WO2018012779A1 - 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법 - Google Patents

액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법 Download PDF

Info

Publication number
WO2018012779A1
WO2018012779A1 PCT/KR2017/007082 KR2017007082W WO2018012779A1 WO 2018012779 A1 WO2018012779 A1 WO 2018012779A1 KR 2017007082 W KR2017007082 W KR 2017007082W WO 2018012779 A1 WO2018012779 A1 WO 2018012779A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
pressure
high pressure
liquid
hydrogen tank
Prior art date
Application number
PCT/KR2017/007082
Other languages
English (en)
French (fr)
Inventor
김서영
유용호
김옥준
Original Assignee
하이리움산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하이리움산업(주) filed Critical 하이리움산업(주)
Priority to CN201780056089.5A priority Critical patent/CN109690169B/zh
Publication of WO2018012779A1 publication Critical patent/WO2018012779A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • F17C5/04Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases requiring the use of refrigeration, e.g. filling with helium or hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen fuel charging system and a method for supplying hydrogen fuel using liquid hydrogen, and more particularly, an engine and equipment for a vehicle using hydrogen as an energy source such as a vehicle, a drone, a submarine, and the like equipped with a hydrogen fuel cell.
  • the present invention relates to a system and a supply method for filling a high pressure hydrogen gas.
  • Hydrogen is more than 10 times lighter than fossil fuels, and has been in the spotlight as a fuel for vehicles such as rockets and unmanned aerial vehicles (UAVs) in the aerospace industry.Hydrogen as a clean new energy technology, hydrogen fuel cell vehicles are commercially available. Hydrogen charging stations for high pressure charging have emerged as an essential infrastructure.
  • a trailer equipped with a hydrogen tank transports high pressure hydrogen of 100 atm, pressurizes it to 400 atm using a compressor in a hydrogen charging station, and temporarily stores it at a pressure of 700 atm for a hydrogen fuel cell vehicle.
  • a method of pressurizing the stored hydrogen back to the compressor is used.
  • the hydrogen storage is specially manufactured in the form of a cylinder with an internal capacity of 1000 liters with a weight of about 4 tons, and it is safe because a large amount of high pressure hydrogen must be stored.
  • the cost of strengthening and manufacturing the facility is quite high.
  • the technical problem to be solved by the present invention by using the heat of vaporization of the liquid hydrogen as the heat of cooling of ultra-high pressure gas can be eliminated the use of a separate cooling device, thereby simplifying the equipment and can drastically reduce the energy and maintenance costs It is an object of the present invention to provide a hydrogen fuel filling system and a hydrogen fuel supply method using liquid hydrogen.
  • Another technical problem to be solved by the present invention is that it can be manufactured as a mobile type that can be mounted on a transport vehicle such as a trailer because it does not require a large space due to a simple system configuration, and thus, hydrogen is charged to a charging object such as a hydrogen vehicle regardless of a place. It is an object of the present invention to provide a possible hydrogen fuel filling system and hydrogen fuel supply method.
  • Another technical problem to be solved by the present invention by using a plurality of high-pressure hydrogen tank by filling in a manner of sequentially injecting hydrogen in the hydrogen tank by the pressure difference, the high-pressure hydrogen gas for smooth charging
  • Another object of the present invention is to provide a hydrogen fuel filling system and a hydrogen fuel supply method capable of eliminating the step of increasing the pressure again and equipment.
  • the cryogenic liquid hydrogen from the liquid hydrogen tank unit is pressurized by a high pressure pump and sent to the heat exchange unit in a supercritical state, converted into a gas state in the heat exchange unit, and stored in the high pressure hydrogen tank unit, using a pressure difference with an external filling object.
  • a large-capacity liquid hydrogen tank unit having a sealed storage space maintained at a normal pressure or higher, and storing hydrogen in a cryogenic liquid state in the storage space;
  • a high pressure hydrogen tank unit for storing the liquid state hydrogen supplied from the liquid hydrogen tank unit in a high pressure gas state in a sealed internal storage space;
  • a high pressure pump applying pressure to the cryogenic liquid hydrogen from the liquid hydrogen tank portion and supplying the cryogenic liquid hydrogen to the high pressure hydrogen tank portion in a cryogenic supercritical state;
  • a heat exchanger installed between the high pressure pump and the high pressure hydrogen tank so that hydrogen in a cryogenic supercritical liquid state is supplied to the high pressure hydrogen tank in a gas state;
  • a high pressure hydrogen injection unit for injecting high pressure hydrogen stored in the high pressure hydrogen tank unit into an external charging object using a pressure difference.
  • the heat exchange unit converts the hydrogen in the cryogenic supercritical liquid state into a gas state by using the high pressure hydrogen gas from the high pressure hydrogen tank unit, and conversely, the heat of vaporization of the cryogenic supercritical liquid state hydrogen from the high pressure hydrogen tank
  • a gas cooler installed between the high pressure pump and the high pressure hydrogen tank to be used as cooling heat for high pressure hydrogen gas cooling of the gas, and the gas cooler and the high pressure hydrogen for complete vaporization of some liquid hydrogen not vaporized through the gas cooler. It may be composed of a gas vaporizer installed between the tank portion.
  • the gas cooler may be a heat conduction configuration including two heat exchanger tubes parallel to each other and a plurality of heat conductive shells interconnecting the two heat exchanger tubes, the heat transfer amount and the outlet between the two heat exchanger tubes
  • the heat conductive tubular material may be detachably provided in the heat exchange tube so as to freely adjust the temperature.
  • the thermal conductive shell is composed of the upper and lower shells of the upper and lower symmetrical structure
  • the semi-circular connecting portion is formed on the surfaces of the upper shell and the lower shell facing each other so as to contact a portion of the outer surface of the heat exchanger tube
  • the upper member and the lower member may be fixed by one or more pairs of fastening members such that the pipes are located therebetween and the upper members and the lower members are in close contact with each other.
  • the high-pressure hydrogen tank unit may be composed of a plurality of high-pressure hydrogen tanks having the same capacity so that hydrogen in a high-pressure gas state is divided into the same pressure in a plurality of independent storage spaces.
  • the system may be configured such that the high pressure hydrogen tanks are opened and closed sequentially under the control of a control unit.
  • system may be configured such that the high-pressure hydrogen tank opened just before another high-pressure hydrogen tank is charging the external charging object is supplied with the hydrogen in the high-pressure gas state through the high-pressure pump under the control of the controller to restore the normal pressure.
  • Hydrogen in a cryogenic supercritical liquid state by pressurization is vaporized in a heat exchanger and stored in a high pressure hydrogen tank in a high pressure gas state;
  • a hydrogen fuel supply method according to claim 1 or claim 2, wherein the high-pressure hydrogen stored in the high-pressure hydrogen tank unit is supplied to the external charging object at high pressure without a separate power by the pressure difference between each other.
  • the high pressure hydrogen by the heat of vaporization of the cryogenic supercritical liquid state hydrogen is cooled.
  • the plurality of high-pressure hydrogen tanks are divided and stored at the same pressure, and when supplying hydrogen stored in the high-pressure hydrogen tank unit to the external charging object, the plurality of high-pressure hydrogen tanks When one or more of the high-pressure hydrogen tank is opened to supply hydrogen to the external charging object, and if the pressure between the open high-pressure hydrogen tank and the external charging object is balanced and no further hydrogen injection is made, It is preferable to open another one or more high-pressure hydrogen tanks so that hydrogen is supplied to the external charging object by mutual pressure difference.
  • the one or more other high-pressure hydrogen tank is charged to the high-pressure hydrogen tank opened immediately before charging the external charging object to recover the normal pressure by recharging the hydrogen in the high-pressure gas state, it is possible to recharge the high-pressure hydrogen tank used for charging It is desirable to be able to utilize time efficiently in restoring to a state.
  • the heat (vaporization heat) absorbed when cryogenic liquid hydrogen is vaporized is used for hydrogen cooling in a high pressure gas state, thereby directly cooling externally by charging high pressure hydrogen without a separate cooling device including a compressor. It can be smoothly injected into the object, thereby simplifying the installation and drastically reducing energy and maintenance costs.
  • the overall system configuration is simple and simple, it can be implemented as a mobile type that can be mounted on a transport vehicle such as a trailer because it requires little space. Accordingly, hydrogen can be charged at a desired place without being bound to a place, and liquid hydrogen Because of this, it can save the energy and transportation costs required for transportation than the conventional high pressure hydrogen transportation method.
  • the hydrogen is stored in a plurality of independent high-pressure hydrogen tanks at the same pressure and stored in a plurality of independent high-pressure hydrogen tanks, and the filling is performed by sequentially injecting the high-pressure hydrogen gas stored in the high-pressure hydrogen tanks into the vehicle sequentially using a pressure difference.
  • the filling is performed by sequentially injecting the high-pressure hydrogen gas stored in the high-pressure hydrogen tanks into the vehicle sequentially using a pressure difference.
  • FIG. 1 is a system configuration diagram schematically showing the overall configuration of a hydrogen fuel filling system using liquid hydrogen according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a preferred embodiment of the gas cooler constituting the heat exchange unit.
  • FIG. 3 is a perspective view of the thermal conductive shell shown in FIG.
  • FIG. 4 is a cross-sectional view of the thermally conductive shell material of FIG. 3 as viewed from the A-A line direction.
  • FIG. 5 is a flowchart illustrating a process in which hydrogen fuel is supplied (charged) to an external charging object by a hydrogen fuel filling system.
  • Figure 6 is a schematic view showing the opening and charging sequence of the high-pressure hydrogen tank unit in the hydrogen fuel supply (charging) process.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • ... unit means a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. Can be.
  • FIG. 1 is a system configuration diagram schematically showing the overall configuration of a hydrogen fuel filling system using liquid hydrogen according to an embodiment of the present invention.
  • Hydrogen fuel filling system by pressurizing the cryogenic liquid hydrogen (LH 2 ) from the liquid hydrogen tank unit 10 with the high pressure pump 20 to the heat exchange unit 30 in a supercritical state, After converting to a gas state in the heat exchange unit 30 and stored in the high-pressure hydrogen tank unit 40, the high-pressure hydrogen stored in the high-pressure hydrogen tank unit 40 by using a pressure difference with the external charging object to the external charging object.
  • the main idea is to be able to charge without extra power.
  • the hydrogen fuel filling system includes a large-capacity liquid hydrogen tank unit 10, a high pressure pump 20, a heat exchange unit 30, a high pressure hydrogen tank unit 40, and a high pressure hydrogen injection unit 50. It is composed of
  • Hydrogen is stored in the liquid hydrogen tank unit 10 in a cryogenic liquid state, and the stored cryogenic liquid hydrogen (LH 2 ) is pressurized to a high pressure by the high pressure pump 20 and is sent to the heat exchange unit 30 in a supercritical state. After the conversion to the gas state is stored in the high-pressure hydrogen tank unit 40.
  • the liquid hydrogen tank unit 10 has a sealed storage space that is maintained at a state above normal pressure, and stores hydrogen in a cryogenic liquid state in the storage space.
  • the liquid hydrogen storage capacity of the liquid hydrogen tank unit 10 may vary depending on the size of the system or the installation environment. Therefore, it is not limited to specific size or capacity.
  • the trailer mounted type may be provided in the trailer with possible sizes and storage capacities (approximately 1000 liters to 2000 liters), and in the case of ground stationary, the storage capacity is not particularly limited.
  • the liquid hydrogen tank unit 10 may have a structure capable of minimizing evaporation of the cryogenic liquid state hydrogen therein.
  • a double vessel consisting of the inner cylinder and the outer cylinder, it may be made of stainless steel, and filled with a heat insulating material in the gap layer between the inner cylinder and the outer cylinder to insulate and maintain a vacuum It may be configured to minimize the hydrogen evaporation rate.
  • the high pressure hydrogen tank unit 40 stores hydrogen (H 2 ) in an ultra high pressure gas state. Specifically, the hydrogen supplied from the liquid hydrogen tank unit 10 and compressed by the high pressure pump 20 and subjected to the heat exchange process through the heat exchange unit 30 is stored in the sealed internal storage space in an ultrahigh pressure gas state.
  • the high-pressure hydrogen tank unit 40 may also be configured as a double vessel (vessel) form or a lightweight high-pressure tank mounted in a hydrogen vehicle between the inner cylinder and the outer cylinder with insulation.
  • the high pressure hydrogen tank unit 40 may be composed of a plurality of high pressure hydrogen tanks having the same capacity so that hydrogen in a high pressure gas state is divided and stored at the same pressure in a plurality of independent storage spaces.
  • the high-pressure hydrogen tank unit 40 may preferably consist of six high-pressure hydrogen tanks having independent closed storage spaces. Of course, it is not limited to six. Depending on the size of the system or the installation environment, it can be flexible.
  • the plurality of high-pressure hydrogen tanks inject hydrogen into the external charging object 200 (see FIG. 6) through the high-pressure hydrogen injection unit 50 while being sequentially opened and closed under the control of the controller 100.
  • hydrogen injection may be continuously performed by sequentially opening one or more other ultra-high pressure hydrogen tanks which are designated sequentially. .
  • tanks 1 and 2 are first opened with filling to charge hydrogen to the external filling object and pressure equilibrates and no more hydrogen is injected
  • tanks 3 and 4 are subsequently opened to open again with the external filling object. Hydrogen is charged until pressure equilibrium is achieved, and in the same manner, tanks 5 and 6 are opened to inject hydrogen to continuously inject hydrogen (see FIG. 6 to be described later).
  • the high pressure hydrogen tank that is opened in the next sequence stores hydrogen at a higher pressure than the external charged object being charged, and thus, a pressure difference continuously occurs between the high pressure hydrogen tank part 40 and the charged object.
  • Continuous hydrogen injection can be done without a separate mechanical element such as a pump for injection.
  • the high pressure hydrogen tank for example, tanks 3 and 4 described above
  • the high pressure hydrogen tank opened immediately before, for example, tanks 1 and 2 described above is controlled by the controller 100.
  • the system may be configured to receive the hydrogen in the high pressure gas state through the high pressure pump 20 to recover the normal pressure and thereby quickly become a charge standby state for the next charge.
  • the high-pressure hydrogen tanks opened immediately before they are charged with hydrogen in a high-pressure gas state to recover to normal pressure, thereby recharging the high-pressure hydrogen tanks used for charging.
  • the system can be configured to efficiently utilize time in recharging to a state and quickly become standby for the next charge.
  • the heat exchanger 30 is installed between the high pressure pump 20 and the high pressure hydrogen tank 40. Accordingly, the cryogenic liquid hydrogen discharged from the liquid hydrogen tank unit 10 is pressurized by the high pressure pump 20 to be supplied to the high pressure hydrogen tank unit 40 in a cryogenic supercritical state, and the heat exchange unit By evaporating through 30), the high pressure hydrogen tank unit 40 may be supplied and stored in a high pressure gas state.
  • the heat exchange unit 30 includes a gas cooler 32.
  • the gas vaporizer 34 may be further provided between the gas cooler 32 and the high-pressure hydrogen tank unit 40 to completely vaporize some liquid hydrogen not vaporized through the gas cooler 32.
  • the gas vaporizer 34 may be a heat exchanger having a known heat sink, and the gas cooler 32 may be configured in a special form described later.
  • Gas cooler 32 is a liquid hydrogen supply line (L1) connecting the high-pressure pump 20 and the high-pressure hydrogen tank 40, the high-pressure hydrogen tank 40 and the high-pressure hydrogen injection unit ( Gas hydrogen injection line (L2) connecting 50 may be installed at the point where they cross each other. Specifically, the liquid hydrogen and gaseous hydrogen moved along each line at the point where the two lines L1 and L2 intersect may be configured to exchange heat with each other.
  • the hydrogen of the cryogenic supercritical liquid state can be converted into the gas state using the high pressure hydrogen gas from the high pressure hydrogen tank part 40, and can be supplied to the high pressure hydrogen tank part 40.
  • the heat absorbed when the cryogenic supercritical liquid hydrogen is evaporated heat of vaporization
  • the gas cooler 32 must implement a heat exchange between high pressure (over 300 atmospheres) of hydrogen and high pressure (300 atmospheres) of liquid hydrogen.
  • high pressure over 300 atmospheres
  • high pressure 300 atmospheres
  • the conventional shell and tube heat exchanger method or the double tube heat exchanger structure which is known in the art, is very difficult to satisfy the design requirements for stable heat exchange between high pressure hydrogen.
  • the design is very difficult because the leakage and thermal expansion of the cryogenic ultra high pressure gas must be taken into consideration. It is also difficult to predict the physical properties of the fluid required for the design, although the physical properties considered should be predicted and reflected in the design.
  • FIG. 2 is a perspective view showing a preferred embodiment of the gas cooler constituting the heat exchange unit.
  • the gas cooler 32 applied to the embodiment of the present invention includes two heat exchange tubes 320 and 322 disposed adjacently in parallel at a predetermined distance, and two heat exchange tubes 320 and 322.
  • a heat conduction type heat exchanger structure including a plurality of thermally conductive shell material 326 interconnecting each other), it may be a configuration that is simple, structurally stable, and heat exchange can be efficiently performed.
  • Hydrogen in cryogenic supercritical liquid state forced out from the high pressure pump 20 is introduced through the inlet E1 of one of the two heat exchange tubes 320 and 322 and converted into gaseous hydrogen at high pressure and then the outlet ( X1) exits and is supplied to the high pressure hydrogen tank unit 40, and hydrogen stored in the high pressure hydrogen tank is introduced through the inlet E2 of the other 322, and a predetermined temperature (about -40 ° C) is obtained by heat exchange. After cooling to) may be discharged through the outlet (X2) may be supplied to the high-pressure hydrogen injection unit 50.
  • the heat exchange tubes 320 and 322 may have a configuration in which a tube of a metal material having excellent pressure resistance and thermal conductivity is simply connected in a straight line or curved shape with a tubular coupler.
  • the heat conductive shell member 326 is a conductor having a rectangular cross section made of a metal having excellent thermal conductivity such as copper or aluminum.
  • the heat exchange tubes 320 and 322 can control the amount of heat transfer between the two tubes and the outlet temperature by controlling the number of attachments. It may be made of a removable structure.
  • FIG. 3 is a perspective view of the thermally conductive shell material illustrated in FIG. 2, and FIG. 4 is a cross-sectional view of the thermally conductive shell material of FIG. 3 viewed from the A-A line direction.
  • the thermal conductive shell 326 is composed of upper and lower horns 326a and 326b which are vertically symmetrical, and the heat exchange tubes 320 and 322 are in close contact with each other so as to be positioned therebetween. Can be combined.
  • the semi-circular connecting portion 327 may be formed on the surfaces of the upper and lower horns 326a and 326b facing each other so that a part of the outer surface of the heat exchange tubes 320 and 322 may be in contact with each other, and a plurality of pairs of fastening members such as bolts and nuts ( 328 may be firmly fixed to the heat exchange tubes 320 and 322.
  • the length L may be determined to be between 1/10 and 1/5 of the effective heat transfer length of the heat exchange tubes 320 and 322 so that the horn 326 has a thickness such that it does not bend and provides an appropriate heat transfer area.
  • the height (H) is preferably 1.5 to 2 times the size of the diameter of the heat exchange tubes (320, 322).
  • the distance (D) between the heat exchange tubes (320, 322) is suitable between 50 ⁇ 100mm, one shell member 326 can be firmly coupled to three or more fastening members (328).
  • the high-pressure hydrogen injection unit 50 (refer to FIG. 1) is a detachable charging connector (not shown) that can be tightly and firmly connected to the inlet of the external charging object, and checks the flow rate of the charged hydrogen gas so as to be recognized to the outside. It may be a configuration including a flow meter and a display device, and a built-in electronically controlled interruption device for intermittent charging of hydrogen, such as an electronic control valve, but is not particularly limited thereto.
  • FIG. 5 is a flowchart illustrating a process of supplying (charging) hydrogen fuel to an externally charged object by a hydrogen fuel filling system
  • FIG. 6 is a view illustrating an opening and filling sequence of a high-pressure hydrogen tank unit during a hydrogen fuel supply (charging) process. Figure is shown.
  • the hydrogen fuel supply (charging) process a case in which the high-pressure hydrogen tank unit is composed of six tanks as shown in the example of FIG. 6 will be described as an example. Times,... This will be described as tank # 6.
  • the cryogenic liquid state hydrogen stored in the liquid hydrogen tank unit 10 is converted into a cryogenic supercritical liquid state by pressurization by the high pressure pump 20 and the heat exchange unit 30. (S100). While passing through the heat exchange unit 30, vaporization occurs by hydrogen in a high pressure gas state discharged from the high pressure hydrogen tank unit 40, and is converted into a high pressure gas state and stored in the high pressure hydrogen tank unit 40 (S200).
  • the hydrogen of the cryogenic supercritical liquid state is converted into a high pressure gas state by the high pressure hydrogen gas discharged from the high pressure hydrogen tank unit 40, and is generated while the liquid hydrogen is vaporized.
  • the vaporization heat is used as the cooling heat for cooling the hydrogen of the high-pressure gas state discharged from the high-pressure hydrogen tank unit 40. Accordingly, the high pressure hydrogen gas is delivered to the high pressure hydrogen injection unit 50 in a sufficiently cooled state (about -40 ° C).
  • the high pressure hydrogen gas converted into the high pressure gas state while passing through the heat exchange unit 30 is equally stored in the six high pressure hydrogen tanks constituting the high pressure hydrogen tank 40 at the same pressure.
  • the hydrogen supply (charging) is started to the external charging object, it is supplied to the external charging object 200 by the pressure difference between the pressure of the high-pressure hydrogen tank unit 40 and the external charging object 200 (S300). ).
  • High-pressure hydrogen gas evenly stored in the six high-pressure hydrogen tank can be smoothly supplied to the external charging object 200 without a separate power unit (pump) by the sequential opening of the high-pressure hydrogen tank. That is, the six high-pressure hydrogen tanks continuously inject hydrogen using a pressure difference with the external charging object 200 generated while being sequentially opened and closed in a specified order according to the control of the controller 100.
  • the hydrogen gas supply (charging) by the sequential opening of the high-pressure hydrogen tank will be referred to FIG. 6.
  • the six high-pressure hydrogen tanks are filled with hydrogen gas at an even pressure of 800 bar, and the external charging object 200, for example, inside the hydrogen tank of the hydrogen fuel vehicle, before the hydrogen gas supply proceeds.
  • the pressure is maintained at 100 bar and the six high-pressure hydrogen tanks are opened and closed at the same time in pairs (1-2, 3-4, 5-6).
  • tanks 1 and 2 are first opened under the control of the control unit 100 together with hydrogen supply (charge).
  • the pressure of tanks 1 and 2 is 700 bar greater than the external filling object 200. Therefore, hydrogen is supplied to the external charging object 200 without an additional power unit (pump) by an amount corresponding to the pressure difference between them, and when the pressures of each other are in equilibrium (450 bar), hydrogen is no longer injected.
  • tanks 1 and 2 and the external filling object 200 reach the pressure balance (450 bar)
  • the supply side of tanks 1 and 2 is closed by the control of the control unit 100, and 3, 4 as shown in 6 (b).
  • the supply side of the burner tank is opened in succession. Accordingly, the hydrogen gas in the tanks 3 and 4 is supplied to the external filling object 200 until the tanks 3 and 4 and the external filling object 200 reach the pressure balance 625 bar.
  • the supply side of tanks 3 and 4 is closed-controlled by the control of the control unit 100, and 5, as shown in 6c.
  • the supply side of the tank 6 is successively opened to supply hydrogen to the external charging object 200 by the pressure difference, and in this manner, continuous hydrogen supply may be performed without a separate power unit such as a pump.
  • the high-pressure hydrogen tanks opened immediately before, that is, tanks 1 and 2 are controlled under the control of the controller 100.
  • the controller 100 By receiving the gaseous hydrogen through the high pressure pump 20 and recovering the normal pressure, it becomes a charging standby state for the next charging quickly.
  • tanks 3 and 4 are normal while tanks 5 and 6 supply hydrogen. Pressure is restored.
  • the high pressure hydrogen tanks opened immediately before are charged with hydrogen in a high-pressure gas state to recover to normal pressure, thereby recovering the high pressure hydrogen tanks used for the charging.
  • the overall system configuration is simple and simple, it can be implemented as a mobile type that can be mounted on a transport vehicle such as a trailer because it requires little space. Accordingly, hydrogen can be charged at a desired place without being bound to a place, and liquid hydrogen Because of this, it can save the energy and transportation costs required for transportation than the conventional high pressure hydrogen transportation method.
  • the hydrogen is stored in a plurality of independent high-pressure hydrogen tank at the same pressure and stored in a plurality of independent high-pressure hydrogen tank, and the filling is performed by injecting the high-pressure hydrogen gas stored in the high-pressure hydrogen tank into the vehicle sequentially using a pressure difference.
  • the filling is performed by injecting the high-pressure hydrogen gas stored in the high-pressure hydrogen tank into the vehicle sequentially using a pressure difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 공급 방법이 개시된다. 본 발명의 일 측면에 따른 수소연료 충전 시스템은, 액체수소탱크부로부터의 극저온 액체 수소를 고압펌프로 가압하여 초임계 상태로 열교환부에 보내고, 열교환부에서 기체 상태로 변환한 뒤 고압수소탱크부에 저장하며, 외부 충전 대상체와의 압력차를 이용하여 고압수소탱크부에 저장된 고압의 수소를 상기 외부 충전 대상체에 별도의 동력 없이 충전시킬 수 있도록 한 것을 구성의 요지로 한다.

Description

액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법
본 발명은 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 공급 방법에 관한 것으로, 보다 상세하게는 수소 연료전지를 탑재하는 차량, 드론, 잠수함 등과 같이 수소를 에너지원으로 사용하는 운반수단의 기관 및 장비에 고압의 수소 가스를 충전하는 시스템 및 공급 방법에 관한 것이다.
수소는 화석 연료에 비해 10배 이상 가벼운 연료로, 우주 항공 산업 분야에서 로켓, 무인기(UAV)와 같은 운반체의 연료로서 각광받아 왔으며, 청정 신에너지 기술로서 수소 연료 전지 차량이 본격적으로 상용화됨에 따라 수소를 고압으로 충전시키기 위한 수소 충전소가 필수적인 인프라 설비로 부상하고 있다.
수소 충전에 있어 종래에는, 수소 탱크를 탑재한 트레일러로 100기압의 고압 수소를 운송하여 수소 충전소 내 압축기를 사용하여 400기압으로 가압하여 임시 저장하고, 수소연료전지 차량에 700기압으로 주입하기 위하여 임시 저장된 수소를 압축기로 다시 가압하는 방법을 사용하고 있다.
그러나 수소 저장부에 400기압으로 수소를 저장하기 위해, 수소저장부를 대략 4톤의 무게를 가진 내부 용량이 1000리터인 실린더 형태로 특별 제작하여 사용하고 있으며, 다량의 고압 수소를 저장하여야 하기 때문에 안전시설의 강화 및 제작 비용이 상당히 높다.
또한 700기압까지 승압시켜 수소를 차량으로 주입할 경우 원활한 주입을 위하여 수소를 -40℃로 냉각하여야 하는데, 이를 위해서는 별도의 냉각장치를 갖춰야 할 뿐 아니라, 냉각장치는 가동에 별도의 전기(약 40KW정도)를 소모하기 때문에 유지비용이 증가하게 되는 문제가 있다.
본 발명이 해결하고자 하는 기술적 과제는, 액체수소의 기화열을 초고압 가스의 냉각열로 사용하여 별도의 냉각장치 사용을 배제할 수 있으며, 이에 따라 설비의 간소화와 에너지 및 유지비의 획기적인 절감을 도모할 수 있는 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 공급 방법을 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 단순한 시스템 구성으로 공간 소요가 크지 않아 트레일러와 같은 수송 차량에 탑재 가능한 이동형으로도 제작 가능하며, 따라서 장소에 구애 받지 않고 수소 차량과 같은 충전 대상체에 수소 충전이 가능한 수소연료 충전 시스템 및 수소연료 공급 방법을 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 복수의 고압수소탱크를 사용하여 수소탱크 안의 수소를 압력차에 의하여 순차적으로 차량에 주입하는 방식으로 충전이 이루어짐으로써, 원활한 충전을 위해 고압의 수소 가스를 재차 승압시키는 과정이나 설비를 생략할 수 있는 수소연료 충전 시스템 및 수소연료 공급 방법을 제공하고자 하는 것이다.
과제의 해결 수단으로서 본 발명의 일 측면에 따르면,
액체수소탱크부로부터의 극저온 액체 수소를 고압펌프로 가압하여 초임계 상태로 열교환부에 보내고, 열교환부에서 기체 상태로 변환한 뒤 고압수소탱크부에 저장하며, 외부 충전 대상체와의 압력차를 이용하여 고압수소탱크부에 저장된 고압의 수소를 상기 외부 충전 대상체에 별도의 동력 없이 충전시킬 수 있도록 구성한 액체 수소를 이용한 수소연료 충전 시스템을 제공한다.
좀 더 구체적으로, 본 발명의 일 측면에 따른 수소연료 충전 시스템은,
상압 이상의 상태로 유지되는 밀폐된 저장공간을 구비하며, 저장공간에 극저온 액체 상태로 수소를 저장하는 대용량 액체수소탱크부;
상기 액체수소탱크부에서 공급되는 액체 상태 수소를 밀폐된 내부 저장공간에 고압 기체 상태로 저장하는 고압수소탱크부;
상기 액체수소탱크부로부터의 극저온 액체 수소에 압력을 가해 극저온 초임계 상태로 상기 고압수소탱크부 측에 공급하는 고압펌프;
극저온 초임계 액체 상태의 수소가 기체 상태로 고압수소탱크부에 공급되도록 상기 고압펌프와 고압수소탱크부 사이에 설치되는 열교환부; 및
상기 고압수소탱크부에 저장된 고압의 수소를 압력차를 이용해 외부 충전 대상체에 주입시키는 고압수소주입부;를 포함하는 구성일 수 있다.
이때 상기 열교환부는, 상기 고압수소탱크부로부터의 고압의 수소 가스를 이용하여 상기 극저온 초임계 액체 상태의 수소를 기체 상태로 변환시키고, 반대로 상기 극저온 초임계 액체 상태 수소의 기화열이 상기 고압수소탱크로부터의 고압 수소 가스 냉각에 필요한 냉각열로 사용되도록 고압펌프와 고압수소탱크부 사이에 설치되는 가스 냉각기와, 상기 가스 냉각기를 통해서도 기화되지 않은 일부 액체 상태 수소의 완전 기화를 위해 상기 가스 냉각기와 고압수소탱크부 사이에 설치되는 가스 기화기로 구성될 수 있다.
또한, 상기 가스 냉각기는, 임의 간격으로 평행한 두 개의 열교환관 및 상기 두 개의 열교환관을 상호 연결하는 복수의 열전도성 각재를 포함하는 열전도 방식의 구성일 수 있으며, 두 열교환관 사이의 열전달 양과 출구 온도를 자유롭게 조절이 가능하도록 상기 열교환관에 열전도성 각재가 착탈 가능하게 구비될 수 있다.
또한, 상기 열전도성 각재는, 상하 대칭형 구조의 상부 각재와 하부 각재로 구성되며, 상기 상부 각재와 하부 각재의 서로 마주하는 면에는 열교환관 외면부 일부가 접하도록 반원형의 접속부가 각각 형성되고, 열교환관이 사이에 위치하면서 마주하는 면이 서로 접하도록 상부 부재와 하부 부재가 밀착된 상태로 한 쌍 이상의 체결부재로 고정될 수 있다.
또한 상기 고압수소탱크부는, 고압 기체 상태의 수소가 다수로 독립된 저장공간에 동일한 압력으로 나뉘어 저장되도록 용량이 동일한 복수의 고압수소탱크들로 이루어진 구성일 수 있다.
또한, 수소 충전 시 복수의 고압수소탱크 중 충전에 사용되는 고압수소탱크와 외부 충전 대상체의 압력이 평형을 이루면, 다른 고압수소탱크와 외부 충전 대상체 사이의 압력차에 의하여 수소의 연속적인 주입이 이루어지도록, 상기 고압수소탱크들이 제어부의 통제를 받아 순차적으로 열리고 닫히도록 시스템이 구성될 수 있다.
또한, 다른 고압수소탱크가 외부 충전 대상체를 충전하는 동안 직전에 개방된 고압수소탱크는 상기 제어부의 통제로 고압 기체 상태의 수소를 고압펌프를 통해 공급받아 정상압력을 회복하도록 시스템이 구성될 수 있다.
과제의 해결 수단으로서 본 발명의 다른 측면에 따르면,
액체수소탱크부에서 공급되는 극저온 액체 수소를 가압하여 극저온 초임계 액체 상태로 변환시키고;
가압에 의한 극저온 초임계 액체 상태의 수소를 열교환부에서 기화시켜 고압 기체 상태로 고압수소탱크부에 저장하며;
고압수소탱크부에 저장된 고압의 수소를 외부 충전 대상체에 상호 간의 압력차에 의해 별도의 동력 없이 고압으로 공급하는 제 1 항 또는 제 2 항의 수소연료 충전 시스템에 의한 수소연료 공급 방법을 제공한다.
이때 상기 열교환부를 통한 기화과정에서는, 고압수소탱크에서 방출되는 고압의 수소 가스를 이용하여 상기 극저온 초임계 액체 상태의 수소를 고압 기체 상태로 변환시키고, 반대로 극저온 초임계 액체 상태 수소의 기화열로 고압수소탱크에서 방출되는 상기 고압의 수소 가스를 냉각시키도록 함이 바람직하다.
또한, 상기 고압수소탱크부에 고압 기체 상태의 수소를 저장함에 있어서는 복수의 고압수소탱크에 동일한 압력으로 나누어 저장하며, 고압수소탱크부에 저장된 수소를 외부 충전 대상체에 공급함에 있어서는 복수의 고압수소탱크 중 하나 이상의 고압수소탱크를 개방하여 외부 충전 대상체에 수소를 공급하며, 개방된 고압수소탱크와 외부 충전 대상체 사이의 압력이 평형을 이뤄 더 이상의 수소 주입이 이루어지지 않으면, 외부 충전 대상체보다 높은 압력의 다른 하나 이상의 고압수소탱크를 개방하여 상호 압력차에 의해 수소가 외부 충전 대상체에 공급되도록 하는 것이 바람직하다.
또한, 상기 하나 이상의 다른 고압수소탱크가 외부 충전 대상체를 충전하는 동안 직전에 개방된 고압수소탱크에 고압 기체 상태의 수소를 충전하여 정상압력으로 회복시킴으로써, 충전에 사용된 고압수소탱크를 다시 충전 가능한 상태로 회복시킴에 있어 시간을 효율적으로 활용할 수 있도록 하는 것이 바람직하다.
본 발명의 실시 예에 의하면, 극저온 액체수소가 기화할 때 흡수하는 열(기화열)을 고압 가스 상태의 수소 냉각에 사용함으로써, 압축기를 포함하는 별도의 냉각장치 없이도 고압의 수소를 냉각시켜 직접 외부 충전 대상체에 원활하게 주입시킬 수 있으며, 이로 인해 설비의 간소화와 에너지 및 유지비의 획기적인 절감을 도모할 수 있다.
또한, 전체적인 시스템 구성이 단순한고 간단하여 공간 소요가 크지 않아 트레일러와 같은 수송 차량에 탑재 가능한 이동형으로도 구현이 가능하며, 이에 따라 장소에 구애됨이 없이 원하는 장소에서 수소 충전이 가능하며, 액체 수소를 기반으로 하기 때문에 기존의 고압수소 수송방식보다 운송에 필요한 에너지 및 수송비를 절약할 수 있다.
또한, 고압 기체 상태의 수소를 다수로 독립된 고압수소탱크에 동일한 압력으로 나누어 저장하고, 각각 고압수소탱크에 저장된 고압의 수소 가스를 압력차를 이용하여 순차적으로 차량에 주입하는 방식으로 충전이 이루어짐으로써, 원활한 충전을 위해 고압의 수소 가스를 재차 압축하여 승압시키는 과정이나 설비를 생략할 수 있는 장점이 있다.
도 1은 본 발명의 실시 예에 따른 액체 수소를 이용한 수소연료 충전 시스템의 전체적인 구성을 개략 도시한 시스템 구성도.
도 2는 열교환부를 구성하는 가스 냉각기의 바람직한 실시 예를 도시한 사시도.
도 3은 도 2에 도시된 열전도성 각재의 사시도.
도 4는 도 3의 열전도성 각재를 A-A선 방향에서 바라본 단면도.
도 5는 수소연료 충전 시스템에 의해 외부 충전 대상체에 수소연료가 공급(충전)되는 과정을 도시한 순서도.
도 6은 수소연료 공급(충전) 과정에서의 고압수소탱크부의 개방 및 충전 순서를 개략 도시한 도면.
이하, 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다.
명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
더하여, 명세서에 기재된 "…부", "…유닛", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
첨부 도면을 참조하여 설명함에 있어, 동일한 구성 요소에 대해서는 동일도면 참조부호를 부여하기로 하며 이에 대한 중복되는 설명은 생략하기로 한다. 그리고 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1은 본 발명의 실시 예에 따른 액체 수소를 이용한 수소연료 충전 시스템의 전체적인 구성을 개략 도시한 시스템 구성도이다.
본 발명의 실시 예에 따른 수소연료 충전 시스템은, 액체수소탱크부(10)로부터의 극저온 액체 수소(LH2)를 고압펌프(20)로 가압하여 초임계 상태로 열교환부(30)에 보내고, 열교환부(30)에서 기체 상태로 변환한 뒤 고압수소탱크부(40)에 저장하며, 외부 충전 대상체와의 압력차를 이용하여 고압수소탱크부(40)에 저장된 고압의 수소를 외부 충전 대상체에 별도의 동력 없이 충전시킬 수 있도록 한 것을 요지로 한다.
본 발명의 구성을 도 1을 참조하여 좀 더 구체적으로 살펴보기로 한다.
도 1을 참조하면, 상기 수소연료 충전 시스템은 크게, 대용량 액체수소탱크부(10), 고압펌프(20), 열교환부(30) 및 고압수소탱크부(40), 그리고 고압수소주입부(50)로 구성된다.
액체수소탱크부(10)에 극저온 액체 상태로 수소가 저장되고, 그 저장된 극저온 액체 수소(LH2)는 고압펌프(20)에 의해 고압으로 가압되어 초임계 상태로 열교환부(30)에 보내지고 기체 상태로 변환한 뒤 고압수소탱크부(40)에 저장된다.
액체수소탱크부(10)는 내부에 상압 이상의 상태로 유지되는 밀폐된 저장공간을 구비하며, 저장공간에 극저온 액체 상태로 수소를 저장한다. 액체수소탱크부(10)의 액체 수소 저장용량은 시스템의 규모나 설치 환경에 따라 달라질 수 있다. 때문에 특정 크기나 용량에 한정되는 것은 아니다.
바람직하게는, 트레일러 탑재형인 경우 트레일러에 가능한 크기와 저장 용량(대략 1000liter 에서 2000liter)으로 제공될 수 있으며, 지상 고정형인 경우에 있어 그 저장용량은 특별하게 한정되지 않는다.
액체수소탱크부(10)는 내부의 극저온 액체 상태 수소의 증발을 최소화할 수 있는 구조일 수 있다. 바람직하게는, 내통과 외통으로 이루어진 이중 용기(vessel) 형태로, 스테인레스 스틸(stainless steel)로 이루어질 수 있으며, 내통과 외통 사이의 갭(gap) 층에 단열재를 충진시켜 단열하고 진공을 유지하도록 하여 수소 증발율을 최소화시킨 구성일 수 있다.
고압수소탱크부(40)에는 초고압 기체 상태의 수소(H2)가 저장된다. 구체적으로는, 상기 액체수소탱크부(10)에서 공급되고 고압펌프(20)로 압축되며 열교환부(30)를 통해 열교환 과정을 거친 수소를 초고압 기체 상태로 밀폐된 내부 저장공간에 저장한다. 이러한 고압수소탱크부(40) 역시 내통과 외통 사이를 단열재로 단열한 이중 용기(vessel) 형태 혹은 수소 차량에 탑재되는 경량 고압탱크로 구성될 수 있다.
고압수소탱크부(40)는 고압 기체 상태의 수소가 다수로 독립된 저장공간에 동일한 압력으로 나뉘어 저장되도록 용량이 동일한 복수의 고압수소탱크들로 구성될 수 있다. 고압수소탱크부(40)는 바람직하게, 독립된 밀폐형 저장공간을 갖는 6개의 고압수소탱크로 이루어질 수 있다. 물론 6개로 한정되는 것은 아니다. 시스템 규모나 설치환경에 따라 얼마든지 유동적일 수 있다.
복수의 고압수소탱크는 제어부(100)의 통제를 받아 순차적으로 열리고 닫히면서 고압수소주입부(50)를 통해 외부 충전 대상체(200, 도 6 참조)에 수소를 주입한다. 수소 충전을 위해 개방된 하나 이상의 고압수소탱크로부터 외부 충전 대상체에 수소가 주입되어 상호 간 압력 평형을 이루면, 다음 차례로 지정된 다른 하나 이상의 초고압의 고압수소탱크가 순차 개방됨으로써 수소 주입이 연속적으로 이루어질 수 있다.
예를 들어, 충전과 함께 1, 2번 탱크가 먼저 개방되어 외부 충전 대상체에 수소를 충전하고 압력 평형을 이뤄 더 이상 수소가 주입되지 않으면, 3, 4번 탱크가 연이어 개방되어 다시 외부 충전 대상체와 압력 평형을 이룰 때까지 수소를 충전하게 되고, 같은 방식으로 5, 6번 탱크가 개방되어 수소를 주입함으로써 수소 주입이 연속적으로 이루어질 수 있는 것이다(후술하는 도 6 참조).
물론, 다음 순번으로 개방되는 고압수소탱크에는 충전 중인 외부 충전 대상체보다 높은 압력으로 수소를 저장하고 있으며, 이 때문에 고압수소탱크부(40)와 충전 대상체 간 압력차가 지속적으로 발생하게 되고, 이에 따라 강제 주입을 위한 펌프와 같은 별도의 기계적인 요소 없이도 연속적인 수소 주입이 행해질 수 있는 것이다.
한편, 고압수소탱크, 예를 들어 전술한 3, 4번 탱크가 외부 충전 대상체를 충전하는 동안에는 직전에 개방된 고압수소탱크, 예를 들어 전술한 1, 2번 탱크는 상기 제어부(100)의 통제로 고압 기체 상태의 수소를 고압펌프(20)를 통해 공급받아 정상압력을 회복하고 이를 통해 신속하게 다음 충전을 위한 충전 대기 상태가 되도록 시스템이 구성될 수 있다.
즉 하나 이상의 다른 고압수소탱크가 외부 충전 대상체를 충전하는 동안 그 사이 직전에 개방된 고압수소탱크에 고압 기체 상태의 수소를 충전하여 정상압력으로 회복시킴으로써, 충전에 사용된 고압수소탱크를 다시 충전 가능한 상태로 재충전함에 있어 시간을 효율적으로 활용하여 신속하게 다음 충전을 위한 대기 상태가 되도록 시스템이 구성될 수 있다.
이와 같은 수소 충전의 보다 구체적인 과정에 대해서는 이후 도 6을 인용하여 설명하는 항목에서 구체적으로 살펴보기로 하고, 이하에서는 도 1에 도시된 열교환부에 대해 설명하기로 한다.
열교환부(30)는 상기 고압펌프(20)와 고압수소탱크부(40) 사이에 설치된다. 이에 따라 액체수소탱크부(10)에서 배출된 극저온 액체 상태 수소는 상기 고압펌프(20)에 의해 가압되어 극저온 초임계 상태로 상기 고압수소탱크부(40) 측으로 공급되되, 중간에 상기 열교환부(30)를 거치면서 기화됨으로써 고압 기체 상태로 상기 고압수소탱크부(40)에 공급되고 저장될 수 있다.
열교환부(30)는 가스 냉각기(32)를 포함한다. 또한 가스 냉각기(32)를 통해서도 기화되지 않은 일부 액체 상태 수소의 완전 기화를 위해 상기 가스 냉각기(32)와 고압수소탱크부(40) 사이에 설치되는 가스 기화기(34)를 더 포함할 수 있다. 가스 기화기(34)는 공지의 방열판을 가진 열교환기일 수 있으며, 가스 냉각기(32)는 후술하는 특수한 형태로 구성될 수 있다.
가스 냉각기(32)는 도면의 예시와 같이, 고압펌프(20)와 고압수소탱크부(40)를 연결하는 액체 수소 공급라인(L1)과 상기 고압수소탱크부(40)와 고압수소주입부(50)를 연결하는 기체 수소 주입라인(L2)이 서로 교차하는 지점에 설치될 수 있다. 구체적으로는, 두 라인(L1, L2)이 교차하는 지점에 각각의 라인을 따라 이동되는 액체 수소와 기체 수소가 서로 열교환을 이루도록 구성될 수 있다.
이와 같은 구성에 의하면, 고압수소탱크부(40)로부터의 고압의 수소 가스를 이용하여 상기 극저온 초임계 액체 상태의 수소를 기체 상태로 변환시켜 고압수소탱크부(40)에 공급할 수 있다. 반대로 극저온 초임계 액체 상태 수소가 기화할 때 흡수하는 열(기화열)을 고압 수소 가스 냉각에 필요한 냉각열로 사용할 수 있어 별도의 냉각장치 사용을 배제할 수 있다.
가스 냉각기(32)는 고압(300기압 이상)의 수소와 고압(300기압) 액체 수소 사이의 열교환을 구현해야 한다. 그러나 종래 알려진 일반적인 쉘-앤드-튜브(Shell and tube heat exchanger) 방식이나 이중관 형태의 열교환기 구조로는 고압 수소 사이에 안정적으로 열교환이 이루어질 수 있는 설계 요구 조건을 만족시키기가 매우 어렵다.
특히 쉘-앤드-튜브 방식(Shell and tube heat exchanger)으로 가스 냉각기(32)를 설계 제작하는 경우에는, 초저온 초고압 가스의 누설 및 열팽창까지 고려해야 하기 때문에 설계가 매우 어려우며, 또한 초임계 유체의 유동을 고려한 물성까지 예측하여 설계에 반영해야 하는데 설계에 필요한 유체의 물성을 예측하기 매우 어렵다.
도 2는 열교환부를 구성하는 가스 냉각기의 바람직한 실시 예를 도시한 사시도이다.
도 2에 도시된 바와 같이, 본 발명의 실시 예에 적용된 가스 냉각기(32)는, 소정의 거리를 두고 평행하게 인접 배치되는 두 개의 열교환관(320, 322)과, 두 열교환관(320, 322) 사이를 상호 연결하는 복수의 열전도성 각재(326)를 포함하는 열전도 방식의 열교환기 구조로서, 단순하면서도 구조적으로 안정되고 또한 열교환이 효율적으로 이루어질 수 있는 구성일 수 있다.
두 개의 열교환관(320, 322) 중 하나(320)의 입구(E1)를 통해 고압펌프(20)로부터 강제 송출된 극저온 초임계 액체 상태의 수소가 도입되고 고압의 기체 상태 수소로 변환되어 출구(X1)를 통해 빠져나가 고압수소탱크부(40)에 공급되며, 다른 하나(322)의 입구(E2)를 통해서는 고압수소탱크에 저장된 수소가 도입되고 열교환에 의해 소정의 온도(약 -40℃)까지 냉각된 후 출구(X2)를 통해 배출되어 고압수소주입부(50)로 공급될 수 있다.
열교환관(320, 322)은 내압성과 열전도성이 우수한 금속재질의 튜브를 관형 커플러로 단순히 직선 또는 곡선상으로 연결시킨 구성일 수 있다. 그리고 열전도성 각재(326)는 열전도성이 우수한 금속, 예컨대 구리 또는 알루미늄 재질로 된 각형 단면의 전도체로서, 부착 개수를 조절하여 두 관 사이의 열전달 양과 출구 온도를 조절할 수 있도록 열교환관(320, 322)에 착탈 가능한 구조로 이루어질 수 있다.
도 3은 도 2에 도시된 열전도성 각재의 사시도이며, 도 4는 도 3의 열전도성 각재를 A-A선 방향에서 바라본 단면도이다.
도 3 내지 도 4를 참조하면, 열전도성 각재(326)는 상하 대칭인 상부와 하부 각재(326a, 326b)로 구성되며, 열교환관(320, 322)이 그 사이에 위치하도록 상하로 밀착된 상태로 결합될 수 있다. 상부와 하부 각재(326a, 326b)의 서로 마주하는 면에는 열교환관(320, 322) 외면부 일부가 접하는 반원형의 접속부(327)가 형성될 수 있으며, 복수 쌍의 볼트-너트와 같은 체결부재(328)를 통해 열교환관(320, 322)에 단단하게 고정될 수 있다.
각재(326)는 휘어지지 않을 정도의 두께를 가지면서 적절한 열전달 면적을 제공할 수 있도록, 그 길이(L)는 열교환관(320, 322)의 유효 열전달 길이의 1/10 내지 1/5 사이로 결정될 수 있으며, 높이(H)는 열교환관(320, 322) 직경의 1.5 ~ 2배 크기가 바람직하다. 그리고 열교환관(320, 322) 사이의 거리(D)는 50 ~ 100mm 사이가 적당하며, 하나의 각재(326)는 3개 이상의 체결부재(328)로 단단히 결합될 수 있다.
한편, 고압수소주입부(50, 도 1 참조)는 외부 충전 대상체의 주입구에 긴밀하고 견고하게 접속 가능한 착탈형 충전 커넥터(도시 생략), 충전되는 수소 가스의 유량을 체크하여 외부에 인식 가능하게 표출하는 유량계 및 디스플레이장치, 그리고 수소의 충전을 단속하는 내장형 전자제어식 단속장치, 예컨대 전자제어밸브 등을 포함하는 구성일 수 있으나 특별히 이에 한정되는 것은 아니다.
이하 상기한 수소연료 충전 시스템에 의해 수행되는 외부 충전 대상체에 수소연료가 공급(충전)되는 과정을 상기 수소연료 충전 시스템의 작동과 연계하여 살펴보기로 한다.
도 5는 수소연료 충전 시스템에 의해 외부 충전 대상체에 수소연료가 공급(충전)되는 과정을 도시한 순서도이며, 도 6은 수소연료 공급(충전) 과정에서의 고압수소탱크부의 개방 및 충전 순서를 개략 도시한 도면이다. 이하 수소연료 공급(충전) 과정을 설명함에 있어서는 도 6의 예시와 같이 고압수소탱크부가 6개의 탱크로 구성된 경우를 예를 들어 살펴보기로 하되, 편의상 도 6의 좌측 탱크부터 순서대로 1번, 2번, …, 6번 탱크로 지칭하여 설명하기로 한다.
앞서 첨부된 도 1및 도 5와 도 6을 참조하면, 액체수소탱크부(10)에 저장된 극저온 액체 상태 수소는 고압펌프(20)에 의한 가압으로 극저온 초임계 액체 상태로 변환되고 열교환부(30)에 보내진다(S100). 열교환부(30)를 통과하면서 고압수소탱크부(40)에서 방출되는 고압 기체 상태의 수소에 의해 기화가 일어나 고압 기체 상태로 변환되고 고압수소탱크부(40)에 저장된다(S200).
열교환부(30)를 통한 기화과정에서, 고압수소탱크부(40)에서 방출되는 고압의 수소 가스에 의해 상기 극저온 초임계 액체 상태의 수소가 고압 기체 상태로 변환되며, 액체 상태 수소가 기화하면서 발생되는 기화열은 고압수소탱크부(40)에서 방출되는 상기 고압 기체 상태의 수소를 냉각시키는 냉각열로 사용된다. 이에 따라 고압의 수소 가스는 충분히 냉각된(약 -40℃) 상태로 고압수소주입부(50)에 전달된다.
열교환부(30)를 거치면서 고압 기체 상태로 변환된 고압의 수소 가스는 고압수소탱크부(40)를 구성하는 6개의 고압수소탱크에 동일한 압력으로 균등하게 저장된다. 그리고 외부 충전 대상체에 수소 공급(충전)이 시작되면, 상기 고압수소탱크부(40)의 압력과 외부 충전 대상체(200) 사이의 상호 간의 압력차에 의해 외부 충전 대상체(200)에 공급된다(S300).
6개의 고압수소탱크에 균등하게 저장된 고압 수소 가스는 고압수소탱크의 순차적 개방으로 별도의 동력장치(펌프) 없이도 외부 충전 대상체(200)에 원활하게 공급될 수 있다. 즉 6개의 고압수소탱크는 제어부(100)의 통제에 따라 지정된 순서로 순차적으로 열리고 닫히면서 발생되는 외부 충전 대상체(200)와의 압력차를 이용하여 수소를 연속적으로 주입하는 것이다.
고압수소탱크의 순차적 개방에 의한 수소 가스 공급(충전)에 대해서는 도 6을 참조하기로 한다.
수소 가스 공급(충전) 전 6개의 고압수소탱크에는 800bar의 균등한 압력으로 수소 가스가 충전되어 있으며, 외부 충전 대상체(200), 예컨대, 수소연료 차량의 수소탱크 내부는 수소 가스 공급이 진행되기 전 100bar의 압력으로 유지되고, 6개의 고압수소탱크 두 개씩 짝(1-2, 3-4, 5-6)을 지어 동시에 열리고 닫히는 경우를 예를 들어 살펴보기로 한다.
도 6의 (a)와 같이, 수소 공급(충전)과 함께 제어부(100)의 통제로 1, 2번 탱크가 먼저 개방된다. 1, 2번 탱크의 압력이 외부 충전 대상체(200)에 비해 700bar 크다. 따라서 상호 간의 압력 차에 해당하는 양 만큼 별도의 동력장치(펌프) 없이도 외부 충전 대상체(200)에 수소가 공급되며, 서로의 압력이 평형(450bar)을 이루면 더 이상 수소가 주입되지 않는다.
1, 2번 탱크와 외부 충전 대상체(200)가 압력 평형(450bar)에 도달하면, 1, 2번 탱크의 공급 측은 제어부(100) 통제로 닫힘 전환되고, 6의 (b)와 같이 3, 4번 탱크의 공급 측이 연이어 개방된다. 이에 따라 3, 4번 탱크와 외부 충전 대상체(200)가 서로 압력 평형(625bar)에 도달할 때까지 3, 4번 탱크 내 수소 가스가 외부 충전 대상체(200)에 공급된다.
같은 방식으로, 3, 4번 탱크와 외부 충전 대상체(200) 간 압력 평형에 도달하면, 3, 4번 탱크의 공급 측은 제어부(100) 통제로 닫힘 전환되고, 6의 (c)와 같이 5, 6번 탱크의 공급 측이 연이어 개방되어 압력차에 의해 상기 외부 충전 대상체(200)에 수소가 공급되는 것이며, 이러한 방식으로 펌프와 같은 별도의 동력장치 없이도 연속적인 수소 공급이 행해질 수 있는 것이다.
한편, 도 6의 (b)와 같이, 3, 4번 탱크가 수소를 공급(충전)하는 동안, 직전에 개방된 고압수소탱크, 즉 1, 2번 탱크는 상기 제어부(100)의 통제로 고압 기체 상태의 수소를 고압펌프(20)를 통해 공급받아 정상압력을 회복함으로써 신속하게 다음 충전을 위한 충전 대기 상태가 되며, 마찬가지로 5, 6번 탱크가 수소를 공급하는 동안 3, 4번 탱크는 정상압력을 회복하게 된다.
즉 하나 이상의 다른 고압수소탱크가 외부 충전 대상체(200)를 충전하는 동안 그 사이 직전에 개방된 고압수소탱크에 고압 기체 상태의 수소를 충전하여 정상압력으로 회복시킴으로써, 충전에 사용된 고압수소탱크를 다시 충전 가능한 상태로 재충전함에 있어 시간을 효율적으로 활용하여 신속하게 다음 충전을 위한 대기 상태가 되는 것이다.
이상에서 살펴본 본 발명의 실시 예에 의하면, 극저온 액체수소가 기화할 때 흡수하는 열(기화열)을 고압 가스 상태의 수소 냉각에 사용함으로써, 압축기를 포함하는 별도의 냉각장치 없이도 고압의 수소를 냉각시켜 직접 외부 충전 대상체에 원활하게 주입시킬 수 있으며, 이로 인해 설비의 간소화와 에너지 및 유지비의 획기적인 절감을 도모할 수 있다.
또한, 전체적인 시스템 구성이 단순한고 간단하여 공간 소요가 크지 않아 트레일러와 같은 수송 차량에 탑재 가능한 이동형으로도 구현이 가능하며, 이에 따라 장소에 구애됨이 없이 원하는 장소에서 수소 충전이 가능하며, 액체 수소를 기반으로 하기 때문에 기존의 고압수소 수송방식보다 운송에 필요한 에너지 및 수송비를 절약할 수 있다.
또한, 고압 기체 상태의 수소를 다수로 독립된 고압수소탱크에 동일한 압력으로 나뉘어 저장하고, 각각 고압수소탱크에 저장된 고압의 수소 가스를 압력차를 이용하여 순차적으로 차량에 주입하는 방식으로 충전이 이루어짐으로써, 원활한 충전을 위해 고압의 수소 가스를 재차 압축하여 승압시키는 과정이나 설비를 생략할 수 있는 장점이 있다.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
[부호의 설명]
10 : 액체수소탱크부
20 : 고압펌프
30 : 열교환부
32 : 가스 냉각기
34 : 가스 기화기
40 : 고압수소탱크부
50 : 고압수소주입부
100 : 제어부
200 : 외부 충전 대상체
320, 322 : 열교환관
326 : 열전도성 각재
327 : 체결부재

Claims (12)

  1. 액체수소탱크부로부터의 극저온 액체 수소를 고압펌프로 가압하여 초임계 상태로 열교환부에 보내고, 열교환부에서 기체 상태로 변환한 뒤 고압수소탱크부에 저장하며, 외부 충전 대상체와의 압력차를 이용하여 고압수소탱크부에 저장된 고압의 수소를 상기 외부 충전 대상체에 별도의 동력 없이 충전시킬 수 있도록 구성한 액체 수소를 이용한 수소연료 충전 시스템.
  2. 상압 이상의 상태로 유지되는 밀폐된 저장공간을 구비하며, 저장공간에 극저온 액체 상태로 수소를 저장하는 대용량 액체수소탱크부;
    상기 액체수소탱크부에서 공급되는 액체 상태 수소를 밀폐된 내부 저장공간에 고압 기체 상태로 저장하는 고압수소탱크부;
    상기 액체수소탱크부로부터의 극저온 액체 수소에 압력을 가해 극저온 초임계 상태로 상기 고압수소탱크부 측에 공급하는 고압펌프;
    극저온 초임계 액체 상태의 수소가 기체 상태로 고압수소탱크부에 공급되도록 상기 고압펌프와 고압수소탱크부 사이에 설치되는 열교환부; 및
    상기 고압수소탱크부에 저장된 고압의 수소를 압력차를 이용해 외부 충전 대상체에 주입시키는 고압수소주입부;
    를 포함하는 액체 수소를 이용한 수소연료 충전 시스템.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 열교환부는,
    상기 고압수소탱크부로부터의 고압의 수소 가스를 이용하여 상기 극저온 초임계 액체 상태의 수소를 기체 상태로 변환시키고, 반대로 상기 극저온 초임계 액체 상태 수소의 기화열이 상기 고압수소탱크로부터의 고압 수소 가스 냉각에 필요한 냉각열로 사용되도록 고압펌프와 고압수소탱크부 사이에 설치되는 가스 냉각기와;
    상기 가스 냉각기를 통해서도 기화되지 않은 일부 액체 상태 수소의 완전 기화를 위해 상기 가스 냉각기와 고압수소탱크부 사이에 설치되는 가스 기화기;로 구성되는 것을 특징으로 하는 액체 수소를 이용한 수소연료 충전 시스템.
  4. 제 3 항에 있어서,
    상기 가스 냉각기는,
    임의 간격으로 평행한 두 개의 열교환관; 및
    상기 두 개의 열교환관을 상호 연결하는 복수의 열전도성 각재;를 포함하는 열전도 방식으로 구성되며,
    두 열교환관 사이의 열전달 양과 출구 온도를 자유롭게 조절이 가능하도록 상기 열교환관에 열전도성 각재가 착탈 가능하게 구비되는 것을 특징으로 하는 액체 수소를 이용한 수소연료 충전 시스템.
  5. 제 4 항에 있어서,
    상기 열전도성 각재는,
    상하 대칭형 구조의 상부 각재와 하부 각재로 구성되며,
    상기 상부 각재와 하부 각재의 서로 마주하는 면에는 열교환관 외면부 일부가 접하도록 반원형의 접속부가 각각 형성되고,
    상기 열교환관이 사이에 위치하면서 마주하는 면이 서로 접하도록 상부 부재와 하부 부재가 밀착된 상태로 한 쌍 이상의 체결부재로 고정되는 것을 특징으로 하는 액체 수소를 이용한 수소연료 충전 시스템.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 고압수소탱크부는,
    고압 기체 상태의 수소가 다수로 독립된 저장공간에 동일한 압력으로 나뉘어 저장되도록 용량이 동일한 복수의 고압수소탱크들로 구성되는 것을 특징으로 하는 액체 수소를 이용한 수소연료 충전 시스템.
  7. 제 6 항에 있어서,
    수소 충전 시 복수의 고압수소탱크 중 충전에 사용되는 고압수소탱크와 외부 충전 대상체의 압력이 평형을 이루면, 다른 고압수소탱크와 외부 충전 대상체 사이의 압력차에 의하여 수소의 연속적인 주입이 이루어지도록, 상기 고압수소탱크들이 제어부의 통제를 받아 순차적으로 열리고 닫히는 것을 특징으로 하는 액체 수소를 이용한 수소연료 충전 시스템.
  8. 제 7 항에 있어서,
    다른 고압수소탱크가 외부 충전 대상체를 충전하는 동안 직전에 개방된 고압수소탱크는 상기 제어부의 통제로 고압 기체 상태의 수소를 고압펌프를 통해 공급받아 정상압력을 회복하도록 시스템이 구성됨을 특징으로 하는 액체 수소를 이용한 수소연료 충전 시스템.
  9. 액체수소탱크부에서 공급되는 극저온 액체 수소를 가압하여 극저온 초임계 액체 상태로 변환시키고;
    가압에 의한 극저온 초임계 액체 상태의 수소를 열교환부에서 기화시켜 고압 기체 상태로 고압수소탱크부에 저장하며;
    고압수소탱크부에 저장된 고압의 수소 가스를 외부 충전 대상체에 상호 간의 압력차에 의해 별도의 동력 없이 고압으로 공급하는 제 1 항 또는 제 2 항의 수소연료 충전 시스템에 의한 수소연료 공급 방법.
  10. 제 9 항에 있어서,
    상기 열교환부를 통한 기화과정에서는,
    고압수소탱크에서 방출되는 고압의 수소 가스를 이용하여 상기 극저온 초임계 액체 상태의 수소를 고압 기체 상태로 변환시키고, 반대로 극저온 초임계 액체 상태 수소의 기화열로 고압수소탱크에서 방출되는 상기 고압의 수소 가스를 냉각시키는 것을 특징으로 하는 수소연료 충전 시스템에 의한 수소연료 공급 방법.
  11. 제 9 항에 있어서,
    상기 고압수소탱크부에 고압 기체 상태의 수소를 저장함에 있어서는 복수의 고압수소탱크에 동일한 압력으로 나누어 저장하며,
    고압수소탱크부에 저장된 수소를 외부 충전 대상체에 공급함에 있어서는 복수의 고압수소탱크 중 하나 이상의 고압수소탱크를 개방하여 외부 충전 대상체에 수소를 공급하며,
    개방된 고압수소탱크와 외부 충전 대상체 사이의 압력이 평형을 이뤄 더 이상의 수소 주입이 이루어지지 않으면, 외부 충전 대상체보다 높은 압력의 다른 하나 이상의 고압수소탱크를 개방하여 상호 압력차에 의해 수소가 외부 충전 대상체에 공급되도록 하는 것을 특징으로 하는 수소연료 충전 시스템에 의한 수소연료 공급 방법.
  12. 제 11 항에 있어서,
    상기 하나 이상의 다른 고압수소탱크가 외부 충전 대상체를 충전하는 동안 직전에 개방된 고압수소탱크에 고압 기체 상태의 수소를 충전시켜 정상압력으로 회복시키는 것을 특징으로 하는 수소연료 충전 시스템에 의한 수소연료 공급 방법.
PCT/KR2017/007082 2016-07-13 2017-07-04 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법 WO2018012779A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780056089.5A CN109690169B (zh) 2016-07-13 2017-07-04 一种使用液氢的氢燃料充装系统及其氢燃料供应方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0088686 2016-07-13
KR1020160088686A KR101881999B1 (ko) 2016-07-13 2016-07-13 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법

Publications (1)

Publication Number Publication Date
WO2018012779A1 true WO2018012779A1 (ko) 2018-01-18

Family

ID=60953176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007082 WO2018012779A1 (ko) 2016-07-13 2017-07-04 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법

Country Status (3)

Country Link
KR (1) KR101881999B1 (ko)
CN (1) CN109690169B (ko)
WO (1) WO2018012779A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165431A (zh) * 2021-11-24 2022-03-11 北京航天试验技术研究所 液氢增压泵低温性能测试系统及测试方法
CN114593360A (zh) * 2022-01-29 2022-06-07 东风汽车集团股份有限公司 一种用于燃料电池车的供氢系统、方法及装置
CN115419829A (zh) * 2022-08-25 2022-12-02 北京航天试验技术研究所 一种用于液氢发动机测试的高压液氢输送系统及其方法
US11920736B2 (en) 2021-12-31 2024-03-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and system for filling tanks of hydrogen-fueled vehicles
US11933458B1 (en) 2022-09-15 2024-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and system for filling tanks of hydrogen-fueled vehicles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334440B1 (ko) 2019-02-27 2021-12-01 울산과학기술원 수소 생산을 위한 이차 전지
CN111620304A (zh) * 2020-06-12 2020-09-04 云南省能源研究院有限公司 一种氢气制备方法
KR102422306B1 (ko) * 2020-07-28 2022-07-19 주식회사 패리티 무손실 극저온 수소공급시스템
CN112483886A (zh) * 2020-12-25 2021-03-12 江苏国富氢能技术装备股份有限公司 一种采用液氢预冷的液氢储氢型加氢装置
KR102414036B1 (ko) 2021-11-22 2022-06-29 주식회사 헥사 액체수소의 이동 충전소

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316779A (ja) * 2003-04-16 2004-11-11 Honda Motor Co Ltd 燃料電池の水素供給装置
JP2005069332A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 水素供給ステーション及びその水素充填方法
JP2008196590A (ja) * 2007-02-13 2008-08-28 Mitsubishi Heavy Ind Ltd 水素供給ステーション
JP2011074925A (ja) * 2009-09-29 2011-04-14 Taiyo Nippon Sanso Corp 水素ガスの充填方法及び充填装置
JP2015190521A (ja) * 2014-03-27 2015-11-02 Jx日鉱日石エネルギー株式会社 水素ステーション

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934081A (en) * 1998-02-03 1999-08-10 Praxair Technology, Inc. Cryogenic fluid cylinder filling system
JP2000193383A (ja) * 1998-12-25 2000-07-14 Osaka Gas Co Ltd 熱交換器
US7287558B2 (en) * 2003-07-03 2007-10-30 Arizona Public Service Company Hydrogen handling or dispensing system
JP4913427B2 (ja) * 2006-03-10 2012-04-11 大陽日酸株式会社 水素ガスの充填方法及び装置
FR2908859B1 (fr) * 2006-11-22 2009-02-20 Air Liquide Procede et station de ravitaillement en hydrogene
EP2124008A1 (en) * 2006-12-19 2009-11-25 Taiyo Nippon Sanso Corporation Heat exchanger
KR101272589B1 (ko) 2007-08-31 2013-06-11 기아자동차주식회사 연료전지 차량용 수소 저장 및 충전 시스템
CN201218417Y (zh) * 2008-06-27 2009-04-08 浙江大学 一种加氢站高效加氢的三级加注优化控制系统
CN101418908B (zh) * 2008-11-28 2011-09-14 同济大学 可用于高压氢气加氢站的加气系统
KR101192885B1 (ko) 2010-07-29 2012-10-18 지에스칼텍스 주식회사 수소 압축-저장 시스템 및 수소 압축-저장 방법
JP6199083B2 (ja) * 2013-06-10 2017-09-20 岩谷産業株式会社 水素ガス充填設備および水素ガス充填方法
FR3008166B1 (fr) 2013-07-05 2015-06-26 Air Liquide Station et procede de remplissage de reservoirs de gaz

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316779A (ja) * 2003-04-16 2004-11-11 Honda Motor Co Ltd 燃料電池の水素供給装置
JP2005069332A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 水素供給ステーション及びその水素充填方法
JP2008196590A (ja) * 2007-02-13 2008-08-28 Mitsubishi Heavy Ind Ltd 水素供給ステーション
JP2011074925A (ja) * 2009-09-29 2011-04-14 Taiyo Nippon Sanso Corp 水素ガスの充填方法及び充填装置
JP2015190521A (ja) * 2014-03-27 2015-11-02 Jx日鉱日石エネルギー株式会社 水素ステーション

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165431A (zh) * 2021-11-24 2022-03-11 北京航天试验技术研究所 液氢增压泵低温性能测试系统及测试方法
CN114165431B (zh) * 2021-11-24 2023-08-18 北京航天试验技术研究所 液氢增压泵低温性能测试系统及测试方法
US11920736B2 (en) 2021-12-31 2024-03-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and system for filling tanks of hydrogen-fueled vehicles
CN114593360A (zh) * 2022-01-29 2022-06-07 东风汽车集团股份有限公司 一种用于燃料电池车的供氢系统、方法及装置
CN114593360B (zh) * 2022-01-29 2023-06-16 东风汽车集团股份有限公司 一种用于燃料电池车的供氢系统、方法及装置
CN115419829A (zh) * 2022-08-25 2022-12-02 北京航天试验技术研究所 一种用于液氢发动机测试的高压液氢输送系统及其方法
US11933458B1 (en) 2022-09-15 2024-03-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and system for filling tanks of hydrogen-fueled vehicles

Also Published As

Publication number Publication date
KR20180007532A (ko) 2018-01-23
KR101881999B1 (ko) 2018-07-25
CN109690169B (zh) 2021-02-19
CN109690169A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2018012779A1 (ko) 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법
KR101987885B1 (ko) 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법
KR102105134B1 (ko) 액체 수소를 이용한 수소연료 충전 시스템 및 수소연료 충전 시스템에 의한 수소연료 공급 방법
CN100550452C (zh) 超导设备的低温装置
CN1091955C (zh) 热控制装置
US20200028223A1 (en) Cooling system
CN101137865A (zh) 能量网络的管道部件及其应用和管道输送低温载能体的方法及对此适用的装置
US20240047725A1 (en) Fuel cell module assembly and systems using same
WO2024103729A1 (zh) 一种电池模组、储能机柜及储能系统
WO2023082616A1 (zh) 用于储能装置的热管理系统和储能装置
CN114322349A (zh) 耦合直流的回热式制冷机冷却的低温储存系统
US7008715B2 (en) Thermal and vibrational break for high-temperature gas tubes in a solid-oxide fuel cell
CN218391946U (zh) 电池消防系统、电池及用电装置
US20070214830A1 (en) Hydrogen tank system based on high-surface materials used for intermediate storage of excess hydrogen gas in stationary applications
WO2021251568A1 (ko) 복합발전설비
WO2023063615A1 (ko) 냉열을 이용하여 열원을 관리하기 위한 시스템 및 방법
CN116576384A (zh) 一种采用氢燃料电池进行能量回收的液氢储罐系统及运行方法
KR20170141682A (ko) 이중 연료전지 시스템
US8534078B2 (en) Self generating power generator for cryogenic systems
WO2023195583A1 (ko) 액화 수소의 기화를 최소화할 수 있는 액화수소 용기 표준 수송 컨테이너
KR20200142150A (ko) 기상 기반 연료 충전시스템에서 다상 기반 연료 충전시스템으로 전환하는 연료 충전시스템 전환방법
US20150042102A1 (en) Self generating power generator for cryogenic systems
WO2024063201A1 (ko) 수소 충전 장치
CN214889710U (zh) 一种用于核电站的冰塞隔离装置
US20170038131A1 (en) Cold storage methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827853

Country of ref document: EP

Kind code of ref document: A1