja) * | 2020-01-15 | 2023-07-18 | 株式会社モリタ製作所 | キャップ、撮像装置、データ生成システム、およびデータ生成方法 |
CN111383332B (zh) * | 2020-03-26 | 2023-10-13 | 深圳市菲森科技有限公司 | 一种三维扫描和重建系统、计算机设备和可读存储介质 |
KR102445297B1 (ko) * | 2020-12-22 | 2022-09-23 | 오스템임플란트 주식회사 | 구강 관리용 개인 이력 데이터 송수신 시스템 및 그 방법 |
CN113091636A (zh) * | 2021-03-08 | 2021-07-09 | 华朗三维技术(深圳)有限公司 | 一种带陀螺仪手持三维扫描仪控制系统 |
EP4075095A1 (en) * | 2021-04-14 | 2022-10-19 | Medit Corp. | Three-dimensional scanning system and method for controlling the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2654646B2 (ja) * | 1986-06-24 | 1997-09-17 | マルコ ブランデステイ−ニ | 窩洞の三次元的形態の決定とディスプレイのための方法と装置 |
KR20120050854A (ko) * | 2010-11-11 | 2012-05-21 | 데오덴탈 주식회사 | 구강용 스캐너 |
KR20140123427A (ko) * | 2013-04-12 | 2014-10-22 | 에스. 장 문 | 치과 보철물 제조 방법 및 시스템 |
JP5784381B2 (ja) * | 2011-01-13 | 2015-09-24 | 株式会社アドバンス | 歯科診療システム |
KR101693158B1 (ko) * | 2016-09-29 | 2017-01-05 | 문정본 | 3차원 구강 스캐너와 이를 이용한 인공물 가공장치 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6977732B2 (en) * | 2002-12-26 | 2005-12-20 | National Taiwan University | Miniature three-dimensional contour scanner |
EP1606576A4 (en) * | 2003-03-24 | 2006-11-22 | D3D L P | LASER DIGITIZER SYSTEM FOR DENTAL MEDICAL APPLICATIONS |
CN100554878C (zh) * | 2003-05-29 | 2009-10-28 | 奥林巴斯株式会社 | 立体光学模块和立体摄像机 |
JP4764612B2 (ja) * | 2004-04-19 | 2011-09-07 | 株式会社モリタ製作所 | 歯科用生体観察機器、口腔内観察機器、歯科用照射額帯装置及びデンタルミラー |
GB0514554D0 (en) * | 2005-07-15 | 2005-08-24 | Materialise Nv | Method for (semi-) automatic dental implant planning |
DE102008017481B4 (de) * | 2008-04-03 | 2013-10-24 | Sirona Dental Systems Gmbh | Vorrichtung und Verfahren zur optischen 3D-Vermessung und zur Farbmessung |
JP5185744B2 (ja) * | 2008-05-12 | 2013-04-17 | オリンパス株式会社 | 光学系及びそれを用いた内視鏡 |
WO2009139110A1 (ja) * | 2008-05-13 | 2009-11-19 | パナソニック株式会社 | 口腔内測定装置及び口腔内測定システム |
CN104783757B (zh) * | 2009-06-17 | 2018-01-05 | 3形状股份有限公司 | 聚焦扫描设备 |
WO2011118839A1 (ja) * | 2010-03-24 | 2011-09-29 | 株式会社アドバンス | 歯科用補綴物計測加工システム |
NL2006556A (en) * | 2010-05-13 | 2011-11-15 | Asml Holding Nv | Optical system, inspection system and manufacturing method. |
US8900126B2 (en) * | 2011-03-23 | 2014-12-02 | United Sciences, Llc | Optical scanning device |
DE102011077564B4 (de) * | 2011-06-15 | 2016-08-25 | Sirona Dental Systems Gmbh | Verfahren zur optischen dreidimensionalen Vermessung eines dentalen Objekts |
KR101145767B1 (ko) * | 2011-06-27 | 2012-05-16 | 주식회사 미루시스템즈 | 전방위 촬영 장치 |
US8900125B2 (en) * | 2012-03-12 | 2014-12-02 | United Sciences, Llc | Otoscanning with 3D modeling |
KR101176770B1 (ko) * | 2012-03-22 | 2012-08-23 | 추상완 | 치과용 3차원 스캐너 및 이를 이용한 스캐닝 방법 |
CN103608696B (zh) * | 2012-05-22 | 2016-05-11 | 韩国生产技术研究院 | 3d扫描系统和获得3d图像的方法 |
US9107578B2 (en) * | 2013-03-31 | 2015-08-18 | Gyrus Acmi, Inc. | Panoramic organ imaging |
-
2017
- 2017-07-12 CN CN201780043479.9A patent/CN109475394B/zh active Active
- 2017-07-12 JP JP2019501534A patent/JP6735899B2/ja active Active
- 2017-07-12 US US16/316,063 patent/US10792133B2/en active Active
- 2017-07-12 EP EP17827932.9A patent/EP3485841B1/en active Active
- 2017-07-12 ES ES17827932T patent/ES2876155T3/es active Active
- 2017-07-12 WO PCT/KR2017/007436 patent/WO2018012862A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2654646B2 (ja) * | 1986-06-24 | 1997-09-17 | マルコ ブランデステイ−ニ | 窩洞の三次元的形態の決定とディスプレイのための方法と装置 |
KR20120050854A (ko) * | 2010-11-11 | 2012-05-21 | 데오덴탈 주식회사 | 구강용 스캐너 |
JP5784381B2 (ja) * | 2011-01-13 | 2015-09-24 | 株式会社アドバンス | 歯科診療システム |
KR20140123427A (ko) * | 2013-04-12 | 2014-10-22 | 에스. 장 문 | 치과 보철물 제조 방법 및 시스템 |
KR101693158B1 (ko) * | 2016-09-29 | 2017-01-05 | 문정본 | 3차원 구강 스캐너와 이를 이용한 인공물 가공장치 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11864727B2 (en) | 2016-01-26 | 2024-01-09 | Cyberdontics (Usa), Inc. | Automated dental treatment system |
CN109218707A (zh) * | 2018-08-15 | 2019-01-15 | 苏州佳世达电通有限公司 | 口扫系统及口扫方法 |
CN109218707B (zh) * | 2018-08-15 | 2020-09-04 | 苏州佳世达电通有限公司 | 口扫系统及口扫方法 |
WO2020206800A1 (zh) * | 2019-04-08 | 2020-10-15 | 北京大学口腔医学院 | 一种内置光学元件和防污染的激光手术或加工设备 |
US11992262B2 (en) | 2019-04-08 | 2024-05-28 | Peking University School Of Stomatology | Anti-contamination laser surgery device with built-in optical element |
US12029619B2 (en) | 2020-09-03 | 2024-07-09 | Perceptive Technologies, Inc. | Method and apparatus for CNA analysis of tooth anatomy |
WO2022197016A1 (ko) * | 2021-03-16 | 2022-09-22 | 주식회사 메디트 | 데이터 처리 방법 |
Also Published As
Publication number | Publication date |
---|---|
CN109475394A (zh) | 2019-03-15 |
ES2876155T3 (es) | 2021-11-12 |
US20190254783A1 (en) | 2019-08-22 |
CN109475394B (zh) | 2021-04-20 |
EP3485841A1 (en) | 2019-05-22 |
JP6735899B2 (ja) | 2020-08-05 |
EP3485841A4 (en) | 2020-05-20 |
US10792133B2 (en) | 2020-10-06 |
JP2019525167A (ja) | 2019-09-05 |
EP3485841B1 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018012862A1 (ko) | 3차원 스캐너와 이를 이용한 인공물가공장치 | |
KR101974719B1 (ko) | 3차원 스캐너와 이를 이용한 인공물가공장치 | |
US10682209B2 (en) | Estimating a surface texture of a tooth | |
Patzelt et al. | Assessing the feasibility and accuracy of digitizing edentulous jaws | |
JP7506961B2 (ja) | 口腔内走査装置 | |
KR101693158B1 (ko) | 3차원 구강 스캐너와 이를 이용한 인공물 가공장치 | |
US10159547B2 (en) | Measuring apparatus and method for three-dimensional measurement of an oral cavity | |
US7573583B2 (en) | Laser digitizer system for dental applications | |
WO2013141502A1 (ko) | 치과용 3차원 스캐너 및 이를 이용한 스캐닝 방법 | |
WO2014035010A1 (ko) | 구강 내 자동 스캐닝 시스템 및 스캐닝 방법 | |
US7099732B2 (en) | Sanitary sleeve or tip for intra-oral three-dimensional camera | |
Amornvit et al. | Confocal 3D Optical Intraoral Scanners and Comparison of Image Capturing Accuracy. | |
KR20170093445A (ko) | 칼라 패턴을 이용한 치과용 3차원 스캐너 | |
JP2015136615A (ja) | 口腔内の固定型3次元口腔スキャナー | |
KR101693157B1 (ko) | 3차원 구강 스캐너 | |
WO2021133086A2 (ko) | 3차원 스캐너의 데이터 통합 방법 및 이를 이용한 시스템 | |
KR101852834B1 (ko) | 3차원 구강 스캐너 | |
US20170119507A1 (en) | Arrangement and method for manufacturing custom objects such as dental restorations | |
Mistry et al. | Digital impression system–virtually becoming a reality | |
US20240307159A1 (en) | Intraoral scanner projector alignment and fixing | |
CN113100980A (zh) | 口腔扫描仪及应用其的口腔扫描系统 | |
JP2007181577A (ja) | 歯牙固定カメラ | |
WO2024196810A1 (en) | Intraoral scanner projector alignment and fixing | |
Pooja Kakade et al. | EVOLUTION OF INTRAORAL SCANNERS IN DENTISTRY: AN OVERVIEW | |
INCHINGOLO et al. | Dental Arch3D Direct Detection System from the Patient’s Mouth and Robot for Implant Positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17827932 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019501534 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017827932 Country of ref document: EP Effective date: 20190213 |