WO2014035010A1 - 구강 내 자동 스캐닝 시스템 및 스캐닝 방법 - Google Patents

구강 내 자동 스캐닝 시스템 및 스캐닝 방법 Download PDF

Info

Publication number
WO2014035010A1
WO2014035010A1 PCT/KR2012/010763 KR2012010763W WO2014035010A1 WO 2014035010 A1 WO2014035010 A1 WO 2014035010A1 KR 2012010763 W KR2012010763 W KR 2012010763W WO 2014035010 A1 WO2014035010 A1 WO 2014035010A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
scanning head
arm
scanning
teeth
Prior art date
Application number
PCT/KR2012/010763
Other languages
English (en)
French (fr)
Inventor
박강
강석진
권하자
Original Assignee
주식회사 오라픽스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오라픽스 filed Critical 주식회사 오라픽스
Publication of WO2014035010A1 publication Critical patent/WO2014035010A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/24Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth
    • A61B1/247Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the mouth, i.e. stomatoscopes, e.g. with tongue depressors; Instruments for opening or keeping open the mouth with means for viewing areas outside the direct line of sight, e.g. dentists' mirrors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles

Definitions

  • the present invention relates to an intraoral automatic scanning system and a scanning method for automatically scanning a three-dimensional shape of the oral tooth.
  • a dental prosthesis is designed and manufactured using a CAD / CAM system.
  • the system of attention is attracting attention.
  • a representative example of this system is the Serec system.
  • the Serek system performs intraoral measurements of teeth and gums by reading the shape of the teeth directly in the oral cavity using an optical three-dimensional camera.
  • the camera which performs the non-contact three-dimensional measurement represented by the phase shift method or the spatial coding method is used.
  • the dental prosthesis can be produced more efficiently than the lost wax method, and excellent in the accuracy of fit in the mouth.
  • Dental prostheses can be produced.
  • the triangulation method is used. Therefore, in order to improve the measurement accuracy, it is necessary to enlarge the anticipated angle of the optical axis of a light transmission side, and the optical axis of an imaging side. In order to increase the expected angle, it is necessary to increase the size of the optical three-dimensional camera. However, since the optical three-dimensional camera is inserted into the oral cavity, there is a limit to increasing the size.
  • An optical system driver configured to control a reflection angle of the output light by rotating along a second reference axis perpendicular to the optical axis; a guide for guiding the optical system to be moved within a predetermined distance from the light output unit; Afterwards, a light sensing unit for sensing the light reflected by the optical system and converting the light into an electrical signal, information of the electrical signal, information of the emission position and It is composed of a data transfer by sending the information in group reflection angle parts of the three-dimensional data generation model to generate a three-dimensional scanning of the scanning target tooth.
  • the conventional three-dimensional oral scanner has a problem in that the optical output control unit moves the optical system according to the position of the target tooth to be scanned, and only the optical system is moved to scan all the teeth.
  • the conventional three-dimensional oral scanner needs to move the main body after scanning a certain number of teeth, and then scans the predetermined number of teeth again.
  • the distance between the tooth and the scanner is changed, so that the measurement takes a long time, such as the process of matching the distance between the scanner and the tooth, and the measurement accuracy is lowered.
  • an object of the present invention is to reduce the work time by automatically moving the scanning head using a multi-axis robot unit to measure the teeth, to provide an oral automatic scanning system that can obtain a more precise three-dimensional stereoscopic image It is.
  • Another object of the present invention is to enable the scanning head to be rotated to measure the three surfaces (top, front, back) of the teeth in a single operation in order to shorten the tooth measurement time, improve the measurement accuracy It is to provide an intraoral automatic scanning system that can be.
  • Still another object of the present invention is to provide an intraoral scanning system capable of improving the accuracy of a three-dimensional image by allowing a plurality of grating patterns to be projected in parallel to the scan area.
  • the automatic scanning system in the oral cavity of the present invention includes a scanning head for measuring the three-dimensional shape of the tooth, and a multi-axis robot unit for moving and rotating the scanning head to automatically measure the teeth.
  • the multi-axis robot unit includes: a first arm connected to the main body of the apparatus so as to be horizontally rotatable; a second arm connected to the first arm; and a second arm rotatably connected to the first arm; A vertical arm and a support member connected to the vertical arm in an upward and downward direction and mounted with a scanning head, wherein the support member is attached to the vertical arm so that the scanning head can measure the upper, front and rear surfaces of the tooth. It is characterized in that the horizontal rotation is connected.
  • the scanning head of the present invention includes a head main body, a laser diode installed inside the head main body to irradiate laser light, a measurement nozzle disposed in front of the head main body to irradiate laser light to a tooth, and reflected from the tooth. And a camera for photographing light, a grating mask for making light emitted from the laser diode into a grating pattern form, and a voice coil motor for moving the grating mask.
  • one end of the first arm and one end of the second arm are connected between the fixed bracket fixed to the main body of the device and one end of the first arm by a first hinge axis to rotate one axis.
  • the second hinge axis is connected to each other to make a two-axis rotation ( ⁇ 1), and the other end of the second arm and the vertical arm is connected to a third hinge axis to constitute a three-axis rotation ( ⁇ 3)
  • the scanning head is moved to a predetermined position, and a support member is installed on one surface of the vertical arm to move up and down to adjust the height of the scanning head.
  • Automatic scanning method in the oral cavity of the present invention comprises the steps of detecting the position of the teeth by teaching at least three or more of the teeth, and when the teaching of the teeth to complete the understanding of the tooth structure, moving the scanning head to the teeth, and the scanning Measuring the three surfaces (top, back, front) of the teeth by pivoting the head sequentially; moving the scanning head to the next tooth; and rotating the scanning head when the scanning head is positioned on the next tooth. It characterized in that it comprises the step of sequentially measuring the three sides (top, back, front) of the tooth.
  • the scanning head of the present invention measures the tooth comprises the steps of making the laser light in the form of a grid pattern, irradiating the laser light to the object in the oral cavity, and the laser light reflected from the measured object Photographing, moving the grid mask to obtain four pattern images having different phases, and calculating a three-dimensional image from the four pattern images and displaying the three-dimensional image on the display unit.
  • a scanning head is installed in the multi-axis robot unit, and the multi-axis robot unit automatically moves the scanning head to measure teeth, thereby reducing work time, and more precise three-dimensional. There is an advantage to obtain a stereoscopic image.
  • the automatic scanning system in the oral cavity of the present invention when the supporting member is fixed to the fourth hinge axis and the fourth hinge axis is rotated, the support member is pivoted, and the scanning head fixed to the support member is pivoted.
  • the three sides of the tooth top, front, back
  • the automatic scanning system in the oral cavity of the present invention may improve the accuracy of the 3D image by allowing a plurality of grating patterns to be projected in parallel to the scan area.
  • FIG. 1 is a perspective view of an intraoral scanning system according to an embodiment of the present invention.
  • FIG. 2 is a side view of an intraoral scanning system in accordance with one embodiment of the present invention.
  • FIG. 3 is a block diagram of a scanning head according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating an optical path of a scanning head according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a phase adjusting unit according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a scanning head according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a scanning system according to an embodiment of the present invention.
  • FIG. 8 is a process flow diagram of a scanning system according to an embodiment of the present invention.
  • FIG. 9 is a process flow diagram of a scanning head according to an embodiment of the present invention.
  • FIG. 10 is a top view of a tooth showing a tooth teaching position according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a movement pattern of a scanning system according to an embodiment of the present invention.
  • FIG. 12 is a view illustrating a three-sided tooth measurement process of the scanning head according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating four grid images according to an embodiment of the present invention.
  • FIG. 14 is a view illustrating a process of scanning a tooth according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of an automatic scanning system according to an embodiment of the present invention
  • FIG. 2 is a side view of an automatic scanning system according to an embodiment of the present invention
  • FIG. 3 is a scanning head according to an embodiment of the present invention
  • 4 is a cross-sectional view showing an internal structure
  • FIG. 4 is a view showing an optical path of a scanning head according to an embodiment of the present invention.
  • an automatic scanning system includes a scanning head 200 for photographing a tooth in a 3D image, and a multi-axis robot unit 100 for automatically moving and rotating the scanning head 200. ).
  • the scanning head 200 includes a head body 10 connected to the multi-axis robot unit 100, a laser diode 20 installed inside the head body 10 to irradiate laser light, and a laser diode 20.
  • a phase adjusting unit 30 for shifting the phase of the laser light irradiated from the light source a barrel portion 40 in which a plurality of lenses are built, and a tube portion extending in front of the head body 10 to serve as a passage through which the laser light passes ( 12), a measuring nozzle 50 formed at the end of the tube part 12 to irradiate light to the teeth, and a camera 60 to which the laser light reflected from the measuring nozzle 50 is incident.
  • a barrel 22 serving as a passage through which the laser light passes is provided in front of the laser diode 20, and a plurality of barrels for enlarging the laser light emitted from the laser diode 20 to the scan area are provided in the barrel 22.
  • Lens 24 is provided.
  • an aspheric lens and an objective lens may be applied to the plurality of lenses 24.
  • a first reflector 28 for guiding the laser light irradiated from the laser diode 20 to the phase adjusting unit 30 is provided.
  • the phase adjustment unit 30 has a lattice mask 52 that makes the laser light irradiated from the laser diode 20 into a lattice pattern, and the lattice mask 52 is finely moved so that the phases are different from each other.
  • Voice coil motor 54 and encoder 56 to create the other four images.
  • the grating mask 52 has stripes formed at regular intervals in the vertical direction, that is, in the vertical direction, and when the laser light passes through, the grating mask 52 forms the light in the form of a grating pattern.
  • the grating mask 52 allows the grating pattern projected on the scan area to have uniform brightness.
  • the voice coil 54 and the encoder 56 are used to precisely move the grating mask 52.
  • the grating mask 52 is moved four times to obtain four images, and the four images are used to calculate the phase. Using this, calculate the shape of the tooth.
  • the barrel portion 40 is disposed behind the grating mask 52 and is provided with a plurality of lenses 42 which pass through the grating mask 52 and make laser light into parallel light having a grating pattern.
  • a plurality of lenses may be applied with an achromatic doublets lens that corrects chromatic aberration.
  • a second reflector 14 for guiding the laser light passing through the grating mask 52 to the barrel 40 is provided.
  • a third reflector 16 for guiding the laser light passing through the barrel part 40 to the tooth through the measuring nozzle 50 and guiding the laser light reflected from the tooth to the camera 60 is provided. Is installed.
  • the prism 62 is installed inside the head main body 10, and the prism 62 refracts the light reflected from the teeth toward the camera 60.
  • a fourth reflecting mirror 64 and a fifth reflecting mirror 66 are provided behind the prism 62 to guide the light refracted by the prism 62 to the camera 60.
  • the camera lens 68 installed in front of the camera 60 focuses and forms an image so that the camera 60 can capture the light refracted by the prism 62.
  • the camera 60 may be a CCD camera, and obtains an image by photographing the light reflected through the prism 62, the obtained image is calculated in a three-dimensional shape in the control unit 60 and the final three-dimensional image is It is displayed on the display unit 70.
  • FIG. 6 is a block diagram showing a structure of a scanning head according to an embodiment of the present invention
  • Figure 7 is a block diagram showing a control structure of a scanning system according to an embodiment of the present invention.
  • Scanning head 200 scans the three-dimensional image of the teeth in accordance with the control signal applied from the control unit 90 to display on the display unit 70, the multi-axis robot unit 100 is applied from the control unit 90 It is operated according to the control signal to be moved and rotate the scanning head 200.
  • control unit 90 includes a laser controller 92 for controlling a laser diode, a camera controller 94 for controlling a camera 60, a motor for controlling the voice coil motor 54 and an encoder 56.
  • the control unit 96 and the robot control unit 98 for controlling the multi-axis robot unit 100 is included.
  • the multi-axis robot unit 100 has a fixed bracket 102 mounted to the main body of the device, a first arm 104 connected to the fixed bracket 102 so as to be horizontally rotatable, and a horizontal rotation to the first arm 104.
  • a second arm 106 connected to the vertical arm, a vertical arm 108 installed at the end of the second arm 106 in a vertical direction, and vertically rotatably connected thereto, and being vertically raised and lowered to the vertical arm 108; It includes a support member 110 is connected to the horizontal rotation and the scanning head 200 is installed.
  • first hinge axis 122 Between the fixing bracket 102 and one end of the first arm 104 is connected to the first hinge axis 122 is a one-axis rotation ( ⁇ 1) in the horizontal direction, the other end of the first arm 104 and the second One end of the arm 106 is connected to the second hinge shaft 124 to perform a biaxial rotation ⁇ 1 in the horizontal direction.
  • a vertical arm 108 is installed on the other end surface of the second arm 106 in the vertical direction, and the vertical arm 108 and the second arm 106 are connected to the third hinge shaft 126 in the vertical direction.
  • Three-axis rotation ⁇ 3 is made.
  • the support member 110 is connected to the vertical arm 108 by the fourth hinge shaft 128 so that the support member has four-axis rotation ⁇ 4 in the horizontal direction.
  • the supporting member 110 is raised and lowered to the vertical arm 108 as shown by the arrow D, to adjust the height of the scanning head.
  • the support member 110 is formed such that the support plate 112 on which the scanning head 200 is installed is inclined at a predetermined angle so that the measuring nozzle 50 of the scanning head 200 may be inclined at a predetermined angle.
  • the lower surface of the head body 10 of the scanning head 200 is fixed to the upper surface of the support plate 112 by the fastening member 130.
  • the measurement nozzle 50 is located at the height of the interval (H1) on the upper surface of the support plate 112.
  • the support member 110 is formed with a mounting plate 114 to which the rear surface of the support plate 112 on which the scanning head 200 is installed is bent upwards and connected to the fourth hinge shaft 128 to support the support plate 112. Between the upper surface and the fourth hinge axis 128 is installed to have a height by the interval (H2).
  • the support plate 112 pivots with a radius H2 as the radius, and when the support plate 112 pivots, the scanning head 200 installed on the support plate 112 is rotated. While rotating movement, the three surfaces (top, rear front) of the tooth 300 are sequentially measured in one motion.
  • FIG. 8 is a flowchart illustrating a scanning method of a scanning system according to an embodiment of the present invention.
  • the position of the tooth 300 is detected. (S10) That is, since the structure of the tooth is different for each patient, in order to measure the tooth, the position of the tooth is detected and the position value is input to the control unit 90.
  • a tooth position detection method as shown in FIG. 9, three or four positions of the teeth 300 are defined as teaching positions A, B, and C, and are taught. That is, when the measuring nozzle 50 of the scanning head 200 teaches three or four places of the teeth 300, the robot controller 98 detects the position of the teeth according to the teaching positions A, B, and C. Figure out the structure of your teeth.
  • the tooth teaching positions (A, B, C) can be set to both molar portions (A, C) of the teeth, the front teeth portion (B) located at the foremost, including the middle portions of the molar teeth and the front teeth. You can set the location.
  • the teeth when teaching the various positions of the teeth, the teeth have a predetermined pattern, so the structure of the teeth is input to the robot controller 98, and the robot controller 98 adjusts the pattern according to the cheating position to increase or decrease the scanning head ( 200) to be moved while maintaining a certain distance from the teeth.
  • the multi-axis robot unit 100 can be measured at the same height according to the teaching height at all times by receiving the tooth teaching position from the robot control unit 98 and can be measured while maintaining a uniform distance from all the teeth regardless of the shape or size of the tooth. Can improve the measurement accuracy.
  • the robot controller 98 operates the multi-axis robot unit 100 to move the scanning head 200.
  • first arm 104 is horizontally rotated about the first hinge axis 122 to perform one-axis rotation ⁇ 1
  • the second arm 106 is horizontally rotated about the second hinge axis 124.
  • 2 axis rotation ( ⁇ 2) vertical arm 108 is rotated vertically about the third hinge axis 126, and 3 axis rotation ( ⁇ 3)
  • the support member 110 is lifted up and down for scanning.
  • the scanning head is moved in 4 degrees of freedom by adjusting the measuring height of the head ().
  • the scanning head 200 is then moved in a pattern as shown in FIG. 10.
  • the scanning head 200 can move freely according to the shape of the tooth.
  • the scanning head 200 When the scanning head 200 is positioned on one tooth 300, the scanning head 200 is pivoted to sequentially measure the three surfaces of the tooth, that is, the top, front, and back sides of the tooth in one operation.
  • the scanning head 200 mounted on the support member 112 is pivoted in the direction of arrow P as shown in FIG.
  • the front face 300, the top face of the tooth, and the back face of the tooth are measured sequentially.
  • the multi-axis robot unit 100 is operated to move to the next tooth in which the measuring nozzles 50 of the scanning head 200 are arranged next to each other (S40).
  • FIG. 12 is a process flowchart illustrating a scanning method of a scanning head according to an embodiment of the present invention.
  • the multi-axis robot unit 100 when the multi-axis robot unit 100 is operated so that the scanning head 200 is moved and rotated so that the measurement nozzle 50 is positioned at the tooth position, the tooth 300 according to a signal applied from the control unit 90. ) And displays a 3D image of the tooth 300 on the display unit 70.
  • the laser diode 20 is operated according to the signal applied from the laser controller 92 so that the laser light is irradiated from the laser diode 20 (S100).
  • the laser light irradiated from the laser diode 20 extends while passing through the lens 24 and passes through the grating mask 52 of the phase adjusting unit 50 by the first reflecting mirror 28 to form light in the form of a grating pattern.
  • the motor control unit 96 controls the voice coil motor 54 to finely move the position of the grating mask 52 to shift the phase of the laser light, and to rotate the rotation angle of the voice coil motor 54 in the encoder 56. The measurement is transferred to the motor control unit 96.
  • control unit 90 synthesizes the image photographed by the camera 60 and the grid pattern image having no pre-stored change. Combining two pattern images with the same wavelength causes interference between the patterns, resulting in a greater difference in brightness of light than the original pattern, and generating different patterns at regular intervals, which are called moire patterns.
  • the moiré pattern enables the height information of the object to be measured to obtain three-dimensional data.
  • the height of a perfect object cannot be obtained with only one pattern, the height is calculated by moving the grid pattern three times to obtain four different images to increase accuracy.
  • the first pattern image 80 as shown in FIG. 13 is obtained, and the voice coil motor 54 is driven to operate the grating mask 52.
  • the second position to obtain a second pattern image 82 moved by ⁇ / 2
  • the voice coil motor 54 is driven to move the grating mask 52 to the third position
  • the third moved by ⁇ When the pattern coil 84 is driven and the voice coil motor 54 is driven to move the grating mask 52 to the fourth position, the fourth pattern image 86 moved by 3 ⁇ / 2 is obtained.
  • FIG. 14 is a diagram illustrating a process of obtaining a 3D image by an intraoral scanning system according to an embodiment of the present invention.
  • the three-dimensional shape is calculated using the four images thus obtained: 1) pattern transparency, 2) phase wrap, 3) unwraped phase, and 4) phase-to-height. height conversion).
  • Equation 1 represents an intensity of light in the first pattern image 90, the second pattern image 92, the third pattern image 94, and the fourth pattern image 96.
  • I 1 a (x, y) + b (x, y) cos [ ⁇ (x, y)]
  • I 2 a (x, y) + b (x, y) cos [ ⁇ (x, y) + ⁇ / 2]
  • I 3 a (x, y) + b (x, y) cos [ ⁇ (x, y) + ⁇ ]
  • I n light intensity function of the nth pattern image
  • a average intensity of light
  • b change in light intensity
  • the phase angle ⁇ (x, y) can be obtained and the height of the measured object can be calculated.
  • ⁇ (x, y) tan -1 [I 4 (x, y) -I 2 (x, y) / I 1 (x, y) -I 3 (x, y)] . « . (2)
  • Equation (2) The phase angle obtained by Equation (2) is periodically repeated at a magnitude of 0 to 2 ⁇ .
  • the phase wrapping diagram shown in FIG. 14 shows a phase image calculated by projecting a fringe pattern onto a plane as a pattern image.
  • the phase difference is obtained by calculating the difference between the phase map and the pre-stored reference plane phase map calculated for each pixel, and the Z coordinate is calculated because the phase difference is proportional to the height value in the Z direction of the measurement object.
  • the y value is also calculated.
  • the present invention can be applied to an intraoral automatic scanning system capable of automatically scanning the three-dimensional shape of the intraoral teeth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명의 구강 내 자동 스캐닝 시스템은 치아의 3차원 형상을 측정하는 스캐닝 헤드와, 상기 스캐닝 헤드를 이동 및 회전시켜 스캐닝 헤드가 자동으로 치아를 측정하도록 하는 다축 로봇 유닛을 포함하고, 상기 다축 로봇 유닛은 기기 본체에 수평 회전 가능하게 연결되는 제1아암과, 제1아암에 수평 회전 가능하게 연결되는 제2아암과, 상기 제2아암에 수직방향으로 회전 가능하게 연결되는 수직아암과, 상기 수직아암에 상하방향으로 승강 가능하게 연결되고 스캐닝 헤드가 장착되는 지지부재를 포함하며, 상기 지지부재는 스캐닝 헤드가 치아의 상면, 전면 및 후면을 측정할 수 있도록 상기 수직아암에 수평 회전 가능하게 연결되도록 구성되어, 스캐너 헤드를 자동으로 이동시켜 치아를 측정하므로 작업 시간을 줄이고, 보다 정밀한 3차원 입체 영상을 얻을 수 있으며, 스캐너 헤드가 선회 운동될 수 있도록 하여 치아의 삼면(상면, 앞면, 뒷면)을 순차적으로 한 번의 동작으로 측정할 수 있다.

Description

구강 내 자동 스캐닝 시스템 및 스캐닝 방법
본 발명은 구강 내 치아의 삼차원 형상을 자동으로 스캐닝하는 구강 내 자동 스캐닝 시스템 및 스캐닝 방법에 관한 것이다.
현재, 인레이, 크라운, 브리지 등의 치과용 보철물의 제작 방법으로서는, 로스트 왁스법(lost wax process)에 의해 금속 재료나 세라믹스 재료를 주조해서 제작하는 방법이 채용되고 있다.
그러나, 최근에는 로스트 왁스법을 대신하는 치과용 보철물의 제작 방법으로서, 광학 3차원 카메라를 이용해서 치아 및 잇몸의 구강 내를 측정한 후, CAD/CAM 시스템을 이용해서 치과용 보철물을 설계 및 제작하는 시스템이 주목받고 있다. 이 시스템의 대표적인 예로서, 세렉 시스템(Serec system)이 있다.
세렉 시스템은 치아의 형상을, 광학 3차원 카메라를 이용해서 구강 내에서 직접 판독함으로써, 치아 및 잇몸의 구강 내 측정을 실행한다.
광학 3차원 카메라에는 위상 시프트법이나 공간 코드화법으로 대표되는 비접촉 3차원 측정을 실행하는 카메라가 이용된다. 이와 같이, 종래의 치과용 보철물의 제작 방법으로, 광학 3차원 카메라와 CAD/CAM 시스템을 이용함으로써, 로스트 왁스법에 비해서, 효율 좋게 치과용 보철물을 제작할 수 있는 동시에, 구강 내에의 적합 정밀도에서 우수한 치과용 보철물을 제작할 수 있다.
하지만, 종래의 광학 3차원 카메라에서는 3각 측량법을 이용하고 있다. 그 때문에, 그 측정 정밀도를 향상시키기 위해서는, 투광측의 광축과 촬상측의 광축과의 예상 각을 크게 할 필요가 있다. 예상 각을 크게 하기 위해서는, 광학 3차원 카메라의 크기를 크게 할 필요가 있지만, 광학 3차원 카메라는 구강 내에 삽입하는 것이기 때문에, 그 크기를 크게 하는데 한계가 있다.
종래의 3차원 구강용 스캐너는 공개특허공보 10-2011-0068954(2011년 06월 22일)에 개시된 바와 같이, 출력 광을 출력하는 광출력부와, 상기 광출력부를 제 1 기준축에 따라 회전시키거나 좌우측으로 이동시켜 상기 출력 광의 출사 위치를 제어하는 광출력 제어부와, 상기 광출력 제어부에 의해 출사 위치가 제어된 출력 광을 스캐닝 대상 치아로 반사시키는 광학계와, 상기 광학계를 상기 제 1 기준축과 수직한 제 2 기준축에 따라 회전시켜 상기 출력 광의 반사 각도를 제어하는 광학계 구동부와, 상기 광학계를 상기 광출력부로부터 미리 설정된 거리 내에서 이동되도록 안내하는 가이드와, 상기 스캐닝 대상 치아에서 반사된 후, 상기 광학계에 의하여 반사된 광을 센싱하여 전기 신호로 변환하는 광센싱부와, 상기 전기 신호의 정보, 상기 출사 위치의 정보 및 상기 반사 각도의 정보를 3차원 데이터 생성부로 전송하여 상기 스캐닝 대상 치아의 3차원 스캐닝 모델을 생성하도록 하는 데이터 전송부로 구성된다.
이러한 종래의 3차원 구강용 스캐너는 광출력 제어부가 스캐닝할 대상 치아의 위치에 따라 광학계를 이동시키는 데, 광학계만을 이동시켜 모든 치아를 스캐닝할 수 없는 문제가 있다.
따라서, 종래의 3차원 구강용 스캐너는 일정 개수의 치아를 스캐닝한 후 본체를 이동시키고, 다시 일정 개수의 치아를 스캐닝해야되므로 본체를 수동으로 이동시켜야 된다.
이와 같이, 스캐너를 수동으로 이동시킬 때 치아와 스캐너 사이의 간격이 달라지게 되므로 스캐너와 치아 사이의 간격을 일치시키는 작업을 다시 진행해야되는 등 측정시간이 오래 걸리고, 측정 정밀도가 떨어지는 문제가 있다.
따라서, 본 발명의 목적은 다축 구조의 로봇 유닛을 이용하여 스캐닝 헤드를 자동으로 이동시켜 치아를 측정하므로 작업 시간을 줄일 수 있고, 보다 정밀한 3차원 입체 영상을 얻을 수 있는 구강 내 자동 스캐닝 시스템을 제공하는 것이다.
본 발명의 다른 목적은 스캐닝 헤드가 선회 운동될 수 있도록 하여 치아의 삼면(상면, 앞면, 뒷면)을 순차적으로 한 번의 동작으로 측정할 수 있어 치아 측정 시간을 단축할 수 있고, 측정 정밀도를 향상시킬 수 있는 구강 내 자동 스캐닝 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 스캔 영역에 복수의 격자 패턴들이 평행한 광선으로 투영되도록 하여 3차원 영상의 정밀도를 향상시킬 수 있는 구강 내 자동 스캐닝 시스템을 제공하는 것이다.
본 발명이 해결하려는 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위하여, 본 발명의 구강 내 자동 스캐닝 시스템은 치아의 3차원 형상을 측정하는 스캐닝 헤드와, 상기 스캐닝 헤드를 이동 및 회전시켜 스캐닝 헤드가 자동으로 치아를 측정하도록 하는 다축 로봇 유닛을 포함하고, 상기 다축 로봇 유닛은 기기 본체에 수평 회전 가능하게 연결되는 제1아암과, 제1아암에 수평 회전 가능하게 연결되는 제2아암과, 상기 제2아암에 수직방향으로 회전 가능하게 연결되는 수직아암과, 상기 수직아암에 상하방향으로 승강 가능하게 연결되고 스캐닝 헤드가 장착되는 지지부재를 포함하며, 상기 지지부재는 스캐닝 헤드가 치아의 상면, 전면 및 후면을 측정할 수 있도록 상기 수직아암에 수평 회전 가능하게 연결되는 것을 특징으로 한다.
본 발명의 스캐닝 헤드는 헤드 본체와, 상기 헤드 본체 내부에 설치되어 레이저 광을 조사하는 레이저 다이오드와, 상기 헤드 본체의 전방에 배치되어 레이저 광을 치아에 조사하는 측정노즐과, 상기 치아에서 반사된 광을 촬영하는 카메라와, 상기 레이저 다이오드에서 조사되는 광을 격자 패턴 형태로 만드는 격자 마스크와, 상기 격자 마스크를 이동시키는 보이스 코일 모터를 포함하는 것을 특징으로 한다.
본 발명의 다축 로봇 유닛은 기기 본체에 고정되는 고정 브라켓과 제1아암의 일단 사이는 제1힌지축으로 연결되어 1축 회전(θ1)이 이루어지고, 제1아암의 타단과 제2아암의 일단 사이는 제2힌지축으로 연결되어 2축 회전(θ1)이 이루어지고, 제2아암의 타단과 수직 아암 사이는 제3힌지축으로 연결되어 수직방향으로 3축 회전(θ3)이 이루어지도록 구성되어 스캐닝 헤드를 설정 위치로 이동시키고, 상기 수직 아암의 일면에 지지부재가 상하 승강되도록 설치되어 스캐닝 헤드의 높낮이를 조절하는 것을 특징으로 한다.
본 발명의 구강 내 자동 스캐닝 방법은 치아의 적어도 3곳 이상을 티칭하여 치아의 위치를 검출하는 단계와, 치아를 티칭하여 치아 구조 파악이 완료되면, 스캐닝 헤드를 치아로 이동시키는 단계와, 상기 스캐닝 헤드를 선회 운동시켜 치아의 삼면(상면, 후면, 전면)을 순차적으로 측정하는 단계와, 상기 스캐닝 헤드를 다음 치아로 이동시키는 단계와, 상기 스캐닝 헤드가 다음 치아에 위치되면 스캐닝 헤드를 선회 운동시켜 치아의 삼면(상면, 후면, 전면)을 순차적으로 측정하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 스캐닝 헤드가 치아를 측정하는 방법은 레이저 광을 격자 패턴 형태의 광으로 만드는 단계와, 상기 레이저 광을 구강 내 피측정물에 조사하는 단계와, 상기 피측정물에서 반사된 레이저 광을 촬영하는 단계와, 격자 마스크를 이동시켜 위상이 서로 다른 4 개의 패턴 이미지를 획득하는 단계와, 상기 4 개의 패턴 이미지로부터 3차원 영상을 계산하여 디스플레이부에 디스플레이하는 단계를 포함하는 것을 특징으로 한다.
상기한 바와 같이, 본 발명의 구강 내 자동 스캐닝 시스템은 다축 로봇 유닛에 스캐닝 헤드가 설치되고, 다축 로봇 유닛이 스캐닝 헤드를 자동으로 이동시켜 치아를 측정하므로 작업 시간을 줄일 수 있고, 보다 정밀한 3차원 입체 영상을 얻을 수 있는 장점이 있다.
또한, 본 발명의 구강 내 자동 스캐닝 시스템은 스캐닝 헤드가 고정된 지지부재가 제4힌지축에 연결되고 제4힌지축이 회전되면 지지부재가 선회 운동되고, 지지부재에 고정된 스캐닝 헤드가 선회 운동되어 치아의 삼면(상면, 앞면, 뒷면)을 순차적으로 한 번의 동작으로 측정할 수 있다.
또한, 본 발명의 구강 내 자동 스캐닝 시스템은 스캔 영역에 복수의 격자 패턴들이 평행한 광선으로 투영되도록 하여 3차원 영상의 정밀도를 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 구강 내 자동 스캐닝 시스템의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 구강 내 자동 스캐닝 시스템의 측면도이다.
도 3은 본 발명의 일 실시예에 따른 스캐닝 헤드의 구성도이다.
도 4는 본 발명의 일 실시예에 따른 스캐닝 헤드의 광 경로를 나타낸 구성도이다.
도 5는 본 발명의 일 실시예에 따른 위상 조정유닛의 사시도이다.
도 6은 본 발명의 일 실시예에 따른 스캐닝 헤드의 구조를 나타낸 블럭도이다.
도 7은 본 발명의 일 실시예에 따른 스캐닝 시스템의 블럭도이다.
도 8은 본 발명의 일 실시예에 따른 스캐닝 시스템의 공정 순서도이다.
도 9는 본 발명의 일 실시예에 따른 스캐닝 헤드의 공정 순서도이다.
도 10은 본 발명의 일 실시예에 따른 치아 티칭 위치를 나타낸 치아의 상면도이다.
도 11은 본 발명의 일 실시예에 따른 스캐닝 시스템의 이동 패턴을 나타낸 도면이다.
도 12는 본 발명의 일 실시예에 따른 스캐닝 헤드의 치아 삼면 측정 과정을 나타낸 도면이다.
도 13은 본 발명의 일 실시예에 따른 4 개의 격자 이미지를 나타낸 도면이다.
도 14는 본 발명의 일 실시예에 따른 치아를 스캔하는 과정을 나타내는 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다.
도 1은 본 발명의 일 실시예에 따른 자동 스캐닝 시스템의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 자동 스캐닝 시스템의 측면도이고, 도 3은 본 발명의 일 실시예에 따른 스캐닝 헤드의 내부 구조를 나타낸 단면도이고, 도 4는 본 발명의 일 실시예에 따른 스캐닝 헤드의 광경로를 나타낸 도면이다.
도 1 및 도 2를 참조하면, 일 실시예에 따른 자동 스캐닝 시스템은 치아를 3차원 영상으로 촬영하는 스캐닝 헤드(200)와, 스캐닝 헤드(200)를 자동으로 이동 및 회전시키는 다축 로봇유닛(100)을 포함한다.
스캐닝 헤드(200)는 다축 로봇유닛(100)에 연결되는 헤드 본체(10)와, 헤드 본체(10)에 하측 내부에 설치되어 레이저 광을 조사하는 레이저 다이오드(20)와, 레이저 다이오드(20)에서 조사되는 레이저 광의 위상을 이동시키는 위상 조정유닛(30)과, 복수의 렌즈가 내장되는 경통부(40)와, 헤드 본체(10)의 전방으로 연장되어 레이저 광이 통과하는 통로 역할을 하는 관부(12)와, 관부(12)의 끝부분에 형성되어 치아로 광을 조사하는 측정노즐(50)과, 측정노즐(50)에서 반사된 레이저 광이 입사되는 카메라(60)를 포함한다.
레이저 다이오드(20)의 전방에는 레이저 광이 통과하는 통로 역할을 하는 경통(22)이 설치되고, 경통(22)의 내부에는 레이저 다이오드(20)에서 조사되는 레이저 광을 스캔 영역에 맞게 확대시키는 복수의 렌즈(24)가 구비된다. 여기에서, 복수의 렌즈(24)는 일 예로, 비구면렌즈(Aspheric Lens)와 대물렌즈(Objectives Lens) 등이 적용될 수 있다.
그리고, 경통(22)의 절곡 부위에는 레이저 다이오드(20)에서 조사되는 레이저 광을 위상 조정유닛(30)으로 안내하는 제1반사경(28)이 설치된다.
위상 조정유닛(30)은 도 5에 도시된 바와 같이, 레이저 다이오드(20)에서 조사되는 레이저 광을 격자 패턴 형태로 만드는 격자 마스크(52)와, 격자 마스크(52)를 미세 이동시켜서 위상이 서로 다른 4개의 이미지를 만드는 보이스 코일 모터(54) 및 엔코더(56)를 포함한다.
격자 마스크(52)는 세로방향 즉, 수직방향으로 일정 간격을 두고 줄무늬가 형성되어 레이저 광이 통과하면 광을 격자 패턴 형태로 만들어 주는 준다. 그리고, 격자 마스크(52)는 스캔 영역에 투영된 격자 패턴이 균일한 밝기를 가질 수 있도록 한다.
보이스 코일(54) 및 엔코더(56)는 격자 마스크(52)를 정밀하게 이동시키기 위한 것으로, 격자 마스크(52)를 4번 이동시켜 4개의 이미지를 얻고, 4 개의 이미지를 이용하여 위상을 계산하고, 이를 이용하여 치아의 형상을 계산한다.
경통부(40)는 격자 마스크(52)의 후방에 배치되고 격자 마스크(52)를 통과하면서 레이저 광을 격자 패턴을 갖는 평행광으로 만드는 복수의 렌즈(42)가 구비된다. 일 예로, 복수의 렌즈는 색수차를 보정해주는 색수차 보정렌즈(Achromatic Doublets Lens)가 적용될 수 있다.
헤드 본체(10)의 상측 내면에는 격자 마스크(52)를 통과한 레이저 광을 경통부(40)로 안내하는 제2반사경(14)이 설치된다.
관부(12)의 끝부분에는 경통부(40)를 통과한 레이저 광을 측정 노즐(50)을 통해 치아로 안내하고 치아에서 반사되는 레이저 광을 카메라(60)로 안내하는 제3반사경(16)이 설치된다.
헤드 본체(10) 내부에는 프리즘(62)이 설치되고, 프리즘(62)은 치아에서 반사된 광을 카메라(60)를 향해서 굴절시킨다. 그리고, 프리즘(62)의 후방에는 제4반사경(64) 및 제5반사경(66)이 구비되어 프리즘(62)에서 굴절된 광을 카메라(60)로 안내한다.
카메라(60)의 전방에 설치되는 카메라 렌즈(68)는 프리즘(62)에 의해 굴절된 광을 카메라(60)가 촬영할 수 있도록 초점을 맞춰 결상시킨다.
카메라(60)는 CCD 카메라가 사용될 수 있고, 프리즘(62)을 통과하여 반사된 광을 촬영하여 영상을 획득하고, 획득된 영상은 제어유닛(60)에서 삼차원 형상으로 계산되고 최종 3차원 영상은 디스플레이부(70)에 표시된다.
도 6은 본 발명의 일 실시예에 따른 스캐닝 헤드의 구조를 나타낸 블럭도이고, 도 7은 본 발명의 일 실시예에 따른 스캐닝 시스템의 제어구조를 나타낸 블럭도이다.
*스캐닝 헤드(200)는 제어유닛(90)에서 인가되는 제어신호에 따라 치아의 3차원 영상을 스캔하여 디스플레이부(70)에 표시하고, 다축 로봇유닛(100)은 제어유닛(90)에서 인가되는 제어신호에 따라 작동되어 스캐닝 헤드(200)를 이동 및 회전시킨다.
제어유닛(90)은 구체적으로, 레이저 다이오드를 제어하는 레이저 제어부(92)와, 카메라(60)를 제어하는 카메라 제어부(94)와, 보이스 코일 모터(54) 및 엔코더(56)를 제어하는 모터 제어부(96)와, 다축 로봇유닛(100)을 제어하는 로봇 제어부(98)를 포함한다.
다축 로봇유닛(100)은 기기 본체에 장착되는 고정 브라켓(102)과, 고정 브라켓(102)에 수평 회전 가능하게 연결되는 제1아암(104)과, 제1아암(104)에 수평 회전 가능하게 연결되는 제2아암(106)과, 제2아암(106)의 끝부분에 수직 방향으로 설치되어 수직 회전 가능하게 연결되는 수직 아암(108)와, 수직 아암(108)에 상하방향으로 승강됨과 아울러 수평 회전 가능하게 연결되고 스캐닝 헤드(200)가 설치되는 지지부재(110)를 포함한다.
고정 브라켓(102)과 제1아암(104)의 일단 사이는 제1힌지축(122)으로 연결되어 수평 방향으로 1축 회전(θ1)이 이루어지고, 제1아암(104)의 타단과 제2아암(106)의 일단 사이는 제2힌지축(124)으로 연결되어 수평방향으로 2축 회전(θ1)이 이루어진다.
그리고, 제2아암(106)의 타단 상면에는 수직방향으로 수직 아암(108)이 설치되고 수직 아암(108)과 제2아암(106) 사이는 제3힌지축(126)으로 연결되어 수직방향으로 3축 회전(θ3)이 이루어진다.
그리고, 지지부재(110)는 수직아암(108)에 제4힌지축(128)으로 연결되어 지지부재가 수평방향으로 4축 회전(θ4)이 이루어진다.
그리고, 지지부재(110)는 수직 아암(108)에 상하방향으로 화살표 D와 같이, 승강하여 스캐닝 헤드의 높낮이를 조절한다.
지지부재(110)는 스캐닝 헤드(200)의 측정노즐(50)이 일정 각도로 경사지게 배치될 수 있도록 스캐닝 헤드(200)가 설치되는 지지판(112)이 일정 각도로 경사지게 형성된다.
스캐닝 헤드(200)의 헤드 본체(10) 하면이 지지판(112)의 상면에 체결부재(130)에 의해 고정된다. 여기에서, 헤드 본체 하면(10)이 지지판(112)의 상면에 장착되면, 측정노즐(50)은 지지판(112)의 상면에서 간격(H1)만큼의 높이에 위치하게 된다.
그리고, 지지부재(110)는 스캐닝 헤드(200)가 설치되는 지지판(112)의 후면이 상측방향으로 절곡되어 제4힌지축(128)이 연결되는 장착판(114)이 형성되어 지지판(112)의 상면과 제4힌지축(128) 사이는 간격(H2)만큼 높이를 갖도록 설치된다.
따라서, 제4힌지축(128)이 회전되면 지지판(112)이 간격(H2)를 반지름으로 하여 선회 운동되고, 지지판(112)이 선회 운동하면 이 지지판(112)에 설치된 스캐닝 헤드(200)가 선회 운동되면서 치아(300)의 삼면(상면, 후면 전면)을 순차적으로 한 번의 동작으로 측정한다.
*상기와 같이 구성된 일 실시예에 따른 스캐닝 시스템의 스캐닝 방법을 다음에서 설명한다.
도 8은 본 발명의 일 실시예에 따른 스캐닝 시스템의 스캐닝 방법을 나타낸 순서도이다.
먼저, 치아(300) 위치를 검출한다.(S10) 즉, 치아의 구조는 환자마다 다르기 때문에 치아를 측정하기 위해서는 치아의 위치를 검출하여 그 위치값을 제어유닛(90)에 입력한다. 치아 위치 검출방법으로는 도 9에 도시된 바와 같이, 치아(300)의 3곳 또는 4곳을 티칭 위치(A,B,C)로 정하고 티칭(teaching)한다. 즉, 스캐닝 헤드(200)의 측정노즐(50)을 치아(300)의 3곳 또는 4곳을 티칭하여 주면 로봇 제어부(98)가 티칭 위치(A,B,C)에 따라 치아의 위치를 검출하여 치아의 구조를 파악한다.
여기에서, 치아 티칭 위치(A,B,C)는 치아 양쪽 어금니 부분(A,C), 제일 앞쪽에 위치되는 앞니 부분(B)으로 설정될 수 있고, 어금니와 앞니의 중간부분을 포함하여 티칭 위치를 설정할 수 있다.
이와 같이, 치아의 여러 위치를 티칭하게 되면 치아는 일정한 패턴을 가지기 때문에 치아의 구조가 로봇 제어부(98)로 입력되고 로봇 제어부(98)는 치팅 위치에 따라 패턴을 크게 또는 작게 조절하여 스캐닝 헤드(200)가 치아와 일정 간격을 유지하면서 이동될 수 있도록 한다.
로봇 제어부(98)에서 치아 티칭 위치를 입력받아 다축 로봇유닛(100)이 티칭 높이에 따라 항상 동일한 높이로 측정할 수 있고 치아의 형태나 크기에 상관없이 모든 치아와 균일한 간격을 유지하면서 측정할 수 있어 측정 정밀도를 향상시킬 수 있다.
이와 같은 과정을 거치면서 치아의 구조 검출이 완료되면, 로봇 제어부(98)는 다축 로봇유닛(100)을 작동시켜 스캐닝 헤드(200)를 이동시킨다.(S20)
즉, 제1힌지축(122)을 중심으로 제1아암(104)을 수평 회전시켜 1축 회전(θ1)을 하고, 제2힌지축(124)을 중심으로 제2아암(106)을 수평 회전시켜 2축 회전(θ2)을 하고, 제3힌지축(126)을 중심으로 수직아암(108)을 수직 회전시켜 3축 회전(θ3)을 하고, 지지부재(110)를 상하방향으로 승강시켜 스캐닝 헤드()의 측정높이를 조절하도록 하여 4 자유도로 스캐닝 헤드를 이동시킨다. 그러면 스캐닝 헤드(200)가 도 10에 도시된 바와 같은 패턴으로 이동된다.
따라서, 치아의 모양에 따라 스캐닝 헤드(200)가 자유롭게 움직일 수 있게 된다.
그리고, 스캐닝 헤드(200)가 하나의 치아(300)에 위치되면, 스캐닝 헤드(200)를 선회 운동시켜 치아의 삼면 즉, 상면, 앞면, 뒷면을 한 번의 동작으로 순차적으로 측정한다.(S30)
즉, 지지부재(110)가 제4힌지축(128)을 중심으로 회전되면 지지부재(112)에 장착된 스캐닝 헤드(200)가 도 11에 도시된 바와 같이, 화살표 P 방향으로 선회 운동되면서 치아(300)의 앞면, 치아의 상면, 및 치아의 뒷면을 순차적으로 측정한다.
그리고, 하나의 치아의 삼면 측정이 완료되면 다축 로봇유닛(100)이 작동되어 스캐닝 헤드(200)의 측정 노즐(50)이 이웃하여 배치되는 다음 치아로 이동된다.(S40)
그리고, 다음 치아의 삼면을 측정하는 과정을 반복하여 모든 치아의 3면을 측정한다.(S50)
도 12는 본 발명의 일 실시예에 따른 스캐닝 헤드의 스캐닝 방법을 나타낸 공정 순서도이다.
위에서 설명한 바와 같이, 다축 로봇유닛(100)이 작동되어 스캐닝 헤드(200)가 이동 및 회전되어 치아 위치에 측정노즐(50)이 위치되면, 제어유닛(90)에서 인가되는 신호에 따라 치아(300)를 스캐닝하여 디스플레이부(70)에 치아(300)의 3차원 영상을 디스플레이한다.
구체적으로 살펴보면, 레이저 제어부(92)에서 인가되는 신호에 따라 레이저 다이오드(20)가 작동되어 레이저 다이오드(20)에서 레이저 광이 조사된다.(S100)
그리고, 레이저 다이오드(20)에서 조사된 레이저 광은 렌즈(24)를 통과하면서 확장되고 제1반사경(28)에 의해 위상 조정유닛(50)의 격자 마스크(52)를 통과하면서 격자 패턴 형태로 광으로 만들어진다.(S200)
즉, 모터 제어부(96)에서 보이스 코일 모터(54)를 제어하여 격자 마스크(52)의 위치를 미세하게 이동시켜 레이저 광의 위상을 이동시키고 엔코더(56)에서 보이스 코일 모터(54)의 회전각도를 측정하여 모터 제어부(96)로 전달한다.
그리고, 제2반사경(14)에 반사되어 복수의 렌즈(42)를 통과하면서 평행광으로 만들어지고, 제3반사경(34)에 의해 반사되어 측정노즐(50)을 통해 치아(300)에 투광된다.(S300)
그리고, 치아(300)의 표면에서 반사된 광은 제3반사경(16)에 재반사된 후 프리즘(62)에 의해 카메라(60)로 전달되고, 카메라(60)는 프리즘(62)에 의해 반사된 광을 촬영하여 격자 패턴 이미지를 획득하다.(S400)
그러면, 제어유닛(90)은 카메라(60)에서 촬영된 이미지와 미리 저장된 변화가 없는 격자 패턴 이미지를 서로 합성한다. 동일한 파장을 갖는 두 패턴 이미지를 결합하면 패턴 간 간섭현상이 일어나게 되어 원래 패턴보다 더 빛의 밝기 차가 심해지고 일정한 간격의 다른 무늬가 생성되는데, 이 무늬를 모아레 무늬라 한다.
이 모아레 무늬에 의해 피측정물의 높이 정보를 구해내 삼차원 데이터를 구할 수 있게 된다.
하지만, 하나의 패턴만으로는 완벽한 물체의 높이를 구할 수 없기 때문에 정확도를 높이기 위해서 격자 패턴을 3번 정도 이동시켜 4개의 서로 다른 이미지를 얻어 높이 값을 계산한다.
즉, 최초에 격자 마스크(52)가 제1위치에 배치되면 도 13에 도시된 바와 같은 제1패턴 이미지(80)를 획득하고, 보이스 코일 모터(54)가 구동되어 격자 마스크(52)가 제2위치로 이동되면 π/2 만큼 이동된 제2패턴 이미지(82)를 획득하고, 보이스 코일 모터(54)가 구동되어 격자 마스크(52)가 제3위치로 이동되면, π 만큼 이동된 제3패턴 이미지(84)를 획득하고, 보이스 코일 모터(54)가 구동되어 격자 마스크(52)가 제4위치로 이동되면 3π/2만큼 이동된 제4패턴 이미지(86)를 획득한다.
도 14는 본 발명의 일 실시예에 따른 구강 내 자동 스캐닝 시스템에 의해 3차원 영상을 얻는 과정을 나타낸 도면이다.
이와 같이 획득된 4개의 이미지를 이용하여 3차원 형상의 계산은 1)패턴 투명, 2)위상 감싸기(Phase wraping), 3)위상 풀기(Unwraped Phase), 4)위상-높이 변환(phase-to-height conversion)으로 구성된다.
1) 패턴 투영
아래 식 (1)은 제1패턴 이미지(90), 제2패턴 이미지(92), 제3패턴 이미지(94) 및 제4패턴 이미지(96)에서 빛의 강도를 나타내는 식이다.
1 = a(x,y) + b(x,y)cos[Φ(x,y)]
2 = a(x,y) + b(x,y)cos[Φ(x,y)+Π/2]
3 = a(x,y) + b(x,y)cos[Φ(x,y)+Π]
4 = a(x,y) + b(x,y)cos[Φ(x,y)+3Π/2] ..........식(1)
여기에서, Ⅰn = n번째 패턴 이미지의 빛의 강도 함수, a = 빛의 평균 강도, b = 빛의 강도의 변화폭
위의 식(1)에 의해 4 개의 패턴 이미지를 통해 얻어낸 빛의 강도를 아래의 식(2)에 넣으면 위상각 Φ(x,y)을 얻을 수 있고 피측정물의 높이를 계산할 수 있다.
Φ(x,y) = tan-1 [Ⅰ4(x,y)-Ⅰ2(x,y)/Ⅰ1(x,y)-Ⅰ3(x,y)]........식(2)
2) 위상 감싸기(Phase wraping)
식(2)에 의해 구해진 위상각은 크기가 0 ~ 2π에서 주기적으로 반복된다.
도 14에 도시된 위상 감싸기 도면은 평면에 프린지 패턴을 투영하여 계산된 위상을 패턴 이미지로 나타낸 것이다.
3) 위상 풀기(Phase unwraping)
앞에서 계산된 감싸진 위상 정보(wrapped phase)는 0 ~ 2π의 값은 주기적으로 반복하기 때문에 위상 풀기(phase unwraping)을 실시한다. 즉, 위상 풀기는 연속된 감싸진 위상이 반복적으로 주어졌을 때, 이전 위상의 값이 2π를 넘어서 다음 위상 Φ 으로 넘어갈 때 2π + Φ 로 변환해주는 역할을 한다. 위상 풀기 이후는 위상이 반복됨이 없이 0에서 2πn + Φ 까지 연속적으로 표현된다. 이 때 풀어진 위상값은 물체의 높이와 비례하게 된다.
4) 위상-높이 변환(Phase-to-height conversion)
각 픽셀마다 계산된 피측정물의 위상지도와 미리 저장된 기준평면 위상지도 차를 계산하여 위상차를 획득하고, 위상차는 피측정물의 Z방향 높이 값과 비례하므로 Z 좌표가 계산되고, 거기에 해당하는 x, y 값도 계산된다.
이와 같은 과정을 통해 3차원 영상이 얻어지고, 이 3차원 영상은 디스플레이부(68)에 디스플레이된다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
본 발명은 구강 내 치아의 삼차원 형상을 자동으로 스캐닝할 수 있는 구강 내 자동 스캐닝 시스템에 적용할 수 있다.

Claims (13)

  1. 치아의 3차원 형상을 측정하는 스캐닝 헤드; 및
    상기 스캐닝 헤드를 이동 및 회전시켜 스캐닝 헤드가 자동으로 치아를 측정하도록 하는 다축 로봇 유닛을 포함하고,
    상기 다축 로봇 유닛은 기기 본체에 수평 회전 가능하게 연결되는 제1아암과,
    제1아암에 수평 회전 가능하게 연결되는 제2아암과,
    상기 제2아암에 수직방향으로 회전 가능하게 연결되는 수직아암과,
    상기 수직아암에 상하방향으로 승강 가능하게 연결되고 스캐닝 헤드가 장착되는 지지부재를 포함하며,
    상기 지지부재는 스캐닝 헤드가 치아의 상면, 전면 및 후면을 측정할 수 있도록 상기 수직아암에 수평 회전 가능하게 연결되는 것을 특징으로 하는 구강 내 자동 스캐닝 시스템.
  2. 제1항에 있어서,
    상기 스캐닝 헤드는 헤드 본체;
    상기 헤드 본체 내부에 설치되어 레이저 광을 조사하는 레이저 다이오드;
    상기 헤드 본체의 전방에 배치되어 레이저 광을 치아에 조사하는 측정노즐;
    상기 치아에서 반사된 광을 촬영하는 카메라;
    상기 레이저 다이오드에서 조사되는 광을 격자 패턴 형태로 만드는 격자 마스크; 및
    상기 격자 마스크를 이동시키는 보이스 코일 모터를 포함하는 구강 내 자동 스캐닝 시스템.
  3. 제2항에 있어서,
    상기 보이스 코일 모터는 상기 격자 마스크를 단계적으로 이동시켜 0, π/2, π, 3π/2만큼 이동된 4 개의 패턴 이미지를 만드는 것을 특징으로 하는 구강 내 자동 스캐닝 시스템.
  4. 제2항에 있어서,
    상기 보이스 코일 모터는 엔코더를 더 포함하여 모터의 회전각도를 검출하여 그 신호를 모터 제어부로 인가하는 것을 특징으로 하는 구강 내 자동 스캐닝 시스템.
  5. 제1항에 있어서,
    상기 다축 로봇 유닛은 기기 본체에 고정되는 고정 브라켓과 제1아암의 일단 사이는 제1힌지축으로 연결되어 1축 회전(θ1)이 이루어지고, 제1아암의 타단과 제2아암의 일단 사이는 제2힌지축으로 연결되어 2축 회전(θ1)이 이루어지고, 제2아암의 타단과 수직 아암 사이는 제3힌지축으로 연결되어 수직방향으로 3축 회전(θ3)이 이루어지도록 구성되어 스캐닝 헤드를 설정 위치로 이동시키고,
    상기 수직 아암의 일면에 지지부재가 상하 승강되도록 설치되어 스캐닝 헤드의 높낮이를 조절하는 것을 특징으로 하는 구강 내 자동 스캐닝 시스템.
  6. 제1항에 있어서,
    상기 지지부재는 수직 아암에 연결되도록 수직으로 배치되는 장착판과, 장착판의 하면에 연결되어 스캐닝 헤드가 장착되는 지지판을 포함하고,
    상기 장착판은 제4힌지축에 의해 수직 아암에 수평 회전 가능하게 연결되며, 상기 제4힌지축의 축 중심과 지지판 사이는 간격(H2)만큼 이격되어, 상기 제4힌지축이 회전되면 상기 지지판은 간격(H2)을 반지름으로 하여 선회 운동되는 것을 특징으로 하는 구강 내 자동 스캐닝 시스템.
  7. 제6항에 있어서,
    상기 지지판은 장착판에 연결된 부분에서 전방으로 갈수록 하측방향으로 경사진 경사면으로 형성되는 것을 특징으로 하는 구강 내 자동 스캐닝 시스템.
  8. 치아의 적어도 3곳 이상을 티칭하여 치아의 위치를 검출하는 단계;
    치아를 티칭하여 치아 구조 파악이 완료되면, 스캐닝 헤드를 치아로 이동시키는 단계;
    상기 스캐닝 헤드를 선회 운동시켜 치아의 삼면(상면, 후면, 전면)을 순차적으로 측정하는 단계;
    상기 스캐닝 헤드를 다음 치아로 이동시키는 단계; 및
    상기 스캐닝 헤드가 다음 치아에 위치되면 스캐닝 헤드를 선회 운동시켜 치아의 삼면(상면, 후면, 전면)을 순차적으로 측정하는 단계를 포함하는 구강 내 자동 스캐닝 방법.
  9. 제8항에 있어서,
    상기 치아 위치 검출단계는 치아의 적어도 3곳 이상을 티칭하면 치아 구조가 로봇 제어부로 입력되고, 로봇 제어부는 치팅 위치에 따라 다축 로봇유닛을 제어하여 스캐닝 헤드의 이동 패턴을 결정하는 것은 특징으로 하는 구강 내 자동 스캐닝 방법.
  10. 제8항에 있어서,
    상기 치아의 삼면을 순차적으로 측정하는 단계는 스캐닝 헤드가 장착된 지지부재가 수직로드에 제4힌지축을 중심으로 회전시키면 스캐닝 헤드가 반원을 그리며 선회 운동되면서 치아의 앞면, 치아의 상면, 및 치아의 뒷면을 순차적으로 측정하는 것을 특징으로 하는 구강 내 자동 스캐닝 방법.
  11. 제8항에 있어서,
    상기 스캐닝 헤드가 치아를 측정하는 방법은 레이저 광을 격자 패턴 형태의 광으로 만드는 단계;
    상기 레이저 광을 구강 내 피측정물에 조사하는 단계;
    상기 피측정물에서 반사된 레이저 광을 촬영하는 단계;
    격자 마스크를 이동시켜 위상이 서로 다른 4 개의 패턴 이미지를 획득하는 단계; 및
    상기 4 개의 패턴 이미지로부터 3차원 영상을 계산하여 디스플레이부에 디스플레이하는 단계를 포함하는 구강 내 자동 스캐닝 방법.
  12. 제11항에 있어서,
    상기 4 개의 패턴 이미지를 획득하는 단계는 격자 마스크를 제1위치에 배치하여 제1패턴 이미지를 획득하고, 상기 격자 마스크를 제2위치로 이동하여 π/2 만큼 이동된 제2패턴 이미지를 획득하고, 상기 격자 마스크를 제3위치로 이동하여 π 만큼 이동된 제3패턴 이미지를 획득하고, 격자 마스크를 제4위치로 이동하여 3π/2만큼 이동된 제4패턴 이미지를 획득하는 것을 특징으로 하는 구강 내 자동 스캐닝 방법.
  13. 제11항에 있어서,
    상기 3차원 영상을 계산하는 단계는 서로 다른 위상을 갖는 4 개의 패턴 이미지의 위상을 계산하여 위상 지도를 완성하는 단계;
    상기 계산된 위상이 반복됨이 없이 0에서 2πn + Φ까지 연속적으로 진행되도록 변환해주는 단계;
    상기 위상 지도와 미리 저장된 기준 위상 지도를 비교하여 위상차를 계산하는 단계; 및
    측정좌표 (x, y, z)를 계산하여 3차원 입체영상을 획득하는 단계를 포함하는 구강 내 자동 스캐닝 방법.
PCT/KR2012/010763 2012-08-31 2012-12-12 구강 내 자동 스캐닝 시스템 및 스캐닝 방법 WO2014035010A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0096038 2012-08-31
KR20120096038A KR101483216B1 (ko) 2012-08-31 2012-08-31 구강 내 자동 스캐닝 시스템 및 스캐닝 방법

Publications (1)

Publication Number Publication Date
WO2014035010A1 true WO2014035010A1 (ko) 2014-03-06

Family

ID=50183796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010763 WO2014035010A1 (ko) 2012-08-31 2012-12-12 구강 내 자동 스캐닝 시스템 및 스캐닝 방법

Country Status (2)

Country Link
KR (1) KR101483216B1 (ko)
WO (1) WO2014035010A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106780717A (zh) * 2016-11-25 2017-05-31 宁波蓝野医疗器械有限公司 口腔三维处理及建模打印系统
CN110368130A (zh) * 2019-07-31 2019-10-25 上海正雅齿科科技股份有限公司 口扫设备、口扫方法及诊疗系统
CN111513680A (zh) * 2020-04-30 2020-08-11 四川大学 口内扫描仪
CN113812924A (zh) * 2021-08-30 2021-12-21 南京厚麟智能装饰有限公司 牙科影像扫描仪及其信息云管理系统
US11864727B2 (en) 2016-01-26 2024-01-09 Cyberdontics (Usa), Inc. Automated dental treatment system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174741A1 (ko) * 2014-05-14 2015-11-19 주식회사 바텍 치과용 3차원 스캐너
PL3592281T3 (pl) * 2017-03-09 2021-12-27 Deventiv Sp. Z O.O. Wewnątrzustne urządzenie skanujące, sposób obsługi urządzenia i układ skanera
KR101994398B1 (ko) * 2017-11-30 2019-06-28 주식회사 디디에스 3차원 구강 모델 생성방법 및 시스템
KR102247084B1 (ko) * 2019-04-05 2021-04-30 오스템임플란트 주식회사 구강 내 센서 캘리브레이션 장치 및 그 방법
KR102198934B1 (ko) * 2019-07-30 2021-01-05 주식회사 다윈테크 3d 스캐너 장치
KR102422746B1 (ko) * 2020-07-17 2022-07-19 부산대학교 산학협력단 구강검진용 자동 구강 스캔 장치
KR102650667B1 (ko) * 2021-12-15 2024-03-22 아크리얼 주식회사 구강 스캐너

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344262A (ja) * 2003-05-20 2004-12-09 J Morita Tokyo Mfg Corp 歯科光診断装置用プローブ
US20060102833A1 (en) * 2004-11-12 2006-05-18 Sirona Dental Systems Gmbh Scanning device for carrying out a 3D scan of a dental model, sliding panel therefore, and method therefor
JP2009018172A (ja) * 2008-08-04 2009-01-29 J Morita Tokyo Mfg Corp 歯科光診断装置
US7494338B2 (en) * 2005-01-11 2009-02-24 Duane Durbin 3D dental scanner
KR100950590B1 (ko) * 2009-07-07 2010-04-01 에이티아이 주식회사 집광 조명을 이용한 스캐닝 모아레 측정방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120021122A (ko) * 2010-08-31 2012-03-08 김도현 3차원 스캐너 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004344262A (ja) * 2003-05-20 2004-12-09 J Morita Tokyo Mfg Corp 歯科光診断装置用プローブ
US20060102833A1 (en) * 2004-11-12 2006-05-18 Sirona Dental Systems Gmbh Scanning device for carrying out a 3D scan of a dental model, sliding panel therefore, and method therefor
US7494338B2 (en) * 2005-01-11 2009-02-24 Duane Durbin 3D dental scanner
JP2009018172A (ja) * 2008-08-04 2009-01-29 J Morita Tokyo Mfg Corp 歯科光診断装置
KR100950590B1 (ko) * 2009-07-07 2010-04-01 에이티아이 주식회사 집광 조명을 이용한 스캐닝 모아레 측정방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11864727B2 (en) 2016-01-26 2024-01-09 Cyberdontics (Usa), Inc. Automated dental treatment system
CN106780717A (zh) * 2016-11-25 2017-05-31 宁波蓝野医疗器械有限公司 口腔三维处理及建模打印系统
CN106780717B (zh) * 2016-11-25 2022-12-16 宁波蓝野医疗器械有限公司 口腔三维处理及建模打印系统
CN110368130A (zh) * 2019-07-31 2019-10-25 上海正雅齿科科技股份有限公司 口扫设备、口扫方法及诊疗系统
CN111513680A (zh) * 2020-04-30 2020-08-11 四川大学 口内扫描仪
CN111513680B (zh) * 2020-04-30 2021-08-03 四川大学 口内扫描仪
CN113812924A (zh) * 2021-08-30 2021-12-21 南京厚麟智能装饰有限公司 牙科影像扫描仪及其信息云管理系统
CN113812924B (zh) * 2021-08-30 2024-01-16 南京厚麟智能装饰有限公司 牙科影像扫描仪及其信息云管理系统

Also Published As

Publication number Publication date
KR20140028839A (ko) 2014-03-10
KR101483216B1 (ko) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2014035010A1 (ko) 구강 내 자동 스캐닝 시스템 및 스캐닝 방법
WO2018012862A1 (ko) 3차원 스캐너와 이를 이용한 인공물가공장치
US7573583B2 (en) Laser digitizer system for dental applications
AU2009227412B2 (en) Laser digitizer system for dental applications
CN1931110B (zh) 用于牙科技术对象的形状检测的方法及执行该方法的设备
WO2014051196A1 (ko) 구강 스캐너
KR101283635B1 (ko) 구강 내 스캐닝 시스템 및 스캐닝 방법
AU2004212587A1 (en) Panoramic scanner
JP2008096439A (ja) 物体の3次元座標を判定するための方法および装置
WO2018044111A2 (ko) 색수차를 이용한 3차원 스캐너 및 스캐닝 방법
WO2013036076A2 (ko) 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
WO2020130598A1 (ko) 3차원 구강 스캐너 및 이를 이용한 구강 스캔 방법
JPH04504219A (ja) 特に患者の口腔内の歯の3次元測定の方法および装置
CN101288590A (zh) 一种牙齿几何形状测量装置
WO2019045152A1 (ko) 비접촉 3차원 측정기를 위한 3차원 통합 광학측정 시스템 및 3차원 통합 광학측정 방법
WO2008050373A1 (en) Equipment for direct detection of dental die from the mouth of a patient
US8885051B2 (en) Camera calibration method and camera calibration apparatus
KR20080097626A (ko) 빌트인 카메라를 이용한 캘리브레이션 장치
JP2503408B2 (ja) 透過原稿画像読取装置
WO2023287005A1 (ko) 구강 스캐너용 캘리브레이션 장치
CN218725184U (zh) 一种基于机器视觉的激光头来料入库自动检测系统
Huang et al. Digital fringe projection technique for high-speed 3D shape measurement
WO2023128369A1 (ko) 3차원 스캐너용 단일 패턴 쉬프트 투사 광학계
WO2022080855A1 (ko) 의료용 3차원 영상 측정 장치 및 의료 영상 정합 시스템
CN115200499A (zh) 三维形状测量设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883941

Country of ref document: EP

Kind code of ref document: A1