WO2018012854A1 - 개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법 - Google Patents

개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법 Download PDF

Info

Publication number
WO2018012854A1
WO2018012854A1 PCT/KR2017/007422 KR2017007422W WO2018012854A1 WO 2018012854 A1 WO2018012854 A1 WO 2018012854A1 KR 2017007422 W KR2017007422 W KR 2017007422W WO 2018012854 A1 WO2018012854 A1 WO 2018012854A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
polyolefin
catalyst
metallocene
modified
Prior art date
Application number
PCT/KR2017/007422
Other languages
English (en)
French (fr)
Inventor
박중남
이희준
김용
전용재
김소한
박동식
우정오
Original Assignee
대림산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대림산업 주식회사 filed Critical 대림산업 주식회사
Publication of WO2018012854A1 publication Critical patent/WO2018012854A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6493Catalysts containing a specific non-metal or metal-free compound organic containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention relates to a polyolefin polymerization catalyst, and more particularly, to a polyolefin polymerization catalyst having improved catalyst activity by modifying a carrier carrying a metallocene catalyst and a method for producing a polyolefin using the same.
  • a homogeneous or heterogeneous supported catalyst system using a metallocene compound as a main catalyst and an aluminoxane compound such as methylaluminoxane (MAO) as a cocatalyst is generally used.
  • the metallocene compound organic transition metal compounds in which at least one organic compound such as cyclopentadiene is bonded to a transition metal of Group 4B or Group 5B, such as Ti, Zr, and Hf, are mainly used.
  • an organoboron compound such as N, N-dimethylanilium tetrakis (pentafluorophenyl) borate may be used in addition to the aluminoxane compound.
  • a heterogeneously supported metallocene catalyst In the case of producing the polyolefin by the gas phase continuous process, in order to ensure process stability, a heterogeneously supported metallocene catalyst should be used rather than a homogeneous catalyst.
  • the heterogeneously supported metallocene catalyst is one in which a metallocene compound as a main catalyst and a promoter are supported on a porous inorganic oxide carrier such as silica, alumina-silica, and alumina.
  • the heterogeneous supported catalyst system generally has better process stability than the homogeneous catalyst system, but has a disadvantage of low activity. Therefore, various methods for improving the activity of the heterogeneous supported catalyst system have been studied.
  • a method of introducing an activator in a supported process or during silica modification is known.
  • a method of improving activity by increasing the concentration of [(CH 3 ) 2 Al] + using an activator such as (CH 3 ) 2 AlF on a MAO-supported silica carrier US 2009/0062492 A1
  • a method of modifying a carrier with an organosilicon compound J. Mol. Catal. A (2000) 154 103-113, Patent Publication 10-2014-0134560
  • a method of introducing a spacer to the carrier J. Mol. Catal.
  • the method of preparing a polymerization catalyst by fluorination of silica coated alumina carrier is excellent in activity, but requires a high temperature of 600 °C when firing, the activity is mainly improved in the silica carrier used There is a disadvantage that is not.
  • a method for modifying organoboron compounds such as N, N-dimethylanilium tetrakis (pentafluorophenyl) borate, trityl tetrakis (pentafluorophenyl) borate, tris pentafluorophenylborane, and the like in a silica carrier (J. Am. Chem. Soc. (2012) 134 355-366), the organic boron compound used is expensive, and there is an insufficient improvement in activity compared to the catalyst price.
  • Another object of the present invention is to provide a method for producing polyolefin with high productivity using a polyolefin polymerization catalyst having high activity.
  • this invention is a metallocene compound; Aluminoxane compounds; And polymerizing one or more olefins to a polyolefin in the presence of a polyolefin polymerization catalyst supporting the metallocene compound and the aluminoxane and including a carrier modified with a boron radical (-BF n , n is an integer of 2 to 4). It provides a method for producing a polyolefin comprising the step of.
  • Modified carriers used in the polyolefin polymerization catalysts of the present invention have the advantages of low cost and low cost because they are modified with commercially available activators.
  • the modified polyolefin polymerization catalyst according to the present invention since the modified polyolefin polymerization catalyst according to the present invention has high activity, it can be used to produce polyolefin with high productivity.
  • FIG. 1 is a graph showing the FT-IR spectrum of a silica carrier (A) for conventional olefin polymerization and a silica carrier (B) modified according to the present invention.
  • the modified carrier used in the polyolefin polymerization catalyst of the present invention is a carrier capable of supporting a metallocene compound and a borated fluorinated radical (-BF n , n is an integer of 2 to 4, preferably 2 To an integer of 3 to 3, more preferably 2.).
  • a boron fluoride compound modifier, activator
  • an activator (borate fluoride compound) for modifying the carrier a compound represented by the following Formula 1 may be used.
  • the activator may include a compound containing hydrofluoric acid (HBF 4 ) and / or boron trifluoride (BF 3 , fluoride boride).
  • HPF 4 hydrofluoric acid
  • BF 3 boron trifluoride
  • the activator is inexpensive and has the advantage of being easily obtained commercially.
  • the activator may be used as it is or may be used diluted in a solvent.
  • the activator may be solventless or slurried to modify the fluidized or immobilized carrier.
  • water preferably distilled water, deionized water
  • toluene hexane
  • ether diethyl ether, etc.
  • alcohol methanol, ethanol, etc.
  • etherate etherate, Boron trifluoride Etherate (ether compound chemically bonded with an activator such as BF 3 -O (CH 3 ) 2 )
  • hydrofluoric acid is preferably dissolved in water, diethyl ether, or the like
  • boron trifluoride is preferably dissolved in methanol or in the form of iterate.
  • the amount of the solvent is not particularly limited, but in general, 0 to 500 parts by weight of the solvent, preferably 50 to 150 parts by weight, is used based on 100 parts by weight of the activator.
  • the carrier used in the present invention is a porous inorganic oxide, preferably silica, alumina, silica-alumina, or the like, and more preferably silica.
  • Specific examples of the silica carrier include, but are not limited to, commercially available ES-70X (PQ Corporation), DM-L-403 (Asahi Glass Chemical Silica Technology), and the like.
  • the carrier may be an unfired (non-dehydrated, raw) carrier, or a fired (dehydrated) carrier.
  • the moisture content of the unbaked carrier is usually about 0.1 to 7% by weight.
  • the calcining temperature is about 150 to 400 ° C
  • the calcining time is about 1 to 6 hours
  • the content of hydroxyl group (OH) is about 0.5 to 5 mmol / g.
  • Water and OH components present in the unbaked (dehydrated) carrier and the calcined (dehydrated) carrier, solvents such as water and diethyl ether contained in the activator serve to chemically bind the activator to the carrier .
  • the carrier in particular the calcined carrier, usually has, but is not limited to, a surface area of 50 to 500 m 2 / g, an average particle size of 10 to 100 mm, and a pore volume of 0.5 to 5 ml / g.
  • a carrier modified with a boron fluoride radical (-BF n , n is an integer of 2 to 4, preferably an integer of 2 to 3, more preferably 2)
  • the content of boron (B) is About 0.01 to 3% by weight, preferably 0.02 to 2.5% by weight, more preferably 0.03 to 2% by weight
  • the content of fluorine (F) is about 0.1 to 10% by weight, preferably 0.2 to 8% by weight. More preferably, it is 0.3-6 weight%.
  • the boronated radical (-BF n , n is an integer from 2 to 4, for example, from 2 to 3) is chemically bound to and fixed to the carrier in the form of MO-BF n (M is Si or Al) or the like.
  • the amount of the boron fluoride radical can be adjusted by adjusting the amount of the boron fluoride compound, and when the calcined (dehydrated) carrier is used, the carrier is calcined.
  • the temperature (dehydration) By controlling the temperature (dehydration), the content of the boron radicals which modify the carrier can be controlled.
  • Conventional carriers and carriers modified according to the invention can be identified, for example, from B-O bonds present on the carrier surface.
  • 1 is an FT-IR spectrum of a silica carrier (A) for conventional olefin polymerization and a silica carrier (B) modified according to the present invention.
  • the modification of the silica carrier according to the present invention increases the absorbance of the wavelength corresponding to the B-O bond.
  • Modification of the carrier according to the present invention can be represented by the following formula (2).
  • (A) represents a conventional carrier structure that is not modified
  • (B) represents a carrier structure modified according to the present invention.
  • Modified carriers according to the invention can be prepared by mixing the carrier and the activator and then heating and drying the mixture of the carrier and the activator.
  • the activator may be mixed with the carrier as it is, or the activator may be mixed with the carrier by diluting with a solvent, or the slurry may be slurried by adding an activator diluted with a solvent to an immobilized carrier, or in a solvent-free condition, fluidized carrier
  • the activator can be directly added, heated and dried to remove the solvent contained in the mixture, if necessary, to prepare a carrier modified with a borated radical.
  • the carrier When the modified carrier is prepared by injecting slurry into the carrier and slurrying the activator, the carrier may be subjected to a filter and / or washing step after the activator is supported. Washing may be performed 1 to 4 times, preferably 2 to 3 times, with a solvent (hexane, toluene, etc.).
  • the heating and drying temperature of the carrier may vary depending on the solvent used, and in the case of an unbaked (dehydrated) carrier, it is usually 50 to 300 ° C, preferably 100 to 190 ° C, and in the case of a calcined (dehydrated) carrier It is 30-150 degreeC normally, Preferably it is 50-110 degreeC.
  • the polyolefin polymerization catalyst according to the present invention is a heterogeneous catalyst comprising the modified carrier, the metallocene compound and the aluminoxane compound.
  • the metallocene compound and the aluminoxane compound are uniformly supported and distributed in the pores of the porous carrier, and if necessary, one or more activators may be further supported and distributed.
  • the polyolefin polymerization catalyst may be prepared by supporting a metallocene compound and an aluminoxane compound on a modified carrier.
  • the polymerization catalyst of the present invention can be prepared by supporting aluminoxane and metallocene compounds in a modified activating carrier, washing and drying.
  • the support of the metallocene compound (main catalyst), the aluminoxane compound (cocatalyst), etc. may be performed by simply mixing and stirring the carrier, the metallocene compound, the aluminoxane compound, and the like. It can be performed by applying an acoustic wave or vibration wave, preferably ultrasonic (ultrasonic vibration) in the frequency range of 20 ⁇ 500 kHZ.
  • the supporting order of the main catalyst and the cocatalyst may be changed as necessary, and the preparation of the supported catalyst is preferably performed at a temperature of 0 to 100 ° C. and an inert gas atmosphere (see Patent Publication 10-2000-0026665).
  • the metallocene compound (main catalyst) and the aluminoxane compound (methylaluminoxane, cocatalyst) are first mixed and supported on the modified carrier, or the aluminoxane compound is first supported on the modified carrier, and then the metallocene The compound may be further supported.
  • the supporting temperature of the main catalyst and the cocatalyst is usually 30 to 100 ° C., and the supporting time is 1 to 4 hours.
  • the supported metallocene catalyst is prepared using alone or a mixture of hydrocarbons such as heptane, hexane, pentane, toluene, and xylene.
  • the metallocene supported catalyst can be washed and dried in a vacuum or nitrogen atmosphere to obtain a free flowing solid powder.
  • an aluminoxane compound for olefin polymerization may be used without particular limitation, and preferably, methyl aluminoxane or modified methyl aluminoxane may be used.
  • the metallocene compound (main catalyst) a conventional metallocene compound for olefin polymerization may be used without particular limitation, and for example, a compound represented by the following Chemical Formula 3 may be used.
  • Cp * is a radical of cyclopentadienyl, which is cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl, substituted fluorenyl, and the like, and the substituent is 1 carbon atom. It may be a hydrocarbon radical of 12 to 12, preferably a linear or branched hydrocarbon radical of 1 to 6 carbon atoms.
  • the cyclopentadienyl is -CH 2- , -CH 2 CH 2- , -CR 1 R 2- , -CR 1 R 2 -CR 1 R 2- , -SiR 1 R 2 -or -SiR 1 R 2- May be bridged by a methylene or dialkylsilane radical, such as CH 2 -CH 2 -SiR 1 R 2- , wherein R 1 and R 2 are lower alkyl or hydrogen of 1 to 8 carbon atoms or the like It is a bridge.
  • a and B are each independently a halogen atom, hydrogen or alkyl, if A and B is a halogen atom, A and B are each independently fluorine, chlorine, bromine or iodine, and in the case of alkyl, methyl, It is preferable that they are C1-C8 linear, cyclic, or branched alkyls, such as ethyl, normal-propyl, isopropyl, normal-butyl, isobutyl, normal-pentyl, normal-hexyl, or normal-octyl.
  • M is a Group 4B or 5B transition metal on the periodic table, preferably titanium, zirconium, hafnium, x is 1 or 2, y is 0 to 3, z is an integer of 0 to 3, ( x + y + z) corresponds to the valence of the transition metal M.
  • Non-limiting examples of metallocene compounds that can be used in the present invention include the following examples, the compounds specified in the comparative examples, cyclopentadienyl zirconium trichloride, indenyl aluminumdiethyl, tetrahydroindenyl indenyl zirconium dichloride, Bis 1-methyl-3butyl cyclopentadienyl zirconium dichloride, bis (ethylene indenyl) zirconium dichloride, cyclopentylcyclopentadienyl cyclopentadienyl zirconium dichloride, di (normal butyl cyclopentadienyl) zirconium di Chloride, bis (cyclopentadienyl) zirconium dichloride, bis (cyclopentadienyl) hafnium dichloride, bis (cyclopentadienyl) titanium dichloride, bis (methylcyclopentadienyl) zirconium dichloride, bis
  • the mixing amount of the modified carrier, the metallocene compound and the aluminoxane compound can be appropriately adjusted according to the characteristics of the catalyst required and is well known to those skilled in the art.
  • the content of aluminum derived from the aluminoxane compound is 5 to 35 parts by weight, preferably 7 to 25 parts by weight, and the transition metal component derived from the metallocene compound.
  • the content of is 0.01 to 2 parts by weight, preferably 0.05 to 1.5 parts by weight.
  • the present invention provides a polymerization method of olefins comprising the step of polymerizing at least one olefin to a polyolefin in the presence of the polyolefin polymerization catalyst.
  • the polymerization method of the olefin may be carried out by liquid phase, slurry phase or gas phase polymerization reaction, and is particularly useful for gas phase or slurry phase polymerization process.
  • the polymerization method of the olefin may be carried out batchwise or continuously. Each polymerization reaction condition can be variously modified depending on the polymerization component used, the composition of the catalyst, the polymerization method (solution phase, slurry phase or gas phase polymerization), the desired polymerization result or the form of the polymer.
  • the polymerization reaction is preferably performed at a temperature of 25 to 100 ° C. Furthermore, it is more preferable to add a scavenger to increase the productivity of the polyolefin together with the supported catalyst of the present invention.
  • the amount of the catalyst is not particularly limited, but the transition metal concentration of the metallocene compound in the reaction system used for polymerization is usually 10 -8 to 10. and mol / l, is specifically from 10 -7 to 10 -2 mol / l.
  • the supported metallocene catalyst of the present invention is suitable for homopolymerization of monomers, in particular for copolymerization of monomers / comonomers, in pre-polymerization or main polymerization processes.
  • olefin suitable for polymerization or copolymerization an aliphatic alphaolefin monomer having 2 to 12 carbon atoms may be used.
  • Preferred monomers include ethylene and propylene, and are cyclopentene, dicyclopentadiene, norbornene, 5-ethylidene-2-olbornene (5- ethylidene-2-norbornene), 5-vinyl-2-norbornene, 1, 5-hexadiene, 1,4-hexadiene (1,4- hexadiene), 5-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene (5-methyl -1,4-hexadiene), 4-methyl-1,4-hexadiene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene norbornene and the like can be used.
  • XRF X-ray fluorescence
  • Example 1 except that 0.5 ml of hydrofluoric acid solution was used and 0.083 g of tetrahydroindenyl indenyl zirconium dichloride was used instead of 0.055 g of cyclopentadienyl zirconium trichloride and 0.088 g of indenyl aluminum diethyl.
  • a modified silica carrier and a metallocene supported catalyst were prepared.
  • 0.3 wt% of zirconium and 12.3 wt% of aluminum were included, and 1.3 wt% of fluorine was included in the ISE analysis.
  • Example 2 except that 0.5 ml of hydrofluoric acid solution was used and 0.083 g of tetrahydroindenyl indenyl zirconium dichloride was used instead of 0.055 g of cyclopentadienyl zirconium trichloride and 0.088 g of indenyl aluminum diethyl.
  • a modified silica carrier and a metallocene supported catalyst were prepared.
  • 0.3 wt% of zirconium and 12.4 wt% of aluminum were included, and 1.2 wt% of fluorine was included in the ISE analysis.
  • methylaluminoxane solution MAO, 10 wt% toluene solution
  • 4 g of the modified silica carrier stirred at 100 ° C. for 1 hour, and the temperature was 50 ° C. Lowered.
  • 3 ml of methylaluminoxane solution (MAO, 10 wt% toluene solution) and 0.091 g of bis 1-methyl-3butyl cyclopentadienyl zirconium dichloride were added to a 250 ml Schlenk flask filled with N 2 gas.
  • a metallocene supported catalyst was prepared in the same manner as in Comparative Example 1, except that 4 g of the silica carrier calcined at 250 ° C. was used instead of 4.2 g of the unbaked silica carrier.
  • XRF analysis of the prepared catalyst contained 0.3 wt% zirconium and 12.8 wt% aluminum.
  • a metallocene supported catalyst was prepared in the same manner as in Comparative Example 1, except that 0.055 g of cyclopentadienyl zirconium trichloride and 0.083 g of tetrahydroindenyl indenyl zirconium dichloride were used instead of 0.088 g of indenyl aluminum diethyl. It was. XRF analysis of the prepared catalyst contained 0.29 wt% zirconium and 12.7 wt% aluminum.
  • a metallocene supported catalyst was prepared in the same manner as in Comparative Example 2, except that 0.055 g of cyclopentadienyl zirconium trichloride and 0.083 g of tetrahydroindenyl indenyl zirconium dichloride were used instead of 0.088 g of indenyl aluminum diethyl. It was. XRF analysis of the prepared catalyst contained 0.3 wt% zirconium and 12.8 wt% aluminum.
  • Metalloid was prepared in the same manner as in Comparative Example 1, except that 0.055 g of cyclopentadienyl zirconium trichloride and 0.091 g of bis 1-methyl-3butyl cyclopentadienyl zirconium dichloride were used instead of 0.055 g of indenyl aluminum diethyl.
  • Sen supported catalyst was prepared. XRF analysis of the prepared catalyst contained 0.29 wt% zirconium and 12.3 wt% aluminum.
  • Metalloid was prepared in the same manner as in Comparative Example 2, except that 0.055 g of cyclopentadienyl zirconium trichloride and 0.091 g of bis 1-methyl-3butyl cyclopentadienyl zirconium dichloride were used instead of 0.055 g of indenyl aluminum diethyl.
  • Sen supported catalyst was prepared. XRF analysis of the prepared catalyst contained 0.29 wt% zirconium and 12.4 wt% aluminum.
  • a metallocene supported catalyst was prepared in the same manner as in Example 11, except that 4 g of the silica carrier calcined (dehydrated) at 250 ° C. was used instead of 4 g of the unbaked (dehydrated, raw) silica carrier.
  • XRF analysis of the prepared catalyst contained 0.26 wt% zirconium and 14.5 wt% aluminum.
  • Isobutane was charged at 250 psi in a 1 L stainless autoclave reactor maintained at nitrogen and 110 ° C. for 30 minutes, and then evacuated. 1.0 ml of triethylaluminum solution (0.2 M, hexane solution) was injected with isobutane while stirring, ethylene was sequentially injected at 40 ml of 1-hexene and 130 psi pressure, followed by Examples and The reaction was started by adding 60 mg of the catalyst prepared in Comparative Example. Ethylene was consumed while the polymerization proceeded with a mass flow meter, and the reaction was performed for 2 hours while continuously injecting 10% by weight of 1-hexene relative to ethylene to obtain a polymer. Table 1 shows the amount and activity of the polymer produced.
  • Polymer was obtained in the same manner as in Polymerization Example 1, except that polymerization temperature was 45 ° C., ethylene pressure 30 psi, initial 1-hexene dose 20 ml, and 18% by weight of 1-hexene was injected relative to ethylene during polymerization.
  • the amount and activity of the polymers obtained is shown in Table 1.
  • Polymer was obtained in the same manner as in Polymerization Example 1, except that the polymerization temperature was 90 ° C. and 30 mg of the catalyst, and the amount and activity of the prepared polymer are shown in Table 1.
  • a polymer was obtained in the same manner as in Polymerization Example 1, except that the polymerization temperature was 60 ° C.
  • the amount and activity of the prepared polymer are shown in Table 1 below.
  • the olefin polymerization catalyst to which the modified carrier of the present invention was applied was active even at high temperature polymerization conditions, compared to the catalyst to which the general carrier was applied. Was excellent. Therefore, it turns out that the polymerization catalyst of this invention is applicable also to high temperature slurry polymerization. Therefore, the olefin polymerization catalyst of the present invention can be applied to both low-temperature (30 ° C) or high-temperature (100 ° C) conditions of slurry phase or gas phase process conditions, and can greatly improve the productivity of polyolefin.
  • polyolefins can be polymerized with high activity by dispersing and supporting an aluminoxane compound and a metallocene compound on a carrier modified with a boron fluoride compound.
  • the present invention is economically useful because it is possible to use an unbaked carrier, to lower the drying temperature when modifying the carrier, and to use an inexpensive activator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

메탈로센 촉매를 담지하는 담체를 개질하여, 촉매 활성을 향상시킨 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법이 개시된다. 상기 폴리올레핀 중합 촉매는, 메탈로센 화합물; 알루미녹산 화합물; 및 상기 메탈로센 화합물 및 알루미녹산을 담지시키며, 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)로 개질된 담체를 포함한다.

Description

개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법
본 발명은 폴리올레핀 중합 촉매에 관한 것으로서, 더욱 상세하게는 메탈로센 촉매를 담지하는 담체를 개질하여, 촉매 활성을 향상시킨 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법에 관한 것이다.
폴리올레핀 제조를 위한 촉매계로써, 주촉매로 메탈로센 화합물을 사용하며, 조촉매로 메틸알루미녹산(MAO) 등의 알루미녹산 화합물을 사용하는 균일 또는 불균일 담지 촉매계가 일반적으로 사용되고 있다. 상기 메탈로센 화합물로는 Ti, Zr, Hf 등의 4족B 또는 5족B의 전이금속에 시클로펜타디엔 등의 유기화합물이 1개 이상이 결합된 유기전이금속 화합물들이 주로 사용된다. 상기 조촉매로는, 알루미녹산 화합물 외에, N,N-디메틸아닐륨테트라키스(펜타플로오로페닐)보레이트 등의 유기붕소 화합물이 사용되기도 한다.
기상 연속 공정으로 폴리올레핀을 제조하는 경우, 공정 안정성을 확보하기 위해서는 균일 촉매보다 불균일 담지 메탈로센 촉매를 사용하여야 한다. 불균일 담지 메탈로센 촉매는 주촉매인 메탈로센 화합물과 조촉매를 실리카, 알루미나-실리카, 알루미나 등의 다공성 무기산화물 담체에 담지시킨 것이다. 이러한 불균일 담지 촉매 시스템은 균일 촉매 시스템보다 일반적으로 공정 안정성이 우수하지만, 활성이 낮은 단점이 있으므로, 불균일 담지 촉매 시스템의 활성을 향상시키기 위한 다양한 방법이 연구되고 있다.
담지 촉매 시스템의 활성을 개선하기 위하여, 담지 과정이나 실리카 개질 시 활성체를 도입하는 방법이 알려져 있다. 예를 들면, MAO가 미리 담지된 실리카 담체에 (CH3)2AlF 등의 활성제를 사용하여 [(CH3)2Al]+의 농도를 증가시킴으로써, 활성을 개선하는 방법(US 2009/0062492 A1), 올가노실리콘(organosilicon) 화합물로 담체를 개질하는 방법(J. Mol. Catal. A(2000) 154 103-113, 특허공개 10-2014-0134560), 담체에 스페이서(Spacer)를 도입하는 방법(J. Mol. Catal. A (2004) 210 149-156), 퍼플로오로알칸 설폰산(perfluoroalkane sulfonic acid)로 담체를 개질하는 방법(J. Am. Chem. Soc. (2007), 129(27), 8426-8427), 폴리헤드랄 올리고머릭 실세스퀴녹산(polyhedral oligomeric silsesquioxane)을 담체에 도입하는 방법(J. Polym. Sci. Part A. (2005) 43 5465-5476, J. Polym. Sci. Part A. (2010) 48 5938-5944) 등이 알려져 있다. 그러나, 상기 개질제들은 가격이 비싸므로, 경제적이지 못한 단점이 있다. 또한, 실리카 코팅된 알루미나 담체를 불소화 처리하여 중합 촉매를 제조하는 방법(KR 10-2012-0092102)은 활성이 우수하지만, 소성 시 600 ℃의 고온이 필요하며, 주로 사용되는 실리카 담체에서는 활성이 개선되지 않는 단점이 있다. N,N-디메틸아닐륨테트라키스(펜타플로오로페닐)보레이트, 트리틸 테트라키스(펜타플로오로페닐)보레이트, 트리스 펜타플로오로페닐보란 등의 유기붕소 화합물을 실리카 담체에 수식하는 방법(J. Am. Chem. Soc. (2012) 134 355-366)은, 사용되는 유기붕소 화합물이 고가이며, 촉매 가격 대비 활성 개선이 불충분한 단점이 있다.
본 발명의 목적은, 가격이 저렴하고, 상업적으로 쉽게 얻을 수 있는 활성화제로 개질된 담체를 포함하며, 촉매 활성을 향상시킨 폴리올레핀 중합 촉매를 제공하는 것이다.
본 발명의 다른 목적은, 고활성을 가지는 폴리올레핀 중합 촉매를 이용하여 높은 생산성으로 폴리올레핀을 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 메탈로센 화합물; 알루미녹산 화합물; 및 상기 메탈로센 화합물 및 알루미녹산을 담지시키며, 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)로 개질된 담체를 포함하는 폴리올레핀 중합 촉매를 제공한다. 또한, 본 발명은, 메탈로센 화합물; 알루미녹산 화합물; 및 상기 메탈로센 화합물 및 알루미녹산을 담지시키며, 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)로 개질된 담체를 포함하는 폴리올레핀 중합 촉매의 존재 하에서, 하나 이상의 올레핀을 폴리올레핀으로 중합하는 단계를 포함하는 폴리올레핀의 제조 방법을 제공한다.
본 발명의 폴리올레핀 중합 촉매에 사용되는 개질된 담체는, 가격이 저렴하고, 상업적으로 쉽게 얻을 수 있는 활성화제로 개질되므로, 제조 비용이 저렴하고 경제적인 장점이 있다. 또한, 본 발명에 따른 개질된 폴리올레핀 중합 촉매는 고활성을 가지므로, 이를 이용하여 높은 생산성으로 폴리올레핀을 제조할 수 있다.
도 1은 통상적인 올레핀 중합용 실리카 담체 (A) 및 본 발명에 따라 개질된 실리카 담체(B)의 FT-IR 스펙트럼을 보여주는 그래프.
이하, 본 발명을 상세히 설명한다. 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위한 것으로, 본 발명을 한정하는 것은 아니다.
본 발명의 폴리올레핀 중합 촉매에 사용되는 개질된 담체는, 메탈로센 화합물을 담지시킬 수 있는 담체 및 상기 담체에 결합된 붕불화 라디칼(-BFn, n은 2 내지 4의 정수, 바람직하게는 2 내지 3의 정수, 더욱 바람직하게는 2이다)을 포함한다. 상기 담체를 붕불화 화합물(개질제, 활성화제)로 개질하면, 붕불화 라디칼이 담체 표면에 화학적으로 결합된 활성화 담체를 제조할 수 있다. 상기 담체를 개질하기 위한 활성화제 (붕불화 화합물)로는 하기 화학식 1로 표시되는 화합물을 사용할 수 있다.
Figure PCTKR2017007422-appb-C000001
여기서, a는 0 또는 1이고, x는 3 또는 4이다.
상기 활성화제의 구체적인 예로는, 붕불화수소산(HBF4) 및/또는 삼불화붕소(BF3, 붕화불소)가 포함된 화합물 등을 예시할 수 있다. 상기 활성화제는 가격이 저렴하고, 상업적으로 쉽게 얻을 수 있는 장점이 있다. 상기 활성화제는 그대로 사용하거나, 용매에 희석된 것을 사용할 수 있다. 상기 활성화제를 무용매화 또는 슬러리화하여, 유동화 또는 고정화된 담체를 개질할 수 있다. 상기 활성화제를 용해 또는 희석하기 위한 용매로는, 물(바람직하게는, 증류수, 탈이온수), 톨루엔, 헥산, 에테르(디에틸에테르 등), 알코올(메탄올, 에탄올 등), 이터레이트(etherate, Boron trifluoride Etherate (BF3-O(CH3)2) 등의 활성화제와 화학적으로 결합된 에테르 화합물) 등을 사용할 수 있다. 예를 들면, 붕불화수소산은 물, 디에틸에테르 등에 용해시켜 사용하고, 삼불화붕소는 메탄올로 용해되거나, 이터레이트 등의 형태로 용해된 것을 사용하는 것이 바람직하다. 상기 용매로 활성화제를 용해시켜 사용하는 경우, 용매의 사용량은 특별히 제한되지 않으나, 일반적으로 활성화제 100 중량부에 대하여, 용매 0 내지 500 중량부, 바람직하게는 50 내지 150 중량부를 사용한다.
본 발명에 사용되는 담체는 다공성 무기 산화물이며, 바람직하게는 실리카, 알루미나, 실리카-알루미나 등을 사용할 수 있고, 더욱 바람직하게는 실리카를 사용할 수 있다. 상기 실리카 담체의 구체적인 예로는, 비한정적으로, 상용화된 ES-70X(PQ Corporation), DM-L-403(Asahi Glass Chemical Silica Technology) 등을 예시할 수 있다. 상기 담체로는 소성되지 않은 미소성(미탈수, raw) 담체를 사용하거나, 소성된(탈수) 담체를 사용할 수 있다. 미소성 담체의 수분 함량은 통상 약 0.1 ~ 7 중량%이다. 담체를 소성(탈수)시키는 경우, 소성 온도는 약 150 내지 400 ℃이고, 소성 시간은 약 1 내지 6 시간이며, 소성 후, 수산기(OH)의 함유량은 약 0.5 ~ 5 mmol/g이다. 상기 미소성(미탈수) 담체 및 소성(탈수) 담체에 존재하는 수분 및 OH 성분, 활성화제에 포함된 물, 디에틸에테르 등의 용매는 활성화제를 담체에 화학적으로 결합시키는 역할을 수행한다. 상기 담체, 특히 소성된 담체는, 비한정적으로, 통상 50 내지 500 m2/g의 표면적, 10 내지 100 mm의 평균 입자크기, 0.5 내지 5 ml/g의 기공 부피를 가진다.
본 발명에 따른 붕불화 라디칼(-BFn, n은 2 내지 4의 정수, 바람직하게는 2 내지 3의 정수, 더욱 바람직하게는 2이다)로 개질된 담체에 있어서, 붕소(B)의 함량은 약 0.01 내지 3 중량%, 바람직하게는 0.02 내지 2.5 중량%, 더욱 바람직하게는 0.03 내지 2 중량%이며, 플루오린(F)의 함량은 약 0.1 내지 10 중량%, 바람직하게는 0.2 내지 8 중량%, 더욱 바람직하게는 0.3 내지 6 중량%이다. 붕불화 라디칼(-BFn, n은 2 내지 4의 정수, 예를 들면 2 내지 3의 정수이다)은 화학적으로 M-O-BFn (M은 Si 또는 Al) 등의 형태로 담체에 결합 및 고정되어, 담지 촉매 표면에 자유(free) 알루미녹산을 증가시키거나, 전기음성도 차이를 증가시켜 메탈로센 촉매를 활성화시킴으로써, 에틸렌과의 반응을 촉진하는 것으로 추정된다. 상기 담체에 결합된 붕불화 라디칼의 함량이 너무 작으면, 촉매 활성의 증가가 불충분할 우려가 있고, 너무 많으면 특별한 이익이 없이, 최종 생성물의 순도가 저하될 우려가 있다. 담체를 개질하는 붕불화 라디칼의 함량은 담체에 존재하는 수분 및 OH 성분의 함량 및/또는 활성화제의 사용량에 따라 조절될 수 있다. 예를 들어, 미소성(미탈수) 담체를 사용할 경우, 붕불화 화합물의 사용량을 조절하여, 담체를 개질하는 붕불화 라디칼의 함량을 조절할 수 있으며, 소성(탈수) 담체를 사용할 경우, 담체의 소성(탈수) 온도를 조절하여, 담체를 개질하는 붕불화 라디칼의 함량을 조절할 수 있다.
통상적인 담체 및 본 발명에 따라 개질된 담체는, 예를 들면, 담체 표면에 존재하는 B-O 결합으로부터 확인할 수 있다. 도 1은 통상적인 올레핀 중합용 실리카 담체 (A) 및 본 발명에 따라 개질된 실리카 담체(B)의 FT-IR 스펙트럼이다. 도 1에 도시된 바와 같이, 본 발명에 따라 실리카 담체를 개질하면, B-O 결합에 해당하는 파장의 흡광도(Absorbance)가 증가한다. 본 발명에 따른 담체의 개질화는 하기 화학식 2로 나타낼 수 있다.
Figure PCTKR2017007422-appb-C000002
상기 화학식 2에서, (A)는 개질되지 않은 통상의 담체 구조를 나타내고, (B)는 본 발명에 따라 개질된 담체 구조를 나타낸다.
본 발명에 따른 개질된 담체는, 담체와 활성화제를 혼합한 후, 상기 담체와 활성화제의 혼합물을 가열 및 건조시켜 제조할 수 있다. 예를 들면, 활성화제를 그대로 담체와 혼합하거나, 활성화제를 용매로 희석하여 담체와 혼합하거나, 고정화된 담체에 용매로 희석된 활성화제를 투입하여 슬러리화하거나, 무용매 조건에서, 유동화된 담체에 활성화제를 직접 투입하고, 가열 및 건조시킴으로써, 필요에 따라, 혼합물에 포함된 용매를 제거하고, 붕불화 라디칼로 개질된 담체를 제조할 수 있다. 담체에 용매로 희석된 활성화제를 투입하고 슬러리화하여 개질 담체를 제조할 경우, 활성화제 담지 후, 필터 및/또는 세척 단계를 거칠 수 있다. 세척은 용매(헥산, 톨루엔 등)로 1~4회, 바람직하게는 2~3회 수행할 수 있다. 상기 담체의 가열 및 건조 온도는, 사용되는 용매에 따라 다를 수 있으며, 미소성(미탈수) 담체의 경우, 통상 50 내지 300 ℃, 바람직하게는 100 내지 190 ℃이고, 소성(탈수) 담체의 경우, 통상 30 내지 150 ℃, 바람직하게는 50 내지 110 ℃이다.
본 발명에 따른 폴리올레핀 중합 촉매는, 상기 개질된 담체, 메탈로센 화합물 및 알루미녹산 화합물을 포함하는 불균일계 촉매이다. 상기 중합 촉매에 있어서, 상기 메탈로센 화합물 및 알루미녹산 화합물이 다공성 담체의 세공에 균일하게 담지 및 분포되어 있으며, 필요에 따라, 하나 이상의 활성화제가 더욱 담지 및 분포되어 있을 수 있다. 상기 폴리올레핀 중합 촉매는, 메탈로센 화합물 및 알루미녹산 화합물을 개질된 담체에 담지시켜 제조될 수 있다. 예를 들면, 개질된 활성화 담체에 알루미녹산 및 메탈로센 화합물을 담지하고, 세척 및 건조하여 본 발명의 중합 촉매를 제조할 수 있다.
상기 메탈로센 화합물(주촉매), 알루미녹산 화합물(조촉매) 등의 담지는, 상기 담체, 메탈로센 화합물, 알루미녹산 화합물 등을 단순히 혼합 및 교반하여 수행될 수 있으나, 바람직하게는 상기 혼합물에 20 ~ 500 kHZ 주파수 범위의 음향파 또는 진동파, 바람직하게는 초음파(ultrasonic vibration)를 인가하여 수행될 수 있다. 상기 주촉매, 조촉매의 담지 순서는 필요에 따라 바뀔 수 있으며, 담지 촉매의 제조는 0 내지 100 ℃의 온도 및 비활성 기체분위기에서 수행되는 것이 바람직하다(특허공개 10-2000-0026665 참조). 예를 들면, 메탈로센 화합물(주촉매)과 알루미녹산 화합물(메틸알루미녹산, 조촉매)을 먼저 혼합하여 개질 담체에 담지시키거나, 알루미녹산 화합물을 개질 담체에 먼저 담지시킨 후, 메탈로센 화합물을 추가로 담지시킬 수 있다. 주촉매 및 조촉매의 담지 온도는 통상 30 내지 100 ℃, 담지 시간은 1 내지 4시간이며, 담지 후 헵탄, 헥산, 펜탄, 톨루엔, 크실렌 등의 탄화수소를 단독 또는 혼합 사용하여 담지 메탈로센 촉매를 세척할 수 있으며, 제조된 메탈로센 담지 촉매는 진공 또는 질소분위기에서 건조시켜, 자유롭게 흐르는 고체 분말로 수득할 수 있다.
본 발명에 따른 폴리올레핀 중합 촉매에 있어서, 알루미녹산 화합물(조촉매)로는 통상의 올레핀 중합용 알루미녹산 화합물을 특별한 제한 없이 사용할 수 있으며, 바람직하게는 메틸알루미녹산 또는 변형된 메틸알루미녹산을 사용할 수 있고, 탄화수소 용액 상태, 바람직하게는 톨루엔에 용해된 메틸알루미녹산 용액을 사용할 수 있다. 상기 메탈로센 화합물(주촉매)로도 통상의 올레핀 중합용 메탈로센 화합물을 특별한 제한 없이 사용할 수 있으며, 예를 들면 하기 화학식 3으로 표시되는 화합물을 사용할 수 있다.
Figure PCTKR2017007422-appb-C000003
여기서, Cp*는 시클로펜타디에닐류의 라디칼로써, 시클로펜타디에닐, 치환된 시클로펜타디에닐, 인데닐, 치환된 인데닐, 플루오레닐, 치환된 플루오레닐 등이며, 상기 치환체는 탄소수 1 내지 12의 탄화수소(hydrocarbyl)라디칼일 수 있으며, 바람직하게는 탄소수 1 내지 6의 직쇄상 또는 가지가 있는 탄화수소 라디칼이다. 상기 시클로펜타디에닐류는 -CH2-, -CH2CH2-, -CR1R2-, -CR1R2-CR1R2-, -SiR1R2-또는 -SiR1R2-CH2-CH2-SiR1R2-와 같은 메틸렌 또는 디알킬실란 라디칼에 의해 브리지(bridge)될 수 있으며, 여기서 R1과 R2는 탄소수 1 내지 8의 저급 알킬류나 수소류 또는 그와 유사한 브리지(bridge)이다. 상기 화학식에서 A와 B는 각각 독립적으로 할로겐 원자, 수소 또는 알킬류로서, 만일 A와 B가 할로겐 원자인 경우 A와 B는 각각 독립적으로 불소, 염소, 브롬 또는 요오드이며, 알킬류인 경우에는 메틸, 에틸, 노말-프로필, 이소프로필, 노말-부틸, 이소부틸, 노말-펜틸, 노말-헥실 또는 노말-옥틸 등의 탄소수 1 내지 8의 직쇄상, 환형 또는 가지가 있는 알킬류인 것이 바람직하다. 상기 화학식에서 M은 주기율표상의 4족B 또는 5족B 전이금속으로, 바람직하게는 티타늄, 지르코늄, 하프늄이고, x는 1 또는 2, y는 0 내지 3, z는 0 내지 3의 정수이며, (x+y+z)는 전이금속 M의 원자가와 일치한다.
본 발명에서 사용될 수 있는 메탈로센 화합물의 비한정적인 예는 하기 실시예, 비교예에 명시된 화합물, 시클로펜타디에닐 지르코늄 트리클로라이드, 인데닐 알루미늄디에틸, 테트라하이드로인데닐 인데닐 지르코늄 디클로라이드, 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄디클로라이드, 비스(에틸렌 인데닐) 지르코늄디클로라이드, 시클로펜틸시클로펜타디에닐 시클로펜타디에닐 지르코늄디클로라이드, 디(노말 부틸 시클로펜타디에닐) 지르코늄디클로라이드, 비스(시클로펜타디에닐) 지르코늄디클로라이드, 비스(시클로펜타디에닐) 하프늄디클로라이드, 비스(시클로펜타디에닐) 티타늄디클로라이드, 비스(메틸시클로펜타디에닐) 지르코늄디클로라이드, 비스(메틸시클로펜타디에닐) 하프늄디클로라이드, 비스(메틸시클로펜타디에닐) 티타늄 디클로라이드, 비스(노말-부틸시클로펜타디에닐) 지르코늄 디클로라이드, 비스(노말-부틸시클로펜타디에닐) 하프늄디클로라이드, 비스(노말-부틸시클로펜타디에닐) 티타늄디클로라이드, 비스(시클로펜타디에닐) 지르코늄 디메틸, 비스(시클로펜타디에닐) 하프늄 디메틸, 비스(시클로펜타디에닐) 티타늄 디메틸, 비스(메틸시클로펜타디에닐) 지르코늄 디메틸, 비스(메틸시클로펜타디에닐) 하프늄 디메틸, 비스(메틸시클로펜타디에닐) 티타늄 디메틸, 비스(노말-부틸시클로펜타디에닐) 지르코늄 디메틸, 비스(노말-부틸시클로펜타디에닐) 하프늄 디메틸, 비스(노말-부틸시클로펜타디에닐) 티타늄 디메틸, 비스(1,3-다이메틸시클로펜타디에닐) 지르코늄 디클로라이드, 비스(1,3-다이메틸시클로펜타디에닐) 하프늄 디클로라이드, 비스(이소부틸시클로펜타디에닐) 티타늄 디클로라이드, 비스(이소부틸시클로펜타디에닐) 지르코늄 디클로라이드, 비스(이소부틸시클로펜타디에닐) 하프늄 디클로라이드, 비스(인데닐) 지르코늄 디클로라이드, 비스(인데닐) 지르코늄 디메틸, 비스(인데닐) 하프늄 디클로라이드, 비스(인데닐) 하프늄 디메틸, 비스(플루오레닐) 지르코늄 디클로라이드, 비스(4,5,6,7-테트라하이드로-1-인데닐) 지르코늄 디클로라이드, 에틸렌-[비스(4,5,6,7-테트라하이드로-1-인데닐)] 지르코늄 디클로라이드, 에틸렌-비스(인데닐) 지르코늄 디클로라이드, 에틸렌-비스(인데닐) 지르코늄 디메틸, 디메틸실릴-비스(인데닐) 지르코늄 디클로라이드, 디메틸실릴-비스(인데닐) 하프늄 디클로라이드, 디메틸실릴-비스(인데닐) 티타늄 디클로라이드, 디메틸실릴-비스(인데닐) 지르코늄 디메틸, (플루오레닐)(시클로펜타디에닐)메탄 지르코늄 디클로라이드, (플루오레닐)(시클로펜타디에닐)디메틸 메탄 지르코늄 디클로라이드, 디메틸실릴(플루오레닐)(시클로펜타디에닐) 지르코늄 디클로라이드, 디메틸실릴(플루오레닐)(시클로펜타디에닐) 지르코늄 디메틸 등을 예시할 수 있다.
본 발명에 따른 폴리올레핀 중합 촉매에 있어서, 개질된 담체, 메탈로센 화합물 및 알루미녹산 화합물의 혼합량은 필요로 하는 촉매의 특성에 따라 적절히 조절될 수 있고, 당해 기술분야의 전문가에게 잘 알려져 있다. 통상적으로, 상기 개질된 담체 100중량부에 대하여, 알루미녹산 화합물로부터 유래한 알루미늄의 함량은 5 내지 35 중량부, 바람직하게는 7 내지 25 중량부이고, 상기 메탈로센 화합물로부터 유래한 전이 금속 성분의 함량은 0.01 내지 2중량부, 바람직하게는 0.05 내지 1.5중량부이다.
또한, 본 발명은 상기 폴리올레핀 중합 촉매의 존재 하에서, 하나 이상의 올레핀을 폴리올레핀으로 중합하는 단계를 포함하는 올레핀의 중합방법을 제공한다. 상기 올레핀의 중합방법은, 액상, 슬러리상 또는 기상 중합 반응으로 수행될 수 있고, 특히 기상 또는 슬러리상 중합 공정에 유용하다. 또한, 상기 올레핀의 중합방법은 회분식 또는 연속식으로 수행될 수 있다. 각각의 중합 반응 조건은 사용되는 중합 성분, 촉매의 조성, 중합 방법(용액상, 슬러리상 또는 기상 중합), 목적하는 중합결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다. 본 발명의 중합 촉매는 25 내지 100 ℃의 온도에서 고활성을 나타내므로, 상기 중합 반응은 25 내지 100 ℃의 온도에서 수행되는 것이 바람직하다. 또한, 본 발명의 담지 촉매와 함께 폴리올레핀의 생산성을 증가시키기 위한 불순물 제거제(scavenger)가 첨가되는 것이 더욱 바람직하다. 본 발명에 따른 불균일계 촉매를 사용하여 올레핀을 중합 또는 공중합 하는데 있어서, 촉매의 사용량은 특별히 한정되지 않지만, 중합에 사용되는 반응계 내에서 상기 메탈로센 화합물의 전이금속 농도는 통상 10-8 내지 10 ㏖/ℓ이고, 구체적으로는 10-7 내지 10-2 ㏖/ℓ이다.
본 발명의 담지 메탈로센 촉매는 선중합(pre-polymerization) 또는 본중합 공정에서 단량체의 단독 중합, 특히 단량체/공단량체의 공중합에 적합하다. 중합 또는 공중합에 적절한 올레핀으로는 탄소수 2 내지 12의 지방족 알파올레핀 단량체가 사용될 수 있다. 바람직한 단량체로는 에틸렌과 프로필렌이 사용되며, 탄소수 3 내지 12의 알파-올레핀(공단량체)으로서 시클로펜텐, 디시클로펜타디엔, 놀보넨(norbornene), 5-에틸리덴-2-놀보넨(5-ethylidene-2-norbornene), 5-비닐-2-놀보넨(5-vinyl-2-norbornene), 1, 5-헥사디엔(1,5-hexadiene), 1,4-헥사디엔(1,4-hexadiene), 5-메틸-1,4-헥사디엔(5-methyl-1,4-hexadiene), 4-메틸-1,4-헥사디엔, 5-메틸-1,4-헥사디엔(5-methyl-1,4-hexadiene), 4-메틸-1,4-헥사디엔(4methyl-1,4-hexadiene), 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐 놀보넨(norbornene) 등이 사용될 수 있다.
이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
[실시예 1] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
10.5 g의 미소성(미탈수, raw) 실리카가 담겨지고, N2 가스로 충진된 250 ml 쉬렌크(Schlenk) 플라스크에 디에틸에테르(DEE) 50 ml를 주입하고 30분 동안 교반하여 슬러리화 한 다음, 붕불화수소산 용액(삼전순약 제품, HBF4 50 중량% 수용액) 1.1 ml를 추가 투입하고 1시간 동안 교반하고, 헥산으로 2회 필터하고, 190 ℃에서 진공 건조하여 개질 실리카 담체를 제조하였다.
N2 가스로 충진된 250 ml 쉬렌크 플라스크에 메틸알루미녹산 용액 (MAO, 10 중량% 톨루엔 용액) 20 ml, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g, 및 인데닐 알루미늄디에틸 0.088 g을 투입하고, 50 ℃에서 30분 동안 교반한 다음, 상기 개질 실리카 담체 4 g을 상온에서 첨가하고, 90분 동안 초음파 처리 (sonication, 25 kHz 진동파)를 수행하였다. 여액을 제거하고, 헥산으로 3회 세척 및 필터한 뒤, 12시간 동안 진공 건조하여 분말상의 메탈로센 담지 촉매를 얻었다. 제조된 촉매를 XRF (X-ray fluorescence) 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.3 중량%를 포함하였으며, ISE (Ion Selective Electrode) 분석 결과 플루오린 1.3 중량%를 포함하였다.
[실시예 2] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
10.5 g의 미소성(미탈수) 실리카 대신 10 g의 소성(탈수) 실리카를 사용하고, 개질 실리카 건조 시 60 ℃에서 진공 건조한 것을 제외하고는, 실시예 1과 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.4 중량%를 포함하였으며, ISE 분석 결과 플루오린(fluorine) 1.2 중량%를 포함하였다.
[실시예 3] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
붕불화수소산 용액을 0.5 ml 사용하고, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 테트라하이드로인데닐 인데닐 지르코늄디클로라이드 0.083 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.3 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.3 중량%를 포함하였다.
[실시예 4] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
붕불화수소산 용액을 0.5 ml 사용하고, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 테트라하이드로인데닐 인데닐 지르코늄디클로라이드 0.083 g을 사용한 것을 제외하고는, 실시예 2와 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.4 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.2 중량%를 포함하였다.
[실시예 5] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
붕불화수소산 용액을 0.35 ml 사용하고, 용매로서 디에틸에테르 대신 헥산을 사용하며, 진공 건조 온도를 190 ℃로 하고, 시클로펜타디에닐 지르코늄 트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄 디클로라이드 0.091 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.27 중량% 및 알루미늄 12.1 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.1 중량%를 포함하였다.
[실시예 6] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
붕불화수소산 용액을 0.35 ml 사용하고, 용매로서 디에틸에테르 대신 헥산을 사용하며, 진공 건조 온도를 60 ℃로 하고, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄 디클로라이드 0.091 g을 사용한 것을 제외하고는, 실시예 2와 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.28 중량% 및 알루미늄 12.3 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.2 중량%를 포함하였다.
[실시예 7] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
붕불화수소산 용액을 0.35 ml 사용하고, 용매로서 디에틸에테르 대신 증류수(Deionized Water)를 사용하며시클로펜타디에닐 지르코늄 트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 테트라하이드로인데닐 인데닐 지르코늄 디클로라이드 0.083 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.3 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.4 중량%를 포함하였다.
[실시예 8] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
붕불화수소산 용액을 0.35 ml 사용하고, 용매로서 디에틸에테르 대신 증류수(Deionized Water)를 사용하며, 진공 건조 온도를 150 ℃로 하고, 시클로펜타디에닐 지르코늄 트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 테트라하이드로인데닐 인데닐 지르코늄 디클로라이드 0.083 g을 사용한 것을 제외하고는, 실시예 2와 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.3 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.4 중량%를 포함하였다.
[실시예 9] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
10.5 g의 미소성(미탈수, raw) 실리카가 담겨지고, N2 가스로 충진된 250 ml 쉬렌크(Schlenk) 플라스크에 디에틸에테르 50 ml를 주입하고 30분 동안 교반하여 슬러리화 한 다음, 붕불화수소산 용액 1.1 ml를 추가 투입하고 1시간 동안 교반하고, 헥산으로 2회 필터하고, 190 ℃에서 진공 건조하여 개질 실리카 담체를 제조하였다. N2 가스로 충진된 250 ml 쉬렌크 플라스크에 메틸알루미녹산 용액 (MAO, 10 중량% 톨루엔 용액) 21 ml 및 상기 개질 실리카 담체 4 g을 넣고, 100 ℃에서 1시간 동안 교반하고, 온도를 50 ℃로 낮추었다. 또한, N2 가스로 충진된 250 ml 쉬렌크 플라스크에 메틸알루미녹산 용액 (MAO, 10 중량% 톨루엔 용액) 3 ml 및 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄디클로라이드 0.091 g를 넣고, 50 ℃에서 30분 동안 교반한 다음, 상기 개질 실리카 및 메틸알루미녹산 혼합 용액에 주입하고, 90분 동안 초음파 처리 (sonication, 25 kHz 진동파)를 수행하였다. 여액을 제거하고, 헥산으로 3회 세척 및 필터한 뒤, 12시간 동안 진공 건조하여 분말상의 메탈로센 담지 촉매를 얻었다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.25 중량% 및 알루미늄 14.3 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.2 중량%를 포함하였다.
[실시예 10] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
10.5 g의 미소성(미탈수) 실리카 대신 10 g의 소성(탈수) 실리카를 사용하고, 용매로서 디에틸에테르 대신 톨루엔을 사용하며, 진공 건조 온도를 100 ℃로 하고, 메틸알루미녹산 용액과 개질 실리카 담체의 교반 온도를 100 ℃에서 115 ℃로 변경한 것을 제외하고는, 실시예 9와 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.26 중량% 및 알루미늄 13.5 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.3 중량%를 포함하였다.
[실시예 11] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
10.5 g의 미소성(미탈수) 실리카 대신 10 g의 소성(탈수) 실리카를 사용하고, 붕불화수소산 용액을 0.5 ml 사용하며, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 비스(에틸렌인데닐) 지르코늄 디클로라이드 0.053 g 및 시클로펜틸시클로펜타디에닐 시클로펜타디에닐 지르코늄디클로라이드 0.045 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.34 중량% 및 알루미늄 12.3 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.2 중량%를 포함하였다.
[실시예 12] 개질 실리카 담체 및 메탈로센 담지 촉매 제조
10.5 g의 미소성(미탈수) 실리카 대신 10 g의 소성(탈수) 실리카를 사용하고, 붕불화수소산 용액을 0.5 ml 사용하며, 60 ℃에서 진공 건조하며, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g 대신 디(노말 부틸시클로펜타디에닐) 지르코늄디클로라이드 0.083 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 개질 실리카 담체 및 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.5 중량%를 포함하였으며, ISE 분석 결과 플루오린 1.3 중량%를 포함하였다.
[비교예 1] 메탈로센 담지 촉매 제조
N2 가스로 충진된 500 ml 쉬렌크 플라스크에 메틸알루미녹산 용액 (MAO, 10 중량% 톨루엔 용액) 20 ml, 시클로펜타디에닐 지르코늄트리클로라이드 0.055 g 및 인데닐 알루미늄디에틸 0.088 g을 투입하여, 50 ℃에서 30분 동안 교반하고, 상온에서 미소성(미탈수, raw) 실리카 담체 4.2 g을 넣고, 90분 동안 초음파 처리 (sonication, 25 kHz 진동파)를 수행하였다. 여액을 제거하고, 헥산으로 3회 세척 및 필터한 뒤, 12시간 동안 진공 건조하여 분말상의 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.6 중량%를 포함하였다.
[비교예 2] 메탈로센 담지 촉매 제조
미소성 실리카 담체 4.2 g 대신 250 ℃에서 소성된 실리카 담체 4 g을 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.8 중량%를 포함하였다.
[비교예 3] 메탈로센 담지 촉매 제조
시클로펜타디에닐 지르코늄트리클로라이드 0.055g 및 인데닐 알루미늄디에틸 0.088 g 대신 테트라하이드로인데닐 인데닐 지르코늄디클로라이드 0.083 g을 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.29 중량% 및 알루미늄 12.7 중량%를 포함하였다.
[비교예 4] 메탈로센 담지 촉매 제조
시클로펜타디에닐 지르코늄트리클로라이드 0.055g 및 인데닐 알루미늄디에틸 0.088 g 대신 테트라하이드로인데닐 인데닐 지르코늄디클로라이드 0.083 g을 사용한 것을 제외하고는, 비교예 2와 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.8 중량%를 포함하였다.
[비교예 5] 메탈로센 담지 촉매 제조
시클로펜타디에닐 지르코늄트리클로라이드 0.055g 및 인데닐 알루미늄디에틸 0.088 g 대신 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄디클로라이드 0.091 g을 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.29 중량% 및 알루미늄 12.3 중량%를 포함하였다.
[비교예 6] 메탈로센 담지 촉매 제조
시클로펜타디에닐 지르코늄트리클로라이드 0.055g 및 인데닐 알루미늄디에틸 0.088 g 대신 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄디클로라이드 0.091 g을 사용한 것을 제외하고는, 비교예 2와 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.29 중량% 및 알루미늄 12.4 중량%를 포함하였다.
[비교예 7] 메탈로센 담지 촉매 제조
N2 가스로 충진된 250 ml 쉬렌크 플라스크에 메틸알루미녹산 용액 (MAO, 10 중량% 톨루엔 용액) 21 ml 및 미소성(미탈수, raw) 실리카 담체 4 g을 넣고, 100 ℃에서 1시간 동안 교반하고, 온도를 50 ℃로 낮추었다. 또한, N2 가스로 충진된 250 ml 쉬렌크 플라스크에 메틸알루미녹산 용액 (MAO, 10 중량% 톨루엔 용액) 3 ml 및 비스 1-메틸-3부틸 사이클로펜타디에닐 지르코늄디클로라이드 0.091 g를 넣고, 50 ℃에서 30분 동안 교반한 다음, 상기 실리카 및 메틸알루미녹산 혼합 용액에 주입하고, 90분 동안 초음파 처리 (sonication, 25 kHz 진동파)를 수행하였다. 여액을 제거하고, 헥산으로 3회 세척 및 필터한 뒤, 12시간 동안 진공 건조하여 분말상의 메탈로센 담지 촉매를 얻었다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.25 중량% 및 알루미늄 14.3 중량%를 포함하였다.
[비교예 8] 메탈로센 담지 촉매 제조
미소성(미탈수, raw) 실리카 담체 4 g 대신 250 ℃에서 소성(탈수)된 실리카 담체 4 g을 사용한 것을 제외하고는, 실시예 11과 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.26 중량% 및 알루미늄 14.5 중량%를 포함하였다.
[비교예 9] 메탈로센 담지 촉매 제조
시클로펜타디에닐 지르코늄트리클로라이드 0.055g 및 인데닐 알루미늄디에틸 0.088 g 대신 비스(에틸렌인데닐) 지르코늄디클로라이드 0.053 g 및 시클로펜틸시클로펜타디에닐 시클로펜타디에닐 지르코늄디클로라이드 0.045 g을 사용한 것을 제외하고는, 비교예 2와 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.34 중량% 및 알루미늄 12.3 중량%를 포함하였다.
[비교예 10] 메탈로센 담지 촉매 제조
시클로펜타디에닐 지르코늄트리클로라이드 0.055g 및 인데닐 알루미늄디에틸 0.088 g 대신 디(노말부틸시클로펜타디에닐) 지르코늄디클로라이드 0.083 g을 사용한 것을 제외하고는, 비교예 2와 동일한 방법으로 메탈로센 담지 촉매를 제조하였다. 제조된 촉매를 XRF 분석한 결과, 지르코늄 0.3 중량% 및 알루미늄 12.5 중량%를 포함하였다.
[중합예 1] 메탈로센 담지 촉매를 이용한 슬러리 중합
질소 분위기 및 110 ℃로 유지되는 1L 스테인레스 오토클레이브 반응기에 이소부탄을 250 psi로 투입하여 30분 동안 유지시킨 다음 배기하였다. 트리에틸알루미늄 용액(0.2 M, 헥산 용액) 1.0 ml를 이소부탄과 함께 교반하면서 주입하고, 1-헥센 40 ml 및 130 psi 압력으로 에틸렌을 순차적으로 주입한 다음, 75 ℃의 온도에서, 실시예 및 비교예에서 제조한 촉매 60 mg을 투입하여 반응을 개시하였다. 중합이 진행되면서 소모되는 에틸렌을 매스플로우미터로 보충하였으며, 에틸렌 대비 10 중량%의 1-헥센도 연속적으로 주입하면서 2시간 동안 반응을 수행하고 배기하여 폴리머를 수득하였다. 제조된 폴리머의 양과 활성을 표 1에 나타내었다.
[중합예 2] 메탈로센 담지 촉매를 이용한 슬러리 중합
중합 온도를 45 ℃, 에틸렌 압력 30 psi, 초기 1-헥센 투입량 20 ml 및 중합 중 에틸렌 대비 18 중량%의 1-헥센을 주입한 것을 제외하고는 중합예 1과 동일한 방법으로 폴리머를 수득하였으며, 제조된 폴리머의 양과 활성을 표 1에 나타내었다.
[중합예 3] 메탈로센 담지 촉매를 이용한 슬러리 중합
중합 온도를 90 ℃, 촉매를 30 mg 사용한 것을 제외하고는, 중합예 1과 동일한 방법으로 폴리머를 수득하였으며, 제조된 폴리머의 양과 활성을 표 1에 나타내었다.
[중합예 4] 메탈로센 담지 촉매를 이용한 슬러리 중합
중합 온도를 60 ℃로 한 것을 제외하고는, 중합예 1과 동일한 방법으로 폴리머를 수득하였으며, 제조된 폴리머의 양과 활성을 표 1에 나타내었다.
촉매 담체/개질제 사용량용매/건조 온도 촉매 촉매활성(g-Polymer/ g-Cat·hr) 생성된 폴리머양(g) 중합예
실시예 1 미소성 / 1.1 mlDEE / 190 ℃ CpZrCl3In Al(Et)2 3,100 372 1
실시예 2 소성 / 1.1 mlDEE / 60 ℃ CpZrCl3In Al(Et)2 3,280 393 1
실시예 3 미소성/ 0.5 mlDEE / 190 ℃ (4H-In) In ZrCl2 4,559 547 1
실시예 4 소성 / 0.5 mlDEE / 60 ℃ (4H-In) In ZrCl2 5,837 700 1
실시예 5 미소성/ 0.35 ml헥산 / 190 ℃ Bis (1-Me,3-Bu)CpZrCl2 2,660 319 1
170 20 2
실시예 6 소성 / 0.35 ml헥산 / 60 ℃ Bis (1-Me,3-Bu)CpZrCl2 2,909 349 1
211 25 2
실시예 7 미소성/ 0.35 ml증류수 / 190 ℃ (4H-In) In ZrCl2 3,533 423 1
실시예 8 소성 / 0.35 ml증류수/ 150 ℃ (4H-In) In ZrCl2 4,523 542 1
실시예 9 미소성 / 1.1 mlDEE / 190 ℃ Bis (1-Me,3-Bu)CpZrCl2 2,979 357 1
119 14 2
실시예 10 소성 / 1.1 ml톨루엔 / 100 ℃ Bis (1-Me,3-Bu)CpZrCl2 3,157 378 1
141 16 2
실시예 11 소성 / 0.5 mlDEE / 190 ℃ Bis(Ee-In)ZrCl2c-CpCpZrCl2 3,055 183 3
실시예 12 소성 / 0.5 mlDEE / 50 ℃ Di(n-BuCp) ZrCl2 1,872 224 4
비교예 1 미소성/미개질 CpZrCl3In Al(Et)2 855 102 1
비교예 2 소성/미개질 CpZrCl3In Al(Et)2 1,889 226 1
비교예 3 미소성/미개질 (4H-In) In ZrCl2 1,273 152 1
비교예 4 소성/미개질 (4H-In) In ZrCl2 2,877 345 1
비교예 5 미소성/미개질 Bis (1-Me,3-Bu)CpZrCl2 788 94 1
22 2 2
비교예 6 소성/미개질 Bis (1-Me,3-Bu)CpZrCl2 1,790 214 1
67 8 2
비교예 7 미소성/미개질 Bis (1-Me,3-Bu)CpZrCl2 1,155 138 1
비교예 8 소성/미개질 Bis (1-Me,3-Bu)CpZrCl2 2,126 255 1
비교예 9 소성/미개질 Bis(Ee-In)ZrCl2c-CpCpZrCl2 2,149 128 3
비교예 10 소성/미개질 Di(n-BuCp) ZrCl2 1,340 160 4
실시예 1 및 2로부터, 본 발명의 경우, 담체의 소성 또는 미소성 여부와 관계없이 촉매 활성이 모두 우수함을 알 수 있다. 그러나, 비교예 1 및 2를 보면, 미소성시 활성(비교예 1)이 소성시 활성(비교예 2)의 절반 이하에 불과하다. 따라서, 본 발명에 따른 올레핀 중합 촉매는 담체의 소성 및 미소성을 선택적으로 적용 가능하므로, 개질 담체 제조 공정을 단순화하거나 편리하게 수행할 수 있다.
실시예 5, 6, 9의 중합예 2(중합 온도를 45 ℃로 낮게 적용한 경우)와 비교예 5, 6의 중합예 2의 결과와 비교하면, 본 발명의 개질된 담체를 적용하는 경우, 낮은 온도에서도 활성이 월등히 우수함을 알 수 있다. 본 발명에 있어서, 낮은 온도에서도 촉매 활성을 우수하게 유지하므로, 본 중합 반응보다 낮은 온도에서 수행되는 기상 폴리머 선중합 공정에 본 발명의 올레핀 중합 촉매를 적용할 때, 일반 담체 사용 대비 활성이 매우 우수하다. 따라서, 본 발명에 의하면, 기상 폴리머 공정의 적용이 용이하고 공정 안정성을 증대시킬 수 있다.
또한, 실시예 11의 중합예 3(중합 온도를 90 ℃로 높게 적용한 경우) 결과를 보면, 일반 담체를 적용한 촉매와 비교하여, 본 발명의 개질된 담체를 적용한 올레핀 중합 촉매는 고온 중합 조건에서도 활성이 우수하였다. 따라서, 본 발명의 중합 촉매는 고온의 슬러리 중합에도 적용 가능함을 알 수 있다. 따라서, 본 발명의 올레핀 중합 촉매는, 슬러리상, 또는 기상 공정 조건의 저온(30℃) 또는 고온(100 ℃) 조건에도 모두 적용할 수 있으며, 폴리올레핀의 생산성을 크게 개선할 수 있다.
이상 설명한 바와 같이, 본 발명에 의하면, 붕불화 화합물로 개질된 담체에 알루미녹산 화합물 및 메탈로센 화합물을 분산 및 담지시킴으로써, 높은 활성으로 폴리올레핀을 중합할 수 있다. 또한, 본 발명에 의하면, 미소성 담체의 사용이 가능하고, 담체의 개질 시 건조 온도를 낮출 수 있고, 저가의 활성화제를 사용할 수 있으므로, 경제적으로 유용하다.

Claims (9)

  1. 메탈로센 화합물;
    알루미녹산 화합물; 및
    상기 메탈로센 화합물 및 알루미녹산을 담지시키며, 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)로 개질된 담체를 포함하는 폴리올레핀 중합 촉매.
  2. 제1항에 있어서, 상기 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)은 M-O-BFn (M은 Si 또는 Al)의 형태로 담체와 결합 및/또는 고정된 것인 폴리올레핀 중합 촉매.
  3. 제1항에 있어서, 상기 개질된 담체에서, 붕소(B)의 함량은 0.02 내지 3 중량%이며, 플루오린(F)의 함량은 0.1 내지 10 중량%인 것인, 폴리올레핀 중합 촉매.
  4. 제1항에 있어서, 상기 개질된 담체는, 붕불화수소산(HBF4), 삼불화붕소(BF3) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 성분을 포함하는 활성화제와 담체를 혼합하고, 상기 담체와 활성화제를 가열 및 건조시켜 제조되며,
    상기 담체는 실리카, 알루미나 및 실리카-알루미나로 이루어진 군으로부터 선택되는 것인, 폴리올레핀 중합 촉매.
  5. 제4항에 있어서, 상기 활성화제 100 중량부에 대하여 용매 0 내지 500 중량부를 사용하여, 상기 활성화제를 무용매화 또는 슬러리화하여, 유동화 또는 고정화된 담체를 개질한 것인, 폴리올레핀 중합 촉매.
  6. 제5항에 있어서, 상기 용매는 물, 톨루엔, 헥산, 에테르, 알코올, 이터레이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 폴리올레핀 중합 촉매.
  7. 제1항에 있어서, 상기 담체는 소성 처리되거나 소성처리 되지 않은 것인, 폴리올레핀 중합 촉매.
  8. 메탈로센 화합물; 알루미녹산 화합물; 및 상기 메탈로센 화합물 및 알루미녹산을 담지시키며, 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)로 개질된 담체를 포함하는 폴리올레핀 중합 촉매의 존재 하에서,
    하나 이상의 올레핀을 폴리올레핀으로 중합하는 단계를 포함하는 폴리올레핀의 제조방법.
  9. 메탈로센 화합물; 알루미녹산 화합물; 및 상기 메탈로센 화합물 및 알루미녹산을 담지시키며, 붕불화 라디칼(-BFn, n은 2 내지 4의 정수)로 개질된 담체를 포함하는 폴리올레핀 중합 촉매의 존재 하에서,
    하나 이상의 올레핀을 폴리올레핀으로 중합하는 단계를 포함하는 폴리올레핀의 제조방법.
PCT/KR2017/007422 2016-07-12 2017-07-11 개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법 WO2018012854A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0088222 2016-07-12
KR1020160088222A KR101856202B1 (ko) 2016-07-12 2016-07-12 개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Publications (1)

Publication Number Publication Date
WO2018012854A1 true WO2018012854A1 (ko) 2018-01-18

Family

ID=60952608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007422 WO2018012854A1 (ko) 2016-07-12 2017-07-11 개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Country Status (2)

Country Link
KR (1) KR101856202B1 (ko)
WO (1) WO2018012854A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246592A1 (en) * 2018-06-22 2019-12-26 Exxonmobil Chemical Patents Inc. Methods to produce heterogeneous polyethylene granules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100250842B1 (ko) * 1994-08-02 2000-04-01 조셉 에스. 바이크 폴리부타디엔, 폴리이소프렌 및 스티렌-부타디엔 고무의 기상제조방법 및 이렇게 제조된 비유동성 과립형 입자 형태의 (공)중합체
KR20010079694A (ko) * 1998-08-26 2001-08-22 엑손 케미칼 패턴츠 인코포레이티드 고활성의 지지된 촉매 조성물
KR20130057813A (ko) * 2011-11-24 2013-06-03 삼성토탈 주식회사 올레핀 중합 및 공중합용 촉매 및 이를 사용하는 올레핀 중합 또는 공중합 방법
KR20150058168A (ko) * 2012-08-27 2015-05-28 셰브론 필립스 케미컬 컴퍼니 엘피 불화 고체 산화물의 증기상 제조
KR20160060564A (ko) * 2014-11-20 2016-05-30 주식회사 엘지화학 공액 디엔의 중합용 촉매 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100250842B1 (ko) * 1994-08-02 2000-04-01 조셉 에스. 바이크 폴리부타디엔, 폴리이소프렌 및 스티렌-부타디엔 고무의 기상제조방법 및 이렇게 제조된 비유동성 과립형 입자 형태의 (공)중합체
KR20010079694A (ko) * 1998-08-26 2001-08-22 엑손 케미칼 패턴츠 인코포레이티드 고활성의 지지된 촉매 조성물
KR20130057813A (ko) * 2011-11-24 2013-06-03 삼성토탈 주식회사 올레핀 중합 및 공중합용 촉매 및 이를 사용하는 올레핀 중합 또는 공중합 방법
KR20150058168A (ko) * 2012-08-27 2015-05-28 셰브론 필립스 케미컬 컴퍼니 엘피 불화 고체 산화물의 증기상 제조
KR20160060564A (ko) * 2014-11-20 2016-05-30 주식회사 엘지화학 공액 디엔의 중합용 촉매 조성물

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246592A1 (en) * 2018-06-22 2019-12-26 Exxonmobil Chemical Patents Inc. Methods to produce heterogeneous polyethylene granules
CN112384541A (zh) * 2018-06-22 2021-02-19 埃克森美孚化学专利公司 多相聚乙烯颗粒的制备方法
US11492428B2 (en) 2018-06-22 2022-11-08 Exxonmobil Chemical Patents Inc. Methods to produce heterogeneous polyethylene granules
CN112384541B (zh) * 2018-06-22 2023-05-16 埃克森美孚化学专利公司 多相聚乙烯颗粒的制备方法

Also Published As

Publication number Publication date
KR20180007389A (ko) 2018-01-23
KR101856202B1 (ko) 2018-05-10

Similar Documents

Publication Publication Date Title
US6562920B2 (en) Processes for the preparation polyolefin resins using supported ionic catalysts
AU611384B2 (en) New supported polymerization catalyst
EP1517930B1 (en) Polymerization catalyst activators, method of preparing and their use in polymerization processes
US8163854B2 (en) Preparation of supported silyl-capped silica-bound anion activators and associated catalysts
AU4463800A (en) A method for preparing a supported catalyst system and its use in a polymerization process
WO2018012854A1 (ko) 개질된 담체를 포함하는 폴리올레핀 중합 촉매 및 이를 이용한 폴리올레핀의 제조 방법
JP2005511802A (ja) チーグラー・ナッタ/メタロセン混合触媒の製造方法
KR101846412B1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
KR20120061029A (ko) 혼성 담지 메탈로센 촉매의 제조방법
US20130345378A1 (en) Metallocene compound, catalyst composition including the same, and olefin polymerization process using the same
KR101920401B1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2020122500A1 (ko) 올레핀 중합용 촉매의 제조방법
US20020107344A1 (en) Supprt materials for use with polymerization catalysts
WO2000004059A1 (en) Supported lewis acid cocatalysts for olefin polymerization
US7060767B2 (en) Supported metallocene catalytic component and method for obtaining same
KR20120075937A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀의 중합 방법
WO2021112489A1 (ko) 올레핀계 중합체의 제조방법
JP4037502B2 (ja) プロピレン共重合体の製造方法
KR20190081611A (ko) 올레핀 중합 촉매 및 이를 이용하여 중합된 올레핀계 중합체
RU2355709C2 (ru) Катализаторы для получения бимодальных смол на основе комбинации хроморганического соединения и металлоцена
KR20190112293A (ko) 4족 촉매 화합물 및 이의 사용 방법
CN115651101A (zh) 一种用于乙烯聚合的负载化茂金属催化剂及其制备方法
KR20220017201A (ko) 폴리프로필렌
US20020103313A1 (en) Support materials for use with polymerization catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827924

Country of ref document: EP

Kind code of ref document: A1